1
|
Kohya R, Suda G, Ohara M, Hosoda S, Sho T, Chuma M, Komori A, Kugiyama Y, Yasui Y, Tsuchiya K, Kurosaki M, Tani J, Kaneko S, Nakagawa M, Asahina Y, Maekawa S, Enomoto N, Yamamoto Y, Baba M, Yamada R, Sasaki T, Yoda T, Yoshida S, Fu Q, Yang Z, Maehara O, Ohnishi S, Tokuchi Y, Kitagataya T, Kawagishi N, Nakai M, Natsuizaka M, Ogawa K, Sakamoto N. Serum FGF21 as a predictor of response to atezolizumab and bevacizumab in HCC. JHEP Rep 2025; 7:101364. [PMID: 40242310 PMCID: PMC11999275 DOI: 10.1016/j.jhepr.2025.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Background & Aims Fibroblast growth factor 21 (FGF21) is a crucial regulator of cell metabolism. Tumour-secreted FGF21 has shown immune-checkpoint factor functions, and high FGF21 levels are associated with a poor prognosis for patients. However, its prognostic value and impact on treatment response in patients with hepatocellular carcinoma (HCC) treated with immune-checkpoint inhibitors (ICIs) remain unclear. Thus, this study investigated the potential of high FGF21 levels as a prognostic marker and whether traditional ICI-based therapy can improve the prognosis of patients with high FGF21 levels. Methods In this retrospective multicentre study, patients with unresectable HCC who received atezolizumab/bevacizumab in the NORTE study group (n = 117) were classified into high (≥915 pg/ml; n = 29) and non-high (n = 88) FGF21 groups. For validation, we investigated patients treated with atezolizumab/bevacizumab in an independent cohort (n = 285). Overall survival, progression-free survival, and treatment response were compared between patients with and without high baseline FGF21 levels. Results The median overall survival (p <0.001) and progression-free survival (p = 0.045) were significantly shorter in the high FGF21 group than in the non-high FGF21 group. Independent cohort analysis validated these results. In the overall cohort, the median progression-free survival (5.75 vs. 8.84 months; p = 0.027) and median overall survival (14.13 vs. 22.08 months; p <0.001) were significantly shorter in the high FGF21 group than in the non-high FGF21 group. The durable response (≥6 months) + complete response rate was significantly decreased in the high FGF21 group (p = 0.045). No patient with a high FGF21 level achieved a complete response, whereas this was achieved in 4.1% (13/319) of patients with non-high FGF21 levels. Multivariate Cox regression analysis identified high baseline serum FGF21 as an independent poor prognostic factor for overall survival (hazard ratio 2.20, p <0.001). Conclusions Serum FGF21 may be a robust, non-invasive prognostic and treatment response marker for unresectable HCC treated with atezolizumab/bevacizumab. Impact and implications FGF21 has been reported to act as a secreted immune-checkpoint factor, and elevated levels of FGF21 are associated with a poor prognosis in patients with HCC. It is not fully understood whether ICIs can overcome the impact of high FGF21 levels on the shortened prognosis of patients with HCC. In this multicentre retrospective study, patients with HCC and high baseline levels of serum FGF21 who received atezolizumab/bevacizumab treatment exhibited a significantly shorter overall survival and shorter progression-free survival. These findings suggest serum FGF21 as a robust prognostic marker and an indicator of treatment response in unresectable HCC treated with ICI-based therapy. These findings could be crucial for the implementation of personalised treatment strategies for unresectable HCC. However, identifying optimal therapeutic options for patients with unresectable HCC and high serum FGF21 levels remains an urgent and critical clinical issue.
Collapse
Affiliation(s)
- Risako Kohya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunichi Hosoda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Chuma
- Gastroenterology Centre, Yokohama City University Medical Centre, Minami-ku, Yokohama, Japan
| | - Atsumasa Komori
- Hepatology Division, NHO Nagasaki Medical Centre, Ōmura, Nagasaki, Japan
| | - Yuki Kugiyama
- Hepatology Division, NHO Nagasaki Medical Centre, Ōmura, Nagasaki, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Tokyo, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Tokyo, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Tokyo, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Kofu City, Yamanashi, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Kofu City, Yamanashi, Japan
| | - Yoshiya Yamamoto
- Department of Gastroenterology and Hepatology, Hakodate Municipal Hospital, Hakodate, Hokkaido, Japan
| | - Masaru Baba
- Centre for Gastroenterology and Hepatology, Japan Community Healthcare Organisation Hokkaido Hospital, Sapporo, Hokkaido, Japan
| | - Ren Yamada
- Kushiro Rosai Hospital, Kushiro, Hokkaido, Japan
| | - Takashi Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoka Yoda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sonoe Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Zijian Yang
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Maehara
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshimasa Tokuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Gastroenterology and Hepatology, Hakodate Municipal Hospital, Hakodate, Hokkaido, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Zhao Q, Chen DP, Chen HD, Wang YZ, Shi W, Lu YT, Ren YZ, Wu YK, Pang YH, Deng H, He X, Kuang DM, Guo ZY. NK-cell-elicited gasdermin-D-dependent hepatocyte pyroptosis induces neutrophil extracellular traps that facilitate HBV-related acute-on-chronic liver failure. Hepatology 2025; 81:917-931. [PMID: 38537134 DOI: 10.1097/hep.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.
Collapse
Affiliation(s)
- Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ping Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua-Di Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying-Zhe Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Tong Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Zheng Ren
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Kai Wu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Hua Pang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Yong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
3
|
Engelmann C, Zhang IW, Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int 2025; 45:e15644. [PMID: 37365995 PMCID: PMC11815630 DOI: 10.1111/liv.15644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| | - Ingrid W. Zhang
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
- Biochemistry and Molecular Genetics ServiceHospital Clínic‐IDIBAPS CIBERehdBarcelonaSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
4
|
Li P, Liang X, Luo J, Li J. Omics in acute-on-chronic liver failure. Liver Int 2025; 45:e15634. [PMID: 37288724 DOI: 10.1111/liv.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a critical syndrome that develops in patients with chronic liver disease and is characterized by acute decompensation, single- or multiple-organ failure and high short-term mortality. Over the past few decades, ACLF has been progressively recognized as an independent clinical entity, and several criteria and prognostic scores have been proposed and validated by different scientific societies. However, controversies still exist in some aspects across regions, which mainly involve whether the definition of underlying liver diseases should include cirrhosis and non-cirrhosis. The pathophysiology of ACLF is complicated and remains unclear, although accumulating evidence based on different aetiologies of ACLF shows that it is closely associated with intense systemic inflammation and immune-metabolism disorder, which result in mitochondrial dysfunction and microenvironment imbalance, leading to disease development and organ failure. In-depth insight into the biological pathways involved in the mechanisms of ACLF and potential mechanistic targets that improve patient survival still needs to be investigated. Omics-based analytical techniques, including genomics, transcriptomics, proteomics, metabolomics and microbiomes, have developed rapidly and can offer novel insights into the essential pathophysiologic process of ACLF. In this paper, we briefly reviewed and summarized the current knowledge and recent advances in the definitions, criteria and prognostic assessments of ACLF; we also described the omics techniques and how omics-based analyses have been applied to investigate and characterize the biological mechanisms of ACLF and identify potential predictive biomarkers and therapeutic targets for ACLF. We also outline the challenges, future directions and limitations presented by omics-based analyses in clinical ACLF research.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Garg P, Verma N, Valsan A, Sarohi V, Basak T, Gupta T, Kaur P, Ralmilay S, Singh S, De A, Premkumar M, Taneja S, Duseja A, Singh V, Bajaj JS. Proteomics-guided Biomarker Discovery, Validation, and Pathway Perturbation in Infection-related Acute Decompensation of Cirrhosis. Clin Gastroenterol Hepatol 2025:S1542-3565(25)00084-9. [PMID: 39924007 DOI: 10.1016/j.cgh.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND & AIMS Inappropriate treatment of infections fuels drug resistance, organ failures, and costs in cirrhosis. We explored proteomics to improve infection diagnosis and management in acutely decompensated (AD) cirrhosis. METHODS We enrolled 391 patients with AD cirrhosis (92% males, median-age: 41 years), 84 in the discovery cohort (54 infected, 30 non-infected), 147 in the validation cohort I (106 infected, 41 non-infected), and 160 in the validation cohort II (108 infected, 52 non-infected). High-throughput proteomics identified biomarkers in the discovery cohort, validated through enzyme-linked immunoassay in subsequent cohorts. A model for infection was evaluated through discrimination, calibration, and decision curves and was externally validated. RESULTS Infected patients exhibited higher leucocyte counts, procalcitonin, organ failures, Model for End-stage Liver Disease scores, and 30-day mortality (P < .001 each). Proteomics identified 516 proteins, 27 upregulated and 38 downregulated, in infections. LGALS3BP, PLTP, CFP, and GPX3 were independently linked to infections (adjusting for severity and systemic inflammatory response syndrome), with composite area under the receiver operating characteristic curve (AUC) of 0.854 (95% confidence interval [CI], 0.787-0.922) in validation cohort I. A PACIFY model (LGALS3BP + procalcitonin + CLIF-COF + lactate) predicted infections with AUC of 0.965 (95% CI, 0.933-0.997) and 0.906 (95% CI, 0.860-0.952) in validation cohorts I and II, outperforming procalcitonin, systemic inflammatory response syndrome, white blood cell, neutrophil-to-lymphocyte ratio, neutrophil %, and composite models (P < .001). The model demonstrated fair calibration, with decision curves indicating a net benefit of the model in treating infections and reducing unnecessary antimicrobial use. Consistent findings were observed on external validation (AUC, 0.949; 95% CI, 0.916-0.982), re-enforcing the accuracy and clinical utility of the model. A deployable app was developed for infection risk estimation, enhancing practical applicability. Impaired phagocytosis, complement functions, hypocoagulation, hypofibrinolysis, dysregulated carbohydrate metabolism, autophagy, heightened cell death, and proteolysis were key perturbed pathways in infections. CONCLUSION The study identifies novel protein signatures and pathways linked with infections in AD cirrhosis. A biomarker-guided treatment of infections can limit unnecessary antimicrobial use and the burden of drug resistance in cirrhosis.
Collapse
Affiliation(s)
- Pratibha Garg
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Arun Valsan
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sarohi
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tarana Gupta
- Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences (PGIMS), Rohtak, India
| | - Parminder Kaur
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Samonee Ralmilay
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University, Central Virginia Veterans Healthcare System, Richmond, Virginia
| |
Collapse
|
6
|
Feio-Azevedo R, Boesch M, Radenkovic S, van Melkebeke L, Smets L, Wallays M, Boeckx B, Philips G, Prata de Oliveira J, Ghorbani M, Laleman W, Meersseman P, Wilmer A, Cassiman D, van Malenstein H, Triantafyllou E, Sánchez C, Aguilar F, Nevens F, Verbeek J, Moreau R, Arroyo V, Denadai Souza A, Clària J, Lambrechts D, Ghesquière B, Korf H, van der Merwe S. Distinct immunometabolic signatures in circulating immune cells define disease outcome in acute-on-chronic liver failure. Hepatology 2025; 81:509-522. [PMID: 38761406 PMCID: PMC11737128 DOI: 10.1097/hep.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIMS Acute-on-chronic liver failure (ACLF) is a complication of cirrhosis characterized by multiple organ failure and high short-term mortality. The pathophysiology of ACLF involves elevated systemic inflammation leading to organ failure, along with immune dysfunction that heightens susceptibility to bacterial infections. However, it is unclear how these aspects are associated with recovery and nonrecovery in ACLF. APPROACH AND RESULTS Here, we mapped the single-cell transcriptome of circulating immune cells from patients with ACLF and acute decompensated (AD) cirrhosis and healthy individuals. We further interrogate how these findings, as well as immunometabolic and functional profiles, associate with ACLF-recovery (ACLF-R) or nonrecovery (ACLF-NR). Our analysis unveiled 2 distinct states of classical monocytes (cMons). Hereto, ACLF-R cMons were characterized by transcripts associated with immune and stress tolerance, including anti-inflammatory genes such as RETN and LGALS1 . Additional metabolomic and functional validation experiments implicated an elevated oxidative phosphorylation metabolic program as well as an impaired ACLF-R cMon functionality. Interestingly, we observed a common stress-induced tolerant state, oxidative phosphorylation program, and blunted activation among lymphoid populations in patients with ACLF-R. Conversely, ACLF-NR cMon featured elevated expression of inflammatory and stress response genes such as VIM , LGALS2 , and TREM1 , along with blunted metabolic activity and increased functionality. CONCLUSIONS This study identifies distinct immunometabolic cellular states that contribute to disease outcomes in patients with ACLF. Our findings provide valuable insights into the pathogenesis of ACLF, shedding light on factors driving either recovery or nonrecovery phenotypes, which may be harnessed as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Rita Feio-Azevedo
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Markus Boesch
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Silvia Radenkovic
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lukas van Melkebeke
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Lena Smets
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Gino Philips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Janaíne Prata de Oliveira
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mohammad Ghorbani
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Wim Laleman
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | | | - Alexander Wilmer
- Department of Internal Medicine, UZ Leuven, KU Leuven, Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Hannah van Malenstein
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Cristina Sánchez
- European Foundation for the Study of Chronic Liver Failure, EF-CLIF, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure, EF-CLIF, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Frederik Nevens
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Jef Verbeek
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure, EF-CLIF, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
- Centre de Recherche sur l’Inflammation (CRI) UMRS1149, Université de Paris Cité, Service d’Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, EF-CLIF, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | | | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure, EF-CLIF, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
- Hospital Clínic-IDIBAPS, CIBERehd, Universitat de Barcelona, Barcelona, Spain
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Schalk van der Merwe
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Fossdal G, Braadland P, Hov JR, Husebye ES, Folseraas T, Ueland PM, Ulvik A, Karlsen TH, Berge RK, Vesterhus M. Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis. Scand J Gastroenterol 2025; 60:165-173. [PMID: 39764583 DOI: 10.1080/00365521.2024.2447521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
OBJECTIVES Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis. MATERIALS AND METHODS We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls. Using mass spectroscopy, we profiled lipids and fatty acids, carnitine, acylcarnitines, and metabolites in the tryptophan-kynurenine-nicotinamide pathway. RESULTS Hierarchal clustering of fatty acid levels identified patients with PSC and healthy controls as separate clusters. Compared to healthy controls, PSC patients had increased levels of monounsaturated fatty acids (MUFA) and palmitate (C16:0) in plasma, but reduced levels of long-chain saturated fatty acids (SFAs). These findings were more pronounced in PSC patients with cholestasis. Several n-3 polyunsaturated fatty acids were elevated in PSC but not associated with cholestasis. Acylcarnitine ratios C2/C5 and C2/C3 were elevated while C2/C16 was reduced in PSC, indicating impaired mitochondrial fatty acid oxidation of medium-long chained fatty acids. Levels of intermediates in the tryptophan-kynurenine pathway indicated impaired NAD biosynthesis, suggesting impaired energy supply to mitochondria in PSC. CONCLUSIONS We found that mitochondrial dysfunction was prominent in PSC and associated with increasing cholestasis. Whether this is merely a marker of liver disease and severity, or an underlying driver and potential therapeutic target in PSC remains to be explored.
Collapse
Affiliation(s)
- Guri Fossdal
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Peder Braadland
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Johannes Roksund Hov
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Trine Folseraas
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- BEVITAL AS, Bergen, Norway
| | | | - Tom Hemming Karlsen
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Mitomega AS, Stavanger, Norway
| | - Mette Vesterhus
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
8
|
Zou P, Li X, Wang L, She Y, Xiao C, Peng Y, Qian X, Luo P, Wei S. Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats. Mol Nutr Food Res 2024; 68:e2400392. [PMID: 39587947 DOI: 10.1002/mnfr.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Indexed: 11/27/2024]
Abstract
SCOPE Grifola frondosa polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported. METHODS AND RESULTS High-fat diet (HFD) fed combined with streptozocin (STZ) injections rat model and Lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDM) model are used. The results showed that GFP intervention reduces weight loss and hyperglycemia symptoms, besides lowers FINS, HOMA-IR, IPGTT-AUC, and IPITT-AUC in T2DM rats. Meanwhile, GFP intervention reduces the secretion level of inflammatory factors and increases the secretion level of anti-inflammatory factors in the liver tissue of T2DM rats. Furthermore, GFP reduces macrophage infiltration in liver tissue, inhibits macrophage M1-type polarization, and promotes M2-type polarization. CONCLUSIONS These results suggest that GFP intervention could attenuate the hepatic inflammatory and insulin resistance in T2DM rats by inhibiting hepatic macrophage infiltration and modulating M1/M2 polarization. The findings provide new evidence for GFP in the early prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xueyan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Liping Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyang Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical, University, Guiyang, 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| |
Collapse
|
9
|
Zhang IW, Sánchez-Rodríguez MB, López-Vicario C, Casulleras M, Duran-Güell M, Flores-Costa R, Aguilar F, Rothe M, Segalés P, García-Ruiz C, Fernández-Checa JC, Trebicka J, Arroyo V, Clària J. Palmitoylcarnitine impairs immunity in decompensated cirrhosis. JHEP Rep 2024; 6:101187. [PMID: 39524205 PMCID: PMC11544064 DOI: 10.1016/j.jhepr.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims In patients with cirrhosis, acute decompensation (AD) correlates with a hyperinflammatory state driven by mitochondrial dysfunction, which is a significant factor in the progression toward acute-on-chronic liver failure (ACLF). Elevated circulating levels of acylcarnitine, indicative of mitochondrial dysfunction, are predictors of mortality in ACLF patients. Our hypothesis posits that acylcarnitines not only act as biomarkers, but also actively exert detrimental effects on circulating immune cells. Methods Plasma acylcarnitine levels were measured in 20 patients with AD cirrhosis and 10 healthy individuals. The effects of selected medium- and long-chain acylcarnitines on mitochondrial function were investigated in peripheral leucocytes from healthy donors by determining mitochondrial membrane potential (Δψm) and mitochondrial respiration using the JC-1 dye and Agilent Seahorse XF technology. Changes regarding mitochondrial ultrastructure and redox systems were assessed by transmission electron microscopy and gene and protein expression analysis. Results Plasma levels of several acylcarnitine species were significantly elevated in patients with AD cirrhosis compared with healthy individuals, alongside increased levels of inflammatory mediators (cytokines and chemokines). Notably, the long-chain acylcarnitine palmitoylcarnitine (C16:0-carnitine, 1.51-fold higher, p = 0.0059) impaired Δψm and reduced the spare respiratory capacity of peripheral mononuclear leucocytes. Additionally, C16:0-carnitine induced mitochondrial oxidative stress, suppressed the expression of the antioxidant gene HMOX1, and increased CXCL8 expression and IL-8 release. Etomoxir, which blocks acylcarnitine entry into the mitochondria, reversed the suppression of HMOX1. Similarly, trimetazidine, a fatty acid beta-oxidation inhibitor, prevented C16:0-carnitine-induced CXCL8 expression. Importantly, oxidative stress and Δψm impairment caused by C16:0-carnitine were less severe in the presence of albumin, a standard therapy for AD cirrhosis. Conclusions Our findings suggest that long-chain acylcarnitines induce mitochondrial injury in immune cells, thereby contributing to the development of immune dysfunction associated with cirrhosis. Impact and implications Patients with acute decompensation of cirrhosis and acute-on-chronic liver failure (ACLF) display a systemic hyperinflammatory state and leukocyte mitochondrial dysfunction. We discovered that apart from being increased in the circulation of these patients, the long-chain palmitoylcarnitine is able to elicit cytokine secretion paired with mitochondrial dysfunction in leukocytes from healthy donors. In particular, we show that inhibiting the metabolism of palmitoylcarnitine could reverse these detrimental effects. Our findings underline the importance of immunometabolism as a treatment target in patients with acute decompensation of cirrhosis and ACLF.
Collapse
Affiliation(s)
- Ingrid Wei Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | | | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | | | - Paula Segalés
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
| | - Carmen García-Ruiz
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
- Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - José C. Fernández-Checa
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
- Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Sun L, Shao Y, Zhuang Z, Liu Z, Liu M, Qu C, Yang H. Targeting TGR5 to mitigate liver fibrosis: Inhibition of hepatic stellate cell activation through modulation of mitochondrial fission. Int Immunopharmacol 2024; 140:112831. [PMID: 39111149 DOI: 10.1016/j.intimp.2024.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a prominent cause of liver fibrosis and end-stage liver disease in China, necessitating the development of effective therapeutic strategies. This study investigated the potential of targeting TGR5 to alleviate liver fibrosis by impeding the activation of hepatic stellate cells (HSCs), which play a pivotal role in fibrotic progression. Using the human hepatic stellate cell line LX-2 overexpressing hepatitis B virus X protein (HBX), this study revealed that TGR5 activation through INT-777 inhibits HBX-induced LX-2 cell activation, thereby ameliorating liver fibrosis, which is associated with the attenuation of mitochondrial fission and introduces a novel regulatory pathway in liver fibrosis. Additional experiments with mitochondrial fission inducers and inhibitors confirm the crucial role of mitochondrial dynamics in TGR5-mediated effects. In vivo studies using TGR5 knockout mice substantiate these findings, demonstrating exacerbated fibrosis in the absence of TGR5 and its alleviation with the mitochondrial fission inhibitor Mdivi-1. Overall, this study provides insights into TGR5-mediated regulation of liver fibrosis through the modulation of mitochondrial fission in HSCs, suggesting potential therapeutic strategies for liver fibrosis intervention.
Collapse
Affiliation(s)
- Li Sun
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Yuancheng Shao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Zehao Zhuang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of General Surgery, Second People's Hospital, Jintan District, Changzhou City, Jiangsu Province 213100, China
| | - Zhixin Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Mingjun Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of Graduate School, Dalian Medical University, Dalian City, Liaoning Province 116011, China
| | - Chang Qu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China.
| |
Collapse
|
12
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Dąbrowska A, Wilczyński B, Mastalerz J, Kucharczyk J, Kulbacka J, Szewczyk A, Rembiałkowska N. The Impact of Liver Failure on the Immune System. Int J Mol Sci 2024; 25:9522. [PMID: 39273468 PMCID: PMC11395474 DOI: 10.3390/ijms25179522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Liver failure profoundly affects the immune system, leading to dysregulation of innate and adaptive immune response. This review explores the intricate relationship between liver function and immune homeostasis. The role of the liver as a central hub in immune response initiation is elucidated, emphasizing its involvement in hepatic inflammation induction and subsequent systemic inflammation. Cytokines, chemokines, growth factors, and lipid mediators orchestrate these immune processes, serving as both prognostic biomarkers and potential therapeutic targets in liver failure-associated immune dysregulation, which might result from acute-on-chronic liver failure (ACLF) and cirrhosis. Furthermore, the review delves into the mechanisms underlying immunosuppression in liver failure, encompassing alterations in innate immune cell functions such as neutrophils, macrophages, and natural killer cells (NK cells), as well as perturbations in adaptive immune responses mediated by B and T cells. Conclusion: Understanding the immunological consequences of liver failure is crucial for developing targeted therapeutic interventions and improving patient outcomes in liver disease management.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julia Kucharczyk
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Li Y, Tian L, Li S, Chen X, Lei F, Bao J, Wu Q, Wen Y, Jie Y. Disrupted mitochondrial transcription factor A expression promotes mitochondrial dysfunction and enhances ocular surface inflammation by activating the absent in melanoma 2 inflammasome. Free Radic Biol Med 2024; 222:106-121. [PMID: 38797339 DOI: 10.1016/j.freeradbiomed.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Severe dry eye disease causes ocular surface damage, which is highly associated with mitochondrial dysfunction. Mitochondrial transcription factor A (TFAM) is essential for packaging mitochondrial DNA (mtDNA) and is crucial for maintaining mitochondrial function. Herein, we aimed to explore the effect of a decreased TFAM expression on ocular surface damage. METHODS Female C57BL/6 mice were induced ocular surface injury by topical administrating benzalkonium chloride (BAC). Immortalized human corneal epithelial cells (HCECs) were stimulated by tert-butyl hydroperoxide (t-BHP) to create oxidative stress damage. HCECs with TFAM knockdown were established. RNA sequencing was employed to analyze the whole-genome expression. Mitochondrial changes were measured by transmission electron microscopy, Seahorse metabolic flux analysis, mitochondrial membrane potential, and mtDNA copy number. TFAM expression and inflammatory cytokines were determined using RT-qPCR, immunohistochemistry, immunofluorescence, and immunoblotting. RESULTS In both the corneas of BAC-treated mice and t-BHP-induced HCECs, we observed impaired TFAM expression, accompanied by mitochondrial structure and function defects. TFAM downregulation in HCECs suppressed mitochondrial respiratory capacity, reduced mtDNA content, induced mtDNA leakage into the cytoplasm, and led to inflammation. RNA sequencing revealed the absent in melanoma 2 (AIM2) inflammasome was activated in the corneas of BAC-treated mice. The AIM2 inflammasome activation was confirmed in TFAM knockdown HCECs. TFAM knockdown in t-BHP-stimulated HCECs aggravated mitochondrial dysfunction and the AIM2 inflammasome activation, thereby further triggering the secretion of inflammatory factors such as interleukin (IL) -1β and IL-18. CONCLUSIONS TFAM reduction impaired mitochondrial function, activated AIM2 inflammasome and promoted ocular surface inflammation, revealing an underlying molecular mechanism for ocular surface disorders.
Collapse
Affiliation(s)
- Yaqiong Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Siyuan Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xiaoniao Chen
- Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Jiayu Bao
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Qianru Wu
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ya Wen
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| |
Collapse
|
15
|
Nadim MK, Kellum JA, Forni L, Francoz C, Asrani SK, Ostermann M, Allegretti AS, Neyra JA, Olson JC, Piano S, VanWagner LB, Verna EC, Akcan-Arikan A, Angeli P, Belcher JM, Biggins SW, Deep A, Garcia-Tsao G, Genyk YS, Gines P, Kamath PS, Kane-Gill SL, Kaushik M, Lumlertgul N, Macedo E, Maiwall R, Marciano S, Pichler RH, Ronco C, Tandon P, Velez JCQ, Mehta RL, Durand F. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. J Hepatol 2024; 81:163-183. [PMID: 38527522 PMCID: PMC11193657 DOI: 10.1016/j.jhep.2024.03.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Patients with cirrhosis are prone to developing acute kidney injury (AKI), a complication associated with a markedly increased in-hospital morbidity and mortality, along with a risk of progression to chronic kidney disease. Whereas patients with cirrhosis are at increased risk of developing any phenotype of AKI, hepatorenal syndrome (HRS), a specific form of AKI (HRS-AKI) in patients with advanced cirrhosis and ascites, carries an especially high mortality risk. Early recognition of HRS-AKI is crucial since administration of splanchnic vasoconstrictors may reverse the AKI and serve as a bridge to liver transplantation, the only curative option. In 2023, a joint meeting of the International Club of Ascites (ICA) and the Acute Disease Quality Initiative (ADQI) was convened to develop new diagnostic criteria for HRS-AKI, to provide graded recommendations for the work-up, management and post-discharge follow-up of patients with cirrhosis and AKI, and to highlight priorities for further research.
Collapse
Affiliation(s)
- Mitra K Nadim
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - John A Kellum
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lui Forni
- School of Medicine, University of Surrey and Critical Care Unit, Royal Surrey Hospital Guildford UK
| | - Claire Francoz
- Hepatology & Liver Intensive Care, Hospital Beaujon, Clichy, Paris, France
| | | | - Marlies Ostermann
- King's College London, Guy's & St Thomas' Hospital, Department of Critical Care, London, UK
| | - Andrew S Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Javier A Neyra
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jody C Olson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine - DIMED, University and Hospital of Padova, Padova, Italy
| | - Lisa B VanWagner
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA
| | - Ayse Akcan-Arikan
- Department of Pediatrics, Divisions of Critical Care Medicine and Nephrology, Baylor College of Medicine, Houston, TX, USA
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, University and Teaching Hospital of Padua, Italy
| | - Justin M Belcher
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Scott W Biggins
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Akash Deep
- Pediatric Intensive Care Unit, King's College Hospital, London, UK
| | - Guadalupe Garcia-Tsao
- Digestive Diseases Section, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Yuri S Genyk
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Division of Abdominal Organ Transplantation at Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Pere Gines
- Liver Unit, Hospital Clínic de Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi-Sunyer and Ciber de Enfermedades Hepàticas y Digestivas, Barcelona, Catalonia, Spain
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sandra L Kane-Gill
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manish Kaushik
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Nuttha Lumlertgul
- Excellence Centre in Critical Care Nephrology and Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Etienne Macedo
- Division of Nephrology, Department of Medicine, University of California San Diego, CA, USA
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Raimund H Pichler
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza-Italy
| | - Puneeta Tandon
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Juan-Carlos Q Velez
- Department of Nephrology, Ochsner Health, New Orleans, LA, USA; Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia
| | - Ravindra L Mehta
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - François Durand
- Hepatology & Liver Intensive Care, Hospital Beaujon, Clichy, Paris, France; University Paris Cité, Paris, France.
| |
Collapse
|
16
|
Artru F, Trovato F, Morrison M, Bernal W, McPhail M. Liver transplantation for acute-on-chronic liver failure. Lancet Gastroenterol Hepatol 2024; 9:564-576. [PMID: 38309288 DOI: 10.1016/s2468-1253(23)00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 02/05/2024]
Abstract
Acute-on-chronic liver failure (ACLF) occurs in the context of advanced liver disease and is associated with hepatic and extrahepatic organ failure, eventually leading to a major risk of short-term mortality. To date, there are very few effective therapeutic options for ACLF. In many cases, liver transplantation is the only life-saving treatment that has acceptable outcomes in carefully selected recipients. This Review addresses key aspects of the use of liver transplantation for patients with ACLF, providing an in-depth discussion of existing evidence regarding candidate selection, the optimal window for transplantation, potential prioritisation of liver grafts for this indication, and the global management of ACLF to bridge patients to liver transplantation.
Collapse
Affiliation(s)
- Florent Artru
- Liver Intensive Care Unit, Institute of Liver Studies, King's College Hospital, London, UK; Department of Inflammation Biology, School of Infection and Microbial Sciences, King's College London, London, UK; Liver Disease Unit, Rennes University Hospital, Rennes, France; Inerm 1241 NuMeCan, University of Rennes, Rennes, France
| | - Francesca Trovato
- Liver Intensive Care Unit, Institute of Liver Studies, King's College Hospital, London, UK; Department of Inflammation Biology, School of Infection and Microbial Sciences, King's College London, London, UK
| | - Maura Morrison
- Liver Intensive Care Unit, Institute of Liver Studies, King's College Hospital, London, UK
| | - William Bernal
- Liver Intensive Care Unit, Institute of Liver Studies, King's College Hospital, London, UK.
| | - Mark McPhail
- Liver Intensive Care Unit, Institute of Liver Studies, King's College Hospital, London, UK; Department of Inflammation Biology, School of Infection and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
17
|
Batra N, Gaidhane SA, Kumar S, Acharya S. Outcome Predictors of Acute-on-Chronic Liver Failure: A Narrative Review. Cureus 2024; 16:e61655. [PMID: 38966452 PMCID: PMC11223737 DOI: 10.7759/cureus.61655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Complications of acute-on-chronic liver failure (ACLF) include increased short-term mortality. Extrahepatic organ failures result from chronic liver disease and acute hepatic injury. This combination characterizes end-stage liver disease. Its rapid progression makes it challenging for hepatologists and intensivists to treat. The varied definitions of this condition lead to varied clinical presentations. Hepatic or extrahepatic failures are more prevalent in chronic hepatitis B or cirrhosis patients who receive an additional injury. Numerous intensity parameters and prognosis ratings, including those for hepatitis B virus (HBV), have been developed and verified for various patients and causes of the disease. Liver regeneration, liver transplantation (LT), or antiviral therapy for HBV-related ACLF are the main treatment aims for various organ failures. LT is the best treatment for HBV-ACLF. In some HBV-related ACLF patients, nucleos(t)ide analogs and artificial liver assistance may enhance survival. Combining epidemiological and clinical studies, this review updates our understanding of HBV-ACLF's definition, diagnosis, epidemiology, etiology, therapy, and prognosis.
Collapse
Affiliation(s)
- Nitish Batra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shilpa A Gaidhane
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Quan H, Yu H, Liu XL, Xiong FX, Hou YX, Wang XB, Yang ZY, Jiang YY. Development and validation of a prognostic model for 90-day survival in patients with alcohol-associated cirrhosis and acute decompensation. Hepatol Res 2024; 54:588-599. [PMID: 38241146 DOI: 10.1111/hepr.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND/PURPOSE Patients with alcohol-associated cirrhosis and acute decompensation are considered critically ill and have a higher risk of short-term mortality. This study aimed to establish a nomogram to evaluate their 90-day survival and identify factors that affect disease progression. METHODS We included patients from September 2008 to December 2016 (n = 387 in the derivation group) and from January 2017 to August 2020 (n = 157 in the validation group). LASSO regression and Cox multivariate risk regression were used to analyze the influencing factors of the 90-day mortality risk, and a nomogram was constructed. The performance of a model was analyzed based on the C-index, area under the receiver operating curve, calibration curve, and decision curve analysis. RESULTS Total bilirubin >10 upper limit of normal, high-density lipoprotein cholesterol, lymphocyte and monocyte ratios ≤2.33, white blood cells, and hemoglobin were identified as independent risk factors affecting the 90-day mortality risk of patients and the nomogram was developed. A nomogram demonstrated excellent model predictive accuracy in both the derivation and validation cohorts (C-index: 0.976 and 0.945), which was better than other commonly used liver scoring models (p < 0.05). The nomogram also performed good calibration ability and more clinical net benefit. According to the nomogram score, patients were divided into high- and low-risk groups. Mortality was significantly higher in the high-risk group than in the low-risk group (p < 0.0001). CONCLUSION The nomogram could accurately predict the 90-day mortality risk in patients with alcohol-associated cirrhosis and acute decompensation, helping to identify high-risk patients and personalize treatment at their first admission.
Collapse
Affiliation(s)
- Hui Quan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Li Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fei-Xiang Xiong
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Xin Hou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xian-Bo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Yun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu-Yong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Sangineto M, Ciarnelli M, Colangelo T, Moola A, Bukke VN, Duda L, Villani R, Romano A, Giandomenico S, Kanwal H, Serviddio G. Monocyte bioenergetics: An immunometabolic perspective in metabolic dysfunction-associated steatohepatitis. Cell Rep Med 2024; 5:101564. [PMID: 38733988 PMCID: PMC11148801 DOI: 10.1016/j.xcrm.2024.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/18/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Monocytes (Mos) are crucial in the evolution of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH), and immunometabolism studies have recently suggested targeting leukocyte bioenergetics in inflammatory diseases. Here, we reveal a peculiar bioenergetic phenotype in circulating Mos of patients with MASH, characterized by high levels of glycolysis and mitochondrial (mt) respiration. The enhancement of mt respiratory chain activity, especially complex II (succinate dehydrogenase [SDH]), is unbalanced toward the production of reactive oxygen species (ROS) and is sustained at the transcriptional level with the involvement of the AMPK-mTOR-PGC-1α axis. The modulation of mt activity with dimethyl malonate (DMM), an SDH inhibitor, restores the metabolic profile and almost abrogates cytokine production. Analysis of a public single-cell RNA sequencing (scRNA-seq) dataset confirms that in murine models of MASH, liver Mo-derived macrophages exhibit an upregulation of mt and glycolytic energy pathways. Accordingly, the DMM injection in MASH mice contrasts Mo infiltration and macrophagic enrichment, suggesting immunometabolism as a potential target in MASH.
Collapse
Affiliation(s)
- Moris Sangineto
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Martina Ciarnelli
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; Cancer Cell Signalling Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza," 71043 San Giovanni Rotondo (FG), Italy
| | - Archana Moola
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Vidyasagar Naik Bukke
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Loren Duda
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosanna Villani
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Antonino Romano
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Stefania Giandomenico
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Hina Kanwal
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
20
|
Ren M, Lu C, Zhou M, Jiang X, Li X, Liu N. The intersection of virus infection and liver disease: A comprehensive review of pathogenesis, diagnosis, and treatment. WIREs Mech Dis 2024; 16:e1640. [PMID: 38253964 DOI: 10.1002/wsbm.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Meng Ren
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chenxia Lu
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Mingwei Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Artru F, McPhail MJ. Immunopathogenesis of acute on chronic liver failure. Am J Transplant 2024; 24:724-732. [PMID: 38346497 DOI: 10.1016/j.ajt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Acute-on-chronic liver failure is a well-established description of a high-mortality syndrome of chronic liver disease (usually cirrhosis) with organ failure. While the exact definition is under refinement, the accepted understanding of this entity is in patients with chronic liver disease and various organs in failure and where systemic inflammation is a major component of the pathobiology. There are limited therapies for a disease with such a poor prognosis, and while improvements in the critical care management and for very few patients, liver transplantation, mean 50% can survive to hospital discharge, rapid application of new therapies is required. Here we explain the current understanding of the immunologic abnormalities seen in acute-on-chronic liver failure across the innate and adaptive immune systems, the role of the hepatic cell death and the gut-liver axis, and recommendations for future research and treatment paradigms.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom; Liver department and NUMECAN institute, Rennes University Hospital and Rennes University, France
| | - Mark J McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
22
|
Wu YP, Li FC, Ma HY, Yang XY, Zuo J, Tian YX, Lv L, Wang K, Fan YC. Characteristics and risk factors for invasive fungal infection in hospitalized patients with acute-on-chronic hepatitis B liver failure: a retrospective cohort study from 2010 to 2023. Front Microbiol 2024; 15:1391814. [PMID: 38601929 PMCID: PMC11004317 DOI: 10.3389/fmicb.2024.1391814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND AIM The global burden of invasive fungal infections (IFIs) is emerging in immunologic deficiency status from various disease. Patients with acute-on-chronic hepatitis B liver failure (ACHBLF) are prone to IFI and their conditions are commonly exacerbated by IFI. However, little is known about the characteristics and risk factors for IFI in hospitalized ACHBLF patients. METHODS A total of 243 hospitalized ACHBLF patients were retrospectively enrolled from January 2010 to July 2023. We performed restricted cubic spline analysis to determine the non-linear associations between independent variables and IFI. The risk factors for IFI were identified using logistic regression and the extreme gradient boosting (XGBoost) algorithm. The effect values of the risk factors were determined by the SHapley Additive exPlanations (SHAP) method. RESULTS There were 24 ACHBLF patients (9.84%) who developed IFI on average 17.5 (13.50, 23.00) days after admission. The serum creatinine level showed a non-linear association with the possibility of IFI. Multiple logistic regression revealed that length of hospitalization (OR = 1.05, 95% CI: 1.02-1.08, P = 0.002) and neutrophilic granulocyte percentage (OR = 1.04, 95% CI: 1.00-1.09, P = 0.042) were independent risk factors for IFI. The XGBoost algorithm showed that the use of antibiotics (SHAP value = 0.446), length of hospitalization (SHAP value = 0.406) and log (qHBV DNA) (SHAP value = 0.206) were the top three independent risk factors for IFI. Furthermore, interaction analysis revealed no multiplicative effects between the use of antibiotics and the use of glucocorticoids (P = 0.990). CONCLUSION IFI is a rare complication that leads to high mortality in hospitalized ACHBLF patients, and a high neutrophilic granulocyte percentage and length of hospitalization are independent risk factors for the occurrence of IFI.
Collapse
Affiliation(s)
- Yin-Ping Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng-Cai Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Hang-Yu Ma
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Yan Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zuo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Xin Tian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Lv
- Clinical Follow-up Center, Qilu Hospital of Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Jinan, China
| |
Collapse
|
23
|
Hartsoe P, Holguin F, Chu HW. Mitochondrial Dysfunction and Metabolic Reprogramming in Obesity and Asthma. Int J Mol Sci 2024; 25:2944. [PMID: 38474191 PMCID: PMC10931700 DOI: 10.3390/ijms25052944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction and metabolic reprogramming have been extensively studied in many disorders ranging from cardiovascular to neurodegenerative disease. Obesity has previously been associated with mitochondrial fragmentation, dysregulated glycolysis, and oxidative phosphorylation, as well as increased reactive oxygen species production. Current treatments focus on reducing cellular stress to restore homeostasis through the use of antioxidants or alterations of mitochondrial dynamics. This review focuses on the role of mitochondrial dysfunction in obesity particularly for those suffering from asthma and examines mitochondrial transfer from mesenchymal stem cells to restore function as a potential therapy. Mitochondrial targeted therapy to restore healthy metabolism may provide a unique approach to alleviate dysregulation in individuals with this unique endotype.
Collapse
Affiliation(s)
- Paige Hartsoe
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| |
Collapse
|
24
|
Geladari E, Alexopoulos T, Vasilieva L, Tenta R, Kontogianni M, Alexopoulou A. Letter: Severe underweight and sarcopenia in decompensated cirrhosis are associated with high FGF21 levels. Aliment Pharmacol Ther 2024; 59:795-796. [PMID: 38401142 DOI: 10.1111/apt.17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
LINKED CONTENTThis article is linked to Alkhouri et al papers. To view these articles, visit https://doi.org/10.1111/apt.17709 and https://doi.org/10.1111/apt.17907
Collapse
Affiliation(s)
- Eleni Geladari
- 2nd Department of Internal Medicine and Research Laboratory, Medical School, National & Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Theodoros Alexopoulos
- Gastroenterology Department, National & Kapodistrian University of Athens, Medical School, Laiko General Hospital, Athens, Greece
| | | | - Roxane Tenta
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University of Athens, Athens, Greece
| | - Meropi Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University of Athens, Athens, Greece
| | - Alexandra Alexopoulou
- 2nd Department of Internal Medicine and Research Laboratory, Medical School, National & Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
25
|
Xu M, Chen Y, Artru F. Acute decompensation of cirrhosis versus acute-on-chronic liver failure: What are the clinical implications? United European Gastroenterol J 2024; 12:194-202. [PMID: 38376886 PMCID: PMC10954432 DOI: 10.1002/ueg2.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
It is essential to identify the subgroup of patients who experience poorer outcomes in order to adapt clinical management effectively. In the context of liver disease, the earlier the identification occurs, the greater the range of therapeutic options that can be offered to patients. In the past, patients with acute decompensation (AD) of chronic liver disease were treated as a homogeneous group, with emphasis on identifying those at the highest risk of death. In the last 15 years, a differentiation has emerged between acute-on-chronic liver failure syndrome (ACLF) and AD, primarily due to indications that the latter is linked to a less favorable short-term prognosis. Nevertheless, the definition of ACLF varies among the different knowledge societies, making it challenging to assess its true impact compared with AD. Therefore, the purpose of this review is to provide a detailed analysis emphasizing the critical importance of identifying ACLF in the field of advanced liver disease. We will discuss the differences between Eastern and Western approaches, particularly in relation to the occurrence of liver failure and disease onset. Common characteristics, such as the dynamic nature of the disease course, will be highlighted. Finally, we will focus on two key clinical implications arising from these considerations: the prevention of ACLF before its onset and the clinical management strategies once it develops, including liver transplantation and withdrawal of care.
Collapse
Affiliation(s)
- Manman Xu
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center)Beijing You'an Hospital Affiliated to CapitalMedical UniversityBeijingChina
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijingChina
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center)Beijing You'an Hospital Affiliated to CapitalMedical UniversityBeijingChina
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijingChina
| | - Florent Artru
- Institute of Liver StudiesKing's College HospitalLondonUK
- Liver Disease DepartmentRennes University HospitalRennesFrance
- Rennes University and Inserm NuMeCan UMR 1317RennesFrance
| |
Collapse
|
26
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
27
|
Wu M, Wu J, Liu K, Jiang M, Xie F, Yin X, Wu J, Meng Q. LONP1 ameliorates liver injury and improves gluconeogenesis dysfunction in acute-on-chronic liver failure. Chin Med J (Engl) 2024; 137:190-199. [PMID: 38184784 PMCID: PMC10798737 DOI: 10.1097/cm9.0000000000002969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a severe liver disease with complex pathogenesis. Clinical hypoglycemia is common in patients with ACLF and often predicts a worse prognosis. Accumulating evidence suggests that glucose metabolic disturbance, especially gluconeogenesis dysfunction, plays a critical role in the disease progression of ACLF. Lon protease-1 (LONP1) is a novel mediator of energy and glucose metabolism. However, whether gluconeogenesis is a potential mechanism through which LONP1 modulates ACLF remains unknown. METHODS In this study, we collected liver tissues from ACLF patients, established an ACLF mouse model with carbon tetrachloride (CCl 4 ), lipopolysaccharide (LPS), and D-galactose (D-gal), and constructed an in vitro hypoxia and hyperammonemia-triggered hepatocyte injury model. LONP1 overexpression and knockdown adenovirus were used to assess the protective effect of LONP1 on liver injury and gluconeogenesis regulation. Liver histopathology, biochemical index, mitochondrial morphology, cell viability and apoptosis, and the expression and activity of key gluconeogenic enzymes were detected to explore the underlying protective mechanisms of LONP1 in ACLF. RESULTS We found that LONP1 and the expressions of gluconeogenic enzymes were downregulated in clinical ACLF liver tissues. Furthermore, LONP1 overexpression remarkably attenuated liver injury, which was characterized by improved liver histopathological lesions and decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ACLF mice. Moreover, mitochondrial morphology was improved upon overexpression of LONP1. Meanwhile, the expression and activity of the key gluconeogenic enzymes were restored by LONP1 overexpression. Similarly, the hepatoprotective effect was also observed in the hepatocyte injury model, as evidenced by improved cell viability, reduced cell apoptosis, and improved gluconeogenesis level and activity, while LONP1 knockdown worsened liver injury and gluconeogenesis disorders. CONCLUSION We demonstrated that gluconeogenesis dysfunction exists in ACLF, and LONP1 could ameliorate liver injury and improve gluconeogenic dysfunction, which would provide a promising therapeutic target for patients with ACLF.
Collapse
Affiliation(s)
- Muchen Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Kai Liu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Minjie Jiang
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Xuehong Yin
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jushan Wu
- Department of General Surgery, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qinghua Meng
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
28
|
Zhang B, Chang JY, Lee MH, Ju SH, Yi HS, Shong M. Mitochondrial Stress and Mitokines: Therapeutic Perspectives for the Treatment of Metabolic Diseases. Diabetes Metab J 2024; 48:1-18. [PMID: 38173375 PMCID: PMC10850273 DOI: 10.4093/dmj.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/28/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial stress and the dysregulated mitochondrial unfolded protein response (UPRmt) are linked to various diseases, including metabolic disorders, neurodegenerative diseases, and cancer. Mitokines, signaling molecules released by mitochondrial stress response and UPRmt, are crucial mediators of inter-organ communication and influence systemic metabolic and physiological processes. In this review, we provide a comprehensive overview of mitokines, including their regulation by exercise and lifestyle interventions and their implications for various diseases. The endocrine actions of mitokines related to mitochondrial stress and adaptations are highlighted, specifically the broad functions of fibroblast growth factor 21 and growth differentiation factor 15, as well as their specific actions in regulating inter-tissue communication and metabolic homeostasis. Finally, we discuss the potential of physiological and genetic interventions to reduce the hazards associated with dysregulated mitokine signaling and preserve an equilibrium in mitochondrial stress-induced responses. This review provides valuable insights into the mechanisms underlying mitochondrial regulation of health and disease by exploring mitokine interactions and their regulation, which will facilitate the development of targeted therapies and personalized interventions to improve health outcomes and quality of life.
Collapse
Affiliation(s)
- Benyuan Zhang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
29
|
Zhang L, Zhang J, Ye ZW, Muhammad A, Li L, Culpepper JW, Townsend DM, Tew KD. Adaptive changes in tumor cells in response to reductive stress. Biochem Pharmacol 2024; 219:115929. [PMID: 38000559 PMCID: PMC10895707 DOI: 10.1016/j.bcp.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-β-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Aslam Muhammad
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - John W Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
30
|
Arvanitakis K, Koufakis T, Kalopitas G, Papadakos SP, Kotsa K, Germanidis G. Management of type 2 diabetes in patients with compensated liver cirrhosis: Short of evidence, plenty of potential. Diabetes Metab Syndr 2024; 18:102935. [PMID: 38163417 DOI: 10.1016/j.dsx.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Treatment of type 2 diabetes (T2D) in patients with compensated cirrhosis is challenging due to hypoglycemic risk, altered pharmacokinetics, and the lack of robust evidence on the risk/benefit ratio of various drugs. Suboptimal glycemic control accelerates the progression of cirrhosis, while the frequent coexistence of nonalcoholic fatty liver disease (NAFLD) with T2D highlights the need for a multifactorial therapeutic approach. METHODS A literature search was performed in Medline, Google Scholar and Scopus databases till July 2023, using relevant keywords to extract studies regarding the management of T2D in patients with compensated cirrhosis. RESULTS Metformin, sodium-glucose co-transporter-2 inhibitors (SGLT2i), and glucagon-like peptide-1 receptor agonists (GLP-1 RA) are promising treatment options for patients with T2D and compensated liver cirrhosis, offering good glycemic control with minimal risk of hypoglycemia, while their pleiotropic actions confer benefits on NAFLD and body weight, and decrease cardiorenal risk. Sulfonylureas cause hypoglycemia, thus should be avoided, while in specific studies, dipeptidyl peptidase-4 inhibitors have been correlated with increased risk of decompensation and variceal bleeding. Despite the benefits of thiazolidinediones in nonalcoholic steatohepatitis, concerns about edema and weight gain limit their use in compensated cirrhosis. Insulin does not exert hepatotoxic effects and can be administered safely in combination with other drugs; however, the risk of hypoglycemia should be considered. CONCLUSIONS The introduction of new hepatoprotective diabetes drugs into clinical practice, including tirzepatide, SGLT2i, and GLP-1 RA, sets the stage for future trials to investigate the ideal therapeutic regimen for people with T2D and compensated cirrhosis.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
31
|
Huang L, Liu J, Jin Y, Qiu Y, Qin X, Wu S, Chen D, Bie C, Kuang W, Liu H. Niujiao Dihuang Jiedu decoction promotes SLC7A11 m5C methylation modification against ferroptosis in acute-on-chronic liver failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155136. [PMID: 38014838 DOI: 10.1016/j.phymed.2023.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) constitutes a prevalent manifestation of liver failure within clinical settings. This condition manifests swiftly and is characterized by an exceedingly elevated fatality rate. OBJECTIVE While numerous investigations have delved into the role of RNA methylation in ferroptosis, the impact of such methylation on ACLF-associated ferroptosis remains notably underexplored. This study aimed to elucidate the molecular mechanism underlying the efficacy of Niujiao Dihuang Jiedu decoction (NDD) in mitigating ferroptosis in ACLF, with a specific focus on RNA 5-methylcytosine (m5C) methylation. MATERIALS AND METHODS An ACLF rat model was established alongside an erastin-induced ferroptosis model in LO2 cells. Both in vitro and in vivo experiments were conducted to substantiate NDD's influence on ferroptosis. The modifying influence of methylase NOL1/NOP2/sun domain (NSUN5) upon SLC7A11, a key ferroptosis-associated gene, was probed through dot blot, immunofluorescence co-localization, and RNA binding protein immunoprecipitation (RIP) experiments. RESULTS Serological and hepatic histopathological findings indicated NDD's discernible therapeutic impact on ACLF. Furthermore, ferroptosis phenotype experiments revealed NDD's proficiency in effectively impeding the occurrence and development of ferroptosis. Dot blot assays demonstrated a reduction in the overall RNA m5C levels during cellular ferroptosis. Furthermore, through immunofluorescence co-localization and RIP techniques, we found that the propensity of methylase NSUN5 to associate with SLC7A11 mRNA, thereby enhancing its protein translation and conferring resistance against ferroptosis. CONCLUSION RNA methylation is involved in the process of ACLF-associated ferroptosis, and NDD can inhibit ACLF-associated ferroptosis by fostering SLC7A11 m5C methylation.
Collapse
Affiliation(s)
- Liqiao Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Jie Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Yubo Jin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yafang Qiu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Xianfeng Qin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Shenglan Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiqun Bie
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China.
| | - Weihong Kuang
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, Dongguan 523808, China.
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China.
| |
Collapse
|
32
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Liu L, Chen P, Xiao N, Liu Q, Zhu X. Interleukin-8 predicts short-term mortality in acute-on-chronic liver failure patients with hepatitis B-related-related cirrhosis background. Ann Med 2023; 55:2287708. [PMID: 38052052 PMCID: PMC10836280 DOI: 10.1080/07853890.2023.2287708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a distinctive and severe syndrome, marked by an excessive systemic inflammatory response. In vivo, interleukin 8 (IL-8) is an essential pro-inflammatory cytokine. We aimed to investigate the value of serum IL-8 levels in predicting mortality in ACLF patients in the background of hepatitis B virus-related cirrhosis. METHODS In this study, we conducted a retrospective analysis of the clinical baseline characteristics of 276 patients with ACLF in the context of HBV-related cirrhosis. Logistic regression analysis was employed to identify independent risk factors for short-, intermediate-, and long-term mortality. Using these independent risk factors, we developed a nomogram model, which was subsequently validated. To assess the clinical usefulness of the nomogram model, we performed decision curve analysis (DCA). RESULTS Out of the 276 patients with ACLF, 98 (35.5%), 113 (40.9%), and 128 (46.4%) died within 28, 90, and 180 days, respectively. Serum IL-8 levels were only an independent predictor of 28-day mortality and could simply classify ACLF patients. Conversely, mean arterial pressure (MAP), HBV-DNA, and COSHACLF IIs were independent predictors of mortality across all three observation periods. We constructed a nomogram based on IL-8 that was able to visualise and predict 28-day mortality with a C-index of 0.901 (95% CI: 0.862-0.940). Our calibration curves, Predicted Probability of Death & Actual Survival Status plot, and Confusion Matrix demonstrated the nomogram model's strong predictive power. DCA indicated the nomogram's promising clinical utility in predicting 28-day mortality in ACLF patients. CONCLUSION Serum IL-8 levels predict short-term mortality in ACLF patients in the background of HBV-associated cirrhosis, and the developed Nomogram model has strong predictive power and good clinical utility.
Collapse
Affiliation(s)
- Linxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Nanxi Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Qi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Zhao R, Zhao Q, Wang X, Chen X, Liang C, Xiao Q, Yang S, Tan S. Yi-Qi-Jian-Pi formula inhibits hepatocyte pyroptosis through the IDH2-driven tricarboxylic acid cycle to reduce liver injury in acute-on-chronic liver failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116683. [PMID: 37315653 DOI: 10.1016/j.jep.2023.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Qi-Jian-Pi formula (YQJPF) is a commonly used traditional Chinese medicine (TCM) compound used to treat acute-on-chronic liver failure (ACLF) in China, but its specific mechanism of action has not been fully clarified. AIM OF THE STUDY The aim of this study was to determine the effect of YQJPF on liver injury and hepatocyte pyroptosis in rats and further explore its molecular mechanism of action. MATERIALS AND METHODS This study established carbon tetrachloride (CCl4)-, lipopolysaccharide (LPS)- and D-galactose (D-Gal)-induced in vivo models of ACLF in rats and in vitro LPS-induced hepatocyte injury models. Animal experiments were divided into the following groups: control, ACLF model, groups with different doses of YQJPF (5.4, 10.8, and 21.6 g/kg), and western medicine (methylprednisolone). There were 7 rats in the control group and 11 in the other groups. Serological, immunohistochemical, and pathological analyses were used to observe the effect of YQJPF on the liver of ACLF rats. The protective effect of YQJPF on hepatocytes was further verified by RT-qPCR, western blotting, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and other methods. RESULTS YQJPF significantly improved liver injury in vivo and in vitro, which depended on the regulation of hepatocyte NLRP3/GSDMD-induced pyroptosis. In addition, we found that mitochondrial membrane potential and ATP production decreased after LPS treatment of hepatocytes, which suggested that YQJPF may improve mitochondrial energy metabolism disorders in hepatocytes. We administered a hepatocyte mitochondrial uncoupling agent, FCCP, to determine whether mitochondrial metabolic disorders affected cell pyroptosis. The results showed that the expression of IL-18, IL-1β, and NLRP3 proteins increased significantly, indicating that the effect of this drug on hepatocyte pyroptosis may be related to mitochondrial metabolism disorders. We found that YQJPF significantly restored the tricarboxylic acid (TCA) cycle rate-limiting enzyme activity and affected the content of TCA metabolites. Furthermore, we revealed that the IDH2 gene, which plays a unique role in ACLF, is a key factor in the regulation of the mitochondrial TCA cycle and can be upregulated under the action of YQJPF. CONCLUSIONS YQJPF can inhibit classical pyroptosis in hepatocytes by regulating TCA cycle metabolism, thus alleviating liver injury, and IDH2 may be a potential upstream regulatory target of YQJPF.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China; Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Qiang Zhao
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China; Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Xi Wang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China; Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Xiaomei Chen
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Chongfeng Liang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Qian Xiao
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Shiyan Yang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21003, China; Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 21003, China.
| |
Collapse
|
35
|
Liang J, Wei X, Hou W, Wang H, Ma R, Gao Y, Du Y, Zhang Q. Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle. Chin Med 2023; 18:157. [PMID: 38037150 PMCID: PMC10691013 DOI: 10.1186/s13020-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Collapse
Affiliation(s)
- Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Xiaoyi Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanjing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ruimin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
36
|
Li ZH, Wang JY, Li XL, Meng SB, Zheng HY, Wang JL, Lei ZY, Lin BL, Zhang J. Mesenchymal stem cell-regulated miRNA-mRNA landscape in acute-on-chronic liver failure. Genomics 2023; 115:110737. [PMID: 37926353 DOI: 10.1016/j.ygeno.2023.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a major challenge in the field of hepatology. While mesenchymal stem cell (MSC) therapy can improve the prognosis of patients with ACLF, the molecular mechanisms through which MSCs attenuate ACLF remain poorly understood. We performed global miRNA and mRNA expression profiling via next-generation sequencing of liver tissues from MSC-treated ACLF mice to identify important signaling pathways and major factors implicated in ACLF alleviation by MSCs. METHODS Carbon tetrachloride-induced ACLF mice were treated with saline or mouse bone marrow-derived MSCs. Mouse livers were subjected to miRNA and mRNA sequencing. Related signal transduction pathways were obtained through Gene Set Enrichment Analysis. Functional enrichment, protein-protein interaction, and immune infiltration analyses were performed for the differentially expressed miRNA target genes (DETs). Hub miRNA and mRNA associated with liver injury were analyzed using LASSO regression. The expression levels of hub genes were subjected to Pearson's correlation analysis and verified using RT-qPCR. The biological functions of hub genes were verified in vitro. RESULTS The tricarboxylic acid cycle and peroxisome proliferator-activated receptor pathways were activated in the MSC-treated groups. The proportions of liver-infiltrating NK resting cells, M2 macrophages, follicular helper T cells, and other immune cells were altered after MSC treatment. The expression levels of six miRNAs and 10 transcripts correlated with the degree of liver injury. miR-27a-5p was downregulated in the mouse liver after MSC treatment, while its target gene E2f2 was upregulated. miR-27a-5p inhibited E2F2 expression, suppressed G1/S phase transition and proliferation of hepatocytes, in addition to promoting their apoptosis. CONCLUSIONS This is the first comprehensive analysis of miRNA and mRNA expression in the liver tissue of ACLF mice after MSC treatment. The results revealed global changes in hepatic pathways and immune subpopulations. The miR-27a-5p/E2F2 axis emerged as a central regulator of the MSC-induced attenuation of ACLF. The current findings improve our understanding of the molecular mechanisms through which MSCs alleviate ACLF.
Collapse
Affiliation(s)
- Zhi-Hui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Jun-Yi Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Xian-Long Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Shi-Bo Meng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Hui-Yuan Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jia-Lei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Zi-Ying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China.
| | - Bing-Liang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, People's Republic of China.
| | - Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China.
| |
Collapse
|
37
|
Postma RJ, Broekhoven AG, Verspaget HW, de Boer H, Hankemeier T, Coenraad MJ, van Duinen V, van Zonneveld AJ. Novel Morphological Profiling Assay Connects ex Vivo Endothelial Cell Responses to Disease Severity in Liver Cirrhosis. GASTRO HEP ADVANCES 2023; 3:238-249. [PMID: 39129954 PMCID: PMC11307659 DOI: 10.1016/j.gastha.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Endothelial cell (EC) dysfunction in response to circulating plasma factors is a known causal factor in many systemic diseases. However, no appropriate assay is available to investigate this causality ex vivo. In liver cirrhosis, systemic inflammation is identified as central mechanism in progression from compensated to decompensated cirrhosis (DC), but the role of ECs therein is unknown. We aimed to develop a novel ex vivo assay for assessing EC responses to patient-derived plasma (PDP) and assess the potential of this assay in a cohort of liver cirrhosis patients. Methods Image-based morphological profiling was utilized to assess the impact of PDP on cultured ECs. Endothelial cell (EC) monolayers were exposed to 25% stabilized PDP (20 compensated cirrhoses, 20 DCs, and 20 healthy controls (HCs). Single-cell morphological profiles were extracted by automated image-analysis following staining of multiple cellular components and high-content imaging. Patient profiles were created by dimension reduction and cell-to-patient data aggregation, followed by multivariate-analysis to stratify patients and identify discriminating features. Results Patient-derived plasma (PDP) exposure induced profound changes in EC morphology, displaying clear differences between controls and DC patients. Compensated cirrhosis patients showed overlap with healthy controls and DC patients. Supervised analysis showed Child-Pugh (CP) class could be predicted from EC morphology. Most importantly, CP-C patients displayed distinct EC phenotypes, in which mitochondrial changes were most discriminative. Conclusion Morphological profiling presents a viable tool to assess the endothelium ex vivo. We demonstrated that the EC phenotype corresponds with disease severity in liver cirrhosis. Moreover, our results suggest the presence of mitochondrial dysfunction in ECs of CP-C patient.
Collapse
Affiliation(s)
- Rudmer J. Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelotte G.C. Broekhoven
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hein W. Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty de Boer
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Minneke J. Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent van Duinen
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- MIMETAS B.V., Oegstgeest, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
39
|
Sharma N, Pandey S, Yadav M, Mathew B, Bindal V, Sharma N, Tripathi G, Bhat SH, Gupta A, Maiwall R, Sharma S, Sarin SK, Maras JS. Biomolecular map of albumin identifies signatures of severity and early mortality in acute liver failure. J Hepatol 2023; 79:677-691. [PMID: 37116716 DOI: 10.1016/j.jhep.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is associated with high mortality. Alterations in albumin structure and function have been shown to correlate with outcomes in cirrhosis. We undertook a biomolecular analysis of albumin to determine its correlation with hepatocellular injury and early mortality in ALF. METHODS Altogether, 225 participants (200 patients with ALF and 25 healthy controls [HC]) were enrolled. Albumin was purified from the baseline plasma of the training cohort (ALF, n = 40; survivors, n = 8; non-survivors, n = 32; and HC, n = 5); analysed for modifications, functionality, and bound multi-omics signatures; and validated in a test cohort (ALF, n = 160; survivors, n = 53; non-survivors, n = 107; and HC, n = 20). RESULTS In patients with ALF, albumin is more oxidised and glycosylated with a distinct multi-omics profile than that in HC, more so in non-survivors (p <0.05). In non-survivors, albumin was more often bound (p <0.05, false discovery rate <0.01) to proteins associated with inflammation, advanced glycation end product, metabolites linked to arginine, proline metabolism, bile acid, and mitochondrial breakdown products. Increased bacterial taxa (Listeria, Clostridium, etc.) correlated with lipids (triglycerides [4:0/12:0/12:0] and phosphatidylserine [39:0]) and metabolites (porphobilinogen and nicotinic acid) in non-survivors (r2 >0.7). Multi-omics signature-based probability of detection for non-survival was >90% and showed direct correlation with albumin functionality and clinical parameters (r2 >0.85). Probability-of-detection metabolites built on the top five metabolites, namely, nicotinic acid, l-acetyl carnitine, l-carnitine, pregnenolone sulfate, and N-(3-hydroxybutanoyl)-l-homoserine lactone, showed diagnostic accuracy of 98% (AUC 0.98, 95% CI 0.95-1.0) and distinguish patients with ALF predisposed to early mortality (log-rank <0.05). On validation using high-resolution mass spectrometry and five machine learning algorithms in test cohort 1 (plasma and paired one-drop blood), the metabolome panel showed >92% accuracy/sensitivity and specificity for prediction of mortality. CONCLUSIONS In ALF, albumin is hyperoxidised and substantially dysfunctional. Our study outlines distinct 'albuminome' signatures capable of distinguishing patients with ALF predisposed to early mortality or requiring emergency liver transplantation. IMPACTS AND IMPLICATIONS Here, we report that the biomolecular map of albumin is distinct and linked to severity and outcome in patients with acute liver failure (ALF). Detailed structural, functional, and albumin-omics analysis in patients with ALF led to the identification and classification of albumin-bound biomolecules, which could segregate patients with ALF predisposed to early mortality. More importantly, we found albumin-bound metabolites indicative of mitochondrial damage and hyperinflammation as a putative indicator of <30-day mortality in patients with ALF. This preclinical study validates the utility of albuminome analysis for understanding the pathophysiology and development of poor outcome indicators in patients with ALF.
Collapse
Affiliation(s)
- Neha Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Babu Mathew
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H Bhat
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak Gupta
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shvetank Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jaswinder Singh Maras
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
40
|
Clària J, Arroyo V, Moreau R. Roles of systemic inflammatory and metabolic responses in the pathophysiology of acute-on-chronic liver failure. JHEP Rep 2023; 5:100807. [PMID: 37600957 PMCID: PMC10432809 DOI: 10.1016/j.jhepr.2023.100807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 08/22/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is the most severe form of acutely decompensated cirrhosis and is characterised by the presence of one or more organ failures, intense systemic inflammation, peripheral blood lymphopenia, and a high risk of death without liver transplantation within 28 days. Herein, we propose the hypothesis that intense systemic inflammation may lead to organ failures through five different non-mutually exclusive mechanisms. First, pathogen-associated molecular patterns and inflammatory mediators (i.e. cytokines and lipid mediators) stimulate the production of the vasorelaxant nitric oxide in the walls of splanchnic arterioles, leading to enhanced splanchnic and systemic vasodilation which, in turn, induces enhanced activity of endogenous vasoconstrictor systems causing renal vasoconstriction and acute kidney injury. Second, neutrophils that reach the systemic circulation are prone to adhere to the vascular endothelium. Cytokines and lipid mediators act on the endothelium in microvessels of vital organs, an effect that favours the migration of neutrophils (and probably other leukocytes) to surrounding tissues where neutrophils can cause tissue damage and thereby contribute to organ failure. Third, cytokines and lipid mediators promote the formation of microthrombi that impair microcirculation and tissue oxygenation. Fourth, acute inflammation stimulates intense peripheral catabolism of amino acids whose products may be metabotoxins that contribute to hepatic encephalopathy. Fifth, acute inflammatory responses, which include the production of a broad variety of biomolecules (proteins and lipids), and an increase in biomass (i.e., granulopoiesis requiring de novo nucleotide synthesis), among others, are energetically expensive processes that require large amounts of nutrients. Therefore, immunity competes with other maintenance programmes for energy. The brain stem integrates the energy demand of each organ system, with immunity considered a top priority. The brain stem may "decide" to make a trade-off which involves the induction of a dormancy programme that permits the shutdown of mitochondrial respiration and oxidative phosphorylation in peripheral organs. In the context of acutely decompensated cirrhosis, the consequence of a shutdown of mitochondrial respiration and ATP production would be a dramatic decrease in organ function.
Collapse
Affiliation(s)
- Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- Hospital Clínic-IDIBAPS, CIBERehd, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Grifols Chair, Barcelona, Spain
- INSERM, Université de Paris, Centre de Recherche sur l’Inflammation (CRI), Paris, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Service d’Hépatologie, Clichy, France
| |
Collapse
|
41
|
Liang X, Li P, Jiang J, Xin J, Luo J, Li J, Chen P, Ren K, Zhou Q, Guo B, Zhou X, Chen J, He L, Yang H, Hu W, Ma S, Li B, Chen X, Shi D, Li J. Transcriptomics unveils immune metabolic disruption and a novel biomarker of mortality in patients with HBV-related acute-on-chronic liver failure. JHEP Rep 2023; 5:100848. [PMID: 37583946 PMCID: PMC10424217 DOI: 10.1016/j.jhepr.2023.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023] Open
Abstract
Background & Aims HBV-related acute-on-chronic liver failure (HBV-ACLF) is a complex syndrome associated with high short-term mortality. This study aims to reveal the molecular basis and identify novel HBV-ACLF biomarkers. Methods Seventy patients with HBV-ACLF and different short-term (28 days) outcomes underwent transcriptome sequencing using peripheral blood mononuclear cells. Candidate biomarkers were confirmed in two external cohorts using ELISA. Results Cellular composition analysis with peripheral blood mononuclear cell transcriptomics showed that the proportions of monocytes, T cells and natural killer cells were significantly correlated with 28-day mortality. Significant metabolic dysregulation of carbohydrate, energy and amino acid metabolism was observed in ACLF non-survivors. V-set and immunoglobulin domain-containing 4 (VSIG4) was the most robust predictor of patient survival (adjusted p = 1.74 × 10-16; variable importance in the projection = 1.21; AUROC = 0.89) and was significantly correlated with pathways involved in the progression of ACLF, including inflammation, oxidative phosphorylation, tricarboxylic acid cycle and T-cell activation/differentiation. Plasma VSIG4 analysis externally validated its diagnostic value in ACLF (compared with chronic liver disease and healthy groups, AUROC = 0.983). The prognostic performance for 28-/90-day mortality (AUROCs = 0.769/0.767) was comparable to that of three commonly used scores (COSSH-ACLFs, 0.867/0.884; CLIF-C ACLFs, 0.840/0.835; MELD-Na, 0.710/0.737). Plasma VSIG4 level, as an independent predictor, could be used to improve the prognostic performance of clinical scores. Risk stratification based on VSIG4 expression levels (>122 μg/ml) identified patients with ACLF at a high risk of death. The generality of VSIG4 in other etiologies was validated. Conclusions This study reveals that immune-metabolism disorder underlies poor ACLF outcomes. VSIG4 may be helpful as a diagnostic and prognostic biomarker in clinical practice. Impact and implications Acute-on-chronic liver failure (ACLF) is a lethal clinical syndrome associated with high mortality. We found significant immune cell alterations and metabolic dysregulation that were linked to high mortality in patients with HBV-ACLF based on transcriptomics using peripheral blood mononuclear cells. We identified VSIG4 (V-set and immunoglobulin domain-containing 4) as a diagnostic and prognostic biomarker in ACLF, which could specifically identify patients with ACLF at a high risk of death.
Collapse
Affiliation(s)
- Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Pengcheng Chen
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wen Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shiwen Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Chen
- Institute of Pharmaceutical Biotechnology and the First Affiliated Hospital, Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chinese Group on the Study of Severe Hepatitis B (COSSH)
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, China
- Institute of Pharmaceutical Biotechnology and the First Affiliated Hospital, Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Jian XH, Wen J. Recent progress in understanding mitokines as diagnostic and therapeutic targets in hepatocellular carcinoma. World J Clin Cases 2023; 11:5416-5429. [PMID: 37637689 PMCID: PMC10450380 DOI: 10.12998/wjcc.v11.i23.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and the leading contributor to cancer-related deaths. The progression and metastasis of HCC are closely associated with altered mitochondrial metabolism, including mitochondrial stress response. Mitokines, soluble proteins produced and secreted in response to mitochondrial stress, play an essential immunomodulatory role. Immunotherapy has emerged as a crucial treatment option for HCC. However, a positive response to therapy is typically dependent on the interaction of tumor cells with immune regulation within the tumor microenvironment. Therefore, exploring the specific immunomodulatory mechanisms of mitokines in HCC is essential for improving the efficacy of immunotherapy. This study provides a comprehensive overview of the association between HCC and the immune microenvironment and highlights recent progress in understanding the involvement of mitochondrial function in preserving liver function. In addition, a systematic review of mitokines-mediated immunomodulation in HCC is presented. Finally, the potential diagnostic and therapeutic roles of mitokines in HCC are prospected and summarized. Recent progress in mitokine research represents a new prospect for mitochondrial therapy. Considering the potential of mitokines to regulate immune function, investigating them as a relevant molecular target holds great promise for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
43
|
Weiss E, de la Peña-Ramirez C, Aguilar F, Lozano JJ, Sánchez-Garrido C, Sierra P, Martin PIB, Diaz JM, Fenaille F, Castelli FA, Gustot T, Laleman W, Albillos A, Alessandria C, Domenicali M, Caraceni P, Piano S, Saliba F, Zeuzem S, Gerbes AL, Wendon JA, Jansen C, Gu W, Papp M, Mookerjee R, Gambino CG, Jiménez C, Giovo I, Zaccherini G, Merli M, Putignano A, Uschner FE, Berg T, Bruns T, Trautwein C, Zipprich A, Bañares R, Presa J, Genesca J, Vargas V, Fernández J, Bernardi M, Angeli P, Jalan R, Claria J, Junot C, Moreau R, Trebicka J, Arroyo V. Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET). Gut 2023; 72:1581-1591. [PMID: 36788015 PMCID: PMC10359524 DOI: 10.1136/gutjnl-2022-328708] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND AND AIMS Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.
Collapse
Affiliation(s)
- Emmanuel Weiss
- Centre de Recherchesurl' Inflammation (CRI), Universite Paris Diderot, Paris, Île-de-France, France
- INSERM UMR_S1149, University Paris Cite, Paris, France
- Department of Anesthesiology and Critical Care, Hopital Beaujon, Clichy, France
| | | | | | | | | | | | | | | | | | | | - Thierry Gustot
- Department of Hepato Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Bruxelles, Belgium
| | - Wim Laleman
- Division of Liver and Biliopanreatic Disorders, KU Leuven, University of Leuven, Leuven, Belgium
| | - Agustín Albillos
- Department of Gastroenterology, Hospital Ramon y Cajal, Madrid, Spain
- Universidad de Alcala de Henares, Madrid, Spain
| | | | - Marco Domenicali
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paolo Caraceni
- IRCCS Azienda-Ospedaliera Universitaria di Bologna, Department of Medical and Surgical Science - University of Bologna, Bologna, Italy
| | - Salvatore Piano
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Faouzi Saliba
- Centre Hepato-Biliare, Hopital Paul Brousse, Villejuif, France
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, J. W. Goethe-University Hospital, Frankfurt am Main, Hessen, Germany
| | | | - Julia A Wendon
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | - Wenyi Gu
- Department of Internal Medicine B, University of Münster, Munster, Nordrhein-Westfalen, Germany
| | - Maria Papp
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Raj Mookerjee
- Institute of Liver and Digestive Health, University College London Medical School, London, UK
| | - Carmine Gabriele Gambino
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padua, Padova, Veneto, Italy
| | | | - Ilaria Giovo
- Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-related Diseases, University of Bologna Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Manuela Merli
- II Department of Gastroenterology, "La Sapienza" University, Rome, Italy
| | - Antonella Putignano
- Division of Gastroenterology and Gastrointestinal Endoscopy. Vita-Salute San Raffaele University - Scientific Institute San Raffaele, Milan, Italy
| | | | - Thomas Berg
- Medizinische Klinik, Gastroenterologie und Hepatologie, Berlin, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Deptartment of Internal Medicine III, University Hospital Aachen Department of Gastroenterology Metabolic Disorders and Intensive Medicine, Aachen, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Rafael Bañares
- Gastroenterology, IRYCIS, Hospital General Universitario Gregorio Marañón, Madrid, Madrid, Spain
| | | | - Joan Genesca
- Internal Medicine-Liver Unit, Hospital Universitari Vall d'Hebron, Barcelona, Barcelona, Spain
- Spain
| | - Victor Vargas
- Liver Unit, Hospital Vall d'Hebron, Barcelona, Barcelona, Spain
| | | | | | - Paolo Angeli
- Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | | | - Joan Claria
- Department of Biochemistry/Molecular Genetics, Hospital Clínic/University of Barcelona, Barcelona, Spain
| | | | - Richard Moreau
- Centre de Recherchesurl' Inflammation (CRI), Universite Paris Diderot, Paris, Île-de-France, France
- EF Clif, Barcelona, Catalunya, Spain
- Hepatology, Hôpital Beaujon, Clichy, France
| | - Jonel Trebicka
- EF Clif, Barcelona, Catalunya, Spain
- Translational Hepatology Department of Internal Medicine I, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
44
|
Luo J, Li J, Li P, Liang X, Hassan HM, Moreau R, Li J. Acute-on-chronic liver failure: far to go-a review. Crit Care 2023; 27:259. [PMID: 37393351 PMCID: PMC10315037 DOI: 10.1186/s13054-023-04540-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) has been recognized as a severe clinical syndrome based on the acute deterioration of chronic liver disease and is characterized by organ failure and high short-term mortality. Heterogeneous definitions and diagnostic criteria for the clinical condition have been proposed in different geographic regions due to the differences in aetiologies and precipitating events. Several predictive and prognostic scores have been developed and validated to guide clinical management. The specific pathophysiology of ACLF remains uncertain and is mainly associated with an intense systemic inflammatory response and immune-metabolism disorder based on current evidence. For ACLF patients, standardization of the treatment paradigm is required for different disease stages that may provide targeted treatment strategies for individual needs.
Collapse
Affiliation(s)
- Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital Affiliated of Hangzhou Medical College, Hangzhou, China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain.
- Centre de Recherche Surl'Inflammation (CRI), Institut National de La Santé Et de La Recherche Médicale (INSERM) & Université Paris-Cité, Paris, France.
- Service d'Hépatologie, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Beaujon, Clichy, France.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
45
|
Laghi L, Román E, Lan Q, Nieto JC, Canalda-Baltrons A, Poca M, Sánchez-Rodríguez MB, Clària J, Alvarado E, Cuyàs B, Sánchez E, Vidal S, Guarner C, Escorsell À, Manichanh C, Soriano G. A multistrain probiotic increases the serum glutamine/glutamate ratio in patients with cirrhosis: a metabolomic analysis. Hepatol Commun 2023; 7:e0072. [PMID: 37026745 PMCID: PMC10079330 DOI: 10.1097/hc9.0000000000000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 04/08/2023] Open
Abstract
To explore the potential mechanisms underlying the effects of a probiotic in cirrhotic patients, we analyzed the blood metabolome using proton nuclear magnetic resonance (1H-NMR) spectroscopy in 32 patients with cirrhosis and cognitive dysfunction or falls. Patients were randomized to receive a multistrain probiotic or placebo for 12 weeks. Among the 54 metabolites identified, the only significant changes in the probiotic group were an increase in glutamine, a decrease in glutamate, and an increase in the glutamine/glutamate ratio. In the placebo group, glutamate increased and the glutamine/glutamate ratio decreased. Our results suggest the multistrain probiotic could influence glutamine/glutamate metabolism, increasing the capacity of ammonia detoxification.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Eva Román
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Escola Universitària d’Infermeria EUI-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Qiuyu Lan
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Juan Camilo Nieto
- Institut de Recerca IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Poca
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria B. Sánchez-Rodríguez
- Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Joan Clària
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Edilmar Alvarado
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Cuyàs
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Sílvia Vidal
- Institut de Recerca IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels Escorsell
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Chaysavanh Manichanh
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Duran-Güell M, Garrabou G, Flores-Costa R, Casulleras M, López-Vicario C, Zhang IW, Cantó-Santos J, Contreras BJ, Sánchez-Rodríguez MB, Romero-Grimaldo B, Horrillo R, Costa M, Arroyo V, Clària J. Essential role for albumin in preserving liver cells from TNFα-induced mitochondrial injury. FASEB J 2023; 37:e22817. [PMID: 36809676 DOI: 10.1096/fj.202201526r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Cytokine-induced inflammation and mitochondrial oxidative stress are key drivers of liver tissue injury. Here, we describe experiments modeling hepatic inflammatory conditions in which plasma leakage leads to large amounts of albumin to reach the interstitium and parenchymal surfaces to explore whether this protein plays a role in preserving hepatocyte mitochondria against the damaging actions of the cytotoxic cytokine tumor necrosis factor alpha (TNFα). Hepatocytes and precision-cut liver slices were cultured in the absence or presence of albumin in the cell media and then exposed to mitochondrial injury with the cytokine TNFα. The homeostatic role of albumin was also investigated in a mouse model of TNFα-mediated liver injury induced by lipopolysaccharide and D-galactosamine (LPS/D-gal). Mitochondrial ultrastructure, oxygen consumption, ATP and reactive oxygen species (ROS) generation, fatty acid β-oxidation (FAO), and metabolic fluxes were assessed by transmission electron microscopy (TEM), high-resolution respirometry, luminescence-fluorimetric-colorimetric assays and NADH/FADH2 production from various substrates, respectively. TEM analysis revealed that in the absence of albumin, hepatocytes were more susceptible to the damaging actions of TNFα and showed more round-shaped mitochondria with less intact cristae than hepatocytes cultured with albumin. In the presence of albumin in the cell media, hepatocytes also showed reduced mitochondrial ROS generation and FAO. The mitochondria protective actions of albumin against TNFα damage were associated with the restoration of a breakpoint between isocitrate and α-ketoglutarate in the tricarboxylic acid cycle and the upregulation of the antioxidant activating transcription factor 3 (ATF3). The involvement of ATF3 and its downstream targets was confirmed in vivo in mice with LPS/D-gal-induced liver injury, which showed increased hepatic glutathione levels, indicating a reduction in oxidative stress after albumin administration. These findings reveal that the albumin molecule is required for the effective protection of liver cells from mitochondrial oxidative stress induced by TNFα. These findings emphasize the importance of maintaining the albumin levels in the interstitial fluid within the normal range to protect the tissues against inflammatory injury in patients with recurrent hypoalbuminemia.
Collapse
Affiliation(s)
- Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, Internal Medicine Department, University of Barcelona, Hospital Clínic, Barcelona, Spain.,CIBERer, Barcelona, Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Judith Cantó-Santos
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, Internal Medicine Department, University of Barcelona, Hospital Clínic, Barcelona, Spain.,CIBERer, Barcelona, Spain
| | - Bryan J Contreras
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | | | - Berta Romero-Grimaldo
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | | | | | - Vicente Arroyo
- Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Grifols Chair, European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Langer MM, Bauschen A, Guckenbiehl S, Klauss S, Lutz T, Denk G, Zwanziger D, Moeller LC, Lange CM. Evolution of non-thyroidal illness syndrome in acute decompensation of liver cirrhosis and acute-on-chronic liver failure. Front Endocrinol (Lausanne) 2023; 14:1104388. [PMID: 36755907 PMCID: PMC9899974 DOI: 10.3389/fendo.2023.1104388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND AIMS Non-thyroidal illness syndrome (NTIS) is frequent in critically ill patients and associated with adverse outcomes. We aimed to characterize the evolution of NTIS in patients with acute decompensation (AD) of cirrhosis and acute-on-chronic liver failure (ACLF), since NTIS is not well described in these newly defined syndromes. METHODS Thyroid hormones (TH) were quantified at baseline in consecutive patients with cirrhosis. In addition, 76 inflammatory mediators were quantified by proximity extension analysis assay in a subgroup of patients. Associations between TH, cirrhosis stage, mortality and inflammation were assessed. RESULTS Overall, 437 patients were included, of whom 165 (37.8%), 211 (48.3%), and 61 (14%) had compensated cirrhosis (CC), AD, and ACLF. FT3 concentrations were lower in AD versus CC, and further decreased in ACLF. Importantly, NTIS was present in 83 (39.3%) patients with AD and in 44 (72.1%) patients with ACLF (P<0.001). Yet, TSH and TSH-based indexes (TSH/FT3-ratio, thyroid index) showed an U-shaped evolution during progression of cirrhosis, suggesting a partially preserved responsiveness of the hypothalamus and pituitary in AD. Infections were associated with lower FT3 concentrations in AD, but not in ACLF. Low FT3 concentrations correlated significantly with 90-day mortality. Both, AD/ACLF and NTIS, were associated with signatures of inflammatory mediators, which were partially non-overlapping. CONCLUSION NTIS is frequent already in AD and therefore precedes critically illness in a subgroup of patients with decompensated cirrhosis. This might constitute a new paradigm of TH signaling in cirrhosis, offering opportunities to explore preventive effects of TH in AD.
Collapse
Affiliation(s)
- Mona-May Langer
- Department for Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Internal Medicine II, Ludwig-Maximilians University (LMU) University Hospital Munich, Munich, Germany
| | - Alina Bauschen
- Department for Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sabrina Guckenbiehl
- Department for Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sarah Klauss
- Department of Internal Medicine II, Ludwig-Maximilians University (LMU) University Hospital Munich, Munich, Germany
| | - Teresa Lutz
- Department of Internal Medicine II, Ludwig-Maximilians University (LMU) University Hospital Munich, Munich, Germany
| | - Gerald Denk
- Department of Internal Medicine II, Ludwig-Maximilians University (LMU) University Hospital Munich, Munich, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C. Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian M. Lange
- Department for Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Internal Medicine II, Ludwig-Maximilians University (LMU) University Hospital Munich, Munich, Germany
- *Correspondence: Christian M. Lange,
| |
Collapse
|
48
|
Ma L, Liu S, Xing H, Jin Z. Research progress on short-term prognosis of acute-on-chronic liver failure. Expert Rev Gastroenterol Hepatol 2023; 17:45-57. [PMID: 36597928 DOI: 10.1080/17474124.2023.2165063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Acute-on-chronic liver failure (ACLF) is a clinical syndrome characterized as a severe condition with rapid progression, poor therapeutic response and poor prognosis. Early and timely evaluation of the prognosis is helpful for providing appropriate clinical intervention and prolonging patient survival. AREAS COVERED Currently, there are no specific dynamic and comprehensive approaches to assess the prognosis of patients with ACLF. This article reviews the progress in evaluating the short-term prognosis of ACLF to provide future directions for more dynamic prospective large-scale multicenter studies and a basis for individualized and precise treatment for ACLF patients. We searched PubMed and Web of Science with the term 'acute on chronic liver failure' and 'prognosis.' There was no date or language restriction, and our final search was on 26 October 2022. EXPERT OPINION ACLF is a dynamic process, and the best prognostic marker is the clinical evolution of organ failure over time. New prognostic markers are developing not only in the fields of genetics and histology but also toward diversification combined with imaging. Determining which patients will benefit from continued advanced life support is a formidable challenge, and accurate short-term prognostic assessments of ACLF are a good approach to addressing this issue.
Collapse
Affiliation(s)
- Luyao Ma
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Siqi Liu
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Hao Xing
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
49
|
Wang J, Yang Y, Sun F, Luo Y, Yang Y, Li J, Hu W, Tao H, Lu C, Yang JJ. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res 2023; 187:106608. [PMID: 36566000 DOI: 10.1016/j.phrs.2022.106608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial metabolism plays a pivotal role in various cellular processes and fibrosis. However, the mechanism underlying mitochondrial metabolic function and liver fibrosis remains poorly understood. In this study, we determined whether mitochondrial metabolism mediates liver fibrosis using cells, animal models, and clinical samples to elucidate the potential effects and underlying mechanism of mitochondrial metabolism in liver fibrosis. We report that AlkB Homolog 5 (ALKBH5) decreases mitochondrial membrane potential (MMP) and oxygen consumption rate (OCR), suppresses mitochondrial fission and hepatic stellate cell (HSC) proliferation and migration and ameliorates liver fibrosis. Enhancement of mitochondrial fission, an essential event during HSC proliferation and migration, is dependent on decreased ALKBH5 expression. Furthermore, we reveal that low ALKBH5 expression is associated with elevated N6-methyladenosine (m6A) mRNA levels. Mechanistically, ALKBH5 mediates m6A demethylation in the 3'UTR of Drp1 mRNA and induces its translation in a YTH domain family proteins 1 (YTHDF1)-independent manner. Subsequently, in transforming growth factor-β1 (TGF-β1) induced HSC, Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and increases cell proliferation and migration. Decreased Drp1 expression inhibits mitochondrial fission and suppresses HSC proliferation and migration. Notably, human fibrotic liver and heart tissue exhibited enhanced mitochondrial fission; increased YTHDF1, Drp1, alpha-smooth muscle actin (α-SMA) and collagen I expression; decreased ALKBH5 expression and increased liver fibrosis. Our results highlight a novel mechanism by which ALKBH5 suppresses mitochondrial fission and HSC proliferation and migration by reducing Drp1 methylation in an m6A-YTHDF1-dependent manner, which may indicate a demethylation-based approach for liver fibrosis diagnosis and therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of Surgical Oncology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Feng Sun
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Luo
- Department of Scientific research and experimental center, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui Tao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
50
|
Zhang X, Zhang Y, Zhou P, Ai J, Liu X, Zhang Q, Wang Z, Wang H, Zhang W, Zhang J, Huang Y. Down-regulated cylindromatosis enhances NF-κB activation and aggravates inflammation in HBV-ACLF patients. Emerg Microbes Infect 2022; 11:1586-1601. [PMID: 35579924 PMCID: PMC9186363 DOI: 10.1080/22221751.2022.2077128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenesis of liver in patients with hepatitis B virus-associated acute chronic liver failure (HBV-ACLF) remains largely unknown. We aimed to elucidate the molecular mechanism underlying the pathogenesis of liver in HBV-ACLF patients by using multiple approaches including transcriptome analysis. We performed transcriptomic sequencing analysis on the liver of HBV-ACLF patients (n = 6), chronic hepatitis B (n = 6), liver cirrhosis (n = 6) and normal control (n = 5), then explored the potential pathogenesis mechanism in liver specimen from another 48 subjects and further validated the molecular and cellular mechanisms using THP-1 cells. RNA-sequencing data analysis indicated that, among the genes up-regulated in HBV-ACLF, genes related to inflammatory response and chemotaxis accounted for a large proportion of the total DEGs. A number of key chemokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8) and NF-ĸB pathway were identified to be robust in the liver samples from HBV-ACLF patients. Interestingly, cylindromatosis (CYLD) was found to be downregulated in the liver of HBV-ACLF patients, in line with the well-established role of CYLD in regulating most of the chemokines and pro-inflammatory cytokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8, IL-6, IL-1β) via inhibition of NF-ĸB. Indeed, the knockdown of CYLD resulted in sustained activation of NF-ĸB in macrophages and enhanced chemokines and inflammatory cytokines production, which in turn enhanced chemotactic migration of neutrophil, monocyte, T lymphocytes, and NK cell. In conclusions, down-regulated CYLD aggravated inflammatory cell chemotaxis through enhancing NF-κB activation in HBV-ACLF patients, thereby participating in the pathogenesis of HBV-ACLF injury.
Collapse
Affiliation(s)
- Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Pu Zhou
- Huashan Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaoqin Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Infectious Diseases Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|