1
|
Choi Y, Park YK, Hur W, Kim G, Bae S. D-cycloserine, a potential candidate for reducing Hepatitis B virus cccDNA in vitro. J Virol Methods 2025; 336:115172. [PMID: 40306580 DOI: 10.1016/j.jviromet.2025.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Hepatitis B virus (HBV) is a 3.2 kb hepatotropic DNA that possesses a unique episomal DNA form known as covalently closed circular DNA (cccDNA). cccDNA is the major risk factor for persistent HBV infection and consequently causes chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma. To prevent the progression of liver disease, eradication of HBV, especially cccDNA, is essential. In this study, we established a drug screening system using artificial recombinant HBV cccDNA (rcccDNA), which is regulated by a loxP-HBV genome and CRE expression. To identify potential drugs targeting cccDNA, a total of 379 antiviral reagents were tested. Among them, several chemicals including danoprevir, L- and D-cycloserine, phenytoin sodium, amantadine, and germacrone showed a decrease in cccDNA levels. Especially, D-cycloserine diminished the secretion of HBV antigens and induced cccDNA degradation in the HBV infection system. This screening system helps to develop the therapeutic drug target to cccDNA This screening system may help develop therapeutic drugs targeting cccDNA.
Collapse
Affiliation(s)
- Yongwook Choi
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea.
| | - Yong Kwang Park
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| | - Wonhee Hur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gahee Kim
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| | - Songmee Bae
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Chungbuk, South Korea
| |
Collapse
|
2
|
Lu L, Cai D, Wang J, Li W, Zhu X, Liu Y, Xin Z, Liu S, Wu X. Myricetin supresses HBV replication both in vitro and in vivo via inhibition of HBV promoter SP2. Biochem Biophys Res Commun 2025; 755:151560. [PMID: 40043611 DOI: 10.1016/j.bbrc.2025.151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Hepatitis B virus (HBV) infection remains a significant global public health concern. Myricetin, a flavonoid compound widely distributed in natural plants, has demonstrated multiple biological functions in combating diseases such as cancer and inflammation. In this research, we explored the mechanism of myricetin against HBV replication. We employed various experiments such as ELISA, Southern Blot, Northern Blot, Western Blot, RT-qPCR, Dual luciferase reporter gene assay, ChIP, EMSA, IHC, Immunofluorescence, AAV infection, and isolation of primary human hepatocytes (PHH) in this study. Our results showed that myricetin significantly reduced the expression of HBV markers, including HBsAg, HBeAg and covalently closed circular DNA (cccDNA), in HepG2-NTCP cells and PHH. We further confirmed these findings using AAV-HBV cell and mouse models. Furthermore, we found that myricetin significantly downregulated HBV SP2 promoter activity. Mechanistically, myricetin reduced CEBPA expression, which in turn interfered with the binding of CEBPA to the HBV SP2 promoter, leading to an antiviral effect. In conclusion, myricetin exhibited promising antiviral activity against HBV, suggesting its potential for novel HBV treatment.
Collapse
Affiliation(s)
- LiLi Lu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Duo Cai
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China
| | - JiangNan Wang
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Wei Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Shandong, 266003, PR China
| | - XiLin Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - ZhenHui Xin
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China.
| | - ShiHai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China.
| | - XiaoPan Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China.
| |
Collapse
|
3
|
Kumar V. HBx protein as a therapeutic target for functional cure of hepatitis B virus infection. Virology 2025; 604:110438. [PMID: 39908774 DOI: 10.1016/j.virol.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Hepatitis B virus (HBV) is a major cause of acute and chronic liver disease and represents a major public health problem worldwide. Current antiviral therapies with nucleos(t)ide analogues can effectively suppressing viremia but are not curative, and have little or no impact upon the HBV cccDNA minichromosome or the portions of integrated HBV DNA. Several alternative therapeutic strategies targeted at viral components and life cycle are under intense investigation. This article highlights the reasons for considering HBx as a therapeutic target as this may allow targeting of both virus and disease. Recent studies focused at HBx have led to the identification of several new pharmacological agents and development of some novel therapeutic approaches that now deserve to be taken to the next level for better management of hepatitis B. Besides, new therapies could be combined with other established therapies, to provide a functional cure from hepatitis B infection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
4
|
Tongtong P, Yujuan S, Ting L, Fangfang Y, Shijia W, Yilun H, Huadong Z, Qiongying Z, Yongping C, Dazhi C. Decoding ferroptosis in alcoholic hepatitis: A bioinformatics approach to hub gene identification. Genomics 2025; 117:111009. [PMID: 39864635 DOI: 10.1016/j.ygeno.2025.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Ferroptosis is associated with alcoholic hepatitis (AH); however, the underlying mechanisms remain unclear. METHODS Changes in iron content and oxidative stress in AH patients and in vivo and in vitro models were analyzed. Iron homeostasis pathways in the livers of patients with AH were investigated using RNA sequencing. AH-associated ferroptosis-related genes (FRGs) were identified using weighted gene co-expression network analysis. Hub genes were identified using machine learning methods, and their diagnostic potential for AH was assessed. The correlation between FRGs and the immune microenvironment was analyzed, and the underlying regulatory mechanism was explored. FRG expression was validated in clinical samples and in vitro and in vivo models. The role of FRGs in AH-related ferroptosis was explored through gene-silencing experiments. RESULTS Significant iron deposits and oxidative stress were detected in clinical samples and in vivo and in vitro AH models. Bioinformatics identified GCLC, NQO1, and ULK1 as key FRGs linked to the immune microenvironment and AH-related pathogenic genes. A nomogram based on these FRGs accurately assessed AH risk, as validated using the calibration curve. A regulatory network involving 154 miRNAs and 136 transcription factors was mapped for FRGs. In AH patients, NQO1 was upregulated in the liver, whereas GCLC and ULK1 were downregulated. Silencing GCLC and ULK1 reduced cell viability and increased oxidative stress and ferroptosis, whereas silencing NQO1 had the opposite effect. CONCLUSIONS Therefore, GCLC, NQO1, and ULK1 are key AH-related FRGs, potentially serving as targets for diagnosing and treating AH.
Collapse
Affiliation(s)
- Pan Tongtong
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Shen Yujuan
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Wuxing District, Huzhou 313000, China
| | - Li Ting
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Fangfang
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Wu Shijia
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Huang Yilun
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhang Huadong
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhang Qiongying
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou 325035, China
| | - Chen Yongping
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Chen Dazhi
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Hangzhou Medical College, Linan District, Hangzhou 311300, China.
| |
Collapse
|
5
|
Jin Y, Wang S, Tang K, Zhan P, Liu X. Recent advances in screening methods enabling the discovery of novel anti-hepatitis B virus drug candidates. Eur J Med Chem 2025; 282:117093. [PMID: 39612566 DOI: 10.1016/j.ejmech.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The global population affected by Hepatitis B virus (HBV) is approximately 296 million, but few drugs have been able to completely eradicate HBV and the range of effective treatments remains limited. Recent advancements in molecular biology and artificial intelligence, as well as a comprehensive understanding of the molecular structure of HBV, have greatly aided the rational development of anti-HBV agents. Such advancements have facilitated an increasing array of candidate drugs transitioning into clinical trials, however, no novel target-based compounds have been approved for clinical application. To expedite the progression of anti-HBV drug development, establishing a reliable and robust in vitro HBV infection system is of great importance. However, owing to the host and tissue specificity of HBV, identifying a stable and dependable cell culture system for screening all anti-HBV agents poses significant challenges. In this review, we summarize recent advances in screening methods for small-molecule inhibitors that target key stages of the HBV replication cycle from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
Zhu W, Fan C, Liu B, Qin J, Fan A, Yang Z, Zhang H, Zhou W. Therapeutic targets for hepatocellular carcinoma identified using proteomics and Mendelian randomization. J Gastroenterol Hepatol 2025; 40:282-293. [PMID: 39477889 DOI: 10.1111/jgh.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) emerges as a formidable malignancy marked by elevated morbidity and mortality rates, coupled with a dismal prognosis. The revelation of gene-protein associations has presented an avenue for the exploration of novel therapeutic targets. METHODS Pooling plasma proteomic data (seven published GWAS) and HCC data (DeCODE cohort), we applied MR to identify potential drug targets, which were further validated in the FinnGen cohort and UK Biobank. Subsequent colocalization and summary-data-based Mendelian randomization analyses were performed for potential associations of this set of proteins. In addition, enrichment information pathways were investigated in depth by KEGG pathway analysis, single-cell sequencing, PPI and DGIdb, ChEMBL, and DrugBank database analyses, specific cell types enriched for expression were identified, interacting proteins were identified, and finally, druggability was assessed. RESULTS In summary, the levels of 10 proteins are linked to HCC risk. Elevated levels of TFPI2 as well as decreased levels of ALDH1A1, KRT18, ADAMTS13, TIMD4, SCLY, HRSP12, TNFAIP6, FTCD, and DDC are associated with increased HCC risk. Notably, HRSP12 show the strongest evidence. These genes are primarily expressed in specific cell types within the HCC TME. Moreover, intricate protein-protein interactions, involving key players like ALDH1A1 and RIDA, ALDH1A1 and DDC, and ALDH1A1 and KRT18, contribute significantly to the amino acid metabolism and dopaminergic neurogenesis pathway. Proteins such as ALDH1A1, KRT18, TFPI2, and DDC are promising targets for HCC therapy and broader cancer drug development. Targeting these proteins offers substantial potential in advancing HCC treatment strategies. CONCLUSIONS This research delineates 10 protein biomarkers linked to HCC risk and offers novel perspectives on its etiology, as well as promising avenues for the screening of HCC protein markers and therapeutic agents.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- Nanchang Central Hospital, Jiangxi Provincial University of Traditional Chinese Medicine, nanchang, 330000, China
| | - Bo Liu
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jianqi Qin
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Aodong Fan
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zengxi Yang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X, Tan M, Huang A, Chen J. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis 2025; 12:101215. [PMID: 39534573 PMCID: PMC11555349 DOI: 10.1016/j.gendis.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 11/16/2024] Open
Abstract
Human hepatitis B virus (HBV) infection is the major cause of acute and chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Although the application of prophylactic vaccination programs has successfully prevented the trend of increasing HBV infection prevalence, the number of HBV-infected people remains very high. Approved therapeutic management efficiently suppresses viral replication; however, HBV infection is rarely completely resolved. The major reason for therapeutic failure is the persistence of covalently closed circular DNA (cccDNA), which forms viral minichromosomes by combining with histone and nonhistone proteins in the nucleus. Increasing evidence indicates that chromatin-modifying enzymes, viral proteins, and noncoding RNAs are essential for modulating the function of cccDNA. Therefore, a deeper understanding of the regulatory mechanism underlying cccDNA transcription will contribute to the development of a cure for chronic hepatitis B. This review summarizes the current knowledge of cccDNA biology, the regulatory mechanisms underlying cccDNA transcription, and novel anti-HBV approaches for eliminating cccDNA transcription.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
8
|
He W, Zheng Z, Zhao Q, Zhang R, Zheng H. Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B. Pathogens 2024; 13:1100. [PMID: 39770359 PMCID: PMC11728772 DOI: 10.3390/pathogens13121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
9
|
Hu K, Zai W, Xu M, Wang H, Song X, Huang C, Liu J, Chen J, Deng Q, Yuan Z, Chen J. Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy. mBio 2024; 15:e0241524. [PMID: 39570046 PMCID: PMC11633095 DOI: 10.1128/mbio.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy. IMPORTANCE Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a "functional cure" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.
Collapse
Affiliation(s)
- Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Mingzhu Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases (MOE), Chongqing Medical University, Chongqing, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhang X, Gao M, Dong Y, Pan L, Zhai M, Jin L. Novel Aminocoumarin-Based Schiff Bases: High Antifungal Activity in Agriculture. Chem Biodivers 2024; 21:e202401390. [PMID: 39169237 DOI: 10.1002/cbdv.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Structural modification is an effective way to improve the antifungal activity of natural products and has been widely used in the development of novel fungicides. In this work, a series of aminocoumarin-based Schiff bases were synthesized and characterized by 1H-NMR, 13C NMR and HR-MS spectra. The in vitro inhibition activity of all compounds was tested against four phytopathogenic fungi (Alternaria solani, Fusarium oxysporum, Botrytis cinerea, and Alternaria alternata) using the mycelial growth rate method. The results showed that most of the target compounds exhibited significant antifungal activities. In particular, compounds 5b, 5c, 5d, 5h, 5n, 7c, 7n, and 7p exhibited more effective antifungal activity than commercially available fungicides, chlorothalonil and azoxystrobin. The structure-activity relationship revealed that the electron-withdrawing groups with more electronegativity introduced at the C-3 position were effective in improving the inhibitory activity and that halogenated benzaldehydes would be necessary in the preparation of Schiff bases. The compound 5n against Fusarium oxysporum (EC50=8.73 μg/mL) and the compound 7p against Alternaria alternata (EC50=26.25 μg/mL) were much better than the positive controls (chlorothalonil and azoxystrobin). Therefore, compounds 5n and 7p could serve as promising lead compounds for the development of novel broad-spectrum fungicides, which could be useful for applications in the agriculture.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ming Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yajie Dong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Manjun Zhai
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
11
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
12
|
Li R, Wang C, Xu K, Zhan Z, He S, Ren J, Li F, Tao N, Li Z, Yang Z, Yu H. Asiatic acid inhibits HBV cccDNA transcription by promoting HBx degradation. Virol J 2024; 21:268. [PMID: 39468627 PMCID: PMC11520515 DOI: 10.1186/s12985-024-02535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a persistent global public health problem, and curing for chronic hepatitis B (CHB) through the application of existing antiviral drugs is beset by numerous challenges. The viral protein HBx is a critical regulatory factor in the life cycle of HBV. Targeting HBx is a promising possibility for the development of novel therapeutic strategies. METHODS The Nano-Glo® HiBiT Lysis Detection System was used to screen the herbal monomer compound library for compounds that inhibit HBx expression. Western blotting was used to examine proteins expression. Southern blotting or Northern blotting were used to detect HBV DNA or HBV RNA. ELISA was performed to detect the HBsAg level. The effect of asiatic acid on HBV in vivo was investigated by using recombinant cccDNA mouse model. RESULTS Asiatic acid, an extract of Centella asiatica, significantly reduced the HBx level. Mechanistic studies demonstrated that asiatic acid may promote the degradation of HBx in an autophagy pathway-dependent manner. Subsequently, asiatic acid was found to reduce the amount of HBx bound to covalently closed circular DNA (cccDNA) microchromosomes, and repressive chromatin modifications then occurred, ultimately inhibiting cccDNA transcriptional activity. Moreover, in HBV-infected cells and a mouse model of persistent HBV infection, asiatic acid exhibited potent anti-HBV activity, as evidenced by decreased levels of HBV RNAs, HBV DNA and HBsAg. CONCLUSIONS Asiatic acid was identified as a compound that targets HBx, revealing its potential for application as an anti-HBV agent.
Collapse
Grants
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
Collapse
Affiliation(s)
- Ranran Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunduo Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongzhu Zhan
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siyi He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nana Tao
- Department Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhihong Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhen Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Af-filiated Hospital of Soochow University, 188 Shizi Street, Suzhou, Gusu District, 215006, China.
| | - Haibo Yu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| |
Collapse
|
13
|
Bächer J, Allweiss L, Dandri M. SMC5/6-Mediated Transcriptional Regulation of Hepatitis B Virus and Its Therapeutic Potential. Viruses 2024; 16:1667. [PMID: 39599784 PMCID: PMC11598903 DOI: 10.3390/v16111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Cells have developed various mechanisms to counteract viral infections. In an evolutionary arms race, cells mobilize cellular restriction factors to fight off viruses, targeted by viral factors to facilitate their own replication. The hepatitis B virus (HBV) is a small dsDNA virus that causes acute and chronic infections of the liver. Its genome persists in the nuclei of infected hepatocytes as a covalently closed circular DNA (cccDNA) minichromosome, thus building up an episomal persistence reservoir. The chromosomal maintenance complex SMC5/6 acts as a restriction factor hindering cccDNA transcription, whereas the viral regulatory protein HBx targets SMC5/6 for proteasomal degradation, thus relieving transcriptional suppression of the HBV minichromosome. To date, no curative therapies are available for chronic HBV carriers. Knowledge of the factors regulating the cccDNA and the development of therapies involving silencing the minichromosome or specifically interfering with the HBx-SMC5/6 axis holds promise in achieving sustained viral control. Here, we summarize the current knowledge of the mechanism of SMC5/6-mediated HBV restriction. We also give an overview of SMC5/6 cellular functions and how this compares to the restriction of other DNA viruses. We further discuss the therapeutic potential of available and investigational drugs interfering with the HBx-SMC5/6 axis.
Collapse
Affiliation(s)
- Johannes Bächer
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
| | - Lena Allweiss
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (J.B.); (L.A.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Germany
| |
Collapse
|
14
|
Guo L, Ding Z, Hu J, Liu S. Efficient Encapsulation of β-Lapachone into Self-Immolative Polymer Nanoparticles for Cyclic Amplification of Intracellular Reactive Oxygen Species Stress. ACS NANO 2024. [PMID: 39263977 DOI: 10.1021/acsnano.4c09232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The selective upregulation of intracellular oxidative stress in cancer cells presents a promising approach for effective cancer treatment. In this study, we report the integration of enzyme catalytic amplification and chemical amplification reactions in β-lapachone (Lap)-loaded micellar nanoparticles (NPs), which are self-assembled from reactive oxygen species (ROS)-responsive self-immolative polymers (SIPs). This integration enables cyclic amplification of intracellular oxidative stress in cancer cells. Specifically, we have developed ROS-responsive SIPs with phenylboronic ester triggering motifs and hexafluoroisopropanol moieties in the side chains, significantly enhancing Lap loading efficiency (98%) and loading capacity (33%) through multiple noncovalent interactions. Upon ROS activation in tumor cells, the Lap-loaded micellar NPs disassemble, releasing Lap and generating additional ROS via enzyme catalytic amplification. This process elevates intracellular oxidative stress and triggers polymer depolymerization in a positive feedback loop. Furthermore, the degradation of SIPs via chemical amplification produces azaquinone methide intermediates, which consume intracellular thiol-related substrates, disrupt intracellular redox hemostasis, further intensify oxidative stress, and promote cancer cell apoptosis. This work introduces a strategy to enhance intracellular oxidative stress by combining enzymatic and chemical amplification reactions, providing a potential pathway for the development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Lingxiao Guo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zexuan Ding
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| |
Collapse
|
15
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
16
|
Zhang H, Su X, Gu L, Tan M, Liu Y, Xu K, Ren J, Chen J, Li Z, Cheng S. Colchicine-mediated selective autophagic degradation of HBV core proteins inhibits HBV replication and HBV-related hepatocellular carcinoma progression. Cell Death Discov 2024; 10:352. [PMID: 39107264 PMCID: PMC11303544 DOI: 10.1038/s41420-024-02122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
The HBV core protein (HBc) is an important viral protein of HBV that plays an indispensable role in the lifecycle of HBV, including capsid assembly and transport, reverse transcription and virus release. In recent years, evidence has shown that HBc may be involved in the malignant progression of HCC. Thus, HBc is an attractive target for antiviral agents and provides a new strategy for the treatment of HBV-related HCC. Here, we identified a novel anti-HBc compound-colchicine, an alkaloid compound-that promoted selective autophagic degradation of HBc through the AMPK/mTOR/ULK1 signalling pathway. We further confirmed that colchicine promoted the selective autophagy of HBc by enhancing the binding of HBc to the autophagy receptor p62. Finally, we evaluated the effects of colchicine on HBV replication and HBc-mediated HCC metastasis in vitro and in vivo. Our research indicated that the inhibitory effects of colchicine on HBV and HBV-related HCC depend on the selective autophagic degradation of HBc. Thus, colchicine is not only a promising therapeutic strategy for chronic hepatitis B but also a new treatment for HBV-related HCC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiameng Su
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Leirong Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuting Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhihong Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Tyagi P, Singh A, Kumar J, Ahmad B, Bahuguna A, Vivekanandan P, Sarin SK, Kumar V. Furanocoumarins promote proteasomal degradation of viral HBx protein and down-regulate cccDNA transcription and replication of hepatitis B virus. Virology 2024; 595:110065. [PMID: 38569227 DOI: 10.1016/j.virol.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.
Collapse
Affiliation(s)
- Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Belal Ahmad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Aparna Bahuguna
- Elsevier/ RELX India Pvt Ltd., DLF Cyber City, Gurgaon, 122002, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
18
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
19
|
Wang J, Yuan X, Wang Y, Zhang Y, Han M, Lu H, Liu S, Zhang Y, Ge F, Liu Y, Cheng J. PreS1BP mediates inhibition of Hepatitis B virus replication by promoting HBx protein degradation. Virus Res 2024; 341:199326. [PMID: 38253259 PMCID: PMC10846407 DOI: 10.1016/j.virusres.2024.199326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND PreS1-binding protein (PreS1BP), recognized as a nucleolar protein and tumor suppressor, influences the replication of various viruses, including vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1). Its role in hepatitis B virus (HBV) replication and the underlying mechanisms, however, remain elusive. METHODS We investigated PreS1BP expression levels in an HBV-replicating cell and animal model and analyzed the impact of its overexpression on viral replication metrics. HBV DNA, covalently closed circular DNA (cccDNA), hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and HBV RNA levels were assessed in HBV-expressing stable cell lines under varying PreS1BP conditions. Furthermore, co-immunoprecipitation and ubiquitination assays were used to detect PreS1BP- hepatitis B virus X protein (HBx) interactions and HBx stability modulated by PreS1BP. RESULTS Our study revealed a marked decrease in PreS1BP expression in the presence of active HBV replication. Functional assays showed that PreS1BP overexpression significantly inhibited HBV replication and transcription, evidenced by the reduction in HBV DNA, cccDNA, HBsAg, HBcAg, and HBV RNA levels. At the molecular level, PreS1BP facilitated the degradation of HBx in a dose-dependent fashion, whereas siRNA-mediated knockdown of PreS1BP led to an increase in HBx levels. Subsequent investigations uncovered that PreS1BP accelerated HBx protein degradation via K63-linked ubiquitination in a ubiquitin-proteasome system-dependent manner. Co-immunoprecipitation assays further established that PreS1BP enhances the recruitment of the proteasome 20S subunit alpha 3 (PSMA3) for interaction with HBx, thereby fostering its degradation. CONCLUSIONS These findings unveil a previously unidentified mechanism wherein PreS1BP mediates HBx protein degradation through the ubiquitin-proteasome system, consequentially inhibiting HBV replication. This insight positions PreS1BP as a promising therapeutic target for future HBV interventions. Further studies are warranted to explore the clinical applicability of modulating PreS1BP in HBV therapy.
Collapse
Affiliation(s)
- Jun Wang
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yun Wang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yu Zhang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hongping Lu
- Hebei Utu Pharmaceutical Company Ltd, Shijiazhuang, Hebei Province 052165, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yang Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Feilin Ge
- Department of Chinese Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Liu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Hebei Utu Pharmaceutical Company Ltd, Shijiazhuang, Hebei Province 052165, China.
| |
Collapse
|
20
|
Wen X, Li D, Chen P, Tan M, Zhang H, Liu Y, Ren J, Cheng S. Gambogic acid inhibits HBx-mediated hepatitis B virus replication by targeting the DTX1-Notch signaling pathway. Virus Res 2024; 339:199273. [PMID: 38029800 PMCID: PMC10714370 DOI: 10.1016/j.virusres.2023.199273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND & AIMS Current antiviral drugs, including nucleoside analogs and interferon, fail to eliminate the HBV covalently closed circular DNA (cccDNA), which serves as a transcript template in infected hepatocytes. Silencing the HBV X protein, which plays a crucial role in cccDNA transcription, is a promising approach to inhibit HBV replication. Therefore, the identification of novel compounds that can inhibit HBx-mediated cccDNA transcription is critical. METHODS Initially, a compound library consisting of 715 monomers derived from traditional Chinese medicines known for their liver-protecting properties was established. Then, MTT assays were used to determine the cytotoxicity of each compound. The effect of candidates on Flag-HBx expression was examined by real-time PCR and western blotting in Flag-HBx transfected HepG2-NTCP cells. Ultimately, the antiviral effect of gambogic acid (GA) on HBV was observed in HBV-infected HepG2-NTCP cells. Mechanistically, the functional role of DTX1 in GA-induced HBV inhibition was examined using RNA-seq. Finally, the antiviral effect of GA was estimated in vivo. RESULTS Gambogic acid (GA), a natural bioactive compound with a myriad of biological activities, markedly reduced Flag-HBx expression. Potent and dose-dependent reductions in extracellular HBV RNAs, HBV DNA, HBsAg, HBeAg and HBc protein were discovered three days after GA treatment in HBV-infected cells, accompanied by the absence of significant cytotoxicity. Furthermore, our research revealed that GA exhibited a dose-dependent inhibition of HBx expression, which is a pleiotropic protein required for HBV infection in vivo. We explored the mechanisms underlying GA-mediated inhibition of HBV and confirmed that this inhibition is accomplished by upregulating the expression of the DTX1 gene and boosting the Notch signaling pathway. Finally, the inhibitory effect of GA on HBV replication was tested in vivo using a mouse model of hepatitis B virus recombinant cccDNA. CONCLUSIONS Herein, we discovered GA, which is a natural bioactive compound that targets HBx to inhibit hepatitis B virus replication by activating the DTX1-Notch signaling pathway.
Collapse
Affiliation(s)
- Xu Wen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dian Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuting Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Abdelwahed AH, Heineman BD, Wu GY. Novel Approaches to Inhibition of HBsAg Expression from cccDNA and Chromosomal Integrants: A Review. J Clin Transl Hepatol 2023; 11:1485-1497. [PMID: 38161502 PMCID: PMC10752814 DOI: 10.14218/jcth.2023.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatitis B virus (HBV) is a widely prevalent liver infection that can cause acute or chronic hepatitis. Although current treatment modalities are highly effective in the suppression of viral levels, they cannot eliminate the virus or achieve definitive cure. This is a consequence of the complex nature of HBV-host interactions. Major challenges to achieving sustained viral suppression include the presence of a high viral burden from the HBV DNA and hepatitis B surface antigen (HBsAg), the presence of reservoirs for HBV replication and antigen production, and the HBV-impaired innate and adaptive immune response of the host. Those therapeutic methods include cell entry inhibitors, HBsAg inhibitors, gene editing approaches, immune-targeting therapies and direct inhibitors of covalently closed circular DNA (cccDNA). Novel approaches that target these key mechanisms are now being studied in preclinical and clinical phases. In this review article, we provide a comprehensive review on mechanisms by which HBV escapes elimination from current treatments, and highlight new agents to achieve a definitive HBV cure.
Collapse
Affiliation(s)
- Ahmed H. Abdelwahed
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brent D. Heineman
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
22
|
Wang F, Song H, Xu F, Xu J, Wang L, Yang F, Zhu Y, Tan G. Role of hepatitis B virus non-structural protein HBx on HBV replication, interferon signaling, and hepatocarcinogenesis. Front Microbiol 2023; 14:1322892. [PMID: 38188582 PMCID: PMC10767994 DOI: 10.3389/fmicb.2023.1322892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatitis B, a global health concern caused by the hepatitis B virus (HBV), infects nearly 2 billion individuals worldwide, as reported by the World Health Organization (WHO). HBV, a hepatotropic DNA virus, predominantly targets and replicates within hepatocytes. Those carrying the virus are at increased risk of liver cirrhosis and hepatocellular carcinoma, resulting in nearly 900,000 fatalities annually. The HBV X protein (HBx), encoded by the virus's open reading frame x, plays a key role in its virulence. This protein is integral to viral replication, immune modulation, and liver cancer progression. Despite its significance, the precise molecular mechanisms underlying HBx remain elusive. This review investigates the HBx protein's roles in HBV replication, interferon signaling regulation, and hepatocellular carcinoma progression. By understanding the complex interactions between the virus and its host mediated by HBx, we aim to establish a solid foundation for future research and the development of HBx-targeted therapeutics.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujia Zhu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
24
|
Feng M, Yu Y, Chen Y, Yang X, Li B, Jiang W. HBx-induced PLA 2R overexpression mediates podocyte pyroptosis through the ROS-NLRP3 signaling pathway. Ren Fail 2023; 45:2170808. [PMID: 36698326 PMCID: PMC9881671 DOI: 10.1080/0886022x.2023.2170808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Hepatitis B virus-associated glomerulonephritis (HBV-GN) is one of the main types of secondary glomerular diseases, and podocyte injury is an important pathogenic mechanism of HBV-GN, participating in the occurrence and development of HBV-GN. However, the specific mechanism of podocyte injury remains to be studied. METHODS Human renal podocytes cultured in vitro were divided into six groups. The podocyte morphology was observed under a transmission electron microscope, and the expression of M-type phospholipase A2 receptor (M-PLA2R) on the podocyte membrane was observed by indirect immunofluorescence staining under a fluorescence microscope. The pyroptosis rate and reactive oxygen species (ROS) of podocytes were assessed by FLICA/PI double staining and flow cytometry. Western blot (WB) and quantitative real-time PCR (qPCR) were used to determine the expression of PLA2R, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing card (ASC), caspase-1, IL-1β, and IL-18. RESULTS Hepatitis B virus X (HBx) transfected into human renal podocytes in vitro induced the overexpression of PLA2R. Moreover, the overexpressed PLA2R combined with secretory phospholipase A2 group IB (sPLA2-IB) aggravated podocyte injury and increased the pyroptosis rate. In addition, the expression of ROS, the NLRP3 inflammasome and downstream inflammatory factors was increased. In contrast, after inhibiting the expression of PLA2R and ROS, podocyte damage was alleviated, and the pyroptosis rate and the expression of genes related to the ROS-NLRP3 signaling pathway were decreased. CONCLUSION HBx-induced PLA2R overexpression on the podocyte membrane can significantly upregulate the ROS-NLRP3 signaling pathway, thereby mediating podocyte pyroptosis.
Collapse
Affiliation(s)
- Moxuan Feng
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yueqi Chen
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoqian Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Baoshuang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China,CONTACT Wei Jiang Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong266003, China
| |
Collapse
|
25
|
Moradimotlagh A, Chen S, Koohbor S, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response. Front Immunol 2023; 14:1287539. [PMID: 38098491 PMCID: PMC10720368 DOI: 10.3389/fimmu.2023.1287539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stella Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sara Koohbor
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
27
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
28
|
He P, Zhang P, Fang Y, Han N, Yang W, Xia Z, Zhu Y, Zhang Z, Shen J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol Cell Biochem 2023; 478:2297-2307. [PMID: 36735210 DOI: 10.1007/s11010-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host's strong immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
Collapse
Affiliation(s)
- Pei He
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peixin Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yaping Fang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Han
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wensu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhaoxin Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Yi Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jilu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China.
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China.
| |
Collapse
|
29
|
Lu Y, Yang X, Kuang Q, Wu Y, Tan X, Lan J, Qiang Z, Feng T. HBx induced upregulation of FATP2 promotes the development of hepatic lipid accumulation. Exp Cell Res 2023; 430:113721. [PMID: 37437769 DOI: 10.1016/j.yexcr.2023.113721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The hepatitis B Virus X (HBx) protein plays a crucial role in the HBV-induced hepatic steatosis. Fatty acid transport protein 2 (FATP2) is a key protein that is involved in hepatic lipogenesis, and it was found to be highly expressed in various metabolic diseases. However, Whether FATP2 is a key factor in the pathogenesis of HBx-induced hepatic steatosis remains unclear. In this study, we found that FATP2 was up-regulated by HBx in vitro and in vivo and participated in HBx-induced hepatic lipid accumulation. Treatment of HBx-expressing cell lines and mice with FATP2 inhibitor (FATP2i) lipofermata ameliorated HBx-induced lipid accumulation and reduced oxidative stress and inflammation caused by lipid accumulation. Moreover, the liver injury of mouse was restored after FATP2i treatment. In summary, our results reveal that FATP2 is a key driver factor for HBx-induced hepatic lipid accumulation, and inhibition of FATP2 can ameliorates lipid accumulation caused by HBx. This study provides new insights into the mechanism of HBV-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Kuang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Tan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Jizhong Lan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Qiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Tao Feng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Akbar SMF, Al Mahtab M, Yoshida O, Aguilar J, Gerardo GN, Hiasa Y. Development of Therapy Based on the Exploration of Biological Events Underlying the Pathogenetic Mechanisms of Chronic Hepatitis B Infection. Biomedicines 2023; 11:1944. [PMID: 37509583 PMCID: PMC10376977 DOI: 10.3390/biomedicines11071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
According to the World Health Organization (WHO), an estimated 296 million people are chronically infected with hepatitis B virus (HBV). Approximately 15-25% of these people develop complications such as advanced chronic liver diseases (ACLDs). Mortality due to HBV-related complications accounted for an estimated 882,000 deaths in 2019. Potent preventive vaccines have already restricted new HBV infections, and several drugs are available to treat chronic HBV infections. However, the positive impacts of these drugs have been recorded in only a few patients with chronic HBV infection. These drugs do not show long-term efficacy and cannot halt the progression to complications. Thus, more effective and evidence-based therapeutic strategies need to be urgently developed for patients with chronic HBV infection. CHB is a pathological entity induced by HBV that progresses due to impaired host immunity. This indicates the inherent limitations of antiviral-drug-based monotherapy for treating patients with chronic HBV infection. Additionally, commercially available antiviral drugs are not available to patients in developing and resource-constrained countries, posing a challenge to achieving the following WHO goal: "Elimination of Hepatitis by 2030". As such, this review aimed to provide insights regarding evidence-based and effective management strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
- Miyakawa Memorial Research Foundation, Tokyo 107-0062, Japan
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Julio Aguilar
- Center for Genetic Engineering and Biotechnology, Havana 10400, Cuba
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| |
Collapse
|
31
|
Ansari SM, Khanum G, Bhat MUS, Rizvi MA, Reshi NUD, Ganie MA, Javed S, Shah BA. Studies towards investigation of Naphthoquinone-based scaffold with crystal structure as lead for SARS-CoV-19 management. J Mol Struct 2023; 1283:135256. [PMID: 36910907 PMCID: PMC9975501 DOI: 10.1016/j.molstruc.2023.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this work, 1-(4-bromophenyl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8‑dione (1-(4-BP)DHCBN-3,8-D) has been characterized by single crystal X-ray to get it's crystal structure with R(all data) - R1 = 0.0569, wR2 = 0.0824, 13C and 1HNMR, as well as UV-Vis and IR spectroscopy. Quantum chemical calculations via DFT were used to predict the compound structural, electronic, and vibrational properties. The molecular geometry of 1-(4-BP)DHCBN-3,8-Dwas optimized utilizing the B3LYP functional at the 6-311++G(d,p) level of theory. The Infrared spectrum has been recorded in the range of 4000-550 cm-1. The Potential Energy Distribution (PED) assignments of the vibrational modes were used to determine the geometrical dimensions, energies, and wavenumbers, and to assign basic vibrations. The UV-Vis spectra of the titled compound were recorded in the range of 200-800 nm in ACN and DMSO solvents. Additionally, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap and electronic transitions were determined using TD-DFT calculations, which also simulate the UV-Vis absorption spectrum. Natural Bond Orbital (NBO) analysis can be used to investigate electronic interactions and transfer reactions between donor and acceptor molecules. Temperature-dependent thermodynamic properties were also calculated. To identify the interactions in the crystal structure, Hirshfeld Surface Analysis was also assessed. The Molecular Electrostatic Potential (MEP) and Fukui functions were used to determine the nucleophilic and electrophilic sites. Additionally, the biological activities of 1-(4-BP)DHCBN-3,8-D were done using molecular docking. These results demonstrate a significant therapeutic potential for 1-(4-BP)DHCBN-3,8-D in the management of Covid-19 disorders. Molecular Dynamics Simulation was used to look at the stability of biomolecules.
Collapse
Affiliation(s)
- Shaghaf Mobin Ansari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Research Management, Business Development, and Information Sciences and Technology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ghazala Khanum
- S.O. S in Chemistry, Jiwaji University, Gwalior, M. P 474011, India
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Research Management, Business Development, and Information Sciences and Technology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Noor U Din Reshi
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Research Management, Business Development, and Information Sciences and Technology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Saleem Javed
- Department of Chemistry, University of Allahabad, Prayagraj, U.P. 211002, India
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
32
|
Jin Y, Wang S, Xu S, Zhao S, Xu X, Poongavanam V, Menéndez-Arias L, Zhan P, Liu X. Targeting hepatitis B virus cccDNA levels: Recent progress in seeking small molecule drug candidates. Drug Discov Today 2023; 28:103617. [PMID: 37196762 DOI: 10.1016/j.drudis.2023.103617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Hepatitis B virus (HBV) infection is a major global health problem that puts people at high risk of death from cirrhosis and liver cancer. The presence of covalently closed circular DNA (cccDNA) in infected cells is considered to be the main obstacle to curing chronic hepatitis B. At present, the cccDNA cannot be completely eliminated by standard treatments. There is an urgent need to develop drugs or therapies that can reduce HBV cccDNA levels in infected cells. We summarize the discovery and optimization of small molecules that target cccDNA synthesis and degradation. These compounds are cccDNA synthesis inhibitors, cccDNA reducers, core protein allosteric modulators, ribonuclease H inhibitors, cccDNA transcriptional modulators, HBx inhibitors and other small molecules that reduce cccDNA levels.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangrui Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
33
|
Peng Y, Chen SY, Wang ZN, Zhou ZQ, Sun J, Zhang GA, Li J, Wang L, Zhao JC, Tang XX, Wang DY, Zhong NS. Dicoumarol is an effective post-exposure prophylactic for SARS-CoV-2 Omicron infection in human airway epithelium. Signal Transduct Target Ther 2023; 8:242. [PMID: 37301869 PMCID: PMC10256976 DOI: 10.1038/s41392-023-01511-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Repurposing existing drugs to inhibit SARS-CoV-2 infection in airway epithelial cells (AECs) is a quick way to find novel treatments for COVID-19. Computational screening has found dicoumarol (DCM), a natural anticoagulant, to be a potential SARS-CoV-2 inhibitor, but its inhibitory effects and possible working mechanisms remain unknown. Using air-liquid interface culture of primary human AECs, we demonstrated that DCM has potent antiviral activity against the infection of multiple Omicron variants (including BA.1, BQ.1 and XBB.1). Time-of-addition and drug withdrawal assays revealed that early treatment (continuously incubated after viral absorption) of DCM could markedly inhibit Omicron replication in AECs, but DCM did not affect the absorption, exocytosis and spread of viruses or directly eliminate viruses. Mechanistically, we performed single-cell sequencing analysis (a database of 77,969 cells from different airway locations from 10 healthy volunteers) and immunofluorescence staining, and showed that the expression of NAD(P)H quinone oxidoreductase 1 (NQO1), one of the known DCM targets, was predominantly localised in ciliated AECs. We further found that the NQO1 expression level was positively correlated with both the disease severity of COVID-19 patients and virus copy levels in cultured AECs. In addition, DCM treatment downregulated NQO1 expression and disrupted signalling pathways associated with SARS-CoV-2 disease outcomes (e.g., Endocytosis and COVID-19 signalling pathways) in cultured AECs. Collectively, we demonstrated that DCM is an effective post-exposure prophylactic for SARS-CoV-2 infection in the human AECs, and these findings could help physicians formulate novel treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi-Qing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gui-An Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Laboratory, Guangzhou, China.
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
34
|
Liu C, Zhao K, Chen Y, Yao Y, Tang J, Wang J, Xu C, Yang Q, Zheng Y, Yuan Y, Sun H, Zhang Y, Zhou Y, Chen J, Wang Y, Wu C, Pei R, Chen X. Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx. J Virol 2023; 97:e0058023. [PMID: 37166302 PMCID: PMC10231258 DOI: 10.1128/jvi.00580-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Hepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.
Collapse
Affiliation(s)
- Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxuan Yao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Jielin Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yi Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | | | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV "cure" is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt.
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
36
|
Zheng J, Deng Y, Wei Z, Zou H, Wen X, Cai J, Zhang S, Jia B, Lu M, Lu K, Lin Y. Lipid phosphatase SAC1 suppresses hepatitis B virus replication through promoting autophagic degradation of virions. Antiviral Res 2023; 213:105601. [PMID: 37068596 DOI: 10.1016/j.antiviral.2023.105601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
Phosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo. In the present study, we observed that SAC1 silencing significantly increased HBV DNA replication, subviral particle (SVP) expression, and secretion of HBV virions, whereas SAC1 overexpression exerted the opposite effects. Moreover, SAC1 overexpression inhibited HBV DNA replication and SVP expression in a hydrodynamic injection-based HBV-persistent replicating mouse model. Mechanistically, SAC1 silencing increased the number of HBV-containing autophagosomes as well as PI4P levels on the autophagosome membrane. Moreover, SAC1 silencing blocked autophagosome-lysosome fusion by inhibiting the interaction between synaptosomal-associated protein 29 and vesicle-associated membrane protein 8. Collectively, our data indicate that SAC1 significantly inhibits HBV replication by promoting the autophagic degradation of HBV virions. Our findings support that SAC1-mediated phospholipid metabolism greatly modulates certain steps of the HBV life-cycle and provide a new theoretical basis for antiviral therapy.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Cai
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shujun Zhang
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Zhuo H, Wu C, Tang J, Zhang F, Xu Z, Sun D, Teng Y, Tan Z. RP11-40C6.2 Inactivates Hippo Signaling by Attenuating YAP1 Ubiquitylation in Hepatitis B Virus-associated Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:323-333. [PMID: 36643034 PMCID: PMC9817042 DOI: 10.14218/jcth.2021.00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Aims Chronic hepatitis caused by hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC). We investigated the roles of oncogenic HBV infection-associated long noncoding RNAs in HCC. Methods Bioinformatics analysis of data from the Cancer Genome Atlas (TCGA) was performed to screen potential oncogenic HBV-related lncRNAs. Next, we assessed their expression in clinical samples and investigated their correlation with clinical characteristics. The detailed oncogenic effects were analyzed by performing in vitro and in vivo studies. Results RP11-40C6.2, an HBV infection-related lncRNA, was identified by analysis of the TCGA-Liver Hepatocellular Carcinoma database. Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes revealed a strong association of RP11-40C6.2 with the Hippo signaling pathway. RP11-40C6.2 was overexpressed in HCC patients with HBV infection compared to those without HBV infection. RP11-40C6.2 transcription showed a positive association with HBV-X protein (HBx), but not HBV core protein (HBc) expression, both of which are carcinogenic proteins. Luciferase gene reporter and ChIP assays revealed that YAP1/TAZ/TEADs complex enhanced RP11-40C6.2 transcription by binding to its promoter area. RP11-40C6.2 showed oncogenic characteristics in HCC cell lines and in animal models that were mediated via activation of YAP1. In vitro ubiquitylation assay revealed that RP11-40C6.2 can promote the stabilization of YAP1 by stopping phosphorylation at its s127 residue and further stopping its degradation through binding to 14-3-3. Conclusions RP11-40C6.2 is an HBV infection-related lncRNA that exerts its oncogenic effects by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Han Zhuo
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Tang
- General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feihong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongwei Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Teng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongming Tan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
39
|
Xie J, Tian S, Zhang H, Feng C, Han Y, Dai H, Yan L. A Novel NQO1 Enzyme-Responsive Polyurethane Nanocarrier for Redox-Triggered Intracellular Drug Release. Biomacromolecules 2023; 24:2225-2236. [PMID: 37040694 DOI: 10.1021/acs.biomac.3c00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The design of nano-drug delivery vehicles responsive to tumor microenvironment stimuli has become a crucial aspect in developing cancer therapy in recent years. Among them, the enzyme-responsive nano-drug delivery system is particularly effective, as it utilizes tumor-specific and highly expressed enzymes as precise targets, leading to increased drug release at the target sites, reduced nonspecific release, and improved efficacy while minimizing toxic side effects on normal tissues. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an important reductase associated with cancer and is overexpressed in some cancer cells, particularly in lung and breast cancer. Thus, the design of nanocarriers with high selectivity and responsiveness to NQO1 is of great significance for tumor diagnosis and treatment. It has been reported that under physiological conditions, NQO1 can specifically reduce the trimethyl-locked benzoquinone structure through a two-electron reduction, resulting in rapid lactonization via an enzymatic reaction. Based on this, a novel reduction-sensitive polyurethane (PEG-PTU-PEG) block copolymer was designed and synthesized by copolymerizing diisocyanate, a reduction-sensitive monomer (TMBQ), and poly(ethylene glycol). The successful synthesis of monomers and polymers was verified by nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Then, the PEG-PTU-PEG micelles were successfully prepared by self-assembly, and their reductive dissociation behavior in the presence of Na2S2O4 was verified by dynamic light scattering (DLS), 1H NMR, and GPC. Next, the model drug doxorubicin (DOX) was encapsulated into the hydrophobic core of this polyurethane micelles by microemulsion method. It was observed that the drug-loaded micelles could also achieve a redox response and rapidly release the encapsulated substances. In vitro cell experiments demonstrated that PEG-PTU-PEG micelles had good biocompatibility and a low hemolysis rate (<5%). Furthermore, in the presence of an NQO1 enzyme inhibitor (dicoumarol), lower drug release from micelles was observed in A549 and 4T1 cells by both fluorescence microscopy and flow cytometry assays, but not in NIH-3T3 control cells. Predictably, DOX-loaded micelles also showed lower cytotoxicity in 4T1 cells in the presence of NQO1 enzyme inhibitors. These results indicate that drug-loaded polyurethane micelles could accomplish specific drug release in the reducing environment in the presence of NQO1 enzymes. Therefore, this study provides a new option for the construction of polyurethane nanocarriers for precise targeting and reductive release, which could benefit the intracellular drug-specific release and precision therapy of tumors.
Collapse
Affiliation(s)
- Jinhai Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shuangyu Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hanning Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Congshu Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
40
|
Song H, Xiao Q, Xu F, Wei Q, Wang F, Tan G. TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition. Chin Med J (Engl) 2023; 136:799-806. [PMID: 36975005 PMCID: PMC10150869 DOI: 10.1097/cm9.0000000000002617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25. METHODS The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay. RESULTS We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process. CONCLUSIONS The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Collapse
Affiliation(s)
- Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Qi Wei
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Fei Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| |
Collapse
|
41
|
Wang Y, Zhao M, Zhao L, Geng Y, Li G, Chen L, Yu J, Yuan H, Zhang H, Yun H, Yuan Y, Wang G, Feng J, Xu L, Wang S, Hou C, Yang G, Zhang N, Lu W, Zhang X. HBx-Induced HSPA8 Stimulates HBV Replication and Suppresses Ferroptosis to Support Liver Cancer Progression. Cancer Res 2023; 83:1048-1061. [PMID: 36745032 DOI: 10.1158/0008-5472.can-22-3169] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatitis B virus (HBV) infection is a major driver of hepatocarcinogenesis. Ferroptosis is a type of iron-mediated cell death that can suppress liver transformation. Previous studies have linked HBV to ferroptosis in liver fibrosis and acute liver failure. However, whether ferroptosis is involved in HBV-mediated liver cancer is poorly understood. Here, we identified heat shock protein family A member 8 (HSPA8) as a crucial host factor that modulates HBV replication and ferroptosis in liver cancer. Hepatitis B X protein (HBx) upregulated HSPA8 by coactivating the transcription factor heat shock factor 1 (HSF1) in cells. HSPA8 enhanced HBV replication by recruiting hepatitis B core protein (HBc) to the HBV covalently closed circular DNA (cccDNA) minichromosome, forming a positive feedback loop. Moreover, HSPA8 suppressed ferroptosis in liver cancer cells by upregulating the expression of SLC7A11/GPX4 and decreasing erastin-mediated reactive oxygen species and Fe2+ accumulation in cells in vitro and in vivo. Inhibition of HSPA8 reduced the growth of HBV-positive liver tumors and increased sensitivity to erastin. In conclusion, HBx-elevated HSPA8 regulates both HBV replication and ferroptosis in liver cancer. Targeting HSPA8 could be a promising strategy for controlling HBV and hepatocarcinogenesis. SIGNIFICANCE HBV-induced upregulation of HSPA8 promotes hepatocarcinogenesis by suppressing ferroptosis and stimulating HBV replication, identifying HSPA8 as a potential therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Man Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Lina Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Guanghao Li
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Lin Chen
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, P.R. China
| | - Jingxuan Yu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Hongfeng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Huihui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Haolin Yun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Guowen Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jinyan Feng
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, P.R. China
| | - Shuai Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Chunyu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Ningning Zhang
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Wei Lu
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Xiaodong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
42
|
Mak LY, Hui RWH, Cheung KS, Fung J, Seto WK, Yuen MF. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers. Expert Opin Drug Discov 2023; 18:401-416. [PMID: 36943183 DOI: 10.1080/17460441.2023.2192920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) infection is a major global health threat and accounts for significant liver-related morbidity and mortality. An improved understanding of how hepatitis B virus (HBV) interacts with the host immune system allows the discovery of novel biomarkers and new treatment options. Viral biomarkers including hepatitis B surface antigen (HBsAg) and newer ones like HBV RNA and hepatitis B core-related antigen appear to be useful to select patients who are likely to benefit from cessation of long-term antiviral therapy. These markers can also help to confirm target engagement for novel compounds, and efficacy in HBsAg reduction and seroclearance is deemed essential as this is how the current treatment endpoint of functional cure is defined. AREAS COVERED In this review, the authors discuss the current standard of care and the gaps between such standard and the ideal goals for treatment in CHB. The authors highlight novel viral and immunological biomarkers that are potentially useful to evaluate treatment response. Novel treatment approaches in relation to these novel biomarkers are also evaluated. EXPERT OPINION Novel serum viral biomarkers and immunological markers are indispensable in the HBV functional cure program. These will likely become part of standard monitoring soon.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
43
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
45
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
46
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
47
|
Skullcapflavone II, a novel NQO1 inhibitor, alleviates aristolochic acid I-induced liver and kidney injury in mice. Acta Pharmacol Sin 2023:10.1038/s41401-023-01052-3. [PMID: 36697978 PMCID: PMC9876410 DOI: 10.1038/s41401-023-01052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023]
Abstract
Aristolochic acid I (AAI) is a well established nephrotoxin and human carcinogen. Cytosolic NAD(P)H quinone oxidoreductase 1 (NQO1) plays an important role in the nitro reduction of aristolochic acids, leading to production of aristoloactam and AA-DNA adduct. Application of a potent NQO1 inhibitor dicoumarol is limited by its life-threatening side effect as an anticoagulant and the subsequent hemorrhagic complications. As traditional medicines containing AAI remain available in the market, novel NQO1 inhibitors are urgently needed to attenuate the toxicity of AAI exposure. In this study, we employed comprehensive 2D NQO1 biochromatography to screen candidate compounds that could bind with NQO1 protein. Four compounds, i.e., skullcapflavone II (SFII), oroxylin A, wogonin and tectochrysin were screened out from Scutellaria baicalensis. Among them, SFII was the most promising NQO1 inhibitor with a binding affinity (KD = 4.198 μmol/L) and inhibitory activity (IC50 = 2.87 μmol/L). In human normal liver cell line (L02) and human renal proximal tubular epithelial cell line (HK-2), SFII significantly alleviated AAI-induced DNA damage and apoptosis. In adult mice, oral administration of SFII dose-dependently ameliorated AAI-induced renal fibrosis and dysfunction. In infant mice, oral administration of SFII suppressed AAI-induced hepatocellular carcinoma initiation. Moreover, administration of SFII did not affect the coagulation function in short term in adult mice. In conclusion, SFII has been identified as a novel NQO1 inhibitor that might impede the risk of AAI to kidney and liver without obvious side effect.
Collapse
|
48
|
Ciliatoside A, isolated from Peristrophe japonica, inhibits HBsAg expression and cccDNA transcription by inducing autophagy. Antiviral Res 2023; 209:105482. [PMID: 36496141 DOI: 10.1016/j.antiviral.2022.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Hepatitis B surface antigen (HBsAg) loss and seroconversion are considered as an end point of a functional cure. Therefore, it is crucial to find new agents which could efficiently decrease HBsAg. Traditional herbal plants have been considered as an important source of new hepatitis B drugs development for their extensive use in antimicrobial and anti-inflammation. In this study, Peristrophe japonica, which could remarkably reduce HBsAg in the supernatant of HepG2.2.15 cells, was screened out for further extraction. Here, an active ethyl acetate fraction of Peristrophe japonica containing 34 sub-fractions was extracted. Subsequently, the monomeric compound Ciliatoside A was isolated and identified as a potential antiviral reagent with low cytotoxicity from Fraction 30. Ciliatoside A exhibited strong inhibition on intracellular and circulating HBsAg and HBV RNAs in HBV-infected cells and an HBV recombinant-cccDNA mouse model. The mechanistic study revealed that Ciliatoside A exhibited a potent anti-HBV effect through inducing autophagy-lysosomal pathway to autophagic degradation of HBc by activating AMPK-ULK1 axis and inhibiting mTOR activation. In summary, we have identified a novel antiviral compound Ciliatoside A isolated from Peristrophe japonica. This study may provide important direction and new ideas for the discovery of hepatitis B cure drugs.
Collapse
|
49
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Ma L, Tang J, Cai G, Chen F, Liu Q, Zhou Z, Zhang S, Liu X, Hou N, Yi W. Structure-based screening and biological validation of the anti-thrombotic drug-dicoumarol as a novel and potent PPARγ-modulating ligand. Bioorg Chem 2022; 129:106191. [DOI: 10.1016/j.bioorg.2022.106191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
|