1
|
Kim YJ, Lee JR, Kim MR, Jeong JA, Kim JJ, Jeong KW. Protein kinase-mediated inhibition of autophagy by palmitic acid in hepatocytes. Eur J Pharmacol 2025; 998:177528. [PMID: 40113068 DOI: 10.1016/j.ejphar.2025.177528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Steatosis is characterized by an increase in free fatty acids, such as palmitic acid (PA), in hepatocytes and the accumulation of triglycerides in the liver. However, the role of intracellular autophagy in PA accumulation-induced hepatotoxicity is not clearly understood. Therefore, in this study, we investigated the effects of PA on autophagy in hepatocytes and its underlying mechanism of action. Treatment of HepG2 cells with PA induced a significant increase in intracellular p62 and LC3-II levels, suggesting inhibition of autophagy. Furthermore, PA inhibited autophagic flux in HepG2 cells, as monitored using GFP-RFP-LC3. Mechanistically, PA increased the phosphorylation of the Ser12 and Thr29 residues of LC3, which are autophagy inhibition markers, through protein kinase A (PKA) and protein kinase C (PKC) signaling. Finally, PKA and PKC inhibitors restored PA-induced autophagic flux inhibition, reduced intracellular lipid accumulation, and rescued the altered expression of lipogenic genes, such as SREBP-1c, in HepG2 cells. Thus, our study demonstrates the mechanism of autophagy inhibition by PA in hepatocytes and provides a potential therapeutic approach for preventing and treating hepatic steatosis.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Rim Lee
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Myeong Ryeo Kim
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jin Ah Jeong
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jung Ju Kim
- Autophagy Sciences Inc., Seoul, 08376, Republic of Korea
| | - Kwang Won Jeong
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea.
| |
Collapse
|
2
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
3
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Al Sayegh R, Wan J, Caër C, Azoulai M, Gasperment M, Baweja S, Chouillard MA, Kandiah J, Cadoux M, Mabire M, Pignolet C, Thibault-Sogorb T, Hammoutene A, Paradis V, Saveanu L, Nicolle R, Gilgenkrantz H, Weiss E, Lotersztajn S. Defective autophagy in CD4 T cells drives liver fibrosis via type 3 inflammation. Nat Commun 2025; 16:3860. [PMID: 40274816 PMCID: PMC12022296 DOI: 10.1038/s41467-025-59218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Conventional CD4 T cells represent a major source of inflammatory mediators that drive progression of chronic liver disease to fibrosis and to end-stage cirrhosis. Identification of T cell pathways that limits the inflammatory response could thus have therapeutic relevance. Here we show, using both human samples and mouse models, that autophagy is deficient in CD4 T cells from patients with advanced fibrosis, and that loss of autophagy following genomic deletion of ATG5 in T cells is associated with the emergence of pathogenic IL-17A + IFN-γ + Th17 T cells that drive liver fibrosis in mice. Mechanistically, liver CD4 T cells lacking autophagy display a Th17 glycolytic phenotype associated with enhanced type 3 cytokine (i.e., IL-17A and GM-CSF) release, shifting hepatic myofibroblasts, hepatocytes and macrophages toward a proinflammatory phenotype. We also show that autophagy can be rescued in CD4 T cells from patients with extensive liver fibrosis, leading to decreased frequency of pathogenic Th17 cells and reduced GM-CSF levels; in addition, limited fibrosis is observed in mice in which Rubicon, a negative regulator of autophagy, is deleted specifically in their T cells. Our findings thus implicate autophagy in CD4 T cells as a key therapeutic target to control inflammation-driven fibrosis during chronic liver injury.
Collapse
Affiliation(s)
- Rola Al Sayegh
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Jinghong Wan
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Charles Caër
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Margot Azoulai
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Maxime Gasperment
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Sukriti Baweja
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Institute of Liver Biliary Sciences, Delhi, India
| | - Marc-Anthony Chouillard
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Janany Kandiah
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Inovarion, Paris, France
| | - Mathilde Cadoux
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Morgane Mabire
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Camille Pignolet
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Tristan Thibault-Sogorb
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Adel Hammoutene
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Valérie Paradis
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Loredana Saveanu
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Rémy Nicolle
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Hélène Gilgenkrantz
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Emmanuel Weiss
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique- Hôpitaux de Paris, Clichy, France
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France.
| |
Collapse
|
5
|
Chen A, Nguyen K, Jiang X, Yu X, Xie Y, Liu W, Davidson NO, Ding WX, Ni HM. Distinct yet Overlapping Functions of VMP1 and TMEM41B in Modulating Hepatic Lipoprotein Secretion and Autophagy in MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647617. [PMID: 40291711 PMCID: PMC12026991 DOI: 10.1101/2025.04.07.647617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Transmembrane protein 41B (TMEM41B) and vacuolar membrane protein 1 (VMP1) are endoplasmic reticulum (ER) transmembrane scramblase proteins that have been recently identified to have important roles in autophagy and hepatic lipoprotein secretion. While TMEM41B and VMP1 are structurally and functionally similar, the nature of their interactions and how they coordinately regulate hepatic lipoprotein secretion and autophagy in metabolic-associated steatotic liver disease (MASLD) and metabolic-associated steatohepatitis (MASH) remains unclear. Methods Liver-specific and hepatocyte-specific Tmem41b knockout (KO) mice as well as Tmem41b knock-in (KI) mice were generated from Tmem41b flox or Tmem41b KI mice by crossing with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid metabolism in these mice was characterized by lipidomic analyses. Mice with hepatic overexpression of TMEM41B that were fed a MASH diet were also characterized. To explore the relationship between TMEM41B and VMP1, Tmem41b/Vmp1 double KO (DKO), Tmem41b KO/ Vmp1 KI, and Vmp1 KO/ Tmem41b KI mice were generated, and steatosis and autophagy were characterized. Results The loss of hepatic Tmem41b severely impaired very low-density lipoprotein (VLDL) secretion, resulting in significant microsteatosis, increased hepatic triglycerides, inflammation, fibrosis, and ultimately the MASH development. TMEM41B protein was decreased in human MASLD livers. Overexpression of TMEM41B mitigated the effects of diet-induced MASLD. Mice lacking both Vmp1 and Tmem41b (DKO) showed further impairment in VLDL secretion compared to single Tmem41b KO, but were similar that of Vmp1 KO mice. Lipidomic analysis of liver tissues revealed decreased levels of phosphatidylcholine and phosphatidylethanolamine, along with increased neutral lipids. Cellular fractionation studies indicated that VMP1 and TMEM41B localize at the mitochondrial-associated membrane (MAM). Electron microscopy analysis showed reduced contact between mitochondria and the ER in hepatocytes deficient in either VMP1 or TMEM41B. The loss of hepatic VMP1 or TMEM41B led to markedly increased levels of LC3B-II and p62/SQSTM1, which were not further affected by double deletion of VMP1 and TMEM41B. Restoring VMP1 in Tmem41b KO mice partially improved defective VLDL secretion, though autophagy was only partially corrected by overexpression of VMP1 at a low but not high level. In contrast, restoring TMEM41B in Vmp1 KO mice dose-dependently improved both defective VLDL secretion and autophagy. Conclusion Loss of hepatic VMP1 or TMEM41B decreases MAM and phospholipid content and reduces VLDL secretion, resulting in the development of MASH. TMEM41B and VMP1 may have overlapping but distinct mechanisms in regulating lipoprotein secretion and autophagy.
Collapse
|
6
|
Lv Y, Sun M, He Y, Zhang X, Min Y, Liu L, Yu W. Effects of induced molting on lipid accumulation in liver of aged laying hens. Poult Sci 2025; 104:104941. [PMID: 40020412 PMCID: PMC11910710 DOI: 10.1016/j.psj.2025.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
As the age of laying increases, the metabolic capacity of the liver decreases, leading to excessive lipid accumulation, which seriously affects the laying performance of laying hens. Induced molting (IM) can rejuvenate the reproductive system of older laying hens, allowing them to enter a new laying cycle. However, it remains unclear whether induced molting can enhance lipid accumulation in the liver of aged laying hens and what the underlying mechanism might be. In this study, fasting-induced molting was performed on 70-week-old Hy-line brown laying hens, and the resulting metabolic changes were analyzed using non-targeted metabolomics. Serum lipid levels, liver oxidative stress, and inflammation were measured using kits, while autophagy and lipid metabolism-related factors were assessed through immunofluorescence and western blotting. The results showed that IM could promote hepatic lipid deposition in aged laying hens, reduce hepatic steatosis and injury, lower the blood lipid level, improve hepatic antioxidant capacity and increase egg production rate. During the fasting period, the hepatic autophagic system was activated in laying hens and the level of hepatic autophagy increased. Additionally, AMPK phosphorylation levels increased, while the expression of fatty acid synthesis genes SREBP-1C, ACC, and FASN decreased (P < 0.01). The expression of PPARα, PGC 1α and CPT1A, which are associated with fatty acid oxidation, was upregulated (P < 0.01). In conclusion, IM enhanced lipid metabolism, increased liver autophagy, and improved liver function in aged laying hens.
Collapse
Affiliation(s)
- Yibo Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengqing Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yefei He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Liu
- Guangdong Haida Group Co., Ltd. Research Institute, Guangzhou 510535, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Chen R, Petrazzini BO, Duffy Á, Rocheleau G, Jordan D, Bansal M, Do R. Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease. Genome Biol 2025; 26:50. [PMID: 40065360 PMCID: PMC11892324 DOI: 10.1186/s13059-025-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and small sample sizes. We test associations of rare and ultra-rare coding variants with proton density fat fraction (PDFF) and MASLD case-control status in 736,010 participants of diverse ancestries from the UK Biobank, All of Us, and BioMe and performed a trans-ancestral meta-analysis. We then developed models to accurately predict PDFF and MASLD status in the UK Biobank and tested associations with these predicted phenotypes to increase statistical power. RESULTS The trans-ancestral meta-analysis with PDFF and MASLD case-control status identifies two single variants and two gene-level associations in APOB, CDH5, MYCBP2, and XAB2. Association testing with predicted phenotypes, which replicates more known genetic variants from GWAS than true phenotypes, identifies 16 single variants and 11 gene-level associations implicating 23 additional genes. Two variants were polymorphic only among African ancestry participants and several associations showed significant heterogeneity in ancestry and sex-stratified analyses. In total, we identified 27 genes, of which 3 are monogenic causes of steatosis (APOB, G6PC1, PPARG), 4 were previously associated with MASLD (APOB, APOC3, INSR, PPARG), and 23 had supporting clinical, experimental, and/or genetic evidence. CONCLUSIONS Our results suggest that trans-ancestral association analyses can identify ancestry-specific rare and ultra-rare coding variants in MASLD pathogenesis. Furthermore, we demonstrate the utility of machine learning in genetic investigations of difficult-to-phenotype diseases in trans-ancestral biobanks.
Collapse
Affiliation(s)
- Robert Chen
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ben Omega Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meena Bansal
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Irshad I, Alqahtani SA, Ikejima K, Yu ML, Romero-Gomez M, Eslam M. Energy metabolism: An emerging therapeutic frontier in liver fibrosis. Ann Hepatol 2025; 30:101896. [PMID: 40057035 DOI: 10.1016/j.aohep.2025.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Liver fibrosis is a progressive response to chronic liver diseases characterized by a wound-healing process that leads to the accumulation of fibrillary extracellular matrix (ECM) proteins in and around the liver tissue. If left untreated, liver fibrosis can advance to cirrhosis and ultimately result in liver failure. Although there have been significant advancements in understanding the molecular mechanisms involved in liver fibrosis, effective therapeutic strategies to reverse or halt the condition remain limited. Recent research has underscored the critical role of energy metabolism in the initiation and progression of liver fibrosis. In response to liver injury, hepatic cells undergo metabolic reprogramming to meet the energy demands of myofibroblasts. This reprogramming involves various metabolic changes, including mitochondrial dysfunction, alterations in cellular bioenergetics, shifts in glycolysis and oxidative phosphorylation, as well as changes in lipid metabolism. These modifications can disrupt cellular energy homeostasis and increase energy release, activating hepatic cells, primarily hepatic stellate cells (HSCs). Activated HSCs then stimulate fibrogenic pathways, leading to the accumulation of ECM proteins in the liver, which exacerbates the progression of fibrosis. This review aims to explore the emerging connection between energy metabolism and liver fibrosis, focusing on the metabolic alterations and molecular mechanisms that drive this condition. We also examine the therapeutic implications of modulating energy metabolism to reduce energy release and mitigate liver fibrosis. Altering energy metabolism to decrease energy release may represent a promising approach for treating liver fibrosis and chronic liver diseases.
Collapse
Affiliation(s)
- Iram Irshad
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Saleh A Alqahtani
- Liver, Digestive, & Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Japan
| | - Ming-Lung Yu
- School of Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Manuel Romero-Gomez
- Digestive Diseases Department and Ciberehd, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Zhang S, Dong H, Jin X, Sun J, Li Y. The multifaceted roles of macrophages in the transition from hepatitis to hepatocellular carcinoma: From mechanisms to therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167676. [PMID: 39828046 DOI: 10.1016/j.bbadis.2025.167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC. In the early stages of hepatitis, macrophages are essential for pathogen clearance and tissue repair. However, chronic activation leads to prolonged inflammation, which exacerbates liver damage and promotes fibrosis. As the disease progresses to liver fibrosis, macrophages interact with hepatic stellate cells, fostering a pro-tumorigenic microenvironment that supports HCC development. In hepatocarcinogenesis, macrophages contribute to tumor initiation, growth, metastasis, immune evasion, cancer stem cell maintenance, and angiogenesis. Their functional plasticity enables them to adapt to the tumor microenvironment, thereby promoting tumor progression and resistance to therapy. Targeting macrophages represents a promising strategy for preventing and treating HCC. Therapeutic approaches, including reprogramming macrophage phenotypes to enhance anti-tumor immunity, blocking macrophage recruitment and activation, and utilizing nanoparticle-based drug delivery systems, may provide new avenues for combating HCC by modulating macrophage functions and tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Hang Dong
- Phase I Clinical Trials Center, The People's Hospital of China Medical University, Shenyang, PR China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
10
|
Ronzoni L, Pelusi S, Moretti V, Malvestiti F, Eidgah Torghabehei H, Jamialahmadi O, Rondena J, Bianco C, Periti G, Filippo MRD, Romeo S, Prati D, Valenti L. Diagnostic Uptake of Targeted Sequencing in Adults With Steatotic Liver Disease and a Suspected Genetic Contribution. Liver Int 2025; 45:e70010. [PMID: 39945383 PMCID: PMC11822878 DOI: 10.1111/liv.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND AIMS In patients with steatotic liver diseases (SLD), genetic factors may account for severe liver involvement despite mild or absence of triggering factors or a strong family history. Aim of this study was to examine the diagnostic uptake of targeted sequencing (TS), covering both coding and non-coding regions, of a broad panel of 82 liver and lipid metabolism genes in patients with unexplained SLD. METHODS We enrolled 49 adult patients with SLD and a suspected genetic contribution. Genetic variants were detected through a customised TS panel, whereas the contribution of common genetic variation to the individual susceptibility to SLD was captured by a polygenic risk score (SLD-PRS). RESULTS A diagnosis of rare Mendelian disorder was established in 11 patients (22%), independently of age or family history. Rare variants possibly contributing to clinical phenotype were detected in additional 29 patients (59%). Increased SLD-PRS values were detected in 17 patients (35%), enabling an increase in diagnostic uptake of 24%, especially in those without a strong family history (p = 0.03). Genetic diagnosis allowed refinement of clinical management in 23 (47%) patients. CONCLUSIONS The diagnostic uptake of TS was 22% for Mendelian disorder and 59% for possible contribution to clinical phenotype in selected adult patients with SLD. Evaluation of common variants, as captured by SLD-PRS, yields complementary information increasing the overall utility of the genetic examination.
Collapse
Grants
- 777377 Innovative Medicines Initiative 2 joint undertaking of European Union's Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- Gilead Sciences Inc.
- 101016726-REVEAL The European Union, H2020-ICT-2018-20/H2020-ICT-2020-2 program "Photonics"
- Italian ministry of Research (MUR) PNRR - M4 - C2 "National Center for Gene Therapy and Drugs based on RNA Technology" CN3, Spoke 4
- 101096312 The European Union, HORIZON-MISS-2021-CANCER-02-03 program "Genial"
- RF-2016-02364358 The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- PNRR-MAD-2022-12375656 The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- RF-2021-12373889 The Italian Ministry of Health, Ricerca Finalizzata 2021
- PR-0361 Fondazione Patrimonio Ca' Granda, "Liver BIBLE"
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ricerca Corrente
- Innovative Medicines Initiative 2 joint undertaking of European Union’s Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- The European Union, H2020‐ICT‐2018‐20/H2020‐ICT‐2020‐2 program “Photonics”
- Italian ministry of Research (MUR) PNRR ‐ M4 ‐ C2 “National Center for Gene Therapy and Drugs based on RNA Technology” CN3, Spoke 4
- The European Union, HORIZON‐MISS‐2021‐CANCER‐02‐03 program “Genial”
- The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- The Italian Ministry of Health, Ricerca Finalizzata 2021
- Fondazione Patrimonio Ca’ Granda, “Liver BIBLE”
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Ricerca Corrente
Collapse
Affiliation(s)
- Luisa Ronzoni
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Serena Pelusi
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Vittoria Moretti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Francesco Malvestiti
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| | - Hadi Eidgah Torghabehei
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
| | - Jessica Rondena
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Cristiana Bianco
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Giulia Periti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Maria Rosaria De Filippo
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
- Department of CardiologySahlgrenska University HospitalGothenburgSweden
- Clinical Nutrition Unit, Department of Medical and Surgical SciencesUniversity Magna GraeciaCatanzaroItaly
| | - Daniele Prati
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Luca Valenti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| |
Collapse
|
11
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Zalma BA, Ibrahim M, Rodriguez-Polanco FC, Bhavsar CT, Rodriguez EM, Cararo-Lopes E, Farooq SA, Levy JL, Wek RC, White E, Anthony TG. Autophagy-related 7 (ATG7) regulates food intake and liver health during asparaginase exposure. J Biol Chem 2025; 301:108171. [PMID: 39798881 PMCID: PMC11850126 DOI: 10.1016/j.jbc.2025.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Amino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in the liver and can upregulate autophagy in some cell types. We hypothesized that autophagy-related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7Δ/Δ) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 days. Intact mice injected with asparaginase lost body weight due to reduced food intake and increased energy expenditure. Systemic Atg7 ablation reduced liver protein synthesis and increased liver injury in vehicle-injected mice but did not further reduce liver protein synthesis, exacerbate steatosis or liver injury, or alter energy expenditure following 5 days of asparaginase exposure. Atg7Δ/Δ mice were unexpectantly protected from asparaginase-induced anorexia and weight loss. This protection corresponded with reduced phosphorylation of hepatic GCN2 and blunted increases in ISR gene targets including growth differentiation factor 15 (GDF15), a negative regulator of food intake. Interestingly, asparaginase elevated serum GDF15 and reduced food intake in ls-Atg7KO mice, similar to intact mice. Liver triglycerides and production of the hepatokine fibroblast growth factor 21, another ISR gene target, were suppressed in asparaginase-exposed Atg7Δ/Δ and ls-Atg7KO mice. This work identifies a bidirectional relationship between autophagy and the ISR in the liver during asparaginase, affecting food intake and liver health.
Collapse
Affiliation(s)
- Brian A Zalma
- Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States
| | | | - Chintan T Bhavsar
- Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States
| | - Esther M Rodriguez
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Eduardo Cararo-Lopes
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States
| | - Saad A Farooq
- Endocrinology and Animal Biosciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States
| | - Jordan L Levy
- Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States
| | - Tracy G Anthony
- Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States.
| |
Collapse
|
13
|
Brunetti-Pierri N, Bewersdorf L, Strnad P. SNRK tames mTOR against metabolic dysfunction-associated steatotic liver disease. Mol Ther 2025; 33:28-29. [PMID: 39729984 PMCID: PMC11764957 DOI: 10.1016/j.ymthe.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024] Open
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy.
| | - Lisa Bewersdorf
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
14
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
16
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
17
|
Schütz F, Longo L, Keingeski MB, Filippi-Chiela E, Uribe-Cruz C, Álvares-da-Silva MR. Lipophagy and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease progression in an experimental model. World J Hepatol 2024; 16:1468-1479. [DOI: 10.4254/wjh.v16.i12.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Genetic and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis.
AIM To evaluate micro (mi)RNAs and lipophagy markers in an experimental model of metabolic dysfunction-associated steatohepatitis (MASH).
METHODS Adult male Sprague Dawley rats were randomized into two groups: Control group (n = 10) fed a standard diet; and intervention group (n = 10) fed a high-fat-choline-deficient diet for 16 weeks. Molecular evaluation of lipophagy markers in liver tissue [sirtuin-1, p62/sequestosome-1, transcription factor-EB, perilipin-2 (Plin2), Plin3, Plin5, lysosome-associated membrane proteins-2, rubicon, and Cd36], and serum miRNAs were performed.
RESULTS Animals in the intervention group developed MASH and showed a significant decrease in sirtuin-1 (P = 0.020) and p62/sequestosome-1 (P < 0.001); the opposite was reported for transcription factor-EB (P = 0.020), Plin2 (P = 0.003), Plin3 (P = 0.031), and Plin5 (P = 0.005) compared to the control group. There was no significant difference between groups for lysosome-associated membrane proteins-2 (P = 0.715), rubicon (P = 0.166), and Cd36 (P = 0.312). The intervention group showed a significant increase in miR-34a (P = 0.005) and miR-21 (P = 0.043) compared to the control. There was no significant difference between groups for miR-375 (P = 0.905), miR-26b (P = 0.698), and miR-155 (P = 0.688).
CONCLUSION Animals with MASH presented expression changes in markers related to lysosomal stress and autophagy as well as in miRNAs related to inflammation and fibrogenesis, processes that promote MASLD progression.
Collapse
Affiliation(s)
- Felipe Schütz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas 3300, Misiones, Argentina
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasilia 71.605-001, Distrito Federal, Brazil
| |
Collapse
|
18
|
Kohlmaier B, Skok K, Lackner C, Haselrieder G, Müller T, Sailer S, Zschocke J, Keller MA, Knisely AS, Janecke AR. Steatotic liver disease associated with 2,4-dienoyl-CoA reductase 1 deficiency. Int J Obes (Lond) 2024; 48:1818-1821. [PMID: 39277655 PMCID: PMC11584395 DOI: 10.1038/s41366-024-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered multifactorial with a number of predisposing gene polymorphisms known. METHODS The occurrence of MASLD in 7 and 10 year old siblings, one without classical risk factors and one with type 2 diabetes suggested a monogenic etiology and prompted next-generation sequencing. Exome sequencing was performed in the proband, both parents and both siblings. The impact of a likely disease-causing DNA variant was assessed on the transcript and protein level. RESULTS Two siblings have hepatomegaly, elevated serum transaminase activity, and steatosis and harbor a homozygous DECR1 splice-site variant, c.330+3A>T. The variant caused DECR1 transcript decay. Immunostaining demonstrated lack of DECR1 in patient liver. CONCLUSIONS These patients may represent the first individuals with DECR1 deficiency, then defining within MASLD an autosomal-recessive entity, well corresponding to the reported steatotic liver disease in Decr1 knockout mice. DECR1 may need to be considered in the genetic work-up of MASLD.
Collapse
Affiliation(s)
- Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, 8010, Graz, Austria
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Carolin Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Greta Haselrieder
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - A S Knisely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria.
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria.
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
19
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Pelusi S, Ronzoni L, Rondena J, Rosso C, Pennisi G, Dongiovanni P, Margarita S, Carpani R, Soardo G, Prati D, Cespiati A, Petta S, Bugianesi E, Valenti L. Prevalence and Determinants of Liver Disease in Relatives of Italian Patients With Advanced MASLD. Clin Gastroenterol Hepatol 2024; 22:2231-2239.e4. [PMID: 38216023 DOI: 10.1016/j.cgh.2023.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction associated steatotic liver disease (MASLD) has a strong genetic component. The aim of this study was to examine noninvasively the prevalence of MASLD and of advanced fibrosis in relatives of patients with advanced MASLD and the risk factors for liver involvement, with a focus on the contribution of common genetic risk variants. METHODS We prospectively enrolled 98 consecutive probands with advanced fibrosis and/or hepatocellular carcinoma caused by MASLD and 160 nontwin first-degree relatives noninvasively screened for MASLD and advanced fibrosis at 4 Italian centers. We evaluated common genetic determinants and polygenic risk scores of liver disease. RESULTS Among relatives, prevalence of MASLD was 56.8% overall, whereas advanced fibrosis was observed in 14.4%. At multivariable analysis in relatives, MASLD was associated with body mass index (odds ratio [OR], 1.31 [1.18-1.46]) and tended to be associated with diabetes (OR, 5.21 [0.97-28.10]), alcohol intake (OR, 1.32 [0.98-1.78]), and with female sex (OR, 0.54 [0.23-1.15]), whereas advanced fibrosis was associated with diabetes (OR, 3.13 [1.16-8.45]) and nearly with body mass index (OR, 1.09 [1.00-1.19]). Despite that the PNPLA3 risk variant was enriched in probands (P = .003) and overtransmitted to relatives with MASLD (P = .045), evaluation of genetic risk variants and polygenic risk scores was not useful to guide noninvasive screening of advanced fibrosis in relatives. CONCLUSIONS We confirmed that about 1 in 7 relatives of patients with advanced MASLD has advanced fibrosis, supporting clinical recommendations to perform family screening in this setting. Genetic risk variants contributed to liver disease within families but did not meaningfully improve fibrosis risk stratification.
Collapse
Affiliation(s)
- Serena Pelusi
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Rondena
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosso
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Grazia Pennisi
- Department of Health promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Margarita
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rossana Carpani
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Soardo
- Clinica Medica-Liver Unit, Department of Medicine, University of Udine, Udine, Italy; Italian Liver Foundation, Area Science Park, Basovizza-Trieste, Italy
| | - Daniele Prati
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Petta
- Department of Health promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
22
|
Marchetti A, Pelusi S, Marella A, Malvestiti F, Ricchiuti A, Ronzoni L, Lionetti M, Moretti V, Bugianesi E, Miele L, Vespasiani-Gentilucci U, Dongiovanni P, Federico A, Soardo G, D’Ambrosio R, McCain MV, Reeves HL, La Mura V, Prati D, Bolli N, Valenti L. Impact of clonal hematopoiesis of indeterminate potential on hepatocellular carcinoma in individuals with steatotic liver disease. Hepatology 2024; 80:816-827. [PMID: 38470216 PMCID: PMC11407776 DOI: 10.1097/hep.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global epidemic and is the most rapidly rising cause of HCC. Clonal hematopoiesis of indeterminate potential (CHIP) contributes to neoplastic and cardiometabolic disorders and is considered a harbinger of tissue inflammation. CHIP was recently associated with increased risk of liver disease. The aim of this study was to examine whether CHIP is associated with HCC development in patients with SLD. APPROACH AND RESULTS We considered individuals with MASLD-HCC (n=208) and controls with (n =414) and without (n =259) advanced fibrosis who underwent whole exome sequencing. CHIP was diagnosed when ≥2 variant callers identified a known myeloid mutation with variant allele frequency ≥2%. CHIP was observed in 116 participants (13.1%), most frequently in DNMT3A, TET2, TP53 , and ASXL1 , and correlated with age ( p <0.0001) and advanced liver fibrosis (p=0.001). Higher aspartate aminotransferase levels predicted non- DNMT3A -CHIP, in particular with variant allele frequency ≥10% (OR: 1.14, 1.03 -1.28 and OR: 1.30, 1.12 -1.49, respectively, p <0.05). After adjustment for sex, diabetes, and a polygenic risk, a score of inherited MASLD predisposition CHIP was associated with cirrhosis (2.00, 1.30 -3.15, p =0.02), and with HCC even after further adjustment for cirrhosis (OR: 1.81, 1.11 -2.00, 1.30 -3.15, p =0.002). Despite the strong collinearity among aging and development of CHIP and HCC, non- DNTM3A -CHIP, and TET2 lesions remained associated with HCC after full correction for clinical/genetics covariates and age (OR: 2.45, 1.35 -4.53; OR: 4.8, 1.60 -17.0, p =0.02). CONCLUSIONS We observed an independent association between CHIP, particularly related to non- DNTM3A and TET2 genetic lesions and MASLD-HCC.
Collapse
Affiliation(s)
- Alfredo Marchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Pelusi
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Marella
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Antony Ricchiuti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Lionetti
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Moretti
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Luca Miele
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Department of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giorgio Soardo
- Department of Medicine, Clinica Medica, European Excellence Center for Arterial Hypertension, University of Udine, Udine, Italy
| | - Roberta D’Ambrosio
- Gastroenterology and Hepatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Misti V. McCain
- Newcastle University Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen L. Reeves
- Newcastle University Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vincenzo La Mura
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- General Medicine, Haemostasis and Thrombosis, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Biological Resource Center Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
25
|
Huang T, Zhang C, Ren J, Shuai Q, Li X, Li X, Xie J, Xu J. FTO-mediated m 6A demethylation of ULK1 mRNA promotes autophagy and activation of hepatic stellate cells in liver fibrosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1509-1520. [PMID: 39175431 PMCID: PMC11532214 DOI: 10.3724/abbs.2024098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 08/24/2024] Open
Abstract
The activation of hepatic stellate cells (HSCs) is central to the occurrence and development of liver fibrosis. Our previous studies showed that autophagy promotes HSC activation and ultimately accelerates liver fibrosis. Unc-51-like autophagy activating kinase 1 (ULK1) is an autophagic initiator in mammals, and N 6-methyladenosine (m 6A) modification is closely related to autophagy. In this study, we find that the m 6A demethylase fat mass and obesity-associated protein (FTO), which is the m 6A methylase with the most significant difference in expression, is upregulated during HSC activation and bile duct ligation (BDL)-induced hepatic fibrosis. Importantly, we identify that FTO overexpression aggravates HSC activation and hepatic fibrosis via autophagy. Mechanistically, compared with other autophagy-related genes, ULK1 is a target of FTO because FTO mainly mediates the m 6A demethylation of ULK1 and upregulates its expression, thereby enhancing autophagy and the activation of HSCs. Notably, the m 6A reader YTH domain-containing protein 2 (YTHDC2) decreases ULK1 mRNA level by recognizing the m 6A binding site and ultimately inhibiting autophagy and HSC activation. Taken together, our findings highlight m 6A-dependent ULK1 as an essential regulator of HSC autophagy and reveal that ULK1 is a novel potential therapeutic target for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Tingjuan Huang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Chunhong Zhang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Junjie Ren
- Department of Gastroenterology and Hepatologythe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Qizhi Shuai
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiaonan Li
- Department of Cancer Radiotherapy DepartmentShanxi Provincial People’s HospitalTaiyuan030001China
| | - Xuewei Li
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationDepartment of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
| | - Jun Xu
- Department of Hepatopancreatobiliary Surgerythe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
26
|
Jakubek P, Pakula B, Rossmeisl M, Pinton P, Rimessi A, Wieckowski MR. Autophagy alterations in obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease: the evidence from human studies. Intern Emerg Med 2024; 19:1473-1491. [PMID: 38971910 PMCID: PMC11364608 DOI: 10.1007/s11739-024-03700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Autophagy is an evolutionarily conserved process that plays a pivotal role in the maintenance of cellular homeostasis and its impairment has been implicated in the pathogenesis of various metabolic diseases including obesity, type 2 diabetes (T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review synthesizes the current evidence from human studies on autophagy alterations under these metabolic conditions. In obesity, most data point to autophagy upregulation during the initiation phase of autophagosome formation, potentially in response to proinflammatory conditions in the adipose tissue. Autophagosome formation appears to be enhanced under hyperglycemic or insulin-resistant conditions in patients with T2D, possibly acting as a compensatory mechanism to eliminate damaged organelles and proteins. Other studies have proposed that prolonged hyperglycemia and disrupted insulin signaling hinder autophagic flux, resulting in the accumulation of dysfunctional cellular components that can contribute to β-cell dysfunction. Evidence from patients with MASLD supports autophagy inhibition in disease progression. Nevertheless, given the available data, it is difficult to ascertain whether autophagy is enhanced or suppressed in these conditions because the levels of autophagy markers depend on the overall metabolism of specific organs, tissues, experimental conditions, or disease duration. Owing to these constraints, determining whether the observed shifts in autophagic activity precede or result from metabolic diseases remains challenging. Additionally, autophagy-modulating strategies are shortly discussed. To conclude, more studies investigating autophagy impairment are required to gain a more comprehensive understanding of its role in the pathogenesis of obesity, T2D, and MASLD and to unveil novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Barbara Pakula
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
27
|
Kang N, Tan J, Yan S, Lin L, Gao Q. General autophagy-dependent and -independent lipophagic processes collaborate to regulate the overall level of lipophagy in yeast. Autophagy 2024; 20:1523-1536. [PMID: 38425021 PMCID: PMC11210923 DOI: 10.1080/15548627.2024.2325297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
ABBREVIATION AP: autophagosome; ATG: autophagy related; CMA: chaperone-mediated autophagy; ESCRT: endosomal sorting complex required for transport; FA: fatty acid; LD: lipid droplet; Ld microdomains: liquid-disordered microdomains; NL: neutral lipid.
Collapse
Affiliation(s)
- Na Kang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Jinling Tan
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Sisi Yan
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Leiying Lin
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Qiang Gao
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| |
Collapse
|
28
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
29
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Ostacolo K, de Lomana ALG, Larat C, Hjaltalin V, Holm KY, Hlynsdóttir SS, Soucheray M, Sooman L, Rolfsson O, Krogan NJ, Steingrimsson E, Swaney DL, Ogmundsdottir MH. ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism. Traffic 2024; 25:e12933. [PMID: 38600522 PMCID: PMC11480896 DOI: 10.1111/tra.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.
Collapse
Affiliation(s)
- Kevin Ostacolo
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Adrián López García de Lomana
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Clémence Larat
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valgerdur Hjaltalin
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kristrun Yr Holm
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigríður S. Hlynsdóttir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Linda Sooman
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Margret H. Ogmundsdottir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
32
|
Wei S, Wang L, Evans PC, Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today 2024; 29:103910. [PMID: 38301798 DOI: 10.1016/j.drudis.2024.103910] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-β (THRβ) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.
Collapse
Affiliation(s)
- Shulin Wei
- School of Life Sciences, Jilin University, Changchun, China; Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
33
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
34
|
Yang X, Ding W, Chen Z, Lai K, Liu Y. The role of autophagy in insulin resistance and glucolipid metabolism and potential use of autophagy modulating natural products in the treatment of type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3762. [PMID: 38287719 DOI: 10.1002/dmrr.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe, long-term condition characterised by disruptions in glucolipid and energy metabolism. Autophagy, a fundamental cellular process, serves as a guardian of cellular health by recycling and renewing cellular components. To gain a comprehensive understanding of the vital role that autophagy plays in T2DM, we conducted an extensive search for high-quality publications across databases such as Web of Science, PubMed, Google Scholar, and SciFinder and used keywords like 'autophagy', 'insulin resistance', and 'type 2 diabetes mellitus', both individually and in combinations. A large body of evidence underscores the significance of activating autophagy in alleviating T2DM symptoms. An enhanced autophagic activity, either by activating the adenosine monophosphate-activated protein kinase and sirtuin-1 signalling pathways or inhibiting the mechanistic target of rapamycin complex 1 signalling pathway, can effectively improve insulin resistance and balance glucolipid metabolism in key tissues like the hypothalamus, skeletal muscle, liver, and adipose tissue. Furthermore, autophagy can increase β-cell mass and functionality in the pancreas. This review provides a narrative summary of autophagy regulation with an emphasis on the intricate connection between autophagy and T2DM symptoms. It also discusses the therapeutic potentials of natural products with autophagy activation properties for the treatment of T2DM conditions. Our findings suggest that autophagy activation represents an innovative approach of treating T2DM.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
36
|
Waye MMY. Mutation of autophagy-related gene ATG7 increases the risk of severe disease in patients with non-alcoholic fatty liver disease. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:365-366. [PMID: 40225805 PMCID: PMC11985540 DOI: 10.1016/j.livres.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 04/15/2025]
Affiliation(s)
- Mary Miu Yee Waye
- The Nethersole School of Nursing, Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Cui D, Wang Z, Dang Q, Wang J, Qin J, Song J, Zhai X, Zhou Y, Zhao L, Lu G, Liu H, Liu G, Liu R, Shao C, Zhang X, Liu Z. Spliceosome component Usp39 contributes to hepatic lipid homeostasis through the regulation of autophagy. Nat Commun 2023; 14:7032. [PMID: 37923718 PMCID: PMC10624899 DOI: 10.1038/s41467-023-42461-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023] Open
Abstract
Regulation of alternative splicing (AS) enables a single transcript to yield multiple isoforms that increase transcriptome and proteome diversity. Here, we report that spliceosome component Usp39 plays a role in the regulation of hepatocyte lipid homeostasis. We demonstrate that Usp39 expression is downregulated in hepatic tissues of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) subjects. Hepatocyte-specific Usp39 deletion in mice leads to increased lipid accumulation, spontaneous steatosis and impaired autophagy. Combined analysis of RNA immunoprecipitation (RIP-seq) and bulk RNA sequencing (RNA-seq) data reveals that Usp39 regulates AS of several autophagy-related genes. In particular, deletion of Usp39 results in alternative 5' splice site selection of exon 6 in Heat shock transcription factor 1 (Hsf1) and consequently its reduced expression. Importantly, overexpression of Hsf1 could attenuate lipid accumulation caused by Usp39 deficiency. Taken together, our findings indicate that Usp39-mediated AS is required for sustaining autophagy and lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jianping Song
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Xiangyu Zhai
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Yachao Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
38
|
Huang M, Zhang Y, Park J, Chowdhury K, Xu J, Lu A, Wang L, Zhang W, Ekser B, Yu L, Dong XC. ATG14 plays a critical role in hepatic lipid droplet homeostasis. Metabolism 2023; 148:155693. [PMID: 37741434 PMCID: PMC10591826 DOI: 10.1016/j.metabol.2023.155693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND & AIMS Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.
Collapse
Affiliation(s)
- Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jimin Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiazhi Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex Lu
- Park Tudor School, Indianapolis, IN, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA..
| |
Collapse
|
39
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
40
|
Cherubini A, Ostadreza M, Jamialahmadi O, Pelusi S, Rrapaj E, Casirati E, Passignani G, Norouziesfahani M, Sinopoli E, Baselli G, Meda C, Dongiovanni P, Dondossola D, Youngson N, Tourna A, Chokshi S, Bugianesi E, Della Torre S, Prati D, Romeo S, Valenti L. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat Med 2023; 29:2643-2655. [PMID: 37749332 PMCID: PMC10579099 DOI: 10.1038/s41591-023-02553-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P < 10-10; advanced fibrosis/hepatocellular carcinoma, P = 0.034) and in the general population (P < 10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P = 0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mahnoosh Ostadreza
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
| | - Serena Pelusi
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eniada Rrapaj
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giulia Passignani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marjan Norouziesfahani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Sinopoli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido Baselli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Dondossola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- General and Liver Transplant Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, Milan, Italy
| | - Neil Youngson
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aikaterini Tourna
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Prati
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska Hospital, Gothenburg, Sweden
- Department of Medical and Surgical Science, Magna Græcia University, Catanzaro, Italy
| | - Luca Valenti
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
41
|
Raevens S. Autophagy in liver regeneration: Unravelling the endothelial cell's role and therapeutic prospects. Liver Int 2023; 43:2055-2056. [PMID: 37718717 DOI: 10.1111/liv.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Affiliation(s)
- Sarah Raevens
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Hoekstra M, Van Eck M. High-density lipoproteins and non-alcoholic fatty liver disease. ATHEROSCLEROSIS PLUS 2023; 53:33-41. [PMID: 37663008 PMCID: PMC10469384 DOI: 10.1016/j.athplu.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD), a high incidence liver pathology, is associated with a ∼1.5-fold higher cardiovascular disease risk. This phenomenon is generally attributed to the NAFLD-associated increase in circulating levels of pro-atherogenic apolipoprotein B100-containing small dense low-density lipoprotein and plasma hypertriglyceridemia. However, also a significant reduction in cholesterol transported by anti-atherogenic high-density lipoproteins (HDL) is frequently observed in subjects suffering from NAFLD as compared to unaffected people. In this review, we summarize data regarding the relationship between NAFLD and plasma HDL-cholesterol levels, with a special focus on highlighting potential causality between the NAFLD pathology and changes in HDL metabolism. Methods and results Publications in PUBMED describing the relationship between HDL levels and NAFLD susceptibility and/or disease severity, either in human clinical settings or genetically-modified mouse models, were critically reviewed for subsequent inclusion in this manuscript. Furthermore, relevant literature describing effects on lipid loading in cultured hepatocytes of models with genetic alterations related to HDL metabolism have been summarized. Conclusions Although in vitro observations suggest causality between HDL formation by hepatocytes and protection against NAFLD-like lipid accumulation, current literature remains inconclusive on whether relative HDL deficiency is actually driving the development of fatty liver disease in humans. In light of the current obesity pandemic and the associated marked rise in NAFLD incidence, it is of clear scientific and societal interest to gain further insight into the relationship between HDL-cholesterol levels and fatty liver development to potentially uncover the therapeutic potential of pharmacological HDL level and/or function modulation.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| |
Collapse
|
43
|
Ronzoni L, Marini I, Passignani G, Malvestiti F, Marchelli D, Bianco C, Pelusi S, Prati D, Valenti L. Validation of a targeted gene panel sequencing for the diagnosis of hereditary chronic liver diseases. Front Genet 2023; 14:1137016. [PMID: 37388930 PMCID: PMC10300275 DOI: 10.3389/fgene.2023.1137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Background: The cause of chronic liver diseases (CLD) remains undiagnosed in up to 30% of adult patients. Whole-Exome Sequencing (WES) can improve the diagnostic rate of genetic conditions, but it is not yet widely available, due to the costs and the difficulties in results interpretation. Targeted panel sequencing (TS) represents an alternative more focused diagnostic approach. Aims: To validate a customized TS for hereditary CLD diagnosis. Methods: We designed a customized panel including 82 CLD-associated genes (iron overload, lipid metabolism, cholestatic diseases, storage diseases, specific hereditary CLD and susceptibility to liver diseases). DNA samples from 19 unrelated adult patients with undiagnosed CLD were analyzed by both TS (HaloPlex) and WES (SureSelect Human All Exon kit v5) and the diagnostic performances were compared. Results: The mean depth of coverage of TS-targeted regions was higher with TS than WES (300x vs. 102x; p < 0.0001). Moreover, TS yielded a higher average coverage per gene and lower fraction of exons with low coverage (p < 0.0001). Overall, 374 unique variants were identified across all samples, 98 of which were classified as "Pathogenic" or "Likely Pathogenic" with a high functional impact (HFI). The majority of HFI variants (91%) were detected by both methods; 6 were uniquely identified by TS and 3 by WES. Discrepancies in variant calling were mainly due to variability in read depth and insufficient coverage in the corresponding target regions. All variants were confirmed by Sanger sequencing except two uniquely detected by TS. Detection rate and specificity for variants in TS-targeted regions of TS were 96.9% and 97.9% respectively, whereas those of WES were 95.8% and 100%, respectively. Conclusion: TS was confirmed to be a valid first-tier genetic test, with an average mean depth per gene higher than WES and a comparable detection rate and specificity.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Ilaria Marini
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Giulia Passignani
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| | - Daniele Marchelli
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Cristiana Bianco
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Serena Pelusi
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Daniele Prati
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Luca Valenti
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
44
|
Li YY, Zheng TL, Xiao SY, Wang P, Yang WJ, Jiang LL, Chen LL, Sha JC, Jin Y, Chen SD, Byrne CD, Targher G, Li JM, Zheng MH. Hepatocytic ballooning in non-alcoholic steatohepatitis: Dilemmas and future directions. Liver Int 2023; 43:1170-1182. [PMID: 37017559 DOI: 10.1111/liv.15571] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
Hepatocytic ballooning is a key histological feature in the diagnosis of non-alcoholic steatohepatitis (NASH) and is an essential component of the two most widely used histological scoring systems for diagnosing and staging non-alcoholic fatty liver disease (NAFLD) [namely, the NAFLD activity score (NAS), and the steatosis, activity and fibrosis (SAF) scoring system]. As a result of the increasing incidence of NASH globally, the diagnostic challenges of hepatocytic ballooning are unprecedented. Despite the clear pathological concept of hepatocytic ballooning, there are still challenges in assessing hepatocytic ballooning in 'real life' situations. Hepatocytic ballooning can be confused with cellular oedema and microvesicular steatosis. Significant inter-observer variability does exist in assessing the presence and severity of hepatocytic ballooning. In this review article, we describe the underlying mechanisms associated with hepatocytic ballooning. Specifically, we discuss the increased endoplasmic reticulum stress and the unfolded protein response, as well as the rearrangement of the intermediate filament cytoskeleton, the appearance of Mallory-Denk bodies and activation of the sonic Hedgehog pathway. We also discuss the use of artificial intelligence in the detection and interpretation of hepatocytic ballooning, which may provide new possibilities for future diagnosis and treatment.
Collapse
Affiliation(s)
- Yang-Yang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tian-Lei Zheng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shu-Yuan Xiao
- Department of Pathology, Shanghai Jiahui International Hospital, Shanghai, China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Li-Lin Jiang
- Department of Pathology, Wuxi Fifth People's Hospital, Wuxi, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun-Cheng Sha
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Jin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Jian-Min Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
45
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Liu P, Anandhan A, Chen J, Shakya A, Dodson M, Ooi A, Chapman E, White E, Garcia JG, Zhang DD. Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of non-alcoholic fatty liver disease. Redox Biol 2023; 59:102570. [PMID: 36495698 PMCID: PMC9731892 DOI: 10.1016/j.redox.2022.102570] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD. APPROACH AND RESULTS Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation. Mechanistically, HFD suppressed autophagosome biogenesis through AMPK- and AKT-mediated mTOR activation and decreased ATG7, resulting in KEAP1 stabilization and decreased NRF2 levels in mouse liver. Furthermore, ATG7 is required for HFD-induced NRF2 downregulation, as ATG7 deletion in Cre-inducible ATG7 knockout mice decreased NRF2 levels and enhanced ferroptosis, which was not further exacerbated by HFD. This finding was recapitulated in mouse hepatocytes, which showed a similar phenotype upon treatment with saturated fatty acids (SFAs) but not monounsaturated fatty acids (MUFAs). Finally, NRF2 activation blocked fatty acid (FA)-mediated NRF2 downregulation, lipid peroxidation, and ferroptosis. Importantly, the HFD-induced alterations were also observed in human fatty liver tissue samples. CONCLUSIONS HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Eileen White
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Joe Gn Garcia
- Department of Medicine and Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
47
|
Sookoian S, Pirola CJ. Genetics in non-alcoholic fatty liver disease: The role of risk alleles through the lens of immune response. Clin Mol Hepatol 2023; 29:S184-S195. [PMID: 36472053 PMCID: PMC10029961 DOI: 10.3350/cmh.2022.0318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The knowledge on the genetic component of non-alcoholic fatty liver disease (NAFLD) has grown exponentially over the last 10 to 15 years. This review summarizes the current evidence and the latest developments in the genetics of NAFLD and non-alcoholic steatohepatitis (NASH) from the immune system's perspective. Activation of innate and or adaptive immune response is an essential driver of NAFLD disease severity and progression. Lipid and immune pathways are crucial in the pathophysiology of NAFLD and NASH. Here, we highlight novel applications of genomic techniques, including single-cell sequencing and the genetics of gene expression, to elucidate the potential involvement of NAFLD/NASH-risk alleles in modulating immune system cells. Together, our focus is to provide an overview of the potential involvement of the NAFLD/NASH-related risk variants in mediating the immune-driven liver disease severity and diverse systemic pleiotropic effects.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Barrientos-Riosalido A, Real M, Bertran L, Aguilar C, Martínez S, Parada D, Vives M, Sabench F, Riesco D, Castillo DD, Richart C, Auguet T. Increased Hepatic ATG7 mRNA and ATG7 Protein Expression in Nonalcoholic Steatohepatitis Associated with Obesity. Int J Mol Sci 2023; 24:ijms24021324. [PMID: 36674839 PMCID: PMC9867349 DOI: 10.3390/ijms24021324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The autophagy gene ATG7 has been shown to be essential for the induction of autophagy, a process that used to be suppressed in nonalcoholic fatty liver disease (NAFLD). However, the specific role of ATG7 in NAFLD remains unclear. The aim of this study was to analyze hepatic ATG7 mRNA and ATG7 protein expression regarding obesity-associated NAFLD. Patients included women classified into normal weight (NW, n = 6) and morbid obesity (MO, n = 72). The second group was subclassified into normal liver (NL, n = 11), simple steatosis (SS, n= 29), and nonalcoholic steatohepatitis (NASH, n = 32). mRNA expression was analyzed by RT-qPCR and protein expression was evaluated by Western blotting. Our results showed that NASH patients presented higher ATG7 mRNA and ATG7 protein levels. ATG7 mRNA expression was increased in NASH compared with SS, while ATG7 protein abundance was enhanced in NASH compared with NL. ATG7 mRNA correlated negatively with the expression of some hepatic lipid metabolism-related genes and positively with endocannabinoid receptors, adiponectin hepatic expression, and omentin levels. These results suggest that ATG7-mediated autophagy may play an important role in the pathogenesis of NAFLD, especially in NASH, perhaps playing a possible protective role. However, this is a preliminary study that needs to be further studied.
Collapse
Affiliation(s)
- Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Monica Real
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - David Parada
- Servei Anatomia Patològica, Hospital Universitari Sant Joan de Reus, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Margarita Vives
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
50
|
Sun C, Zhang J, Hou J, Hui M, Qi H, Lei T, Zhang X, Zhao L, Du H. Induction of autophagy via the PI3K/Akt/mTOR signaling pathway by Pueraria flavonoids improves non-alcoholic fatty liver disease in obese mice. Biomed Pharmacother 2023; 157:114005. [PMID: 36384052 DOI: 10.1016/j.biopha.2022.114005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common among lipid metabolism disorders. Autophagy plays an important role in lipid metabolism in NAFLD. Pueraria flavonoids, the main active ingredients of Pueraria lobata, exert antioxidant and anti-inflammatory effects. Herein, we report the potential lipid-lowering and anti-inflammatory effects of Pueraria flavonoids on NAFLD induced by a high-fat diet. In vivo and in vitro experiments showed that Pueraria flavonoids reduced intracellular lipid deposition by inhibiting lipid synthesis and the release of pro-inflammatory cytokines. We analyzed the autophagy flux by mRFP-GFP-LC3 plasmid transfection to assess the role of autophagy in intracellular scavenging. After treating mice fed on high fat and HepG2 cells with Pueraria flavonoids, the number of autophagosomes increased significantly, along with the level of autophagy. The autophagy loss after siRNA transfection aggravated lipid deposition and the release of inflammatory cytokines. Mechanistically, Pueraria flavonoids trigger autophagy through PI3K/Akt/mTOR signaling pathway to reduce lipid deposition and inflammation. In summary, our results showed that Pueraria flavonoids stimulated autophagy by inhibiting the PI3K/Akt/mTOR signaling pathway, thereby reducing intracellular lipid accumulation and inflammation levels and alleviating NAFLD.
Collapse
Affiliation(s)
- Chunbin Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiong Hou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Menglin Hui
- School of Pharmaceutical Sciences, Shandong First Medical University, Taian, Shandong, China
| | - Hualong Qi
- Nanyang Medical College, Nanyang, Henan, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Luxi Zhao
- The First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|