1
|
Meng D, Wang J, Du L, Hu X, Liu Y, Zhang P, Wang J, Dong Q. PD-L1 in plasmacytoid dendritic cells promote HBV persistence through disrupting humoral immune response. Front Immunol 2025; 16:1545667. [PMID: 40342414 PMCID: PMC12058763 DOI: 10.3389/fimmu.2025.1545667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Objective To investigate the efficacy of PD-L1 blockade in restoring humoral immune response against HBV. Methods HBV-persistent C57BL/6J mice were established through hydrodynamic tail vein injection of 10 µg pAAV-HBV1.2 plasmid. Subsequently, mice treated i.p. with anti-PD-L1 and/or anti-CTLA-4 at specified time points, with dosages of 500 µg, 250 µg, and 250 µg, respectively. Additionally, 5 × 105 magnetic bead-purified plasmacytoid dendritic cells (pDCs) were adoptively transferred i.v. into the acute mouse model followed by anti-PD-L1 treatment. Quantitative real-time PCR was employed to assess the expression levels of costimulatory and tolerogenic molecules in two dendritic cell subsets. Serum HBsAg and HBsAb were measured using ELISA. Flow cytometry was utilized to quantify T follicular helper (Tfh) cells, regulatory T cells (Treg), and germinal center (GC) B cells. Results PD-L1 blockade markedly enhanced the differentiation of Tfh cells and GC B cells in HBV-persistent C57BL/6J mice, thereby promoting HBV clearance. Additionally, pDCs exhibited an increased capacity to induce immune tolerance, with pDCs isolated from HBV carriers inducing viral persistence. This persistence was effectively counteracted by treatment with anti-PD-L1. Conclusion pDCs mediate the dysregulation of the humoral immune response to HBV through PD-L1 in chronic hepatitis B infection, highlighting a promising target for the management of chronic HBV.
Collapse
Affiliation(s)
- Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Jinhao Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Lianqun Du
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Xiaojun Hu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Ying Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Pengcheng Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| | - Jianjie Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Qingyang Dong
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, China
| |
Collapse
|
2
|
Kastner AL, Marx AF, Dimitrova M, Abreu-Mota T, Ertuna YI, Bonilla WV, Stauffer K, Künzli M, Wagner I, Kreutzfeldt M, Merkler D, Pinschewer DD. Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection. Immunity 2025; 58:481-498.e10. [PMID: 39719711 DOI: 10.1016/j.immuni.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
To interrogate the role of specific immune cells in infection, cancer, and autoimmunity, immunologists commonly use monoclonal depletion antibodies (depletion-mAbs) or genetically engineered mouse models (GEMMs). To generate a tool that combines specific advantages and avoids select drawbacks of the two methods, we engineered adeno-associated viral vectors expressing depletion mAbs (depletion-AAVs). Single-dose depletion-AAV administration durably eliminated lymphocyte subsets in mice and avoided accessory deficiencies of GEMMs, such as marginal zone defects in B cell-deficient animals. Depletion-AAVs can be used in animals of different genetic backgrounds, and multiple depletion-AAVs can readily be combined. Exploiting depletion-AAV technology, we showed that B cells were required for unimpaired CD4+ and CD8+ T cell responses to chronic lymphocytic choriomeningitis virus (LCMV) infection. Upon B cell depletion, CD8+ T cells failed to suppress viremia, and they only helped resolve chronic infection when antibodies dampened viral loads. Our study positions depletion-AAVs as a versatile tool for immunological research.
Collapse
Affiliation(s)
- Anna Lena Kastner
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | | - Mirela Dimitrova
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yusuf I Ertuna
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Marco Künzli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | | |
Collapse
|
3
|
Dumolard L, Hilleret MN, Costentin C, Mercey-Ressejac M, Sturm N, Gerster T, Decaens T, Jouvin-Marche E, Marche PN, Macek Jilkova Z. Differences in the intrahepatic expression of immune checkpoint molecules on T cells and natural killer cells in chronic HBV patients. Front Immunol 2025; 15:1489770. [PMID: 39882238 PMCID: PMC11774737 DOI: 10.3389/fimmu.2024.1489770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background Patients with chronic hepatitis B virus (HBV) infection are characterized by impaired immune response that fails to eliminate HBV. Immune checkpoint molecules (ICMs) control the amplitude of the activation and function of immune cells, which makes them the key regulators of immune response. Methods We performed a multiparametric flow cytometry analysis of ICMs and determined their expression on intrahepatic lymphocyte subsets in untreated and treated patients with HBV in comparison with non-pathological liver tissue. Results The liver of untreated HBV patients exhibited a high accumulation of PD-1+CD8+ T cells, while the frequencies of 4-1BB+ T cells, 4-1BB+ natural killer (NK) cells, and TIM-3+CD8+ T cells were the highest in the chronic hepatitis phase. Our findings showed that the HBeAg status is linked to a distinct immune phenotype of intrahepatic CD8+ T cells and NK cells characterized by high expression of ICMs, particularly 4-1BB. Importantly, antiviral treatment partially restored the normal expression of ICMs. Finally, we described important differences in ICM expression between intrahepatic and circulating NK cells in HBV patients. Conclusions Our study shows clear differences in the intrahepatic expression of ICMs on NK cells and T cells in chronic HBV patients depending on their clinical stage.
Collapse
Affiliation(s)
- Lucile Dumolard
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Marie-Noelle Hilleret
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Charlotte Costentin
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Marion Mercey-Ressejac
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Nathalie Sturm
- Service d’anatomie et de cytologie pathologiques, CHU Grenoble Alpes, Grenoble, France
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, La Tronche, France
| | - Theophile Gerster
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Evelyne Jouvin-Marche
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Patrice N. Marche
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| |
Collapse
|
4
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Mak LY, Boettler T, Gill US. HBV Biomarkers and Their Role in Guiding Treatment Decisions. Semin Liver Dis 2024; 44:474-491. [PMID: 39442530 DOI: 10.1055/a-2448-4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over 300 million individuals worldwide are chronically infected with hepatitis B virus and at risk for progressive liver disease. Due to the lack of a therapy that reliably achieves viral elimination and the variability of liver disease progression, treatment decisions are guided by the degree of liver disease and viral biomarkers as the viral life-cycle is well characterized and largely conserved between individuals. In contrast, the immunological landscape is much more heterogeneous and diverse and the measurement of its components is less well standardized. Due to the lack of a universal and easily measurable set of biomarkers, clinical practice guidelines remain controversial, aiming for a balance between simplifying treatment decisions by reducing biomarker requirements and using all available biomarkers to avoid overtreatment of patients with low risk for disease progression. While approved therapies such as nucleos(t)ide analogs improve patient outcomes, the inability to achieve a complete cure highlights the need for novel therapies. Since no treatment candidate has demonstrated universal efficacy, biomarkers will remain important for treatment stratification. Here, we summarize the current knowledge on virological and immunological biomarkers with a specific focus on how they might be beneficial in guiding treatment decisions in chronic hepatitis B.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Wang L, Chen H, Yang Y, Huang Y, Chen W, Mu D. Optimization of culture conditions for HBV-specific T cell expansion in vitro from chronically infected patients. BMC Biotechnol 2024; 24:80. [PMID: 39402512 PMCID: PMC11476462 DOI: 10.1186/s12896-024-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) clearance depends on an effective adaptive immune response, especially HBV-specific T cell-mediated cellular immunity; however, it is difficult to produce enough HBV-specific T cells effectively. RESULTS In this work, we investigated the proportions of stimulated cells, serum, and culture media as the three primary factors to determine the most effective procedure and applied it to HLA-A2 (+) people. In parallel, we also examined the correlation between clinical parameters and HBV-specific immunity. Concerning amplification efficiency, 4 × 105 cells stimulation was superior to 2 × 106 cells stimulation, AIM-V medium outperformed 1640 medium, and fetal bovine serum (FBS) exceeded human AB serum under comparable conditions. As expected, this procedure is also suitable for developing HBV-specific CD8 + T cells in HLA-A2(+) individuals. Expanded HBV-specific T cell responses decreased with treatment time and were negatively correlated with HBV DNA and HBsAg. Furthermore, the number of HBV-specific IFN-γ + SFCs was strongly correlated with the ALT level and negatively correlated with the absolute lymphocyte count and the ALB concentration. CONCLUSIONS We confirm that stimulating 4 × 105 PBMCs in AIM-V medium supplemented with 10% FBS is the best approach and that HBeAg, HBsAg, and ALB are independent predictors of HBV-specific T-cell responses.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongjiao Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanqi Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
9
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
10
|
Wang L, Liao F, Yang L, Jiang L, Duan L, Wang B, Mu D, Chen J, Huang Y, Hu Q, Chen W. KLRG1-expressing CD8+ T cells are exhausted and polyfunctional in patients with chronic hepatitis B. PLoS One 2024; 19:e0303945. [PMID: 38776335 PMCID: PMC11111010 DOI: 10.1371/journal.pone.0303945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangli Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
12
|
Zeng Y, Huang J, Pang J, Pan S, Wu Y, Jie Y, Li X, Chong Y. The occurrence of immune-related adverse events is an independent risk factor both for serum HBsAg increase and HBV reactivation in HBsAg-positive cancer patients receiving PD-1 inhibitor combinational therapy. Front Immunol 2024; 15:1330644. [PMID: 38558804 PMCID: PMC10979302 DOI: 10.3389/fimmu.2024.1330644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have suggested the potential of PD-1/PD-L1 inhibitors in the treatment of chronic HBV infection. However, since phase III clinical trials have not yet been announced, additional clinical insights may be obtained by observing changes in serum hepatitis B surface antigen (HBsAg) and HBV-DNA levels in cancer patients undergoing PD-1 inhibitor therapy. OBJECTIVE To explore the effects of PD-1 inhibitor combinational therapy on serum HBsAg and HBV-DNA levels, investigate the incidence of HBsAg loss, HBV reactivation (HBVr), and immune-related adverse events (irAEs), and identify the risk factors associated with significant HBsAg fluctuations and HBVr. METHODS A retrospective study including 1195 HBsAg-positive cancer patients who received PD-1 inhibitors between July 2019 and June 2023 was conducted, and 180 patients were enrolled in this study. Serum HBsAg levels before and after PD-1 inhibitor administration were compared across different subgroups. The Pearson χ2 or Fisher exact test was performed to investigate the relationships between categorical variables. Univariable and multivariable analysis were performed to identify the risk factors associated with significant HBsAg fluctuations and HBVr. RESULTS With the concurrent use of antiviral agents, serum HBsAg levels decreased (Z=-3.966, P < 0.0001) in 129 patients and increased (t=-2.047, P=0.043) in 51 patients. Additionally, 7 patients (3.89%) achieved serum HBsAg loss. Virus replication was suppressed in most of the enrolled patients. When divided patients into different subgroups, significant HBsAg decreases after PD-1 inhibitor administration were discovered in lower baseline HBsAg group (Z=-2.277, P=0.023), HBeAg-seronegative group (Z=-2.200, P=0.028), non-irAEs occurrence group (Z=-2.007, P=0.045) and liver cancer group (Z=-1.987, P=0.047). Of note, 11 patients and 36 patients experienced HBVr (6.11%) and irAEs (20%), respectively, which could lead to discontinuation or delayed use of PD-1 inhibitors. After multivariable analysis, HBeAg-seropositive (OR, 7.236 [95% CI, 1.757-29.793], P=0.01) and the occurrence of irAEs (OR, 4.077 [95% CI, 1.252-13.273], P=0.02) were identified as the independent risk factors for significant HBsAg increase, the occurrence of irAEs (OR, 5.560 [95% CI, 1.252-13.273], P=0.01) was identified as the only independent risk factor for HBVr. CONCLUSION PD-1 inhibitors combined with nucleos(t)ide analogues (NAs) may exert therapeutic potential for chronic HBV infection in cancer patients. However, attention also should be paid to the risk of significant elevation in HBsAg levels, HBVr, and irAEs associated with PD-1 inhibitor combinational therapy.
Collapse
Affiliation(s)
- Yingfu Zeng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiwei Huang
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shufang Pan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinhua Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Zhao H, Shao X, Yu Y, Huang L, Amor NP, Guo K, Weng C, Zhao W, Yang A, Hu J, Yang H, Liu Z, Han Q, Shi L, Sun S, Zhang J, Lin A, Yang Y. A therapeutic hepatitis B mRNA vaccine with strong immunogenicity and persistent virological suppression. NPJ Vaccines 2024; 9:22. [PMID: 38310094 PMCID: PMC10838333 DOI: 10.1038/s41541-024-00813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
Here we report on the development and comprehensive evaluations of an mRNA vaccine for chronic hepatitis B (CHB) treatment. In two different HBV carrier mouse models generated by viral vector-mediated HBV transfection (pAAV-HBV1.2 and rAAV8-HBV1.3), this vaccine demonstrates sufficient and persistent virological suppression, and robust immunogenicity in terms of induction of strong innate immune activation, high-level virus-specific antibodies, memory B cells and T cells. mRNA platform therefore holds prospects for therapeutic vaccine development to combat CHB.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| | - Xianyu Shao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lulu Huang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Narh Philip Amor
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Kun Guo
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Changzhen Weng
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jiesen Hu
- Firestone Biotechnologies, Shanghai, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Zhenguang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China.
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China.
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| |
Collapse
|
14
|
Dong H, Liao Y, Shang M, Fu Y, Zhang H, Luo M, Hu B. Effects of co-infection with Clonorchis sinensis on T cell exhaustion levels in patients with chronic hepatitis B. J Helminthol 2024; 98:e13. [PMID: 38263743 DOI: 10.1017/s0022149x23000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.
Collapse
Affiliation(s)
- Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Liao
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuechun Fu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongbin Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Zhang Y, Bourgine M, Wan Y, Song J, Li Z, Yu Y, Jiang W, Zhou M, Guo C, Santucci D, Liang X, Brechot C, Zhang W, Charneau P, Wu H, Qiu C. Therapeutic vaccination with lentiviral vector in HBV-persistent mice and two inactive HBsAg carriers. J Hepatol 2024; 80:31-40. [PMID: 37827470 DOI: 10.1016/j.jhep.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND & AIMS Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| | - Maryline Bourgine
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Yanmin Wan
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| | - Jieyu Song
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yiqi Yu
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Mingzhe Zhou
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Cuiyuan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China; Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | | | | | - Christian Brechot
- TheraVectys S.A., Paris, France; University of South Florida, Tampa, USA.
| | - Wenhong Zhang
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
| | - Pierre Charneau
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France.
| | - Hong Wu
- Changzhi People's Hospital, Changzhi, China.
| | - Chao Qiu
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China..
| |
Collapse
|
16
|
Heim K, Hofmann M, Thimme R. Peptide-Loaded HLA Class I Tetramer-Associated Magnetic Bead-Based Enrichment of HBV-Specific CD8+ T Cells. Methods Mol Biol 2024; 2837:219-226. [PMID: 39044088 DOI: 10.1007/978-1-0716-4027-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
HBV-specific CD8+ T cells are only present at the low frequency during chronic infection. Thus, they are often undetectable by conventional ex vivo staining methods using peptide-loaded HLA class I tetramers. Detection sensitivity can be increased by magnetic bead-based enrichment strategies following staining with peptide-loaded HLA class I tetramers. Additionally, some downstream applications like e.g., single cell RNA sequencing of virus-specific CD8+ T cells may also require a pre-enrichment step to increase the frequency of the cells of interest. For this, peptide-loaded HLA class I tetramers-associated magnetic bead-based enrichment is also a suitable method.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Li K, Lu E, Wang Q, Xu R, Yuan W, Wu R, Lu L, Li P. Serum vitamin D deficiency is associated with increased risk of γδ T cell exhaustion in HBV-infected patients. Immunology 2024; 171:31-44. [PMID: 37702282 DOI: 10.1111/imm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have demonstrated that T cell exhaustion is associated with poor clearance of Hepatitis B virus (HBV). However, whether the expression of exhaustion markers on innate-like circulating γδ T cells derived from patients with HBV infection correlates with the serum level of vitamin D is not completely understood. In this study, we found that the frequency of circulating Vδ2+ T cell and serum levels of vitamin 25(OH)D3 were significantly decreased in patients with HBV. And serum 25(OH)D3 levels in HBV-infected patients were negatively correlated with HBV DNA load and PD-1 expression on γδ T cells. Interestingly, 1α,25(OH)2 D3 alleviated the exhaustion phenotype of Vδ2 T cells in HBV-infected patients and promoted IFN-β expression in human cytotoxic Vδ2 T cells in vitro. Collectively, these findings demonstrate that vitamin D plays a pivotal role in reversing γδ T-cell exhaustion and is highly promising target for ameliorating HBV infection.
Collapse
Affiliation(s)
- Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Eying Lu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ruirong Xu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Wenhui Yuan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Ruan Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Peng Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
18
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Chua C, Salimzadeh L, Ma AT, Adeyi OA, Seo H, Boukhaled GM, Mehrotra A, Patel A, Ferrando-Martinez S, Robbins SH, La D, Wong D, Janssen HL, Brooks DG, Feld JJ, Gehring AJ. IL-2 produced by HBV-specific T cells as a biomarker of viral control and predictor of response to PD-1 therapy across clinical phases of chronic hepatitis B. Hepatol Commun 2023; 7:e0337. [PMID: 38055623 PMCID: PMC10984660 DOI: 10.1097/hc9.0000000000000337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.
Collapse
Affiliation(s)
- Conan Chua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Loghman Salimzadeh
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ann T. Ma
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Oyedele A. Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hobin Seo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giselle M. Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Scott H. Robbins
- Late Stage Oncology Development, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Danie La
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Wong
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harry L.A. Janssen
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David G. Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
21
|
Chen X, Liu X, Du S. Unveiling the Role of Tumor-Infiltrating T Cells and Immunotherapy in Hepatocellular Carcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:5046. [PMID: 37894413 PMCID: PMC10605632 DOI: 10.3390/cancers15205046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly rising global health concern, ranking as the third-leading cause of cancer-related mortality. Despite medical advancements, the five-year survival rate remains a dismal 18%, with a daunting 70% recurrence rate within a five-year period. Current systematic treatments, including first-line sorafenib, yield an overall response rate (ORR) below 10%. In contrast, immunotherapies have shown promise by improving ORR to approximately 30%. The IMbravel150 clinical trial demonstrates that combining atezolizumab and bevacizumab surpasses sorafenib in terms of median progression-free survival (PFS) and overall survival (OS). However, the therapeutic efficacy for HCC patients remains unsatisfactory, highlighting the urgent need for a comprehensive understanding of antitumor responses and immune evasion mechanisms in HCC. In this context, understanding the immune landscape of HCC is of paramount importance. Tumor-infiltrating T cells, including cytotoxic T cells, regulatory T cells, and natural killer T cells, are key components in the antitumor immune response. This review aims to shed light on their intricate interactions within the immunosuppressive tumor microenvironment and explores potential strategies for revitalizing dysfunctional T cells. Additionally, current immune checkpoint inhibitor (ICI)-based trials, ICI-based combination therapies, and CAR-T- or TCR-T-cell therapies for HCC are summarized, which might further improve OS and transform the management of HCC in the future.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| |
Collapse
|
22
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
23
|
Winkler F, Hipp AV, Ramirez C, Martin B, Villa M, Neuwirt E, Gorka O, Aerssens J, Johansson SE, Rana N, Llewellyn-Lacey S, Price DA, Panning M, Groß O, Pearce EL, Hermann CM, Schumann K, Hannibal L, Neumann-Haefelin C, Boettler T, Knolle P, Hofmann M, Wohlleber D, Thimme R, Bengsch B. Enolase represents a metabolic checkpoint controlling the differential exhaustion programmes of hepatitis virus-specific CD8 + T cells. Gut 2023; 72:1971-1984. [PMID: 37541771 PMCID: PMC10511960 DOI: 10.1136/gutjnl-2022-328734] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.
Collapse
Affiliation(s)
- Frances Winkler
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna V Hipp
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carlos Ramirez
- Health Data Science Unit, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Bianca Martin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeuic Area, Janssen Pharmaceutica, Beerse, Belgium
| | - Susanne E Johansson
- Translational Biomarkers, Infectious Diseases Therapeuic Area, Janssen Pharmaceutica, Beerse, Belgium
| | - Nisha Rana
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
| | - Olaf Groß
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Erika L Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Carl M Hermann
- Health Data Science Unit, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Kathrin Schumann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Luciana Hannibal
- Department of General Pediatrics, Laboratory of Clinical Biochemistry and Metabolism, Medical Center-University of Freiburg, Adolescent Medicine and Neonatology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Boettler
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Percy Knolle
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
- Institute of Molecular Immunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maike Hofmann
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Thimme
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Heidelberg, Germany
| |
Collapse
|
24
|
Guo G, He W, Zhou Z, Diao Y, Sui J, Li W. PreS1- targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice. Virology 2023; 586:23-34. [PMID: 37478771 DOI: 10.1016/j.virol.2023.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Current therapies control but rarely achieve a cure for hepatitis B virus (HBV) infection. Restoration of the HBV-specific immunity by cell-based therapy represents a potential approach for a cure. In this study, we generated HBV specific CAR T cells based on an antibody 2H5-A14 targeting a preS1 region of the HBV large envelope protein. We show that the A14 CAR T cell is capable of killing hepatocytes infected by HBV with high specificity; adoptive transfer of A14 CAR T cells to HBV infected humanized FRG mice resulted in reductions of all serum and intrahepatic virological markers to levels below the detection limit. A14 CAR T cells treatment increased the levels of human IFN-γ, GM-CSF, and IL-8/CXCL-8 in the mice. These results show that A14 CAR T cells may be further developed for curative therapy against HBV infection by eliminating HBV-infected hepatocytes and inducing production of pro-inflammatory and antiviral cytokines.
Collapse
Affiliation(s)
- Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yan Diao
- National Institute of Biological Sciences, Beijing, China; Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
25
|
Li F, Wang T, Tang F, Liang J. Fatal acute-on-chronic liver failure following camrelizumab for hepatocellular carcinoma with HBsAg seroclearance: a case report and literature review. Front Med (Lausanne) 2023; 10:1231597. [PMID: 37644988 PMCID: PMC10461443 DOI: 10.3389/fmed.2023.1231597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
In the last few years, immune checkpoint inhibitors (ICIs) have become major therapeutic agents for the treatment of advanced hepatocellular carcinoma (HCC). However, immunotherapy can activate hepatitis B virus (HBV), and immune clearance may lead to liver failure and even life-threatening conditions. Here we report a case of HCC with HBV-related cirrhosis that caused severe liver injury and rapidly progressed to fatal acute-on-chronic liver failure (ACLF) after only once application of camrelizumab; the patient underwent serological conversion of hepatitis B surface antigen (HBsAg) with liver injury. The patient's condition progressed rapidly. We added corticosteroids and applied plasma dialysis, along with tenofovir alafenamide (TAF) to control HBV. However, the patient eventually died of liver failure. To our knowledge, there are few reports of HBsAg clearance due to ICIs accompanied by fatal acute-on-chronic liver failure shortly after ICIs initiation. These results suggest that ICIs can cause fatal liver injury in a short term; in patients with chronic HBV infection, ICIs use may promote serological conversion of HBsAg.
Collapse
Affiliation(s)
| | | | | | - Jing Liang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extra-corporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
26
|
Yin S, Wang J, Chen L, Mao M, Rahma I, Geng Y, Huang R, Tong X, Liu Y, Wu C, Chen Y, Li J. Circulating Th2-biased T follicular helper cells impede antiviral humoral responses during chronic hepatitis B infection through upregulating CTLA4. Antiviral Res 2023:105665. [PMID: 37421985 DOI: 10.1016/j.antiviral.2023.105665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Failure in curing chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) can lead to functional impairment of B cells. Cytotoxic T-lymphocyte associated antigen 4 (CTLA4) regulates B cell and T follicular helper (Tfh) cell differentiation. In addition, Tfh cells play a critical role in helping B cells generate antibodies upon pathogen exposure. Here, we analyzed the global and HBsAg-specific B cells and circulating Tfh (cTfh) cells using samples from treatment-naïve and Peg-IFN-α-treated CHB patients and healthy subjects. Compared to healthy subjects, CTLA4 expression was significantly increased in cTfh cells, from CHB patients. The frequency of CTLA4+cTfh2 cells was negatively correlated with that of HBsAg-specific resting memory B cells. Importantly, inhibition of CTLA4 restored HBsAb secretion and promoted plasma cell differentiation. In addition, CTLA4+cTfh2 cells from CHB patients were ineffective in providing B cell help. Both expression of CTLA4 in cTfh and cTfh2 cells and ratios of CLTA4+cTfh and CTLA4+cTfh2 cells were significantly decreased in Peg-IFN-α-treated CHB patients who showed complete responses. Thus, our results highlighted that cTh2-biased T follicular helper cells could impede antiviral humoral responses during chronic HBV infection by upregulating CTLA4, suggesting that further optimizing potent Tfh cell responses may promote functional cure of CHB.
Collapse
Affiliation(s)
- Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minxin Mao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Issa Rahma
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Yong Liu
- Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China; Department of Experimental Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| |
Collapse
|
27
|
Hogan G, Winer BY, Ahodantin J, Sellau J, Huang T, Douam F, Funaki M, Chiriboga L, Su L, Ploss A. Persistent hepatitis B virus and HIV coinfections in dually humanized mice engrafted with human liver and immune system. J Med Virol 2023; 95:e28930. [PMID: 37403703 PMCID: PMC11298785 DOI: 10.1002/jmv.28930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including human immunodeficiency virus type (HIV) and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV, which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV, which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection, and preclinical testing of novel immunotherapeutics.
Collapse
Affiliation(s)
- Glenn Hogan
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Benjamin Y Winer
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - James Ahodantin
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julie Sellau
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Tiffany Huang
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Florian Douam
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Masaya Funaki
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, New York, USA
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
28
|
Zhao L, Yuan H, Wang Y, Geng Y, Yun H, Zheng W, Yuan Y, Lv P, Hou C, Zhang H, Sun J, Sun L, Suo Y, Wang S, Zhang N, Lu W, Yang G, Zhang X. HBV confers innate immune evasion through triggering HAT1/acetylation of H4K5/H4K12/miR-181a-5p or KPNA2/cGAS-STING/IFN-I signaling. J Med Virol 2023; 95:e28966. [PMID: 37466313 DOI: 10.1002/jmv.28966] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Viral immune evasion is crucial to the pathogenesis of hepatitis B virus (HBV) infection. However, the role of HBV in the modulation of innate immune evasion is poorly understood. A liver-specific histone acetyltransferase 1 (Hat1) knockout (KO) mouse model and HAT1 KO cell line were established. Immunohistochemistry staining, Western blot analysis, Southern blot analysis, Northern blot analysis, immunofluorescence assays, enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, and chromatin immunoprecipitation assays were performed in the livers of mouse models, primary human hepatocytes, HepG2-NTCP, and Huh7 and HepG2 cell lines. HBV-elevated HAT1 increased the expression of miR-181a-5p targeting cyclic GMP-AMP synthase (cGAS) messenger RNA 3' untranslated regions through modulating acetylation of H4K5 and H4K12 in vitro and in vivo, leading to the inability of cGAS-stimulator of interferon genes (STING) pathway and type I interferon (IFN-I) signaling. Additionally, HBV-elevated HAT1 promoted the expression of KPNA2 through modulating acetylation of H4K5 and H4K12 in the system, resulting in nuclear translocation of cGAS, HBx was responsible for the events by HAT1, suggesting that HBV-elevated HAT1 controls the cGAS-STING pathway and IFN-I signaling to modulate viral innate immune evasion. HBV confers innate immune evasion through triggering HAT1/acetylation of H4K5/H4K12/miR-181a-5p or KPNA2/cGAS-STING/IFN-I signaling. Our finding provides new insights into the mechanism by which HBV drives viral innate immune evasion.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Hongfeng Yuan
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Yufei Wang
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Yu Geng
- Department of Cancer Research, Institute of Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haolin Yun
- Department of Cancer Research, Institute of Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Zheng
- Department of Cancer Research, Institute of Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Yuan
- Department of Cancer Research, Institute of Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Pan Lv
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Chunyu Hou
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Huihui Zhang
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Linlin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yuhong Suo
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Ningning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Xiaodong Zhang
- Department of Gastrointestinal Cancer Biology, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| |
Collapse
|
29
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
30
|
Apol ÁD, Winckelmann AA, Duus RB, Bukh J, Weis N. The Role of CTLA-4 in T Cell Exhaustion in Chronic Hepatitis B Virus Infection. Viruses 2023; 15:v15051141. [PMID: 37243227 DOI: 10.3390/v15051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with chronic hepatitis B (CHB) gradually develop T cell exhaustion, and the inhibitory receptor molecule, cytotoxic T-lymphocyte antigen-4 (CTLA-4), may play a role in this phenomenon. This systematic review investigates the role of CTLA-4 in the development of T cell exhaustion in CHB. A systematic literature search was conducted on PubMed and Embase on 31 March 2023 to identify relevant studies. Fifteen studies were included in this review. A majority of the studies investigating CD8+ T cells demonstrated increased expression of CTLA-4 in CHB patients, though one study found this only in HBeAg-positive patients. Three out of four studies investigating the expression of CTLA-4 on CD4+ T cells found upregulation of CTLA-4. Several studies showed constitutive expression of CLTA-4 on CD4+ regulatory T cells. CTLA-4 blockade resulted in heterogeneous responses for all T cell types, as it resulted in increased T cell proliferation and/or cytokine production in some studies, while other studies found this only when combining blockade of CTLA-4 with other inhibitory receptors. Although mounting evidence supports a role of CTLA-4 in T cell exhaustion, there is still insufficient documentation to describe the expression and exact role of CTLA-4 in T cell exhaustion in CHB.
Collapse
Affiliation(s)
- Ása Didriksen Apol
- Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anni Assing Winckelmann
- Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus Bülow Duus
- Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Jens Bukh
- Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Wing PAC, Schmidt NM, Peters R, Erdmann M, Brown R, Wang H, Swadling L, COVIDsortium Investigators, Newman J, Thakur N, Shionoya K, Morgan SB, Hinks TSC, Watashi K, Bailey D, Hansen SB, Davidson AD, Maini MK, McKeating JA. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog 2023; 19:e1011323. [PMID: 37134108 PMCID: PMC10202285 DOI: 10.1371/journal.ppat.1011323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/22/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathalie M. Schmidt
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Rory Peters
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hao Wang
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | | | | | | | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Scott B. Hansen
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
33
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
34
|
Wang P, Mo Z, Zhang Y, Guo C, Chikede TK, Chen D, Lei Z, Gao Z, Zhang Q, Tong Q. Serum IL-5 levels predict HBsAg seroclearance in patients treated with Nucleos(t)ide analogues combined with pegylated interferon. Front Immunol 2023; 13:1104329. [PMID: 36685563 PMCID: PMC9849374 DOI: 10.3389/fimmu.2022.1104329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background Knowing about cytokine profile contributes to clarify the underling immune mechanism of HBsAg seroclearance rate increase. This study aims to investigate cytokine changes during nucleos(t)ide analogues (NAs) and peginterferon-α (Peg-IFNα) therapy and their impact on the HBsAg serologic response. Methods A total of 78 HBV DNA-negative chronic Hepatitis B (CHB) patients were studied after a lead-in phase of NAs with complete serum cytokines. Serum cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α) were quantified by flow cytometry (FCM) every 24 weeks, before, during and at the end of NAs and Peg-IFNα treatment. Clinical and laboratory data were also taken at the same time. Analysis was performed between cured and uncured groups characterized by HBsAg seroclearance. PBMCs samples from five patients (two in cured group and three in uncured group) were analyzed by FCM. Results HBsAg seroclearance was achieved in 30 (38,5%) patients defined as the cured group. In comparison to uncured individuals, cured patients showed similar expressions of serum IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α during the treatment of NAs and Peg-IFNα. Compared with the uncured groups, IL-5 was remarkably increased in cured patients. IL-5 at weeks 24 and 48 were associated with HBsAg seroconversion (p=0.033 and 0.027, respectively). PBMCs sample analysis confirmed the predicted value of IL-5 in response to NAs and Peg-IFNα treatment. Conclusions IL-5 at weeks 24 and 48 might be used as a biomarker for HBsAg seroclearance in NAs-experienced CHB patients treated with NAs combined with Peg-IFNα. More importantly, exploiting the expression of this cytokine may help to develop a better understanding of the immune pathogenesis of chronic HBV infection.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ying Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Trevor Kudzai Chikede
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dabiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ziying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| | - Qiaoxia Tong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| |
Collapse
|
35
|
Nkongolo S, Mahamed D, Kuipery A, Sanchez Vasquez JD, Kim SC, Mehrotra A, Patel A, Hu C, McGilvray I, Feld JJ, Fung S, Chen D, Wallin JJ, Gaggar A, Janssen HL, Gehring AJ. Longitudinal liver sampling in patients with chronic hepatitis B starting antiviral therapy reveals hepatotoxic CD8+ T cells. J Clin Invest 2023; 133:158903. [PMID: 36594467 PMCID: PMC9797343 DOI: 10.1172/jci158903] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand-mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.
Collapse
Affiliation(s)
- Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Deeqa Mahamed
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Kuipery
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan D. Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Christine Hu
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ian McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Diana Chen
- Gilead Sciences, Foster City, California, USA
| | | | - Anuj Gaggar
- Gilead Sciences, Foster City, California, USA
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
37
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
39
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
40
|
Yang D, Ling X, Liu F, Duan J, Bai F, Hu A. Generation of a human induced pluripotent stem cell line (SYSUTFi001-A) from infiltrating cytotoxic T cells in hepatocellular carcinoma (HCC). Stem Cell Res 2022; 65:102962. [PMID: 36375283 DOI: 10.1016/j.scr.2022.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we report a novel induced pluripotent stem cell (iPSC) line SYSUTFi001-A derived from cytotoxic T cells (CTLs) infiltrating in hepatocellular carcinoma (HCC), using an integrative Sendai virus vector. This pluripotent cell line shows a normal karyotype and can be redifferentiated to the rejuvenated CTLs targeted to HCC. The cell line SYSUTFi001-A can be further used to perform vitro and vivo anti-tumor assays and design future cell replacement therapies.
Collapse
Affiliation(s)
- Daopeng Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangchao Ling
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Furong Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinliang Duan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Bai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
41
|
Nicholas B, Lee HH, Guo J, Cicmil M, Blume C, Malefyt RDW, Djukanović R. Immunomodulatory regulator blockade in a viral exacerbation model of severe asthma. Front Immunol 2022; 13:973673. [PMID: 36479132 PMCID: PMC9720166 DOI: 10.3389/fimmu.2022.973673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Asthmatics are more susceptible to viral infections than healthy individuals and are known to have impaired innate anti-viral defences. Influenza A virus causes significant morbidity and mortality in this population. Immuno-modulatory regulators (IMRs) such as PD-1 are activated on T cells following viral infection as part of normal T cell activation responses, and then subside, but remain elevated in cases of chronic exposure to virus, indicative of T cell exhaustion rather than activation. There is evidence that checkpoint inhibition can enhance anti-viral responses during acute exposure to virus through enhancement of CD8+T cell function. Although elevated PD-1 expression has been described in pulmonary tissues in other chronic lung diseases, the role of IMRs in asthma has been relatively unexplored as the basis for immune dysfunction. We first assessed IMR expression in the peripheral circulation and then quantified changes in IMR expression in lung tissue in response to ex-vivo influenza infection. We found that the PD-1 family members are not significantly altered in the peripheral circulation in individuals with severe asthma but are elevated in pulmonary tissues following ex-vivo influenza infection. We then applied PD-1 Mab inhibitor treatment to bronchial biopsy tissues infected with influenza virus and found that PD-1 inhibition was ineffective in asthmatics, but actually increased infection rates in healthy controls. This study, therefore, suggests that PD-1 therapy would not produce harmful side-effects when applied in people with severe asthma, but could have important, as yet undescribed, negative effects on anti-viral responses in healthy individuals that warrant further investigation.
Collapse
Affiliation(s)
- Ben Nicholas
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom,*Correspondence: Ben Nicholas,
| | - Hyun-Hee Lee
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Jane Guo
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Milenko Cicmil
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Cornelia Blume
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom
| | | | - Ratko Djukanović
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom
| |
Collapse
|
42
|
Wang D, Fu B, Wei H. Advances in Immunotherapy for Hepatitis B. Pathogens 2022; 11:1116. [PMID: 36297173 PMCID: PMC9612046 DOI: 10.3390/pathogens11101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection, and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B (CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both the innate and adaptive branches of immunity contribute to viral eradication. However, immune exhaustion and evasion have been demonstrated during CHB infection, although our understanding of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused on improving the antiviral immune response. In this review, we discuss our current knowledge of the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We also propose how combinations of new drugs, and especially novel immunotherapies, contribute to HBV clearance.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei 230001, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, China
| | - Binqing Fu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
43
|
Li S, Li N, Yang S, Deng H, Li Y, Wang Y, Yang J, Lv J, Dong L, Yu G, Hou X, Wang G. The study of immune checkpoint inhibitors in chronic hepatitis B virus infection. Int Immunopharmacol 2022; 109:108842. [DOI: 10.1016/j.intimp.2022.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
|
44
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Liu Y, Qin L, Wang J, Xie X, Zhang Y, Li C, Guan Z, Qian L, Chen L, Hu J, Meng S. miR-146a Maintains Immune Tolerance of Kupffer Cells and Facilitates Hepatitis B Virus Persistence in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2558-2572. [PMID: 35562117 DOI: 10.4049/jimmunol.2100618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Kupffer cells (KCs), the largest tissue-resident macrophage population in the body, play a central role in maintaining a delicate balance between immune tolerance and immunity in the liver. However, the underlying molecular mechanism remains elusive. In this study, we show that KCs express high levels of miR-146a, which is under control of the PU.1 transcription factor. miR-146a deficiency promoted KCs differentiation toward a proinflammatory phenotype; conversely, miR-146a overexpression suppressed this phenotypic differentiation. We found that hepatitis B virus (HBV) persistence or HBV surface Ag treatment significantly upregulated miR-146a expression and thereby impaired polarization of KCs toward a proinflammatory phenotype. Furthermore, in an HBV carrier mouse model, KCs depletion by clodronate liposomes dramatically promoted HBV clearance and enhanced an HBV-specific hepatic CD8+ T cell and CD4+ T cell response. Consistent with this finding, miR-146a knockout mice cleared HBV faster and elicited a stronger adaptive antiviral immunity than wild-type mice. In vivo IL-12 blockade promoted HBV persistence and tempered the HBV-specific CTL response in the liver of miR-146a knockout mice. Taken together, our results identified miR-146a as a critical intrinsic regulator of an immunosuppressive phenotype in KCs under inflammatory stimuli, which may be beneficial in maintenance of liver homeostasis under physiological condition. Meanwhile, during HBV infection, miR-146a contributed to viral persistence by inhibiting KCs proinflammatory polarization, highlighting its potential as a therapeutic target in HBV infection.
Collapse
Affiliation(s)
- Yongai Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xialin Xie
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Pathology and Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China; and
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeliang Guan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyuan Qian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Lizhao Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Yu L, Guan Y, Li L, Lu N, Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8
+
T cells during HBV persistence. FEBS J 2022; 289:3241-3261. [DOI: 10.1111/febs.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Linyan Yu
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
- Jining NO. 1 People’s Hospital China
| | - Lei Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Nan Lu
- Institute of Diagnostics School of Medicine Cheeloo College of Medicine Shandong University Jinan China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
47
|
Cui D, Jiang D, Yan C, Liu X, Lv Y, Xie J, Chen Y. Immune Checkpoint Molecules Expressed on CD4 + T Cell Subsets in Chronic Asymptomatic Hepatitis B Virus Carriers With Hepatitis B e Antigen-Negative. Front Microbiol 2022; 13:887408. [PMID: 35572697 PMCID: PMC9093708 DOI: 10.3389/fmicb.2022.887408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide. Immune checkpoint molecules expressed on CD4+ T cells play critical roles in chronic HBV infection. However, their roles in chronic asymptomatic HBV carriers (ASCs) with hepatitis B e antigen (HBeAg)-negative remain unclear. In this study, we explored the role of immune checkpoint molecules expressed on CD4+ T cell subsets in chronic ASCs with HBeAg-negative. Methods Human peripheral blood mononuclear cells (PBMCs) from the ASCs with HBeAg-negative and healthy controls (HC) were isolated, and immune checkpoint molecules expressed on CD4+ T cell subsets and serum cytokines were detected by flow cytometry. Moreover, the mRNA expressions of immune checkpoint molecules were analyzed by a real-time quantitative PCR assay. Results In comparison with HC, CD4+ T cells highly expressed LAG-3, TIM-3, and PD-1 in PBMCs from chronic ASCs with HBeAg-negative. Interestingly, the expressions of TIM-3 and PD-1 on circulating follicular helper T (Tfh) cells in ASCs were significantly high. Moreover, high expressions of LAG-3, TIM-3, and PD-1 were different among Treg, Th1, Th2, and Th17 cells. In addition, the expressions of TIM-3 and CTLA-4 mRNA in PBMCs from ASCs were significantly elevated. However, the frequency of CTLA-4+CD4+ T cell subsets in PBMCs from ASCs was not different from HC. The levels of six cytokines in serum from ASCs were not clearly different from HC. Conclusion Immune checkpoint molecules highly expressed on CD4+ T cell subsets indicated an important role in chronic ASCs with HBeAg-negative, which provided potential therapeutic targets in the pathogenesis of chronic HBV infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuilin Yan
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Choi HS, Tonthat A, Janssen HL, Terrault NA. Aiming for Functional Cure With Established and Novel Therapies for Chronic Hepatitis B. Hepatol Commun 2022; 6:935-949. [PMID: 34894108 PMCID: PMC9035586 DOI: 10.1002/hep4.1875] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains difficult to cure due to the persistent, self-replenishing nature of the viral genome and impaired host immune responses. Current treatment goals for chronic hepatitis B (CHB) are to prevent or significantly delay liver-related adverse outcomes and death, and two types of treatments are available: nucleos(t)ide analogues (NAs) and interferons (IFNs). NAs effectively suppress HBV replication, and IFNs improve serological response rates, thereby decreasing the risk of adverse outcomes. However, their efficacy in attaining serological responses, especially functional cure (i.e., loss of serum hepatitis B surface antigen), is very limited. Various strategies such as stopping antiviral therapy or combining therapies have been investigated to enhance response, but efficacy is only modestly improved. Importantly, the development of novel direct-acting antivirals and immunomodulators is underway to improve treatment efficacy and enhance rates of functional cure. The present review provides an overview of the treatment goals and indications, the possibility of expanding indications, and the safety and efficacy of different treatment strategies involving established and/or novel therapies as we continue our search for a cure.
Collapse
Affiliation(s)
- Hannah S.J. Choi
- Toronto Center for Liver DiseaseToronto General HospitalTorontoONCanada
| | - Alexander Tonthat
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Norah A. Terrault
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
49
|
Ding Y, Zhou Z, Li X, Zhao C, Jin X, Liu X, Wu Y, Mei X, Li J, Qiu J, Shen C. Screening and Identification of HBV Epitopes Restricted by Multiple Prevalent HLA-A Allotypes. Front Immunol 2022; 13:847105. [PMID: 35464415 PMCID: PMC9021956 DOI: 10.3389/fimmu.2022.847105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Although host T cell immune responses to hepatitis B virus (HBV) have been demonstrated to have important influences on the outcome of HBV infection, the development of T cell epitope-based vaccine and T cell therapy and the clinical evaluation of specific T cell function are currently hampered markedly by the lack of validated HBV T cell epitopes covering broad patients. This study aimed to screen T cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and presenting by thirteen prevalent human leukocyte antigen (HLA)-A allotypes which gather a total gene frequency of around 95% in China and Northeast Asia populations. 187 epitopes were in silico predicted. Of which, 62 epitopes were then functionally validated as real-world HBV T cell epitopes by ex vivo IFN-γ ELISPOT assay and in vitro co-cultures using peripheral blood mononuclear cells (PBMCs) from HBV infected patients. Furthermore, the HLA-A cross-restrictions of each epitope were identified by peptide competitive binding assay using transfected HMy2.CIR cell lines, and by HLA-A/peptide docking as well as molecular dynamic simulation. Finally, a peptide library containing 105 validated epitopes which cross-binding by 13 prevalent HLA-A allotypes were used in ELISPOT assay to enumerate HBV-specific T cells for 116 patients with HBV infection. The spot forming units (SFUs) was significantly correlated with serum HBsAg level as confirmed by multivariate linear regression analysis. This study functionally validated 62 T cell epitopes from HBV main proteins and elucidated their HLA-A restrictions and provided an alternative ELISPOT assay using validated epitope peptides rather than conventional overlapping peptides for the clinical evaluation of HBV-specific T cell responses.
Collapse
Affiliation(s)
- Yan Ding
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xingyu Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xueyin Mei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jian Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Qiu
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Jiang Y, Zhao L, Wu Y, Deng S, Cao P, Lei X, Yang X. The Role of NcRNAs to Regulate Immune Checkpoints in Cancer. Front Immunol 2022; 13:853480. [PMID: 35464451 PMCID: PMC9019622 DOI: 10.3389/fimmu.2022.853480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
At present, the incidence of cancer is becoming more and more common, but its treatment has always been a problem. Although a small number of cancers can be treated, the recurrence rates are generally high and cannot be completely cured. At present, conventional cancer therapies mainly include chemotherapy and radiotherapy, which are the first-line therapies for most cancer patients, but there are palliatives. Approaches to cancer treatment are not as fast as cancer development. The current cancer treatments have not been effective in stopping the development of cancer, and cancer treatment needs to be imported into new strategies. Non-coding RNAs (ncRNAs) is a hot research topic at present. NcRNAs, which include microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), participate in all aspects of cancer biology. They are involved in the progression of tumors into a new form, including B-cell lymphoma, glioma, or the parenchymal tumors such as gastric cancer and colon cancer, among others. NcRNAs target various immune checkpoints to affect tumor proliferation, differentiation, and development. This might represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Yicun Jiang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Leilei Zhao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijun Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Pu Cao
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| |
Collapse
|