1
|
García-Vielma C, Cortés-Gutiérrez EI, Carranza-Torres IE, Guzmán-Delgado NE, Dávila-Rodríguez MI, Cerda-Flores RM, Carranza-Rosales P. An ex vivo model to evaluate DNA damage by comet assay in breast-cancer tissue. Toxicol Mech Methods 2025:1-8. [PMID: 40387106 DOI: 10.1080/15376516.2025.2503872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Single cell gel electrophoresis (comet assay) is a research tool known for its use in the assessment of DNA damage in which peripheral blood lymphocytes are used as a cellular model. The objective of this study was to adapt the comet assay to fresh normal and tumor breast tissue explants to assess DNA damage. Representative samples were obtained from nine patients with infiltrating ductal adenocarcinoma during the time of surgical intervention for the resection of the tumor. One hundred micrometer thick explants were prepared from normal and tumor breast tissue using a tissue slicer. Explants were harvested into six-well microplates with 4 mL of sterile serum-free Dulbecco's modified Eagle's medium/Ham's F12 medium at 4 °C for immediate processing of the comet assay. The results indicated that the comet assay can be used to analyze DNA damage in tumors and healthy breast tissue in an ex vivo model that allows visualization of the level of DNA damage. Compared to non-tumor cells, DNA damage in breast cancer was significantly increased (p < 0.05); furthermore, DNA damage was higher in samples treated with H2O2 (positive control) and confirmed that cells in the explants can interact with the chemicals tested, as well as the functionality of the technique. The comet assay using fresh tissue explants represents an alternative tool with potential to identify DNA damage in tumor tissue and to study new drugs to personalize the use of DNA-damaging therapies.
Collapse
Affiliation(s)
- Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, "Dr. Alfonso J. Treviño" del Centro Médico Nacional del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| |
Collapse
|
2
|
Karsten REH, Gier K, de Meijer VE, Huibers WHC, Permentier HP, Verpoorte E, Olinga P. Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices. Toxicol In Vitro 2025; 104:106011. [PMID: 39855581 DOI: 10.1016/j.tiv.2025.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Collapse
Affiliation(s)
- R E H Karsten
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - K Gier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - V E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W H C Huibers
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - H P Permentier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - E Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - P Olinga
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Andersen H, Müller MHB, Yadetie F, Berg V, Nourizadeh-Lillabadi R, Chikwati EM, Hermansen L, Goksøyr A, Lyche JL. Plastic additives affect estrogenic pathways and lipid metabolism in precision - cut - liver slices in Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177927. [PMID: 39689470 DOI: 10.1016/j.scitotenv.2024.177927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The overall aim of the present study was to determine if exposure to three high volume plastic additives, including diethylhexyl phthalate (DEHP), bisphenol A (BPA) and benzotriazoles (BT), have the potential to promote adverse effects in Atlantic cod (G. morhua). Ex vivo precision cut - liver slices (PCLS) from six male juvenile Atlantic cod were exposed to four concentrations of mono-(2-ethylhexyl)-phthalate (MEHP, the main metabolite of DEHP), BPA and BT both singly and in mixtures ranging from 0.1 to 100 μM (MEHP), 0.022-22 μM (BPA) and 0.042-42 μM (BT). Histology and transmission electron microscopy (TEM) were used to assess pathological changes and ultrastructure of the exposed liver tissue. Vitellogenin (Vtg) produced by the hepatic tissue was analyzed using ELISA, and the transcription levels of selected biomarker genes (vtg1, esr1, cyp1a, scdb, aclya, fabp1a, acox1, hnf4a and cebp) were measured using Quantitative real-time polymerase chain reaction (Q-PCR). An estrogenic effect was observed with a significant upregulation of the vtg1 and esr1 genes and increase in Vtg protein synthesis following exposure to BPA and a mixture of the selected compounds. The hnf4a showed a significant downregulation following mixture exposure, where the BPA was suspected to be the main driver for this response although not inducing a significant downregulation in the single component exposure. There was no significant difference between the mixture exposure and the individual compound exposures, nevertheless a tendency of an antagonistic mixture effect for the biomarkers of estrogenic effect (vtg1, esr1 and Vtg), and possibly synergistic or additive effect on the lipid metabolism related gene hnf4a, warrants further investigation.
Collapse
Affiliation(s)
- Hilde Andersen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Norway
| | - Vidar Berg
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Elvis M Chikwati
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Oslo, Norway
| | - Lene Hermansen
- Imaging Center, Norwegian University of Life Sciences, Oslo, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
4
|
Schönke M, Rensen PC. Mouse Models for the Study of Liver Fibrosis Regression In Vivo and Ex Vivo. J Clin Transl Hepatol 2024; 12:930-938. [PMID: 39544245 PMCID: PMC11557367 DOI: 10.14218/jcth.2024.00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024] Open
Abstract
This review discussed experimental mouse models used in the pre-clinical study of liver fibrosis regression, a pivotal process in preventing the progression of metabolic dysfunction-associated steatohepatitis to irreversible liver cirrhosis. These models provide a valuable resource for understanding the cellular and molecular processes underlying fibrosis regression in different contexts. The primary focus of this review is on the most commonly used models with diet- or hepatotoxin-induced fibrosis, but it also touches upon genetic models and mouse models with biliary atresia or parasite-induced fibrosis. In addition to emphasizing in vivo models, we briefly summarized current in vitro approaches designed for studying fibrosis regression and provided an outlook on evolving methodologies that aim to refine and reduce the number of experimental animals needed for these studies. Together, these models contribute significantly to unraveling the underlying mechanisms of liver fibrosis regression and offer insights into potential therapeutic interventions. By presenting a comprehensive overview of these models and highlighting their respective advantages and limitations, this review serves as a roadmap for future research.
Collapse
Affiliation(s)
- Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Luo K, Geng Y, Oosterhuis D, de Meijer VE, Olinga P. Evaluating the antifibrotic potential of naringenin, asiatic acid, and icariin using murine and human precision-cut liver slices. Physiol Rep 2024; 12:e16136. [PMID: 39501714 PMCID: PMC11538472 DOI: 10.14814/phy2.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 11/09/2024] Open
Abstract
Liver fibrosis is an exaggerated wound healing response defined by the excessive accumulation of extracellular matrix. This study investigated the antifibrotic potential of naringenin (NRG), asiatic acid (AA), and icariin (ICA) using murine and human precision-cut liver slices (PCLS). These natural products have shown promise in animal models, but human data are lacking. In this study, PCLS prepared from male mouse liver tissue (mPCLS), healthy human liver tissue (hhPCLS), and cirrhotic human liver tissue (chPCLS) were cultured for 48 h with varying concentrations of the three compounds. Our findings indicate that NRG reduced collagen type 1 (COL1A1) expression in a concentration-dependent manner in both mPCLS and chPCLS, decreased fibrosis-related gene expression, and significantly lowered pro-collagen type 1 (PCOL1A1) levels in the culture medium by 54 ± 21% (mPCLS) and 78 ± 35% (chPCLS). Furthermore, NRG effectively inhibited IL-1β and TNF-α in mPCLS and IL-1β in chPCLS on both gene and protein levels. AA specifically reduced COL1A1 and PCOL1A1 in chPCLS, while ICA selectively downregulated Col1a1 and Acta2 gene expression in mPCLS. This study suggests NRG's potential as an effective antifibrotic agent, warranting further investigation into its mechanisms and therapeutic applications in liver fibrosis.
Collapse
Affiliation(s)
- Ke Luo
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Yana Geng
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, University of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
6
|
Karsten RE, Gier K, Mulder JPSH, Grajewski M, Olinga P, Verpoorte E. Real-Time Monitoring of Oxygen-Consumption Rate in Mouse Liver Slices Incubated in Organ-on-a-Chip Devices. Anal Chem 2024; 96:15871-15879. [PMID: 39344042 PMCID: PMC11465219 DOI: 10.1021/acs.analchem.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
We developed an organ-on-a-chip (OOC) based on precision-cut liver slices to assess liver function in real-time, both in health and disease, in a controlled and noninvasive manner. We achieved this by integrating fiber-optic-based oxygen sensors before and after the microchamber in which a liver slice was incubated under flow, to measure oxygen concentrations in the medium in real time. We first demonstrated that the basal oxygen consumption rate (OCR) of liver slices is a reliable indicator of liver slice viability. By monitoring basal OCR (2.9-5.7 pmol O2/min/μg protein) in incubation medium, we found that it correlated well to cellular adenosine triphosphate (ATP) content (3.0-7.9 pmol/μg protein) (r = 0.82, p < 0.0001). Second, we induced a diseased state in liver slices by targeting the mitochondria, as they play a critical role in liver function and disease. We exposed the liver slices to succinate in abundance (40 mM) for short periods (1 h) to rapidly boost mitochondrial OCR. Two successive treatments of succinate increased the OCR of liver slices by 1.5 pmol/min/μg each time. However, between treatments, the liver slice OCR did not return to its basal OCR, instead decreasing drastically by 60-70%, suggesting succinate toxicity. We confirmed this with ATP analysis (1.0 pmol/μg protein) and hematoxylin and eosin staining, which showed tissue necrosis and apoptosis. Our system could be an advantageous model for future studies assessing liver (patho)physiology in response to potentially toxic drugs or lifestyle-related liver diseases.
Collapse
Affiliation(s)
- Ruby E.
H. Karsten
- Pharmaceutical
Analysis (XB20), Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
- Pharmaceutical
Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Konstanze Gier
- Pharmaceutical
Analysis (XB20), Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jean-Paul S. H. Mulder
- Pharmaceutical
Analysis (XB20), Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Maciej Grajewski
- Pharmaceutical
Analysis (XB20), Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Peter Olinga
- Pharmaceutical
Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Elisabeth Verpoorte
- Pharmaceutical
Analysis (XB20), Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Herrera JM, Viviani P, Miró MV, Lifschitz AL, Virkel GL. Rapid method for paraffin embedding of precision-cut liver slices. Tissue Cell 2024; 90:102511. [PMID: 39141933 DOI: 10.1016/j.tice.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Precision-cut liver slices (PCLS) are tissue explants extensively used as an ex vivo model for metabolism and toxicity studies. When in vitro assays are conducted, it is imperative to perform a histomorphological evaluation as part of the viability analyses throughout the assay time. It is considered that good quality PCLS histological sections are difficult to obtain because they are hard to manipulate, and may shrink or fold during processing. Moreover, bibliography is not detailed on the embedding processes used. In this article, we propose an adjusted and rapid method for paraffin embedding of PCLS from crossbreed steers. Each PCLS was covered with a piece of gauze and placed into a histological cassette. These cassettes were submitted to a series of baths: 80 % ethanol for 10 min; 3 baths of 96 % ethanol for 10 min; 3 baths of butanol for 10 min; 1 bath of butanol-paraffin (1:1) for 20 min in a 60 °C laboratory oven; and 3 baths of paraffin for 20 min in a 60 °C laboratory oven. Folded paper boxes were used to produce paraffin blocks. It was possible to obtain complete sections with preserved cell morphology and no artifacts, and tissue appearance was similar to previous PCLS processed through the routine protocol, demonstrating the adequacy of the method implemented.
Collapse
Affiliation(s)
- Juan Manuel Herrera
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigaciones Biológicas (CIB), Laboratorio de Histología y Embriología, Tandil, Argentina.
| | - Paula Viviani
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Grupo de Medicina Veterinaria Traslacional (MEVET), Área de Grandes Animales, Tandil, Argentina; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - María Victoria Miró
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Fisiología y Farmacología Veterinaria (FISFARVET), Laboratorio de Farmacología, Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; CONICET, Tandil, Buenos Aires, Argentina
| | - Adrián Luis Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Fisiología y Farmacología Veterinaria (FISFARVET), Laboratorio de Farmacología, Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; CONICET, Tandil, Buenos Aires, Argentina
| | - Guillermo León Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Fisiología y Farmacología Veterinaria (FISFARVET), Laboratorio de Farmacología, Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; CONICET, Tandil, Buenos Aires, Argentina
| |
Collapse
|
8
|
Safri F, Nguyen R, Zerehpooshnesfchi S, George J, Qiao L. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications. Cancer Gene Ther 2024; 31:1105-1112. [PMID: 38499648 PMCID: PMC11327108 DOI: 10.1038/s41417-024-00764-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common types of primary liver cancer. Current treatment options have limited efficacy against this malignancy, primarily owing to difficulties in early detection and the inherent resistance to existing drugs. Tumor heterogeneity is a pivotal factor contributing significantly to treatment resistance and recurrent manifestations of HCC. Intratumoral heterogeneity is an important aspect of the spectrum of complex tumor heterogeneity and contributes to late diagnosis and treatment failure. Therefore, it is crucial to thoroughly understand the molecular mechanisms of how tumor heterogeneity develops. This review aims to summarize the possible molecular dimensions of tumor heterogeneity with an emphasis on intratumoral heterogeneity, evaluate its profound impact on the diagnosis and therapeutic strategies for HCC, and explore the suitability of appropriate pre-clinical models that can be used to best study tumor heterogeneity; thus, opening new avenues for cancer treatment.
Collapse
Affiliation(s)
- Fatema Safri
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Shadi Zerehpooshnesfchi
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
9
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
11
|
Duparc T, Gore E, Combes G, Beuzelin D, Pires Da Silva J, Bouguetoch V, Marquès MA, Velazquez A, Viguerie N, Tavernier G, Arner P, Rydén M, Langin D, Sioufi N, Nasser M, Cabou C, Najib S, Martinez LO. P2Y13 receptor deficiency favors adipose tissue lipolysis and worsens insulin resistance and fatty liver disease. JCI Insight 2024; 9:e175623. [PMID: 38470490 PMCID: PMC11141875 DOI: 10.1172/jci.insight.175623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
Excessive lipolysis in white adipose tissue (WAT) leads to insulin resistance (IR) and ectopic fat accumulation in insulin-sensitive tissues. However, the impact of Gi-coupled receptors in restraining adipocyte lipolysis through inhibition of cAMP production remained poorly elucidated. Given that the Gi-coupled P2Y13 receptor (P2Y13-R) is a purinergic receptor expressed in WAT, we investigated its role in adipocyte lipolysis and its effect on IR and metabolic dysfunction-associated steatotic liver disease (MASLD). In humans, mRNA expression of P2Y13-R in WAT was negatively correlated to adipocyte lipolysis. In mice, adipocytes lacking P2Y13-R displayed higher intracellular cAMP levels, indicating impaired Gi signaling. Consistently, the absence of P2Y13-R was linked to increased lipolysis in adipocytes and WAT explants via hormone-sensitive lipase activation. Metabolic studies indicated that mice lacking P2Y13-R showed a greater susceptibility to diet-induced IR, systemic inflammation, and MASLD compared with their wild-type counterparts. Assays conducted on precision-cut liver slices exposed to WAT conditioned medium and on liver-specific P2Y13-R-knockdown mice suggested that P2Y13-R activity in WAT protects from hepatic steatosis, independently of liver P2Y13-R expression. In conclusion, our findings support the idea that targeting adipose P2Y13-R activity may represent a pharmacological strategy to prevent obesity-associated disorders, including type 2 diabetes and MASLD.
Collapse
Affiliation(s)
- Thibaut Duparc
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Emilia Gore
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Guillaume Combes
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
| | - Diane Beuzelin
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Lifesearch SAS, Toulouse, France
| | - Julie Pires Da Silva
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Vanessa Bouguetoch
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
- Lifesearch SAS, Toulouse, France
| | | | - Ana Velazquez
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Nathalie Viguerie
- MetaDiab, I2MC, University of Toulouse, INSERM, UPS, UMR1297, Toulouse, France
| | - Geneviève Tavernier
- MetaDiab, I2MC, University of Toulouse, INSERM, UPS, UMR1297, Toulouse, France
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Dominique Langin
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
- MetaDiab, I2MC, University of Toulouse, INSERM, UPS, UMR1297, Toulouse, France
- Biochemistry Laboratory, Toulouse University Hospital, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Nabil Sioufi
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
- Lifesearch SAS, Toulouse, France
| | - Mohamad Nasser
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
| | - Cendrine Cabou
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
| | - Souad Najib
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
| | - Laurent O. Martinez
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, (IHU HealthAge), INSERM, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
12
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
13
|
Fang J, Celton-Morizur S, Desdouets C. NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers (Basel) 2023; 15:3723. [PMID: 37509384 PMCID: PMC10377912 DOI: 10.3390/cancers15143723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
Collapse
Affiliation(s)
- Jing Fang
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
14
|
Tamargo-Rubio I, Simpson AB, Hoogerland JA, Fu J. Human induced pluripotent stem cell-derived liver-on-a-chip for studying drug metabolism: the challenge of the cytochrome P450 family. Front Pharmacol 2023; 14:1223108. [PMID: 37448965 PMCID: PMC10338083 DOI: 10.3389/fphar.2023.1223108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver is the primary organ responsible for the detoxification and metabolism of drugs. To date, a lack of preclinical models that accurately emulate drug metabolism by the human liver presents a significant challenge in the drug development pipeline, particularly for predicting drug efficacy and toxicity. In recent years, emerging microfluidic-based organ-on-a-chip (OoC) technologies, combined with human induced pluripotent stem cell (hiPSC) technology, present a promising avenue for the complete recapitulation of human organ biology in a patient-specific manner. However, hiPSC-derived organoids and liver-on-a-chip models have so far failed to sufficiently express cytochrome P450 monooxygenase (CYP450) enzymes, the key enzymes involved in first-pass metabolism, which limits the effectiveness and translatability of these models in drug metabolism studies. This review explores the potential of innovative organoid and OoC technologies for studying drug metabolism and discusses their existing drawbacks, such as low expression of CYP450 genes. Finally, we postulate potential approaches for enhancing CYP450 expression in the hope of paving the way toward developing novel, fully representative liver drug-metabolism models.
Collapse
Affiliation(s)
- Isabel Tamargo-Rubio
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Bella Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Joanne A. Hoogerland
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Simon E, Motyka M, Prins GH, Li M, Rust W, Kauschke S, Viollet C, Olinga P, Oldenburger A. Transcriptomic profiling of induced steatosis in human and mouse precision-cut liver slices. Sci Data 2023; 10:304. [PMID: 37208356 DOI: 10.1038/s41597-023-02220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
There is a high need for predictive human ex vivo models for non-alcoholic fatty liver disease (NAFLD). About a decade ago, precision-cut liver slices (PCLSs) have been established as an ex vivo assay for humans and other organisms. In the present study, we use transcriptomics by RNASeq to profile a new human and mouse PCLSs based assay for steatosis in NAFLD. Steatosis as quantified by an increase of triglycerides after 48 h in culture, is induced by incremental supplementation of sugars (glucose and fructose), insulin, and fatty acids (palmitate, oleate). We mirrored the experimental design for human vs. mouse liver organ derived PCLSs and profiled each organ at eight different nutrient conditions after 24 h and 48 h time in culture. Thus, the provided data allows a comprehensive analysis of the donor, species, time, and nutrient factor specific regulation of gene expression in steatosis, despite the heterogeneity of the human tissue samples. Exemplified this is demonstrated by ranking homologous gene pairs by convergent or divergent expression pattern across nutrient conditions.
Collapse
Affiliation(s)
- Eric Simon
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany.
| | | | - Grietje H Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Mei Li
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Werner Rust
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Stefan Kauschke
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| |
Collapse
|
16
|
Chen G, Deng Y, Xia B, Lv Y. In Situ Regulation and Mechanisms of 3D Matrix Stiffness on the Activation and Reversion of Hepatic Stellate Cells. Adv Healthc Mater 2022; 12:e2202560. [PMID: 36519640 DOI: 10.1002/adhm.202202560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Activated hepatic stellate cells (HSCs) is a key event in the progression of liver fibrosis. HSCs transdifferentiate into myofibroblasts and secrete large amounts of extracellular matrix, resulting in increased liver stiffness. It is difficult for platforms constructed in vitro to simulate the structure, composition, and stiffness of the 3D microenvironment of HSCs in vivo. Here, 3D scaffolds with different stiffness are constructed by decellularizing rat livers at different stages of fibrosis. The effects of matrix stiffness on the proliferation, activation, and reversion of HSCs are studied. The results demonstrate these scaffolds have good cytocompatibility. It is also found that the high stiffness can significantly promote the activation of HSCs, and this process is accompanied by the activation of integrin β1 as well as the nucleation and activation of Yes-associated protein (YAP). Moreover, the low stiffness of the scaffold can promote the reversion of activated HSCs, which is associated with cell apoptosis and accompanied by the inactivation of integrin β1 and YAP. These results suggest that YAP may be a potential therapeutic target for the treatment of liver fibrosis and the theoretical feasibility of inducing activated HSCs reversion to the resting state by regulating matrix stiffness of liver.
Collapse
Affiliation(s)
- Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
17
|
Hosseinzadeh M, Gilabert A, Porte C. Precision cut tissue slices to investigate the effects of triclosan exposure in Mytilus galloprovincialis. Toxicol In Vitro 2022; 85:105477. [PMID: 36122805 DOI: 10.1016/j.tiv.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Precision-cut tissue slices (PCTS) are frequently used in mammalian research, but its application in the area of aquatic toxicology is still humble. This work proposes the use of PCTS to investigate the effects of the antimicrobial triclosan (TCS) in the mussel Mytilus galloprovincialis. PCTS sectioned from the digestive gland (400 μm) were exposed to 10, 100, and 500 nM TCS for 24 h, and the expression of selected genes, together with the biomarkers, carboxylesterases (CbE) and glutathione S-transferases (GST), and the analysis of lipids in PCTS and culture medium, were used to investigate the molecular initiating events of triclosan in the digestive gland of mussels. Significant dysregulation in the expression of phenylalanine-4-hydroxylase (PAH), glutamate dehydrogenase (GDH), fatty acid synthase (FASN), and 7-dehydrocholesterol reductase (DHCR7), involved in energy, phenylalanine and lipid metabolism, were detected. The analysis of lipids evidenced significant changes in cholesteryl esters (CEs) and membrane lipids in the culture medium of exposed PCTS, suggesting dysregulation of energy and lipid metabolism that can affect lipid dynamics in mussels exposed to triclosan.
Collapse
Affiliation(s)
- Mahaboubeh Hosseinzadeh
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Alejandra Gilabert
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
18
|
Crouchet E, Li S, Sojoodi M, Bandiera S, Fujiwara N, El Saghire H, Zhu S, Qian T, Rasha FA, Del Zompo F, Barrett SC, Schaeffer E, Oudot MA, Ponsolles C, Durand SC, Ghoshal S, Arora G, Giannone F, Chung RT, Slovic N, Van Renne N, Felli E, Pessaux P, Lupberger J, Pochet N, Schuster C, Tanabe KK, Hoshida Y, Fuchs BC, Baumert TF. Hepatocellular carcinoma chemoprevention by targeting the angiotensin-converting enzyme and EGFR transactivation. JCI Insight 2022; 7:159254. [PMID: 35801591 PMCID: PMC9310532 DOI: 10.1172/jci.insight.159254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients, for which chemopreventive strategies are lacking. Recently, we developed a simple human cell-based system modeling a clinical prognostic liver signature (PLS) predicting liver disease progression and HCC risk. In a previous study, we applied our cell-based system for drug discovery and identified captopril, an approved angiotensin converting enzyme (ACE) inhibitor, as a candidate compound for HCC chemoprevention. Here, we explored ACE as a therapeutic target for HCC chemoprevention. Captopril reduced liver fibrosis and effectively prevented liver disease progression toward HCC development in a diethylnitrosamine (DEN) rat cirrhosis model and a diet-based rat model for nonalcoholic steatohepatitis–induced (NASH-induced) hepatocarcinogenesis. RNA-Seq analysis of cirrhotic rat liver tissues uncovered that captopril suppressed the expression of pathways mediating fibrogenesis, inflammation, and carcinogenesis, including epidermal growth factor receptor (EGFR) signaling. Mechanistic data in liver disease models uncovered a cross-activation of the EGFR pathway by angiotensin. Corroborating the clinical translatability of the approach, captopril significantly reversed the HCC high-risk status of the PLS in liver tissues of patients with advanced fibrosis. Captopril effectively prevents fibrotic liver disease progression toward HCC development in preclinical models and is a generic and safe candidate drug for HCC chemoprevention.
Collapse
Affiliation(s)
- Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simonetta Bandiera
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hussein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fahmida Akter Rasha
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fabio Del Zompo
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Stephen C Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugénie Schaeffer
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Marine A Oudot
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Clara Ponsolles
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Sarah C Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Sarani Ghoshal
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gunisha Arora
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Giannone
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France.,Service de chirurgie viscérale et digestive, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut hospitalo-universitaire (IHU), Institute for Minimally Invasive Hybrid Image-Guided Surgery, Université de Strasbourg, Strasbourg, France
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital
| | - Nevena Slovic
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Nicolaas Van Renne
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France.,Service de chirurgie viscérale et digestive, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut hospitalo-universitaire (IHU), Institute for Minimally Invasive Hybrid Image-Guided Surgery, Université de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France.,Service de chirurgie viscérale et digestive, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut hospitalo-universitaire (IHU), Institute for Minimally Invasive Hybrid Image-Guided Surgery, Université de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Nathalie Pochet
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bryan C Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, Strasbourg, France.,Service de chirurgie viscérale et digestive, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin. Curr Issues Mol Biol 2022; 44:2923-2938. [PMID: 35877426 PMCID: PMC9321183 DOI: 10.3390/cimb44070202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles’ particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 μm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines’ level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.
Collapse
|
20
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
21
|
Zajíčková M, Prchal L, Vokřál I, Nguyen LT, Kurz T, Gasser R, Bednářová K, Mičundová M, Lungerich B, Michel O, Skálová L. Assessing the Anthelmintic Candidates BLK127 and HBK4 for Their Efficacy on Haemonchus contortus Adults and Eggs, and Their Hepatotoxicity and Biotransformation. Pharmaceutics 2022; 14:pharmaceutics14040754. [PMID: 35456588 PMCID: PMC9024958 DOI: 10.3390/pharmaceutics14040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
As a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H. contortus larvae. The present study was designed to assess the activity of these compounds against H. contortus eggs and adults, hepatotoxicity in rats and sheep, as well as biotransformation in H. contortus adults and the ovine liver. Both compounds exhibited no inhibitory effect on the hatching of eggs. The benzyloxy amide BLK127 significantly decreased the viability of adults in sensitive and resistant strains of H. contortus and showed no hepatotoxic effect, even at the highest concentration tested (100 µM). In contrast, HBK4 had no impact on the viability of H. contortus adults and exhibited significant hepatotoxicity. Based on these findings, HBK4 was excluded from further studies, while BLK127 seems to be a potential candidate for a new anthelmintic. Consequently, biotransformation of BLK127 was tested in H. contortus adults and the ovine liver. In H. contortus, several metabolites formed via hydroxylation, hydrolysis and glycosidation were identified, but the extent of biotransformation was low, and the total quantity of the metabolites formed did not differ significantly between the sensitive and resistant strains. In contrast, ovine liver cells metabolized BLK127 more extensively with a glycine conjugate of 4-(pentyloxy)benzoic acid as the main BLK127 metabolite.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Lukáš Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic;
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Robin Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Klára Bednářová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Magdalena Mičundová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Oliver Michel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
- Correspondence:
| |
Collapse
|
22
|
Chidlow SJ, Randle LE, Kelly RA. Predicting physiologically-relevant oxygen concentrations in precision-cut liver slices using mathematical modelling. PLoS One 2022; 17:e0275788. [PMID: 36322567 PMCID: PMC9629643 DOI: 10.1371/journal.pone.0275788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Precision cut liver slices represent an encouraging ex vivo method to understand the pathogenesis of liver disease alongside drug induced liver injury. Despite being more physiologically relevant compared to in vitro models, precision cut liver slices are limited by the availability of healthy human tissue and experimental variability. Internal oxygen concentration and media composition govern the longevity and viability of the slices during the culture period and as such, a variety of approaches have been taken to maximise the appropriateness of the internal oxygen concentrations across the slice. The aim of this study was to predict whether it is possible to generate a physiologically relevant oxygen gradient of 35-65mmHg across a precision cut liver slice using mathematical modelling. Simulations explore how the internal oxygen concentration changes as a function of the diameter of the slice, the position inside the well and the external incubator oxygen concentration. The model predicts that the desired oxygen gradient may be achieved using a 5mm diameter slice at atmospheric oxygen concentrations, provided that the slice is positioned at a certain height within the well of a 12-well plate.
Collapse
Affiliation(s)
- S. J. Chidlow
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| | - L. E. Randle
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - R. A. Kelly
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- Syngenta, Early-Stage Research, Jeallot’s Hill Research Centre, Bracknell, United Kingdom
| |
Collapse
|
23
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
24
|
Piña-Olmos S, Dolores-Hernández M, Diaz-Torres R, Ramírez-Bribiesca JE, López-Arellano R, López Barrera LD, Ramírez-Noguera P. Precision-cut liver slices as a model for assess hepatic cellular response of chitosan-glutathione nanoparticles on cultures treated with zilpaterol and clenbuterol. Toxicol Mech Methods 2021; 32:313-324. [PMID: 34747310 DOI: 10.1080/15376516.2021.2002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zilpaterol and clenbuterol are two β-adrenergic agonist drugs used in animal production. Both drugs have anabolic effects with advantages on carcass yield. Meanwhile, zilpaterol is approved for animal feed in authorized countries. Clenbuterol is a banned substance due to the risk of toxicity; however, it is still being used in unknown dose levels in many farm species. Therefore, the use and abuse of these substances should be closely monitored, considering the clenbuterol ability and the not proved yet of zilpaterol to produce reactive oxygen and nitrogen species. Regarding glutathione which is the main intracellular antioxidant plays detoxification functions on liver metabolism; in this work, it is our interest to know the capacity of chitosan-glutathione nanoparticles (CS/GSH-NP) as a complementary source of exogenous GSH to modify the oxide-reduction status on bovine precision-cut liver slice cultures (PCLS) exposed to clenbuterol and zilpaterol. A single drug assay was performed in first instance by adding clenbuterol, zilpaterol, chitosan nanoparticles (CS-NP), and CS/GSH-NP. Then combinate drug assay was carried out by testing clenbuterol and zilpaterol combined with CS-NP or CS/GSH-NP. The results showed that both β-adrenergic agonists modify in a dose-dependent manner in oxide-reduction response through ROS generation. The activity or content of glutathione peroxidase activity, intracellular GSH, gamma glutamyl-transpeptidase, aspartate aminotrasnferase and alanine aminotrasnferase were modified. The exogenous GSH delivered by nanoparticles could be used to modulate these markers.
Collapse
Affiliation(s)
- Sofia Piña-Olmos
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Mariana Dolores-Hernández
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Roberto Diaz-Torres
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - J Efrén Ramírez-Bribiesca
- Programa de Ganadería, Colegio de Posgraduados, Montecillo, Carretera México-Texcoco Km 36.5, Montecillo, Estado de México, México
| | - Raquel López-Arellano
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Laura Denise López Barrera
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Patricia Ramírez-Noguera
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| |
Collapse
|
25
|
Deng Y, Xia B, Chen Z, Wang F, Lv Y, Chen G. Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Rev Rep 2021; 18:77-93. [PMID: 34668120 DOI: 10.1007/s12015-021-10286-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China. .,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
26
|
Crouchet E, Bandiera S, Fujiwara N, Li S, El Saghire H, Fernández-Vaquero M, Riedl T, Sun X, Hirschfield H, Jühling F, Zhu S, Roehlen N, Ponsolles C, Heydmann L, Saviano A, Qian T, Venkatesh A, Lupberger J, Verrier ER, Sojoodi M, Oudot MA, Duong FHT, Masia R, Wei L, Thumann C, Durand SC, González-Motos V, Heide D, Hetzer J, Nakagawa S, Ono A, Song WM, Higashi T, Sanchez R, Kim RS, Bian CB, Kiani K, Croonenborghs T, Subramanian A, Chung RT, Straub BK, Schuppan D, Ankavay M, Cocquerel L, Schaeffer E, Goossens N, Koh AP, Mahajan M, Nair VD, Gunasekaran G, Schwartz ME, Bardeesy N, Shalek AK, Rozenblatt-Rosen O, Regev A, Felli E, Pessaux P, Tanabe KK, Heikenwälder M, Schuster C, Pochet N, Zeisel MB, Fuchs BC, Hoshida Y, Baumert TF. A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nat Commun 2021; 12:5525. [PMID: 34535664 PMCID: PMC8448834 DOI: 10.1038/s41467-021-25468-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.
Collapse
Grants
- K01 CA140861 NCI NIH HHS
- R21 CA209940 NCI NIH HHS
- R01 DK099558 NIDDK NIH HHS
- R03 AI131066 NIAID NIH HHS
- R01 CA233794 NCI NIH HHS
- ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209.
- NIH CA140861
- NIH DK099558 Irma T. Hirschl/Monique Weill-Caulier Trust
- This work was supported by ARC, Paris and Institut Hospitalo-Universitaire, Strasbourg (TheraHCC1.0 and 2.0 IHUARC IHU201301187 and IHUARC2019 to T.F.B.), the European Union (ERC-AdG-2014-671231-HEPCIR to T.F.B. and Y.H., EU H2020-667273-HEPCAR to T.F.B. and M.H., INTERREG-IV-Rhin Supérieur-FEDER-Hepato-Regio-Net 2012 to T.F.B. and M.B.Z), ANRS, Paris (2013/108 and ECTZ103701 to T.F.B), NIH (DK099558 to Y. H. and CA233794 to Y.H. and T. F. B; CA140861 to B.C.F., CA209940, R21CA209940 and R03AI131066 to N.P. and T.F.B.), Cancer Prevention and Research Institute of Texas (RR180016 to Y.H), US Department of Defense (W81XWH-16-1-0363 to T.F.B. and Y.H.), the Irma T. Hirschl/Monique Weill-Caulier Trust (Y.H.) and the Foundation of the University of Strasbourg (HEPKIN to T. F. B. and Y. H.) and the Institut Universitaire de France (IUF; T. F. B.). M.H. is supported by an ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209. This work has been published under the framework of the LABEX ANR-10-LABX-0028_HEPSYS and Inserm Plan Cancer and benefits from funding from the state managed by the French National Research Agency as part of the Investments for the future program.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xiaochen Sun
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natascha Roehlen
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Clara Ponsolles
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Antonio Saviano
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anu Venkatesh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - François H T Duong
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lan Wei
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Thumann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Victor González-Motos
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Shigeki Nakagawa
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| | - Roberto Sanchez
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rosa S Kim
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - C Billie Bian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Karun Kiani
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- KU Leuven Technology Campus Geel, AdvISe, Geel, Belgium
| | | | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beate K Straub
- Institute of Pathology, University Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology and Research Center for Immunotherapy (FZI), Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maliki Ankavay
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Laurence Cocquerel
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Evelyne Schaeffer
- CNRS UPR3572 Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School, Cambridge St. CPZN 4216, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering Science & Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Emanuele Felli
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), Lyon, France
| | - Bryan C Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ferring Pharmaceuticals Inc 4245 Sorrento Valley Blvd, San Diego, CA, USA.
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
27
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Carson JP, Gobert GN. Modulation of the Host Immune Response by Schistosome Egg-Secreted Proteins Is a Critical Avenue of Host-Parasite Communication. Pathogens 2021; 10:863. [PMID: 34358013 PMCID: PMC8308880 DOI: 10.3390/pathogens10070863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
During a schistosome infection, the interactions that occur between the mammalian host and the parasite change rapidly once egg laying begins. Both juvenile and adult schistosomes adapt to indefinitely avoid the host immune system. In contrast, the survival of eggs relies on quickly traversing from the host. Following the commencement of egg laying, the host immune response undergoes a shift from a type 1 helper (Th1) inflammatory response to a type 2 helper (Th2) granulomatous response. This change is driven by immunomodulatory proteins within the egg excretory/secretory products (ESPs), which interact with host cells and alter their behaviour to promote egg translocation. However, in parallel, these ESPs also provoke the development of chronic schistosomiasis pathology. Recent studies using high-throughput proteomics have begun to characterise the components of schistosome egg ESPs, particularly those of Schistosoma mansoni, S. japonicum and S. haematobium. Future application of this knowledge may lead to the identification of proteins with novel immunomodulatory activity or pathological importance. However, efforts in this area are limited by a lack of in situ or in vivo functional characterisation of these proteins. This review will highlight the current knowledge of the content and demonstrated functions of schistosome egg ESPs.
Collapse
Affiliation(s)
| | - Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK;
| |
Collapse
|
29
|
Kartasheva-Ebertz D, Gaston J, Lair-Mehiri L, Massault PP, Scatton O, Vaillant JC, Morozov VA, Pol S, Lagaye S. Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs. World J Hepatol 2021; 13:187-217. [PMID: 33708350 PMCID: PMC7934011 DOI: 10.4254/wjh.v13.i2.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis can result in end-stage liver failure and death.
AIM To examine human liver fibrogenesis and anti-fibrotic therapies, we evaluated the three dimensional ex vivo liver slice (LS) model.
METHODS Fibrotic liver samples (F0 to F4 fibrosis stage according to the METAVIR score) were collected from patients after liver resection. Human liver slices (HLS) were cultivated for up to 21 days. Hepatitis C virus (HCV) infection, alcohol (ethanol stimulation) and steatosis (palmitate stimulation) were examined in fibrotic (F2 to F4) liver slices infected (or not) with HCV. F0-F1 HLS were used as controls. At day 0, either ursodeoxycholic acid (choleretic and hepatoprotective properties) and/or α-tocopherol (antioxidant properties) were added to standard of care on HLS and fibrotic liver slices, infected (or not) with HCV. Expression of the biomarkers of fibrosis and the triglyceride production were checked by quantitative reverse transcription polymerase chain reaction and/or enzyme-linked immunosorbent assay.
RESULTS The cultures were viable in vitro for 21 days allowing to study fibrosis inducers and to estimate the effect of anti-fibrotic drugs. Expression of the biomarkers of fibrosis and the progression to steatosis (estimated by triglycerides production) was increased with the addition of HCV and /or ethanol or palmitate. From day 15 of the follow-up studies, a significant decrease of both transforming growth factor β-1 and Procol1A1 expression and triglycerides production was observed when a combined anti-fibrotic treatment was applied on HCV infected F2-F4 LS cultures.
CONCLUSION These results show that the human three dimensional ex vivo model effectively reflects the in vivo processes in damaged human liver (viral, alcoholic, nonalcoholic steatohepatitis liver diseases) and provides the proof of concept that the LS examined model permits a rapid evaluation of new anti-fibrotic therapies when used alone or in combination.
Collapse
Affiliation(s)
- Daria Kartasheva-Ebertz
- Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
- BioSPC, Université de Paris, Paris 75005, France
| | - Jesintha Gaston
- Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
- BioSPC, Université de Paris, Paris 75005, France
| | - Loriane Lair-Mehiri
- Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
- BioSPC, Université de Paris, Paris 75005, France
| | - Pierre-Philippe Massault
- Service de Chirurgie digestive, Hépato-biliaire et Endocrinienne, AP-HP, Groupe Hospitalier Cochin, Paris 75014, France
| | - Olivier Scatton
- Service de Chirurgie digestive et Hépato bilio pancréatique, AP-HP, Groupe Hospitalier La Pitié-Salpétrière, Medecine Sorbonne Université, Paris 75013, France
| | - Jean-Christophe Vaillant
- Service de Chirurgie digestive et Hépato bilio pancréatique, AP-HP, Groupe Hospitalier La Pitié-Salpétrière, Medecine Sorbonne Université, Paris 75013, France
| | - Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Stanislas Pol
- Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
- Département d'Hépatologie, AP-HP, Groupe Hospitalier Cochin, Université de Paris, Paris 75014, France
| | - Sylvie Lagaye
- Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
| |
Collapse
|
30
|
Belanger M, Ball AG, Catterton MA, Kinman AW, Anbaei P, Groff BD, Melchor SJ, Lukens JR, Ross AE, Pompano RR. Acute Lymph Node Slices Are a Functional Model System to Study Immunity Ex Vivo. ACS Pharmacol Transl Sci 2021; 4:128-142. [PMID: 33615167 PMCID: PMC7887751 DOI: 10.1021/acsptsci.0c00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The lymph node is a highly organized and dynamic structure that is critical for facilitating the intercellular interactions that constitute adaptive immunity. Most ex vivo studies of the lymph node begin by reducing it to a cell suspension, thus losing the spatial organization, or fixing it, thus losing the ability to make repeated measurements. Live murine lymph node tissue slices offer the potential to retain spatial complexity and dynamic accessibility, but their viability, level of immune activation, and retention of antigen-specific functions have not been validated. Here we systematically characterized live murine lymph node slices as a platform to study immunity. Live lymph node slices maintained the expected spatial organization and cell populations while reflecting the 3D spatial complexity of the organ. Slices collected under optimized conditions were comparable to cell suspensions in terms of both 24-h viability and inflammation. Slices responded to T cell receptor cross-linking with increased surface marker expression and cytokine secretion, in some cases more strongly than matched lymphocyte cultures. Furthermore, slices processed protein antigens, and slices from vaccinated animals responded to ex vivo challenge with antigen-specific cytokine secretion. In summary, lymph node slices provide a versatile platform to investigate immune functions in spatially organized tissue, enabling well-defined stimulation, time-course analysis, and parallel read-outs.
Collapse
Affiliation(s)
- Maura
C. Belanger
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexander G. Ball
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Megan A. Catterton
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Andrew W.L. Kinman
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Parastoo Anbaei
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Benjamin D. Groff
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Stephanie J. Melchor
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - John R. Lukens
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Neuroscience and Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Ashley E. Ross
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220, United States
| | - Rebecca R. Pompano
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Biomedical Engineering, University of
Virginia School of Engineering and Applied Sciences, Charlottesville, Virginia 22904, United States
| |
Collapse
|
31
|
Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions. Arch Toxicol 2021; 95:1267-1285. [PMID: 33555372 PMCID: PMC8032640 DOI: 10.1007/s00204-021-02992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Chronic exposure and accumulation of persistent nanomaterials by cells have led to safety concerns on potential long-term effects induced by nanoparticles, including chronic inflammation and fibrosis. With this in mind, we used murine precision-cut liver tissue slices to test potential induction of inflammation and onset of fibrosis upon 72 h exposure to different nanomaterials (0–200 µg/ml). Tissue slices were chosen as an advanced ex vivo 3D model to better resemble the complexity of the in vivo tissue environment, with a focus on the liver where most nanomaterials accumulate. Effects on the onset of fibrosis and inflammation were investigated, with particular care in optimizing nanoparticle exposure conditions to tissue. Thus, we compared the effects induced on slices exposed to nanoparticles in the presence of excess free proteins (in situ), or after corona isolation. Slices exposed to daily-refreshed nanoparticle dispersions were used to test additional effects due to ageing of the dispersions. Exposure to amino-modified polystyrene nanoparticles in serum-free conditions led to strong inflammation, with stronger effects with daily-refreshed dispersions. Instead, no inflammation was observed when slices were exposed to the same nanoparticles in medium supplemented with serum to allow corona formation. Similarly, no clear signs of inflammation nor of onset of fibrosis were detected after exposure to silica, titania or carboxylated polystyrene in all conditions tested. Overall, these results show that liver slices can be used to test nanoparticle-induced inflammation in real tissue, and that the exposure conditions and ageing of the dispersions can strongly affect tissue responses to nanoparticles.
Collapse
|
32
|
Alsamman S, Christenson SA, Yu A, Ayad NME, Mooring MS, Segal JM, Hu JKH, Schaub JR, Ho SS, Rao V, Marlow MM, Turner SM, Sedki M, Pantano L, Ghoshal S, Ferreira DDS, Ma HY, Duwaerts CC, Espanol-Suner R, Wei L, Newcomb B, Mileva I, Canals D, Hannun YA, Chung RT, Mattis AN, Fuchs BC, Tager AM, Yimlamai D, Weaver VM, Mullen AC, Sheppard D, Chen JY. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci Transl Med 2020; 12:eaay8798. [PMID: 32817366 PMCID: PMC7976849 DOI: 10.1126/scitranslmed.aay8798] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein β-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Sarah Alsamman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Meghan S Mooring
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joe M Segal
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Jimmy Kuang-Hsien Hu
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Mai Sedki
- Internal Medicine, Kaiser Permanente, San Francisco, CA 94115, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Diego Dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hsiao-Yen Ma
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Regina Espanol-Suner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Newcomb
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Izolda Mileva
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Canals
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aras N Mattis
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan C Mullen
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA.
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Bartucci R, Paramanandana A, Boersma YL, Olinga P, Salvati A. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices. Nanotoxicology 2020; 14:847-865. [PMID: 32536243 DOI: 10.1080/17435390.2020.1771785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine responses to nanoparticles in a more comprehensive way, current efforts in nanosafety aim at combining the analysis of multiple endpoints and comparing outcomes in different models. To this end, here we used tissue slices from mice as 3D ex vivo models and performed for the first time a comparative study of uptake and impact in liver, lung, and kidney slices exposed under the same conditions to silica, carboxylated and amino-modified polystyrene. In all organs, only exposure to amino-modified polystyrene induced toxicity, with stronger effects in kidneys and lungs. Uptake and distribution studies by confocal microscopy confirmed nanoparticle uptake in all slices, and, in line with what observed in vivo, preferential accumulation in the macrophages. However, uptake levels in kidneys were minimal, despite the strong impact observed when exposed to the amino-modified polystyrene. On the contrary, nanoparticle uptake and accumulation in macrophages were particularly evident in lung slices. Thus, tissue digestion was used to recover all cells from lung slices at different exposure times and to determine by flow cytometry detailed uptake kinetics in lung macrophages and all other cells, confirming higher uptake by the macrophages. Finally, the expression levels of a panel of targets involved in inflammation and macrophage polarization were measured to determine potential effects induced in lung and liver tissue. Overall, this comparative study allowed us to determine uptake and impact of nanoparticles in real tissue and identify important differences in outcomes in the organs in which nanoparticles distribute.
Collapse
Affiliation(s)
- Roberta Bartucci
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Abhimata Paramanandana
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Bartucci R, Åberg C, Melgert BN, Boersma YL, Olinga P, Salvati A. Time-Resolved Quantification of Nanoparticle Uptake, Distribution, and Impact in Precision-Cut Liver Slices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906523. [PMID: 32077626 DOI: 10.1002/smll.201906523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Much effort within the nanosafety field is currently focused on the use of advanced in vitro models to reduce the gap between in vitro and in vivo studies. Within this context, precision-cut tissue slices are a unique ex vivo model to investigate nanoparticle impact using live tissue from laboratory animals and even humans. However, several aspects of the basic mechanisms of nanoparticle interactions with tissue have not yet been elucidated. To this end, liver slices are exposed to carboxylated and amino-modified polystyrene known to have a different impact on cells. As observed in standard cell cultures, amino-modified polystyrene nanoparticles induce apoptosis, and their impact is affected by the corona forming on their surface in biological fluids. Subsequently, a detailed time-resolved study of nanoparticle uptake and distribution in the tissue is performed, combining fluorescence imaging and flow cytometry on cells recovered after tissue digestion. As observed in vivo, the Kupffer cells accumulate high nanoparticle amounts and, interestingly, they move within the tissue towards the slice borders. Similar observations are reproduced in liver slices from human tissue. Thus, tissue slices can be used to reproduce ex vivo important features of nanoparticle outcomes in the liver and study nanoparticle impact on real tissue.
Collapse
Affiliation(s)
- Roberta Bartucci
- Division of Pharmacokinetics, Toxicology and Targeting, Division of Chemical and Pharmaceutical Biology, Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Christoffer Åberg
- Division of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Barbro N Melgert
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ykelien L Boersma
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
36
|
Design of a Gene Panel to Expose the Versatile Role of Hepatic Stellate Cells in Human Liver Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12030278. [PMID: 32244897 PMCID: PMC7151042 DOI: 10.3390/pharmaceutics12030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor β (TGFβ) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFβ- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.
Collapse
|
37
|
Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020; 155:104720. [PMID: 32092405 DOI: 10.1016/j.phrs.2020.104720] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a dynamic wound-healing process characterized by the net accumulation of extracellular matrix. There is no efficient antifibrotic therapy other than liver transplantation to date. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix-producing myofibroblasts, playing a central role in the initiation and progression of liver fibrosis. Paracrine signals from resident and inflammatory cells such as hepatocytes, liver sinusoidal endothelial cells, hepatic macrophages, natural killer/natural killer T cells, biliary epithelial cells, hepatic progenitor cells, and platelets can directly or indirectly regulate HSC differentiation and activation. Intercellular crosstalk between HSCs and those "responded" cells has been a critical event involved in HSC activation and fibrogenesis. This review summarizes recent advancement regarding intercellular communication between HSCs and other "responded cells" during liver fibrosis and experimental models of intercellular crosstalk systems, and provides novel ideas for potential antifibrotic therapeutic strategy.
Collapse
|
38
|
Serrano J, Tapper MA, Kolanczyk RC, Sheedy BR, Lahren T, Hammermeister DE, Denny JS, Kubátová A, Voelker J, Schmieder PK. Metabolism of cyclic phenones in rainbow trout in vitro assays. Xenobiotica 2020; 50:192-208. [PMID: 30888238 PMCID: PMC9726639 DOI: 10.1080/00498254.2019.1596331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
1. Cyclic phenones are chemicals of interest to the USEPA due to their potential for endocrine disruption to aquatic and terrestrial species.2. Prior to this report, there was very limited information addressing metabolism of cyclic phenones by fish species and the potential for estrogen receptor (ER) binding and vitellogenin (Vtg) gene activation by their metabolites.3. The main objectives of the current research were to characterize rainbow trout (rt) liver slice-mediated in vitro metabolism of model parent cyclic phenones exhibiting disparity between ER binding and ER-mediated Vtg gene induction, and to assess the metabolic competency of fish liver in vitro tests to help determine the chemical form (parent and/or metabolite) associated with the observed biological response.4. GC-MS, HPLC and LC-MS/MS technologies were applied to investigate the in vitro biotransformation of cyclobutyl phenyl ketone (CBP), benzophenone (DPK), cyclohexyl phenyl ketone (CPK) mostly in the absence of standards for metabolite characterization.5. It was concluded that estrogenic effects of the studied cyclic phenones are mediated by the parent chemical structure for DPK, but by active metabolites for CPK. A definitive interpretation was not possible for CBP and CBPOH (alcohol), although a contribution of both structures to gene induction is suspected.
Collapse
Affiliation(s)
- Jose Serrano
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Mark A. Tapper
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Richard C. Kolanczyk
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Barbara R. Sheedy
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Tylor Lahren
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Dean E. Hammermeister
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Jeffrey S. Denny
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Alena Kubátová
- University of North Dakota, Department of Chemistry, 151 Cornell Street Stop 9024, Grand Forks, ND, USA
| | - Jessica Voelker
- Student Services Contractor, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| | - Patricia K. Schmieder
- USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN, USA
| |
Collapse
|
39
|
Wei G, An P, Vaid KA, Nasser I, Huang P, Tan L, Zhao S, Schuppan D, Popov YV. Comparison of murine steatohepatitis models identifies a dietary intervention with robust fibrosis, ductular reaction, and rapid progression to cirrhosis and cancer. Am J Physiol Gastrointest Liver Physiol 2020; 318:G174-G188. [PMID: 31630534 PMCID: PMC6985845 DOI: 10.1152/ajpgi.00041.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Progressive fibrosis, functional liver failure, and cancer are the central liver-related outcomes of nonalcoholic steatohepatitis (NASH) but notoriously difficult to achieve in mouse models. We performed a direct, quantitative comparison of hepatic fibrosis progression in well-defined methionine- and choline-deficient (MCD) and choline-deficient, amino-acid defined (CDAA) diets with increasing fat content (10-60% by calories) in C57Bl/6J and BALB/cAnNCrl mice. In C57Bl/6J mice, MCD feeding resulted in moderate fibrosis at week 8 (up to twofold increase in total hepatic collagen content) and progressive weight loss irrespective of dietary fat. In contrast, CDAA-fed mice did not lose weight and developed progressive fibrosis starting from week 4. High dietary fat in the CDAA diet model induced the lipid metabolism genes for sterol regulatory element-binding protein and stearoyl-CoA desaturase-2 and increased ductular reaction and fibrosis in a dose-dependent manner. Longitudinal analysis of CDAA with 60% fat (HF-CDAA) feeding revealed pronounced ductular reaction and perisinusoidal bridging fibrosis, with a sevenfold increase of hepatic collagen at week 12, which showed limited spontaneous reversibility. At 24 wk, HF-CDAA mice developed signs of cirrhosis with pan-lobular "chicken wire" fibrosis, 10-fold hydroxyproline increase, regenerative nodules, portal hypertension and elevated serum bilirubin and ammonia levels; 80% of mice (8/10) developed multiple glypican-3- and/or glutamine synthetase-positive hepatocellular carcinomas (HCC). High-fat (60%) supplementation of MCD in C57Bl/6J or feeding the HF-CDAA diet fibrosis-prone BALB/cAnNCrl strain failed to result in increased fibrosis. In conclusion, HF-CDAA feeding in C57Bl/6J mice was identified as an optimal model of steatohepatitis with robust fibrosis and ductular proliferations that progress to cirrhosis and HCC within 24 wk. This robust model will aid the testing of interventions and drugs for severe NASH.NEW & NOTEWORTHY Via quantitative comparison of several dietary models, we report HF-CDAA feeding in C57Bl/6 mice as an excellent model recapitulating several key aspects of fibrotic NASH: 1) robust, poorly reversible liver fibrosis, 2) prominent ductular reaction, and 3) progression to cirrhosis, portal hypertension, and liver cancer within 24 wk. High fat dose-dependently activates SREBP2/SCD2 genes and drives liver fibrosis in e HF-CDAA model. These features qualify the model as a robust and practical tool to study mechanisms and novel treatments addressing severe human NASH.
Collapse
Affiliation(s)
- Guangyan Wei
- 1Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ping An
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Division of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kahini A. Vaid
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Imad Nasser
- 4Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pinzhu Huang
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,5Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Tan
- 1Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Shuangshuang Zhao
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Detlef Schuppan
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,6Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Yury V. Popov
- 2Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Sharma A, Bischof JC, Finger EB. Liver Cryopreservation for Regenerative Medicine Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Estrada-Ortiz N, Lopez-Gonzales E, Woods B, Stürup S, de Graaf IAM, Groothuis GMM, Casini A. Ex vivo toxicological evaluation of experimental anticancer gold(i) complexes with lansoprazole-type ligands. Toxicol Res (Camb) 2019; 8:885-895. [PMID: 32190293 PMCID: PMC7067241 DOI: 10.1039/c9tx00149b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Gold-based compounds are of great interest in the field of medicinal chemistry as novel therapeutic (anticancer) agents due to their peculiar reactivity and mechanisms of action with respect to organic drugs. Despite their promising pharmacological properties, the possible toxic effects of gold compounds need to be carefully evaluated in order to optimize their design and applicability. This study reports on the potential toxicity of three experimental gold-based anticancer compounds featuring lansoprazole ligands (1-3) studied in an ex vivo model, using rat precision cut kidney and liver slices (PCKS and PCLS, respectively). The results showed a different toxicity profile for the tested compounds, with the neutral complex 2 being the least toxic, even less toxic than cisplatin, followed by the cationic complex 1. The dinuclear cationic gold complex 3 was the most toxic in both liver and kidney slices. This result correlated with the metal uptake of the different compounds assessed by ICP-MS, where complex 3 showed the highest accumulation of gold in liver and kidney slices. Interestingly compound 1 showed the highest selectivity towards cancer cells compared to the healthy tissues. Histomorphology evaluation showed a similar pattern for all three Au(i) complexes, where the distal tubular cells suffered the most extensive damage, in contrast to the damage in the proximal tubules induced by cisplatin. The binding of representative gold compounds with the model ubiquitin was also studied by ESI-MS, showing that after 24 h incubation only 'naked' Au ions were bound to the protein following ligands' loss. The mRNA expression of stress response genes appeared to be similar for both evaluated organs, suggesting oxidative stress as the possible mechanism of toxicity. The obtained results open new perspectives towards the design and testing of bifunctional gold complexes with chemotherapeutic applications.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Elena Lopez-Gonzales
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Ben Woods
- School of Chemistry , Cardiff University , Main Building , Park Place , CF10 3AT Cardiff , UK
| | - Stefan Stürup
- Dept. of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Inge A M de Graaf
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Geny M M Groothuis
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Angela Casini
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
- School of Chemistry , Cardiff University , Main Building , Park Place , CF10 3AT Cardiff , UK
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85748 Garching b. München , Germany
| |
Collapse
|
42
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Paish HL, Reed LH, Brown H, Bryan MC, Govaere O, Leslie J, Barksby BS, Garcia Macia M, Watson A, Xu X, Zaki MY, Greaves L, Whitehall J, French J, White SA, Manas DM, Robinson SM, Spoletini G, Griffiths C, Mann DA, Borthwick LA, Drinnan MJ, Mann J, Oakley F. A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision-Cut Liver Slices. Hepatology 2019; 70:1377-1391. [PMID: 30963615 PMCID: PMC6852483 DOI: 10.1002/hep.30651] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFβ1) and platelet-derived growth factor (PDGFββ) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFβ1/PDGFββ stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFβ1/PDGFββ-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.
Collapse
Affiliation(s)
- Hannah L. Paish
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lee H. Reed
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Helen Brown
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mark C. Bryan
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Olivier Govaere
- Liver Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Ben S. Barksby
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Marina Garcia Macia
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Abigail Watson
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Xin Xu
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Marco Y.W. Zaki
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Laura Greaves
- Newcastle University LLHW Centre for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Julia Whitehall
- Newcastle University LLHW Centre for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jeremy French
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Steven A. White
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Derek M. Manas
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Stuart M. Robinson
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Gabriele Spoletini
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Clive Griffiths
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lee A. Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Michael J. Drinnan
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
44
|
Šadibolová M, Zárybnický T, Smutný T, Pávek P, Šubrt Z, Matoušková P, Skálová L, Boušová I. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver. Int J Mol Sci 2019; 20:ijms20184562. [PMID: 31540101 PMCID: PMC6769599 DOI: 10.3390/ijms20184562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, β-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Zárybnický
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Smutný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Zdeněk Šubrt
- Department of General Surgery, Third Faculty of Medicine and University Hospital Královské Vinohrady, Charles University, 100 34 Prague, Czech Republic;
- Department of Surgery, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
- Correspondence: ; Tel.: +420-495-067-406
| |
Collapse
|
45
|
Giuliani ME, Sparaventi E, Lanzoni I, Pittura L, Regoli F, Gorbi S. Precision-Cut Tissue Slices (PCTS) from the digestive gland of the Mediterranean mussel Mytilus galloprovincialis: An ex vivo approach for molecular and cellular responses in marine invertebrates. Toxicol In Vitro 2019; 61:104603. [PMID: 31330176 DOI: 10.1016/j.tiv.2019.104603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
The precision-cut tissue slices (PCTS) represent a largely used biological model in mammalian research. This ex vivo approach offers the main advantages of in vitro systems, while maintaining the natural architecture of the tissue. The use of PCTS in toxicological research has been proposed for investigating the cellular effects of xenobiotics or bioactive compounds mostly in mammalian models. Their application is increasing also in marine organisms, but still limited to fish. This work validates the use of PCTS in an invertebrate species, the Mediterranean mussel Mytilus galloprovincialis. Intact tissue slices of different thicknesses (300, 350 and 400 μm) were successfully obtained from the digestive gland. The slices maintained the histological integrity and the viability after 6 h and 24 h incubation in culture medium, with some differences depending on the thickness. The enzymatic activities and mRNA levels of catalase and glutathione S-transferase, chosen as model biological endpoints, were measured until 24 h incubation, revealing the functionality of such systems. This work demonstrates the suitability of mussel PCTS for investigating molecular and cellular responses in ecotoxicological research.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Erica Sparaventi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria Lanzoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
46
|
Carranza-Torres IE, Viveros-Valdez E, Guzmán-Delgado NE, García-Davis S, Morán-Martínez J, Betancourt-Martínez ND, Balderas-Rentería I, Carranza-Rosales P. Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:367-375. [PMID: 31168340 PMCID: PMC6535197 DOI: 10.22038/ijbms.2019.30056.7242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective(s): Precision-cut tissue slices are considered an organotypic 3D model widely used in biomedical research. The comet assay is an important screening test for early genotoxicity risk assessment that is mainly applied on in vitro models. The aim of the present study was to provide a 3D organ system for determination of genotoxicity using a modified method of the comet assay since the stromal components from the original tissue make this technique complicated. Materials and Methods: A modified comet assay technique was validated using precision-cut hamster kidney slices to analyze the antigenotoxic effect of the phenolic compounds caffeic acid, chlorogenic acid, and rosmarinic acid in tissue slices incubated with 15 µM HgCl2. Cytotoxicity of the phenolic compounds was studied in Vero cells, and by morphologic analysis in tissue slices co-incubated with HgCl2 and phenolic compounds. Results: A modification of the comet assay allows obtaining better and clear comet profiles for analysis. Non-cytotoxic concentrations of phenolic acids protected kidney tissue slices against mercury-induced DNA damage, and at the same time, were not nephrotoxic. The highest protection was provided by 3 µg/ml caffeic acid, although 6 µg/ml rosmarinic and 9 µg/ml chlorogenic acids also exhibited protective effects. Conclusion: This is the first time that a modification of the comet assay technique is reported as a tool to visualize the comets from kidney tissue slices in a clear and simple way. The phenolic compounds tested in this study provided protection against mercury-induced genotoxic damage in precision-cut kidney slices.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México.,Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Nancy Elena Guzmán-Delgado
- División de Investigación, Unidad Médica de Alta Especialidad # 34, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Sara García-Davis
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Isaías Balderas-Rentería
- Laboratorio de Ingeniería Genética y Genómica, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| |
Collapse
|
47
|
de Jong IE, Matton AP, van Praagh JB, van Haaften WT, Wiersema‐Buist J, van Wijk LA, Oosterhuis D, Iswandana R, Suriguga S, Overi D, Lisman T, Carpino G, Gouw AS, Olinga P, Gaudio E, Porte RJ. Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. Hepatology 2019; 69:1719-1734. [PMID: 30506902 PMCID: PMC6594148 DOI: 10.1002/hep.30365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Alix P.M. Matton
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Jasper B. van Praagh
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Wouter T. van Haaften
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janneke Wiersema‐Buist
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Louise A. van Wijk
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Raditya Iswandana
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands,Faculty of PharmacyUniversitas IndonesiaIndonesia
| | - Su Suriguga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | - Annette S.H. Gouw
- Department of PathologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
48
|
Prins GH, Luangmonkong T, Oosterhuis D, Mutsaers HAM, Dekker FJ, Olinga P. A Pathophysiological Model of Non-Alcoholic Fatty Liver Disease Using Precision-Cut Liver Slices. Nutrients 2019; 11:E507. [PMID: 30818824 PMCID: PMC6470479 DOI: 10.3390/nu11030507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder closely related to metabolic syndrome. NAFLD can progress to an inflammatory state called non-alcoholic steatohepatitis (NASH), which may result in the development of fibrosis and hepatocellular carcinoma. To develop therapeutic strategies against NAFLD, a better understanding of the molecular mechanism is needed. Current in vitro NAFLD models fail to capture the essential interactions between liver cell types and often do not reflect the pathophysiological status of patients. To overcome limitations of commonly used in vitro and in vivo models, precision-cut liver slices (PCLSs) were used in this study. PCLSs, prepared from liver tissue obtained from male Wistar rats, were cultured in supraphysiological concentrations of glucose, fructose, insulin, and palmitic acid to mimic metabolic syndrome. Accumulation of lipid droplets was visible and measurable after 24 h in PCLSs incubated with glucose, fructose, and insulin, both in the presence and absence of palmitic acid. Upregulation of acetyl-CoA carboxylase 1 and 2, and of sterol responsive element binding protein 1c, suggests increased de novo lipogenesis in PCLSs cultured under these conditions. Additionally, carnitine palmitoyltransferase 1 expression was reduced, which indicates impaired fatty acid transport and disrupted mitochondrial β-oxidation. Thus, steatosis was successfully induced in PCLSs with modified culture medium. This novel ex vivo NAFLD model could be used to investigate the multicellular and molecular mechanisms that drive NAFLD development and progression, and to study potential anti-steatotic drugs.
Collapse
Affiliation(s)
- Grietje H Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand.
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| |
Collapse
|
49
|
Fernández‐Iglesias A, Ortega‐Ribera M, Guixé‐Muntet S, Gracia‐Sancho J. 4 in 1: Antibody-free protocol for isolating the main hepatic cells from healthy and cirrhotic single rat livers. J Cell Mol Med 2019; 23:877-886. [PMID: 30417530 PMCID: PMC6349241 DOI: 10.1111/jcmm.13988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Liver cells isolated from pre-clinical models are essential tools for studying liver (patho)physiology, and also for screening new therapeutic options. We aimed at developing a new antibody-free isolation method able to obtain the four main hepatic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macrophages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution centrifugations while non-parenchymal cells were subjected to differential centrifugation. Two different fractions were obtained: HSC and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by selective adherence time to collagen-coated substrates. Isolated cells showed high viability (80%-95%) and purity (>95%) and were characterized as functional: hepatocytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo fenestrae distribution, HMΦ increased expression of inflammatory markers in response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol allows the simultaneous isolation of highly pure and functional hepatic cell sub-populations from control or cirrhotic single livers without antibody selection.
Collapse
Affiliation(s)
- Anabel Fernández‐Iglesias
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Sergi Guixé‐Muntet
- HepatologyDepartment of Biomedical ResearchInselspitalBern UniversityBernSwitzerland
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- HepatologyDepartment of Biomedical ResearchInselspitalBern UniversityBernSwitzerland
| |
Collapse
|
50
|
Sivakumar P, Kitson C, Jarai G. Modeling and measuring extracellular matrix alterations in fibrosis: challenges and perspectives for antifibrotic drug discovery. Connect Tissue Res 2019; 60:62-70. [PMID: 30071759 DOI: 10.1080/03008207.2018.1500557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An imbalance of extracellular matrix (ECM) deposition and turnover is a hallmark of fibrotic pathologies as opposed to normal repair response to injury across several organs. Antifibrotic approaches to date have targeted multiple mechanisms and pathways involved in inflammation, angiogenesis, injury, wound repair, ECM biosynthesis, assembly, crosslinking and degradation. Many of these approaches have been unsuccessful which may in part be due to suboptimal models and the lack of validated functional ECM end points relevant to fibrosis. In addition, drug discovery and development for fibrotic diseases has been challenging due to the lack of translatability from in vivo models to the clinic. Targeting growth factor signaling pathways such as transforming growth factor beta (TGFβ), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) are possible in simple recombinant cell models and the approval of the tyrosine kinase inhibitor, nintedanib (Ofev) is testament to the approach. However, drug targets directly impacting ECM synthesis, assembly or degradation have proven clinically intractable to date. The reasons for a lack of progress are many and include; non-traditional drug targets, lack of suitable high throughput screening assays and translational models, incomplete understanding of the role of the target. Here, we review the role of ECM in fibrosis, the challenges of ECM-targeted antifibrotic approaches, progress in the development of functional and biomarker-related ECM assays and where new translational models of fibrotic ECM remodeling could support drug discovery for fibrotic diseases.
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- a Fibrosis Translational Research and Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christopher Kitson
- b Fibrosis Discovery Biology , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Gabor Jarai
- a Fibrosis Translational Research and Development , Bristol-Myers Squibb , Pennington , NJ , USA
| |
Collapse
|