1
|
Xu Z, Xu Z, Fan X, Qu MM, Wang H, Li J, Gao L, Jiao YM, Shi J, Wang FS. Antioxidant interventions reduced cytokine-induced pyroptosis of peripheral MAIT cells in patients with HBV-related cirrhosis. Hepatol Commun 2025; 9:e0714. [PMID: 40377492 PMCID: PMC12088640 DOI: 10.1097/hc9.0000000000000714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/26/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells are diminished in various liver diseases, but the underlying mechanism remains unclear. This study aimed to investigate the characteristics and underlying mechanisms of MAIT cell depletion in HBV-related cirrhosis. METHODS Peripheral blood samples were collected from 20 healthy controls and 40 patients with HBV-related cirrhosis, divided into compensated (20) and decompensated (20) liver cirrhosis groups. Flow cytometry, single-cell RNA sequencing (scRNA-seq), multiplex immunofluorescence, and ELISA were used to assess MAIT cell characteristics. RESULTS In patients with HBV-related cirrhosis, MAIT cells were significantly reduced and hyperactivated. The levels of pyroptosis and oxidative stress were elevated, particularly in those with decompensated liver cirrhosis (DLC). As disease severity increased, both pyroptosis and oxidative stress in MAIT cells rose, negatively correlating with MAIT cell frequency. Additionally, MAIT cells from patients with compensated liver cirrhosis (CLC) and DLC had lower levels of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), granzyme B (GZMB), and CD107a, but higher IL-17A levels. Blocking IL-12 and IL-18 pathways reduced MAIT cell activation and pyroptosis, while antioxidants effectively decreased pyroptosis in vitro. CONCLUSIONS Pyroptosis contributes to the decline of MAIT cells in HBV-related cirrhosis, while antioxidants can reduce this process.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhe Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hongmin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jiaying Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lingyu Gao
- Key Medical Laboratory of Stem Cell Transformation and Application, The First People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jijing Shi
- Key Medical Laboratory of Stem Cell Transformation and Application, The First People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Fu-Sheng Wang
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
2
|
Wang W, Dai C, Zhu P, Wu M, Zhang H, Wei Q, Zhou T, Tan X, Jiang Y, Cheng X, Liang Z, Wu X, Chen Z, Weng X. Liver transplant-facilitated CD161 +Vα7.2 + MAIT cell recovery demonstrates clinical benefits in hepatic failure patients. Nat Commun 2025; 16:4022. [PMID: 40301342 PMCID: PMC12041255 DOI: 10.1038/s41467-025-59308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells exert multifaceted effects such as anti-microbial activity, tissue repair, and pro-fibrotic effects across various disease settings. Nonetheless, their role in liver injury and hemostasis remains debated. Here, we report a significant depletion and functional dysregulation of MAIT cells, which is associated with disease severity and accumulated bile acids in HBV-infected patients with varying degree of liver injury. Liver transplantation facilitates a gradual recovery of recipient-originated MAIT cells. Transcriptome analysis reveals enhanced MAIT cell activation, while TCR mining demonstrates clonotype overlap between circulating and hepatic MAIT cells during significant liver injury. TCR-activated MAIT cells from transplant recipients display higher protective capacity but reduced pathological potential than those from liver failure patients. Compromised recovery of MAIT cells is linked to post-transplantation complications, whereas prompt recovery predicates favorable clinical outcome. These findings underscore the intricate interplay between MAIT cells and the hepatic environment, highlighting MAIT cells as potential therapeutic targets and sensitive predictors for clinical outcome in individuals experiencing liver failure and post liver transplantation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan, China
| | - Peng Zhu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Haoquan Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wei
- Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan, China
| | - Ying Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Cheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan, China.
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan, China.
- Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Fang Y, Chen Y, Niu S, Lyu Z, Tian Y, Shen X, Li YR, Yang L. Biological functions and therapeutic applications of human mucosal-associated invariant T cells. J Biomed Sci 2025; 32:32. [PMID: 40025566 PMCID: PMC11871619 DOI: 10.1186/s12929-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
5
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
6
|
Bengtsson B, Maucourant C, Sandberg JK, Björkström NK, Hagström H. Evaluation of mucosal-associated invariant T-cells as a potential biomarker to predict infection risk in liver cirrhosis. PLoS One 2024; 19:e0294695. [PMID: 38691552 PMCID: PMC11062522 DOI: 10.1371/journal.pone.0294695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND AND AIMS Infection is a serious complication in patients with cirrhosis. Mucosal-associated invariant T (MAIT) cells are involved in the immune defense against infections and known to be impaired in several chronic conditions, including cirrhosis. Here, we evaluated if MAIT cell levels in peripheral blood are associated with risk of bacterial infections in patients with cirrhosis. METHODS Patients with cirrhosis seen at the Karolinska University Hospital, Stockholm, Sweden, between 2016 and 2019 were included. Levels of MAIT cells in peripheral blood were determined using flow cytometry. Baseline and follow-up data after at least two years of follow-up were collected by chart review for the primary outcome (bacterial infection) and secondary outcomes (decompensation and death). Competing risk and Cox regression were performed. RESULTS We included 106 patients with cirrhosis. The median MAIT cells fraction in the circulation was 0.8% in cirrhosis compared to 6.1% in healthy controls. In contrast to our hypothesis, we found an association in the adjusted analysis between relatively preserved MAIT cell levels, and a slightly higher risk to develop bacterial infections (adjusted subdistribution hazard ratio (aSHR) 1.15 (95%CI = 1.01-1.31). However, MAIT cell levels were not associated with the risk of hepatic decompensation (aSHR 1.19 (95%CI = 0.91-1.56)) nor with death (adjusted hazard ratio 1.10 (95%CI = 0.97-1.22)). CONCLUSIONS Relatively preserved MAIT cell levels in blood of patients with cirrhosis were associated with a somewhat higher risk of bacterial infections. The clinical relevance of this might not be strong. MAIT cells might however be an interesting biomarker to explore in future studies.
Collapse
Affiliation(s)
- Bonnie Bengtsson
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Lombardo D, Franzè MS, Caminiti G, Pollicino T. Hepatitis Delta Virus and Hepatocellular Carcinoma. Pathogens 2024; 13:362. [PMID: 38787214 PMCID: PMC11124437 DOI: 10.3390/pathogens13050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The hepatitis D virus (HDV) is a compact, enveloped, circular RNA virus that relies on hepatitis B virus (HBV) envelope proteins to initiate a primary infection in hepatocytes, assemble, and secrete new virions. Globally, HDV infection affects an estimated 12 million to 72 million people, carrying a significantly elevated risk of developing cirrhosis, liver failure, and hepatocellular carcinoma (HCC) compared to an HBV mono-infection. Furthermore, HDV-associated HCC often manifests at a younger age and exhibits more aggressive characteristics. The intricate mechanisms driving the synergistic carcinogenicity of the HDV and HBV are not fully elucidated but are believed to involve chronic inflammation, immune dysregulation, and the direct oncogenic effects of the HDV. Indeed, recent data highlight that the molecular profile of HCC associated with HDV is unique and distinct from that of HBV-induced HCC. However, the question of whether the HDV is an oncogenic virus remains unanswered. In this review, we comprehensively examined several crucial aspects of the HDV, encompassing its epidemiology, molecular biology, immunology, and the associated risks of liver disease progression and HCC development.
Collapse
Affiliation(s)
| | | | | | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98124 Messina, Italy; (D.L.); (M.S.F.); (G.C.)
| |
Collapse
|
8
|
Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol 2024; 15:1343567. [PMID: 38550591 PMCID: PMC10973110 DOI: 10.3389/fimmu.2024.1343567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of unconventional T cells widely involved in chronic liver diseases. However, the potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE), a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis) larvae chronically parasitizing liver organs, has not yet been studied. Blood samples (n=29) and liver specimens (n=10) from AE patients were enrolled. The frequency, phenotype, and function of MAIT cells in peripheral blood and liver tissues of AE patients were detected by flow cytometry. The morphology and fibrosis of liver tissue were examined by histopathology and immunohistochemistry. The correlation between peripheral MAIT cell frequency and serologic markers was assessed by collecting clinicopathologic characteristics of AE patients. And the effect of in vitro stimulation with E. multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are decreased in peripheral blood and increased in the close-to-lesion liver tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation phenotypes with increased IFN-γ and IL-17A, and high expression of CXCR5 chemokine receptor. Furthermore, the frequency of circulating MAIT cells was correlated with the size of the lesions and liver function in patients with AE. After excision of the lesion site, circulating MAIT cells returned to normal levels, and the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation and apoptosis, were altered. Our results demonstrate the status of MAIT cell distribution, functional phenotype, and migration in peripheral blood and tissues of AE patients, highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintian Li
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanyue Zhao
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
9
|
Samer C, McWilliam HE, McSharry BP, Velusamy T, Burchfield JG, Stanton RJ, Tscharke DC, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection. iScience 2024; 27:108801. [PMID: 38303725 PMCID: PMC10831258 DOI: 10.1016/j.isci.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Thilaga Velusamy
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - James G. Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Kammann T, Gorin JB, Parrot T, Gao Y, Ponzetta A, Emgård J, Maleki KT, Sekine T, Rivera-Ballesteros O, Karolinska COVID-19 Study Group, Gredmark-Russ S, Rooyackers O, Skagerberg M, Eriksson LI, Norrby-Teglund A, Mak JY, Fairlie DP, Björkström NK, Klingström J, Ljunggren HG, Aleman S, Buggert M, Strålin K, Sandberg JK. Dynamic MAIT Cell Recovery after Severe COVID-19 Is Transient with Signs of Heterogeneous Functional Anomalies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:389-396. [PMID: 38117799 PMCID: PMC10784727 DOI: 10.4049/jimmunol.2300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Skagerberg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I. Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Litvinova E, Bounaix C, Hanouna G, Da Silva J, Noailles L, Beaudoin L, Padden M, Bellamri N, Lehuen A, Daugas E, Monteiro RC, Flament H. MAIT cells altered phenotype and cytotoxicity in lupus patients are linked to renal disease severity and outcome. Front Immunol 2023; 14:1205405. [PMID: 37885889 PMCID: PMC10598677 DOI: 10.3389/fimmu.2023.1205405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease in which circulating immune complexes can cause different types of glomerulonephritis, according to immune deposits and to the type of glomerular cell injury. Proliferative lesions represent the most severe form of lupus nephritis (LN) and often lead to kidney failure and death. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that recognize microbial-derived ligands from the riboflavin synthesis pathway. Although abundant in peripheral blood, MAIT cells are enriched in mucosal and inflamed tissues. While previous studies have reported concordant results concerning lower MAIT cell frequencies in the blood of SLE patients, no information is known about MAIT cell function and LN severity and outcome. Methods In the current study, we analyzed the baseline phenotype and function of peripheral blood MAIT cells by flow cytometry in 26 patients with LN and in a control group of 16 healthy individuals. Results We observe that MAIT cell frequencies are markedly reduced in blood of LN patients. MAIT cells from patients have an altered phenotype in terms of migration, proliferation and differentiation markers, notably in most severe forms of LN. Frequencies of PMA/ionomycin stimulated MAIT cells secreting effector molecules, such as proinflammatory IL-17 and cytotoxic protein granzyme B, are higher in LN patients. Patients undergoing a complete renal remission after immunosuppressive therapy had higher MAIT cell frequency, lower expression of proliferation marker Ki-67 and granzyme B (GzB) at inclusion. Remarkably, GzB production defines a predictive model for complete remission. Discussion We report here that blood MAIT cells display proinflammatory and cytotoxic function in severe lupus nephritis which may play a pathogenesis role, but without association with systemic lupus activity. Finally, low cytotoxic profile of MAIT cells may represent a promising prognostic factor of lupus nephritis remission one year after induction therapy.
Collapse
Affiliation(s)
- Elena Litvinova
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Carine Bounaix
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Guillaume Hanouna
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Jennifer Da Silva
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Laura Noailles
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, Institut national de la santé et de la recherche médicale (INSERM) U1016, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Inflamex Laboratory of Excellence, Paris, France
| | - Michael Padden
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Nessrine Bellamri
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, Institut national de la santé et de la recherche médicale (INSERM) U1016, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Inflamex Laboratory of Excellence, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Renato C. Monteiro
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Héloïse Flament
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
12
|
Joshi SS, Sadler M, Patel NH, Osiowy C, Fonseca K, Coffin CS. Systemic cytokine and viral antigen-specific responses in hepatitis D virus RNA positive versus HDV RNA negative patients. Front Med (Lausanne) 2023; 10:1125139. [PMID: 37877022 PMCID: PMC10591067 DOI: 10.3389/fmed.2023.1125139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background Hepatitis B virus (HBV)/Hepatitis D Virus (HDV) co-infection increases the risk of severe liver disease compared to HBV mono-infection. Adaptive immune responses to HDV are weakly detectable, and the involvement of innate immunity in the progression of HDV-related liver fibrosis is suggested. We hypothesize that an overall innate immune activation in HBV/HDV co-infection plays a role in liver disease progression and also impacts virus specific T cell response. Methods Sixteen HBV/HDV-co-infected-patients (median age 42y/7F/6 Asian/4 White/6 Black/15 HBeAg-) and 8 HBV monoinfected-patients (median age 39y/4F/4 Asian/3 Black/1 White/HBeAg-) with median follow-up of 5 years were enrolled. Liver fibrosis was assessed by liver stiffness measurement (LSM, FibroScan®). Proliferation of CD3 + CD4+ T cells in response to viral antigens using CFSE assays and cytokine secreting monocytes was analyzed by flow cytometry. Results Of 16 HBV/HDV, 11 were HDV-RNA+ (HBV-DNA 0-1,040 IU/mL), 5/11 Interferon (IFN) + Nucleos/tide Analog (NA), 3/11 NA monotherapy, median ALT 77 U/L at the time of sample collection, median LSM of 9.8. In 5 HDV RNA-, median HBV DNA 65 IU/mL, 4/5 prior IFN and/or NA, ALT 31 U/L, and median LSM 8.5 kPa. In 8 HBV controls, median HBV-DNA, ALT, LSM was 69 IU/mL, 33 U/L,5 kPa, respectively. PBMC stimulation with HBV core antigen (HBcAg) and HDV antigen (HDAg) showed weaker CD3 + CD4 + T-cell proliferation in HDV-RNA+ vs. HDV RNA- and HBV-mono-infected patients (p < 0.05). In HDV-RNA+ patients, a correlation between ALT and TNF-α (r = 0.76, p = 0.008), higher IL-10 levels and increased proportion of CD14 + TNF-α+ cells were found. Conclusion In summary, during HBV/HDV coinfection, HDV RNA+ patients had weaker HBV and HDV specific responses, associated with increased TNF-α + monocytes irrespective of IFN treatment.
Collapse
Affiliation(s)
- Shivali S. Joshi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Sadler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nishi H. Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla S. Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Ibidapo-Obe O, Bruns T. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. JHEP Rep 2023; 5:100812. [PMID: 37691689 PMCID: PMC10485156 DOI: 10.1016/j.jhepr.2023.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic liver disease results from the orchestrated interplay of components of innate and adaptive immunity in response to liver tissue damage. Recruitment, positioning, and activation of immune cells can contribute to hepatic cell death, inflammation, and fibrogenesis. With disease progression and increasing portal pressure, repeated translocation of bacterial components from the intestinal lumen through the epithelial and vascular barriers leads to persistent mucosal, hepatic, and systemic inflammation which contributes to tissue damage, immune dysfunction, and microbial infection. It is increasingly recognised that innate-like and adaptive T-cell subsets located in the liver, mucosal surfaces, and body cavities play a critical role in the progression of advanced liver disease and inflammatory complications of cirrhosis. Mucosal-associated invariant T cells, natural killer T cells, γδ T cells, and tissue-resident memory T cells in the gut, liver, and ascitic fluid share certain characteristic features, which include that they recognise microbial products, tissue alarmins, cytokines, and stress ligands in tissues, and perform effector functions in chronic liver disease. This review highlights recent advances in the comprehension of human tissue-resident and unconventional T-cell populations and discusses the mechanisms by which they contribute to inflammation, fibrosis, immunosuppression, and antimicrobial surveillance in patients with cirrhosis. Understanding the complex interactions of immune cells in different compartments and their contribution to disease progression will provide further insights for effective diagnostic interventions and novel immunomodulatory strategies in patients with advanced chronic liver disease.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
14
|
Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. The Emerging Role of MAIT Cell Responses in Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:511-517. [PMID: 37549397 PMCID: PMC10421619 DOI: 10.4049/jimmunol.2300147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 08/09/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Michael A. Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| |
Collapse
|
15
|
Hoblos R, Kefalakes H. Immunology of hepatitis D virus infection: General concepts and present evidence. Liver Int 2023; 43 Suppl 1:47-59. [PMID: 36074070 DOI: 10.1111/liv.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/13/2023]
Abstract
Infection with the hepatitis D virus induces the most severe form of chronic viral hepatitis, affecting over 12 million people worldwide. Chronic HDV infection leads to rapid development of liver cirrhosis and hepatocellular carcinoma in ~70% of patients within 15 years of infection. Recent evidence suggests that an interplay of different components of the immune system are contributing to viral control and may even be implicated in liver disease pathogenesis. This review will describe general concepts of antiviral immune response and elicit the present evidence concerning the interplay of the hepatitis D virus with the immune system.
Collapse
Affiliation(s)
- Reem Hoblos
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
17
|
Heller T, Buti M, Lampertico P, Wedemeyer H. Hepatitis D: Looking Back, Looking Forward, Seeing the Reward and the Promise. Clin Gastroenterol Hepatol 2023; 21:2051-2064. [DOI: 10.1016/j.cgh.2023.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
20
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Gill US. The immune landscape in hepatitis delta virus infection-Still an open field! J Viral Hepat 2022; 30 Suppl 1:21-25. [PMID: 36529664 DOI: 10.1111/jvh.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Hepatitis delta virus (HDV) is known to cause the most aggressive and severe form of viral hepatitis, yet it remained under-diagnosed but does require early diagnosis for accurate disease staging. Antibody to HDV (anti-HDV) is the primary screening tool and should be assessed in patients with hepatitis B surface antigen (HBsAg) positivity, as HDV is a satellite RNA virus of hepatitis B. Additionally, the viral load (HDV RNA) should be assessed in those with positive anti-HDV, to differentiate between active infection and resolved hepatitis delta. Data regarding immune responses in HDV are limited but show dysfunctional adaptive and innate immunity. Many studies however fail to distinguish between active and resolved infection. Limited treatments are available for HDV, but promise has been shown with the newly approved Bulevirtide, a first-in-class HBV entry inhibitor. Thus immune response during therapy requires further investigation, along with additional targets for HDV cure.
Collapse
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Jiang X, Peng Y, Liu L, Wang Y, Li M, Li W, Huang F, Zheng C, Xu F, Hu Q, Wei W, Dong S, Zhao Q. MAIT cells ameliorate liver fibrosis by enhancing the cytotoxicity of NK cells in cholestatic murine models. Liver Int 2022; 42:2743-2758. [PMID: 36181707 DOI: 10.1111/liv.15445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that display a critical role in various liver diseases. However, the role of MAIT cells in cholestatic liver fibrogenesis remains obscure. Our study aims to assess the contribution of MAIT cells and underlying mechanisms during this process. METHODS Cholestatic murine models using MAIT cell-deficient (MR1- /- ) and wild-type (WT) mice were established by feeding a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-enriched diet or bile duct ligation (BDL). Liver samples were collected to determine the severity of fibrosis. Lymphocytes of the liver were isolated for analysing the phenotype and function of MAIT cells. Cell co-culture experiments were performed to investigate the cross-talk between MAIT and NK cells. RESULTS Liver MAIT cells were more activated with increased cytokines in cholestatic mice models than in control mice, although their frequency was decreased. MAIT cell deficiency led to severe liver inflammation and fibrosis with more activated HSCs in cholestatic mice. In addition, MR1- /- mice had an increased frequency of NK cells with higher expression of stimulatory receptors relative to WT mice. Paradoxically, activated MAIT cells significantly promoted the anti-fibrotic ability of NK cells by enhancing their cytotoxicity against HSCs in co-culture experiments. Importantly, this effect depended on direct cell-cell contact and TNF-α produced by MAIT cells. CONCLUSION Our findings indicate that MAIT cells ameliorate cholestatic liver fibrosis by enhancing the cytotoxicity of NK cells against HSCs. An in-depth understanding of the MAIT cell-mediated regulatory effect will provide more valuable immunotherapy strategies to treat liver fibrosis.
Collapse
Affiliation(s)
- Xiang Jiang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fengxing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Chunlan Zheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wanhui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
23
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
24
|
Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, Ho A, Hadadi L, Liu Z, Qin P, Lobie PE, Kamarulzaman A, Wang LF, Sandberg JK, Lewin SR, Rajasuriar R, Leeansyah E. IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection. Front Immunol 2022; 13:985385. [PMID: 36341446 PMCID: PMC9632172 DOI: 10.3389/fimmu.2022.985385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
Collapse
Affiliation(s)
- Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Nurul Syuhada Zulhaimi
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Leila Hadadi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Zhenyu Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharon R. Lewin
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Edwin Leeansyah,
| |
Collapse
|
25
|
Cheng TC, Xue H, Li H, Liu YC, Tian LJ, Bian ZL, Chen FS. MAIT cells predict long-term prognosis in liver failure patients. Medicine (Baltimore) 2022; 101:e29809. [PMID: 36042623 PMCID: PMC9410595 DOI: 10.1097/md.0000000000029809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Liver failure (LF) is a life-threatening clinical syndrome characterized by intense systemic inflammation and organ failure(s), leading to a high mortality rate. The pathogenesis of LF is multifactorial, immune response, and gut bacterial translocation are thought to be major contributing factors. Mucosal-associated invariant T (MAIT) cells play a critical role in immune response and gut bacterial translocation. We aimed to investigate changes of the MAIT cell ratio in patients with LF and to explore the predictive value for long-term prognosis in patients with LF. MATERIAL AND METHOD We recruited 75 patients with LF from Nantong Third People's Hospital, isolated peripheral blood mononuclear cells, and detected the proportion of circulating MAIT cells by flow cytometry. Statistical analyses were performed using the GraphPad Prism software. RESULTS Our data showed that the proportion of MAIT cells alterations was independent of the cause of viral infection in patients with LF. Kaplan-Meier survival analysis showed that LF patients with low level of MAIT cells had poor long-term prognosis. The area under the receiver operating characteristic curve of the MAIT cell proportion was larger than that of the Model for End-Stage Liver Disease (MELD) score. More importantly, the combination of MAIT cell proportion and MELD score had a better effect in predicting long-term prognosis of LF patients than any single index (AUC = 0.91, 95% CI:0.84-0.97), and multivariate logistic regression analysis indicated that the circulating MAIT cell proportion was an independent risk factor for LF. CONCLUSION The proportion of MAIT cells in PBMC is an outstanding predictor for the long-term prognosis in patients with LF.
Collapse
Affiliation(s)
- Tiao-Chun Cheng
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Hong Xue
- Department of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Han Li
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Yi-Cun Liu
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Li-Jun Tian
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Zhao-Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| | - Feng-Song Chen
- Department of Gastroenterology, Haimen People’s Hospital, Nantong 226100, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| |
Collapse
|
26
|
Xu L, Zhang X, Cao Y, Fan Z, Tian Y, Zou H, Ma Y, Duan Z, Ren F. Digital Droplet PCR for Detection and Quantitation of Hepatitis Delta Virus. Clin Transl Gastroenterol 2022; 13:e00509. [PMID: 35905419 PMCID: PMC10476728 DOI: 10.14309/ctg.0000000000000509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/26/2022] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION Hepatitis delta virus (HDV) far exceeds our expected level. There remains a lack of reliable quantitative assays for HDV RNA detection. We sought to develop a new method based on digital droplet polymerase chain reaction (ddPCR) for HDV quantitative detection. METHODS With plasmid (pMD19T) containing HDV full genome, we determined the method for ddPCR-based HDV RNA quantification. To compare various assays for HDV detection, 30 cases diagnosed with hepatitis D and 14 controls were examined using enzyme-linked immunosorbent assay, reverse-transcriptase PCR (RT-PCR), and ddPCR. A total of 728 hepatitis B virus-related patients, including 182 patients with chronic hepatitis B, 182 with liver cirrhosis, 182 with hepatocellular carcinoma, and 182 with liver failure, were screened for HDV infection. RESULTS The detection limit of ddPCR for HDV is significantly low, with lower limit of detection and lower limit of quantitation of 0.29 IU/mL (95% confidence interval: 1.93 × 10-3-1.22 IU/mL) and 8.76 IU/mL (95% confidence interval: 1.83-1.03 × 106 IU/mL), respectively. Among the 44 samples, the enzyme-linked immunosorbent assay detected 30 cases positive, ddPCR reported 24 samples, and RT-PCR reported 10 samples positive for HDV RNA. Moreover, the positive rates of anti-HDV were 1.1%, 3.3%, 2.7%, and 7.1% in patients with chronic hepatitis B, liver cirrhosis, hepatocellular carcinoma, and liver failure, respectively; the detection rates of RT-PCR in HDV RNA were 0%, 16.67%, 15.4%, and 20%, respectively. However, the detection rates of ddPCR were 0%, 33.33%, 30.77%, and 60%, respectively. DISCUSSION We establish a high sensitivity and specificity quantitative HDV RNA detection method based on ddPCR. Hepatitis B virus-related end-stage liver diseases, especially liver failure, are associated with a remarkably high rate of HDV infection.
Collapse
Affiliation(s)
- Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanbin Zou
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Mehta H, Lett MJ, Klenerman P, Filipowicz Sinnreich M. MAIT cells in liver inflammation and fibrosis. Semin Immunopathol 2022; 44:429-444. [PMID: 35641678 PMCID: PMC9256577 DOI: 10.1007/s00281-022-00949-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
Mucosal-associated invariant T cells or MAIT cells are an abundant cell type in humans and especially so in the liver. MAIT cells are a subset of T lymphocytes that sit at a bridge between innate and adaptive immunity, so-called innate-like or "unconventional" T cells. The specificity of their antigen receptor (T cell receptor or TCR) is for the conserved major histocompatibility complex (MHC)-related molecule MR1, which presents a modified bacterial metabolite from the vitamin B2 biosynthesis pathway - this allows them to respond in the presence of many bacteria or yeast. MAIT cells also possess an array of cytokine receptors, which allows triggering independently of the TCR. The combination of such signals drives their functionality - this means they can respond to a range of stimuli and likely play a role not only in infection or inflammation, but also under homeostatic conditions.In this review, we will look at the question of what MAIT cells are doing in the normal liver and how they behave in the setting of disease. These questions are of relevance because MAIT cells are such a distinctive cell type enriched in the liver under normal conditions, and their modulation could be of therapeutic benefit. The recent discovery that they appear to be involved in liver fibrosis is particularly of interest in this context.
Collapse
Affiliation(s)
- Hema Mehta
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK
| | - Martin Joseph Lett
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Magdalena Filipowicz Sinnreich
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
28
|
Xia P, Xing XD, Yang CX, Liao XJ, Liu FH, Huang HH, Zhang C, Song JW, Jiao YM, Shi M, Jiang TJ, Zhou CB, Wang XC, He Q, Zeng QL, Wang FS, Zhang JY. Activation-induced pyroptosis contributes to the loss of MAIT cells in chronic HIV-1 infected patients. Mil Med Res 2022; 9:24. [PMID: 35619176 PMCID: PMC9137088 DOI: 10.1186/s40779-022-00384-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells are systemically depleted in human immunodeficiency virus type 1 (HIV-1) infected patients and are not replenished even after successful combined antiretroviral therapy (cART). This study aimed to identify the mechanism underlying MAIT cell depletion. METHODS In the present study, we applied flow cytometry, single-cell RNA sequencing and immunohistochemical staining to evaluate the characteristics of pyroptotic MAIT cells in a total of 127 HIV-1 infected individuals, including 69 treatment-naive patients, 28 complete responders, 15 immunological non-responders, and 15 elite controllers, at the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China. RESULTS Single-cell transcriptomic profiles revealed that circulating MAIT cells from HIV-1 infected subjects were highly activated, with upregulation of pyroptosis-related genes. Further analysis revealed that increased frequencies of pyroptotic MAIT cells correlated with markers of systemic T-cell activation, microbial translocation, and intestinal damage in cART-naive patients and poor CD4+ T-cell recovery in long-term cART patients. Immunohistochemical staining revealed that MAIT cells in the gut mucosa of HIV-1 infected patients exhibited a strong active gasdermin-D (GSDMD, marker of pyroptosis) signal near the cavity side, suggesting that these MAIT cells underwent active pyroptosis in the colorectal mucosa. Increased levels of the proinflammatory cytokines interleukin-12 (IL-12) and IL-18 were observed in HIV-1 infected patients. In addition, activated MAIT cells exhibited an increased pyroptotic phenotype after being triggered by HIV-1 virions, T-cell receptor signals, IL-12 plus IL-18, and combinations of these factors, in vitro. CONCLUSIONS Activation-induced MAIT cell pyroptosis contributes to the loss of MAIT cells in HIV-1 infected patients, which could potentiate disease progression and poor immune reconstitution.
Collapse
Affiliation(s)
- Peng Xia
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
- Department of Infectious Diseases and Hepatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xu-Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871 China
| | - Cui-Xian Yang
- Yunnan Infectious Disease Hospital, Kunming, 650301 China
| | - Xue-Jiao Liao
- the Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, 518112 Guangzhou China
| | - Fu-Hua Liu
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
- Department of Infectious Diseases and Hepatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Hui-Huang Huang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chao Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Ming Shi
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Tian-Jun Jiang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xi-Cheng Wang
- Yunnan Infectious Disease Hospital, Kunming, 650301 China
| | - Qing He
- the Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, 518112 Guangzhou China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
29
|
Pincikova T, Parrot T, Hjelte L, Högman M, Lisspers K, Ställberg B, Janson C, Malinovschi A, Sandberg JK. MAIT cell counts are associated with the risk of hospitalization in COPD. Respir Res 2022; 23:127. [PMID: 35585629 PMCID: PMC9114286 DOI: 10.1186/s12931-022-02045-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation associated with chronic inflammation in the airways. Mucosal-associated invariant T (MAIT) cells are unconventional, innate-like T cells highly abundant in mucosal tissues including the lung. We hypothesized that the characteristics of MAIT cells in circulation may be prospectively associated with COPD morbidity. METHODS COPD subjects (n = 61) from the Tools for Identifying Exacerbations (TIE) study were recruited when in stable condition. At study entry, forced expiratory volume in 1 s (FEV1) was measured and peripheral blood mononuclear cells were cryopreserved for later analysis by flow cytometry. Patients were followed for 3 years to record clinically meaningful outcomes. RESULTS Patients who required hospitalization at one or more occasions during the 3-year follow-up (n = 21) had lower MAIT cell counts in peripheral blood at study inclusion, compared with patients who did not get hospitalized (p = 0.036). In contrast, hospitalized and never hospitalized patients did not differ in CD8 or CD4 T cell counts (p = 0.482 and p = 0.221, respectively). Moreover, MAIT cells in hospitalized subjects showed a more activated phenotype with higher CD38 expression (p = 0.014), and there was a trend towards higher LAG-3 expression (p = 0.052). Conventional CD4 and CD8 T cells were similar between the groups. Next we performed multi-variable logistic regression analysis with hospitalizations as dependent variable, and FEV1, GOLD 2017 group, and quantity or activation of MAIT and conventional T cells as independent variables. MAIT cell count, CD38 expression on MAIT cells, and LAG-3 expression on both MAIT and CD8 T cells were all independently associated with the risk of hospitalization. CONCLUSIONS These findings suggest that MAIT cells might reflect a novel, FEV1-independent immunological dimension in the complexity of COPD. The potential implication of MAIT cells in COPD pathogenesis and MAIT cells' prognostic potential deserve further investigation.
Collapse
Affiliation(s)
- Terezia Pincikova
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden. .,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Hjelte
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marieann Högman
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Karin Lisspers
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Björn Ställberg
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Usai C, Gill US, Riddell AC, Asselah T, Kennedy P. Review article: emerging insights into the immunopathology, clinical and therapeutic aspects of hepatitis delta virus. Aliment Pharmacol Ther 2022; 55:978-993. [PMID: 35292991 PMCID: PMC9314912 DOI: 10.1111/apt.16807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV), which causes the most severe form of viral hepatitis, is an obligated hepatitis B (HBV) satellite virus that can either infect naïve subjects simultaneously with HBV (co-infection), or chronically infect HBV carriers (super-infection). An estimated 12 million people are infected by HDV worldwide. AIMS To summarise the most relevant aspects of the molecular biology of HDV, and to discuss the latest understanding of the induced pathology, interactions with the immune system, as well as both approved and investigational treatment options. METHODS References for this review were identified through searches of PubMed with the terms "HDV" "viral hepatitis" "co-infection" and "super-infection," published between 1980 and October 2021 RESULTS: The limited access to the HDV-infected liver has hampered the investigation of the intrahepatic compartment and our understanding of the mechanisms of HDV pathogenesis. In the absence of standardised and sensitive diagnostic tools, HDV is often underdiagnosed and owing to its strong dependence on host cellular factors, the development of direct antiviral agents has been challenging. New therapeutic agents targeting different steps of the viral cycle have recently been investigated, among which bulevirtide (which was conditionally approved by EMA in July 2020) and lonafarnib; both drugs having received orphan drug designation from both the EMA and FDA. CONCLUSIONS The HBV cure programme potentially offers a unique opportunity to enhance HDV treatment strategies. In addition, a more comprehensive analysis of the intrahepatic compartment is mandated to better understand any liver-confined interaction of HDV with the host immune system.
Collapse
Affiliation(s)
- Carla Usai
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,Present address:
Unitat mixta d’Investigació IRTA‐UAB en Sanitat AnimalCentre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)Bellaterra08193Spain
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| | - Anna C. Riddell
- Division of Infection, Virology DepartmentBarts Health NHS TrustLondonUK
| | - Tarik Asselah
- Centre de recherche sur l'inflammation, Inserm U1149Université́ de ParisParisFrance,Department of Hepatology, AP‐HPHôpital BeaujonClichyFrance
| | - Patrick T. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| |
Collapse
|
31
|
Ishikawa Y, Yamada M, Wada N, Takahashi E, Imadome KI. Mucosal-associated invariant T cells are activated in an interleukin-18-dependent manner in Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Clin Exp Immunol 2022; 207:141-148. [PMID: 35380609 PMCID: PMC8982962 DOI: 10.1093/cei/uxab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a type of innate immune cells that protect against some infections. However, the involvement of MAIT cells in Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases (EBV-T/NK-LPD) is unclear. In this study, we found that MAIT cells were highly activated in the blood of patients with EBV-T/NK-LPD. MAIT cell activation levels correlated with disease severity and plasma IL-18 levels. Stimulation of healthy peripheral blood mononuclear cells with EBV resulted in activation of MAIT cells, and this activation level was enhanced by exogenous IL-18. MAIT cells stimulated by IL-18 might thus be involved in the immunopathogenesis of EBV-T/NK-LPD.
Collapse
Affiliation(s)
- Yuriko Ishikawa
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Correspondence: Yuriko Ishikawa, Department of Advanced Medicine for Infections, National Center for Child Health and Development (NCCHD), Tokyo, 157–8535, Japan.
| | - Masaki Yamada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Naomi Wada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Etsuko Takahashi
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| |
Collapse
|
32
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
33
|
Du Y, Khera T, Strunz B, Deterding K, Todt D, Woller N, Engelskircher SA, Hardtke S, Port K, Ponzetta A, Steinmann E, Cornberg M, Hengst J, Björkström NK, Wedemeyer H. Imprint of unconventional T-cell response in acute hepatitis C persists despite successful early antiviral treatment. Eur J Immunol 2021; 52:472-483. [PMID: 34843107 DOI: 10.1002/eji.202149457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022]
Abstract
Unconventional T cells (UTCs) are a heterogeneous group of T cells that typically exhibit rapid responses toward specific antigens from pathogens. Chronic hepatitis C virus (HCV) infection causes dysfunction of several subsets of UTCs. This altered phenotype and function of UTCs can persist over time even after direct-acting antiviral (DAA)-mediated clearance of chronic HCV. However, it is less clear if and how UTCs respond in acute, symptomatic HCV infection, a rare clinical condition, and if rapid DAA treatment of such patients reverses the caused perturbations within UTCs. Here, we comprehensively analyzed the phenotype and reinvigoration capacity of three major UTC populations, mucosal-associated invariant T (MAIT) cells, γδ T cells, and CD4 and CD8 double-negative αβ T cells (DNT cells) before, during, and after DAA-mediated clearance of acute symptomatic HCV infection. Furthermore, MAIT cell functionality was systematically studied. We observed a reduced frequency of MAIT cells. However, remaining cells presented with a near-to-normal phenotype in acute infection, which contrasted with a significant dysfunction upon stimulation that was not restored after viral clearance. Notably, DNT and γδ T cells displayed a strong activation ex-vivo in acute HCV infection, which subsequently normalized during the treatment. In addition, DNT cell activation was specifically associated with liver inflammation and inflammatory cytokines. Altogether, these data provide evidence that UTCs respond in a cell type-specific manner during symptomatic HCV infection. However, even if early treatment is initiated, long-lasting imprints within UTCs remain over time.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanvi Khera
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Deterding
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Svenja Hardtke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany.,Center for Individualized Infection Medicine (CIIM), Hannover, Germany.,Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST: EXC), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | -
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Kefalakes H, Horgan XJ, Jung MK, Amanakis G, Kapuria D, Bolte FJ, Kleiner DE, Koh C, Heller T, Rehermann B. Liver-Resident Bystander CD8 + T Cells Contribute to Liver Disease Pathogenesis in Chronic Hepatitis D Virus Infection. Gastroenterology 2021; 161:1567-1583.e9. [PMID: 34302839 DOI: 10.1053/j.gastro.2021.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The hepatitis D virus (HDV) causes the most severe form of chronic hepatitis, often progressing to cirrhosis within 5 to 10 years. There is no curative treatment, and the mechanisms underlying the accelerated liver disease progression are unknown. METHODS Innate and adaptive immune responses were studied in blood and liver of 24 patients infected with HDV and 30 uninfected controls by multiparameter flow cytometry in correlation with disease severity and stage. RESULTS The 2 main intrahepatic innate immune-cell populations, mucosal-associated invariant T cells and natural killer (NK) cells, were reduced in the livers of patients infected with HDV compared with those of uninfected controls but were more frequently activated in the liver compared with the blood. Most intrahepatic cluster of differentiation (CD) 8-positive (CD8+) T cells were memory cells or terminal effector memory cells, and most of the activated and degranulating (CD107a+) HDV-specific and total CD8+ T cells were liver-resident (CD69+C-X-C motif chemokine receptor 6+). Unsupervised analysis of flow cytometry data identified an activated, memory-like, tissue-resident HDV-specific CD8+ T-cell cluster with expression of innate-like NK protein 30 (NKp30) and NK group 2D (NKG2D) receptors. The size of this population correlated with liver enzyme activity (r = 1.0). NKp30 and NKG2D expression extended beyond the HDV-specific to the total intrahepatic CD8+ T-cell population, suggesting global bystander activation. This was supported by the correlations between (i) NKG2D expression with degranulation of intrahepatic CD8+ T cells, (ii) frequency of degranulating CD8+ T cells with liver enzyme activity and the aspartate aminotransferase-to-platelet ratio index score, and by the in vitro demonstration of cytokine-induced NKG2D-dependent cytotoxicity. CONCLUSION Antigen-nonspecific activation of liver-resident CD8+ T cells may contribute to inflammation and disease stage in HDV infection.
Collapse
Affiliation(s)
- Helenie Kefalakes
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Xylia J Horgan
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Min Kyung Jung
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Georgios Amanakis
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Devika Kapuria
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Fabian J Bolte
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Christopher Koh
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
35
|
Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021; 70:1782-1794. [PMID: 34103404 PMCID: PMC8355886 DOI: 10.1136/gutjnl-2020-323888] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Zhang Y, Fan Y, He W, Han Y, Bao H, Yang R, Wang B, Kong D, Wang H. Persistent deficiency of mucosa-associated invariant T (MAIT) cells during alcohol-related liver disease. Cell Biosci 2021; 11:148. [PMID: 34321090 PMCID: PMC8320031 DOI: 10.1186/s13578-021-00664-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major cause of chronic liver diseases. Inflammatory response is a basic pathological feature of ALD. Mucosal-associated invariant T(MAIT) cells are a novel population of innate immune cells, which may be depleted in various inflammatory diseases. However, the changes of MAIT cell in ALD remains unclear. RESULTS In this study, the levels of MAIT cell were significantly decreased in patients with alcoholic fatty liver disease, alcoholic cirrhosis, and mixed cirrhosis (alcoholic + viral). Furthermore, the reduction of circulating MAIT cells was correlated with liver function in patients with cirrhosis. Functional changes among circulating MAIT cells in patients with alcoholic cirrhosis, including increased production of IL-17A and perforin, and reduced production of TNF-α. Plasma cytokine and chemokine levels were quantified using multiple immunoassays and ELISA. Serum levels of chemokine IL-8 were correlated with MAIT cell frequency in patients with alcoholic cirrhosis. Moreover, no differences were observed in the expression of CCR6, CXCR6, and PD-1 in circulating MAIT cells of patients with alcoholic cirrhosis. The MAIT cells in patients with alcoholic cirrhosis were prone to apoptosis, which was promoted by IL-12, IL-18, and IL-8. CONCLUSIONS Our findings indicate persistent MAIT cell loss during alcohol-related liver disease and suggest that MAIT cells can be promising indicator and therapeutic targets in ALD.
Collapse
Affiliation(s)
- Yujue Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yuanyuan Fan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yi Han
- Department of Gastroenterology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, P.R. China
| | - Huarui Bao
- Department of Emergency, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Renjun Yang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Bingbing Wang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China. .,Department of Gastroenterology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, P.R. China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
37
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
38
|
Chiale C, Marchese AM, Robek MD. Innate immunity and HBV persistence. Curr Opin Virol 2021; 49:13-20. [PMID: 33992859 DOI: 10.1016/j.coviro.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) causes chronic infections that are associated with immune dysfunction. Though T cell impairment is perhaps the most prominent immune change contributing to viral persistence, HBV interaction with the innate immune system is also likely key, as the lack of effective innate immunity has functional consequences that promote chronic infection. In addition to an intrinsic ability to fight viral infections, the innate immune system also impacts T cell responses and other adaptive immune mechanisms critical for HBV control. Therefore, it is essential to understand the relationships between HBV and innate immunity, as these interactions may be useful immunotherapeutic targets to manage the infection.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
39
|
Liu Y, Zhu P, Wang W, Tan X, Liu C, Chen Y, Pei R, Cheng X, Wu M, Guo Q, Liang H, Liang Z, Liu J, Xu Y, Wu X, Weng X. Mucosal-Associated Invariant T Cell Dysregulation Correlates With Conjugated Bilirubin Level in Chronic HBV Infection. Hepatology 2021; 73:1671-1687. [PMID: 33080074 DOI: 10.1002/hep.31602] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mucosal-associated invariant T (MAIT) cells are nonconventional T cells restricted to major histocompatibility complex class I-related protein 1 (MR1). They are highly abundant in human liver and activated by T-cell receptor (TCR)-dependent and TCR-independent mechanisms to exhibit rapid, innate-like effector responses. However, the roles of MAIT cells in chronic HBV infection are still open for study. This study aims to test their antiviral potential and investigate their dynamic changes and regulating factors during chronic HBV infection. APPROACH AND RESULTS Blood samples from 257 chronic HBV-infected patients were enrolled, and nontumor liver specimens were collected from 58 HBV-infected HCC patients. Combining cell-culture experiments and human data, we showed that MAIT cells had strong cytotoxicity against HBV-transfected hepatocytes in an MR1-dependent way. However, circulating and hepatic MAIT cells in HBV-infected patients decreased significantly compared to controls. Correlation analysis suggested that MAIT cell frequency was associated with disease progression and inversely correlated with serum-conjugated bilirubin level. In particular, conjugated bilirubin not only directly promoted MAIT cell activation and apoptosis, but also impaired TCR-induced proliferation and expansion of MAIT cells, which could be partially rescued by IL-2 in the absence of conjugated bilirubin. Despite that MAIT cells from patients with high conjugated bilirubin levels showed decreased cytokine-producing capacity, the increased TCR-dependent antiviral cytokine production suggested MAIT cells as an important guardian of chronic HBV with high conjugated bilirubin. CONCLUSIONS We reveal the MR1-dependent, anti-HBV potential of MAIT cells and identify conjugated bilirubin as a major factor dysregulating its frequency and function in chronic HBV-infected patients, suggesting a therapeutic target for MAIT-cell-based immunity against chronic HBV infection.
Collapse
Affiliation(s)
- Yu Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Nursing, Nanchang University, Nanchang, China
| | - Peng Zhu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Cheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Science and Technology, Wuhan, China
| | - Yang Xu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
41
|
HDV Pathogenesis: Unravelling Ariadne's Thread. Viruses 2021; 13:v13050778. [PMID: 33924806 PMCID: PMC8145675 DOI: 10.3390/v13050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis Delta virus (HDV) lies in between satellite viruses and viroids, as its unique molecular characteristics and life cycle cannot categorize it according to the standard taxonomy norms for viruses. Being a satellite virus of hepatitis B virus (HBV), HDV requires HBV envelope glycoproteins for its infection cycle and its transmission. HDV pathogenesis varies and depends on the mode of HDV and HBV infection; a simultaneous HDV and HBV infection will lead to an acute hepatitis that will resolve spontaneously in the majority of patients, whereas an HDV super-infection of a chronic HBV carrier will mainly result in the establishment of a chronic HDV infection that may progress towards cirrhosis, liver decompensation, and hepatocellular carcinoma (HCC). With this review, we aim to unravel Ariadne’s thread into the labyrinth of acute and chronic HDV infection pathogenesis and will provide insights into the complexity of this exciting topic by detailing the different players and mechanisms that shape the clinical outcome.
Collapse
|
42
|
Abstract
HDV is a small, defective RNA virus that requires the HBsAg of HBV for its assembly, release, and transmission. Chronic HBV/HDV infection often has a severe clinical outcome and is difficult to treat. The important role of a robust virus-specific T cell response for natural viral control has been established for many other chronic viral infections, but the exact role of the T cell response in the control and progression of chronic HDV infection is far less clear. Several recent studies have characterised HDV-specific CD4+ and CD8+ T cell responses on a peptide level. This review comprehensively summarises all HDV-specific T cell epitopes described to date and describes our current knowledge of the role of T cells in HDV infection. While we now have better tools to study the adaptive anti-HDV-specific T cell response, further efforts are needed to define the HLA restriction of additional HDV-specific T cell epitopes, establish additional HDV-specific MHC tetramers, understand the degree of cross HDV genotype reactivity of individual epitopes and understand the correlation of the HBV- and HDV-specific T cell response, as well as the breadth and specificity of the intrahepatic HDV-specific T cell response.
Collapse
Key Words
- ADAR1, adenosine deaminases acting on RNA
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CD4+
- CD8+
- ELISpot, enzyme-linked immune spot assay
- HBV
- HDAg, hepatitis delta antigen
- HDV
- Hepatitis Delta
- ICS, intracellular cytokine staining
- IFN-, interferon-
- L-HDAg, large hepatitis delta antigen
- MAIT, mucosa-associated invariant T cells
- NK cells, natural killer cells
- NTCP, sodium taurocholate co-transporting polypeptide
- PBMCs, peripheral blood mononuclear cells
- PD-1, programmed cell death protein 1
- PTM, post-translational modification
- Peg-IFN-α, pegylated interferon alpha
- S-HDAg, small hepatitis delta antigen
- T cell
- TCF, T cell-specific transcription factor
- TNFα, tumour necrosis factor-α
- Th1, T helper 1
- aa, amino acid(s)
- cccDNA, covalently closed circular DNA
- epitope
- viral escape
Collapse
|
43
|
Maleki KT, Tauriainen J, García M, Kerkman PF, Christ W, Dias J, Wigren Byström J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Björkström NK, Sandberg JK, Klingström J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. CELL REPORTS MEDICINE 2021; 2:100220. [PMID: 33763658 PMCID: PMC7974553 DOI: 10.1016/j.xcrm.2021.100220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections. MAIT cells are activated in individuals with hemorrhagic fever with renal syndrome (HFRS) MAIT cell activation correlates with HFRS severity markers during hantavirus infection MAIT cell blood levels decline during acute HFRS Hantavirus-mediated MAIT cell activation is type I IFN dependent
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Wigren Byström
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mattias N Forsell
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Parrot T, Healy K, Boulouis C, Sobkowiak MJ, Leeansyah E, Aleman S, Bertoletti A, Sällberg Chen M, Sandberg JK. Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection. JCI Insight 2021; 6:140074. [PMID: 33561009 PMCID: PMC8021122 DOI: 10.1172/jci.insight.140074] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in our understanding of MR1-restricted mucosa-associated invariant T (MAIT) cells has raised interest in harnessing these cells for immunotherapy. The innate-like response characteristics, abundance in the blood, donor-unrestricted nature, and tropism for tissues make MAIT cells suitable candidates for adoptive cell transfer therapies. However, reliable methods and tools to utilize MAIT cells in such approaches are lacking. Here, we established methodology for efficient expansion of human MAIT cells in culture with high purity and yield, while preserving their functional response toward their natural ligand and increasing their cytotoxic potential. The cultured MAIT cells retained their effector memory characteristics without signs of terminal differentiation and expressed a more diverse set of chemokine receptors, potentially widening their already broad tissue tropism. To investigate the potential of MAIT cells in a context outside their main role in controlling bacterial infection, we engineered cultured MAIT cells with a new TCR specificity to mediate effective antiviral HLA class I–restricted effector function. In summary, we developed robust and effective methodology for the expansion of human MAIT cells with enhanced cytolytic capacity and for their engineering with a new specificity. These findings form a basis for the development of MAIT cells as a platform for adoptive immunotherapy.
Collapse
Affiliation(s)
| | - Katie Healy
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Michał J Sobkowiak
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infection Medicine, Department of Medicine, and.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Margaret Sällberg Chen
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
Wang H, Chen Z, McCluskey J, Corbett AJ. Mouse models illuminate MAIT cell biology. Mol Immunol 2021; 130:55-63. [PMID: 33360377 PMCID: PMC7855494 DOI: 10.1016/j.molimm.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
46
|
Khera T, Du Y, Todt D, Deterding K, Strunz B, Hardtke S, Aregay A, Port K, Hardtke-Wolenski M, Steinmann E, Björkström NK, Manns MP, Hengst J, Cornberg M, Wedemeyer H. Long-lasting Imprint in the Soluble Inflammatory Milieu despite Early Treatment of Acute Symptomatic Hepatitis C. J Infect Dis 2021; 226:441-452. [PMID: 33517457 PMCID: PMC9417126 DOI: 10.1093/infdis/jiab048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Treatment with direct-acting antivirals (DAAs) in patients with chronic hepatitis C infection leads to partial restoration of soluble inflammatory mediators (SIMs). In contrast, we hypothesized that early DAA treatment of acute hepatitis C virus (HCV) with DAAs may normalize most SIMs. Methods In this study, we made use of a unique cohort of acute symptomatic hepatitis C patients who cleared HCV with a 6-week course of ledipasvir/sofosbuvir. Plasma samples were used for proximity extension assay measuring 92 proteins. Results Profound SIM alterations were observed in acute HCV patients, with marked upregulation of interleukin (IL)-6 and CXCL-10, whereas certain mediators were downregulated (eg, monocyte chemoattractant protein-4, IL-7). During treatment and follow-up, the majority of SIMs decreased but not all normalized (eg, CDCP1, IL-18). Of note, SIMs that were downregulated before DAA treatment remained suppressed, whereas others that were initially unchanged declined to lower values during treatment and follow-up (eg, CD244). Conclusions Acute hepatitis C was associated with marked changes in the soluble inflammatory milieu compared with both chronic hepatitis patients and healthy controls. Whereas early DAA treatment partly normalized this altered signature, long-lasting imprints of HCV remained.
Collapse
Affiliation(s)
- Tanvi Khera
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Yanqin Du
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Katja Deterding
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Svenja Hardtke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Amare Aregay
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany.,Center for individualized infection medicine (CIIM), Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany, HepNet Study-House, German Liver Foundation, Hannover, Germany.,German Center for Infection Research (DZIF), partner site Braunschweig, Germany
| | | |
Collapse
|
47
|
Lamichhane R, Munro F, Harrop TWR, de la Harpe SM, Dearden PK, Vernall AJ, McCall JL, Ussher JE. Human liver-derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCR-independent activation. Eur J Immunol 2021; 51:879-892. [PMID: 33368232 DOI: 10.1002/eji.202048830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Mucosal associated invariant T (MAIT) cells are anti-microbial innate-like T cells that are abundant in blood and liver. MAIT cells express a semi-invariant T-cell receptor (TCR) that recognizes a pyrimidine ligand, derived from microbial riboflavin synthesis, bound to MR1. Both blood and liver derived (ld)-MAIT cells can be robustly stimulated via TCR or by cytokines produced during bacterial or viral infection. In this study, we compared the functional and transcriptomic response of human blood and ld-MAIT cells to TCR signals (Escherichia coli or the pyrimidine ligand) and cytokines (IL-12 + IL-18). While the response of blood and ld-MAIT cells to TCR signals were comparable, following cytokine stimulation ld-MAIT cells were more polyfunctional than blood MAIT cells. Transcriptomic analysis demonstrated different effector programmes of ld-MAIT cells with the two modes of activation, including the enrichment of a tissue repair signature in TCR-stimulated MAIT cells. Interestingly, we observed enhancement of IL-12 signaling and fatty acid metabolism in untreated ld-MAIT cells compared with blood MAIT cells. Additionally, MAIT cells from blood and liver were modulated similarly by TCR and cytokine signals. Therefore, we report that blood and ld-MAIT cells are fundamentally different but undergo conserved changes following activation via TCR or by cytokines.
Collapse
Affiliation(s)
- Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | | | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Andrea J Vernall
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - John L McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand.,Southern Community Laboratories, Dunedin, Otago, New Zealand
| |
Collapse
|
48
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Khlaiphuengsin A, Chuaypen N, Sodsai P, Reantragoon R, Han WM, Avihingsanon A, Tangkijvanich P. Successful direct-acting antiviral therapy improves circulating mucosal-associated invariant T cells in patients with chronic HCV infection. PLoS One 2020; 15:e0244112. [PMID: 33382729 PMCID: PMC7775079 DOI: 10.1371/journal.pone.0244112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Mucosal-associated invariant T (MAIT) cells have been shown to contribute in the pathogenesis of various liver diseases, including chronic hepatitis C virus (HCV) infection. This study was aimed at investigating the frequency, phenotype, and function of circulating MAIT cells, as well as their alterations after successful direct-acting antivirals (DAAs) in HCV-infected patients with or without HIV infection. METHODS A total 85 patients (51 HCV-monoinfection and 34 HCV/HIV-coinfection), who received elbasvir/grazoprevir from a clinical trial and 20 healthy controls were included. MAIT cells in blood were characterized using flow cytometry at baseline and 24 weeks post-treatment. RESULTS HCV-monoinfected and HCV/HIV-coinfected patients achieved similar sustained virological response rates (SVR24, 94.1% vs. 97.1%). Circulating MAIT cells in the monoinfection and coinfection groups were presented at low frequencies in comparison with healthy controls (median, 1.1% vs. 1.1% vs. 2.4%, P<0.001) and exhibited features of chronic activation and impaired functional capacity. A negative correlation between circulating MAIT cell frequency and liver stiffness assessed by magnetic resonance elastography was observed. Compared with baseline, increased in circulating MAIT cells after successful DAA therapy was mainly detected in HCV-monoinfected patients compared with HCV/HIV-coinfected individuals. Moreover, MAIT cell restoration was predominantly observed among patients with significant fibrosis to cirrhosis (F2-F4). CONCLUSIONS These data indicated that dysregulation of MAIT cells might play a role in the progression of chronic HCV infection. Partial restoration of MAIT cell frequency and function was observed after successful DAA therapy, particularly in HCV-monoinfected patients.
Collapse
Affiliation(s)
- Apichaya Khlaiphuengsin
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rangsima Reantragoon
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Win Min Han
- HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Anchalee Avihingsanon
- HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
50
|
Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 2020; 18:57-72. [PMID: 33041339 DOI: 10.1038/s41423-020-00561-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.
Collapse
|