1
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
3
|
Lee J, Choi WG, Rhee M, Lee SH. Extracellular Vesicle-Mediated Network in the Pathogenesis of Obesity, Diabetes, Steatotic Liver Disease, and Cardiovascular Disease. Diabetes Metab J 2025; 49:348-367. [PMID: 40367986 DOI: 10.4093/dmj.2025.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles carrying bioactive cargo, including nucleic acids, proteins, and lipids, facilitating intercellular and interorgan communication. In addition to traditional mediators such as hormones, metabolites, and cytokines, increasing evidence suggests that EVs are key modulators in various physiological and pathological processes, particularly influencing metabolic homeostasis and contributing to the progression of cardiometabolic diseases. This review provides an overview of the most recent insights into EV-mediated mechanisms involved in the pathogenesis of obesity, insulin resistance, diabetes mellitus, steatotic liver disease, atherosclerosis, and cardiovascular disease. EVs play a critical role in modulating insulin sensitivity, glucose homeostasis, systemic inflammation, and vascular health by transferring functional molecules to target cells. Understanding the EV-mediated network offers potential for identifying novel biomarkers and therapeutic targets, providing opportunities for EV-based interventions in cardiometabolic disease management. Although many challenges remain, this evolving field highlights the need for further research into EV biology and its translational applications in cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Joonyub Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Gun Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Wang Z, Thakur C, Bi Z, Qiu Y, Zhang W, Ji H, Venkatesan AK, Cherukuri S, Liu KJ, Haley JD, Mao X, Meliker J, Chen F. 1,4-Dioxane Induces Epithelial-Mesenchymal Transition and Carcinogenesis in an Nrf2-Dependent Manner. J Extracell Vesicles 2025; 14:e70072. [PMID: 40304624 PMCID: PMC12042698 DOI: 10.1002/jev2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25-20 ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene SDC4, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.
Collapse
Affiliation(s)
- Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Arjun K. Venkatesan
- Civil Engineering, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
- Department of Civil and Environmental EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Sashank Cherukuri
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Ke Jian Liu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - John D. Haley
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Xinwei Mao
- Department of Civil Engineering, College of Engineering and Applied SciencesStony Brook UniversityStony BrookNew YorkUSA
- New York State Center for Clean Water TechnologyStony Brook UniversityStony BrookNew YorkUSA
| | - Jaymie Meliker
- Department of Family, Population and Preventive Medicine, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
5
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
6
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
7
|
Gao W, She J, Wu X, Zeng Z, Cai L, Chen X, Wu S, Zhu R. Association of liver fibrosis-4 index with functional outcomes in chinese patients with acute ischemic stroke undergoing mechanical thrombectomy. Sci Rep 2025; 15:13086. [PMID: 40240541 PMCID: PMC12003717 DOI: 10.1038/s41598-025-98426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025] Open
Abstract
This study aimed to investigate the association between the Fibrosis-4 (FIB-4) index and functional outcomes and hemorrhagic complications in patients with large vessel occlusion acute ischemic stroke (LVO-AIS) treated with mechanical thrombectomy (MT). In this single-center retrospective cohort study, we consecutively enrolled patients with LVO-AIS who underwent MT between January 2018 and February 2024. The primary endpoint was poor functional outcome at 90 days (modified Rankin Scale score 3-6). Secondary endpoints included hemorrhagic transformation (HT) and symptomatic intracranial hemorrhage (sICH). Multivariable logistic regression models and restricted cubic spline analyses were used to evaluate the association between FIB-4 index and outcomes after adjusting for potential confounders. Among 421 patients, 254 (60.33%) had poor outcomes, 197 (46.79%) developed HT, and 76 (18.05%) experienced sICH. After adjustment for confounding factors, each unit increase in FIB-4 index was associated with a 38% higher risk of poor outcome (P = 0.013). This association showed significant nonlinearity (P-nonlinear = 0.010), with risk increasing exponentially beyond a FIB-4 threshold of 2.4. Advanced fibrosis (FIB-4 ≥ 2.67) was independently associated with poor outcomes (P = 0.024). FIB-4 index independently predicts poor functional outcomes in LVO-AIS patients. This readily available biomarker may help identify high-risk patients who could benefit from enhanced monitoring and individualized treatment strategies.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing She
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinyu Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zhenxin Zeng
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lijuan Cai
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xingyu Chen
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaofeng Wu
- Department of Hepatobiliary Pancreatic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Renjing Zhu
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Chen B, Sun S, Fu J, Ge L, Nie W, Zhou P, Cao P, Zhou Q. Ethanol extract of Portulaca oleracea L. mitigates atherosclerosis through modulation of cholesterol efflux and uptake pathways. Front Pharmacol 2025; 16:1550812. [PMID: 40176886 PMCID: PMC11961987 DOI: 10.3389/fphar.2025.1550812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background Purslane (Portulaca oleracea) is a medicinal and edible plant. Purslane extract (POEE) exhibits lipid-lowering, anti-inflammatory, and antioxidant properties. Traditionally, this extract has been used to treat various inflammatory conditions, including skin inflammation, enteritis, and dysentery. However, its therapeutic potential and molecular mechanisms in atherosclerosis (AS) remain unclear. Methods Ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and the Traditional Chinese Medicine Systems Pharmacology Database were employed to identify the active components of POEE. Network pharmacology was used to predict POEE's mechanisms for alleviating AS. An in vitro foam cell model was established by treating RAW264.7 macrophages with oxidized low-density lipoprotein (ox-LDL), and the protective effects of POEE were assessed via the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while intracellular lipid accumulation was identified using Oil Red O staining. Protein expression related to cholesterol metabolism was analyzed by Western blot (WB). For in vivo validation, AS was induced in rats through a high-fat diet and carotid artery injury. After 4 weeks of daily POEE administration, the therapeutic efficacy was tested by measuring serum lipid levels, cardiac function, histopathological changes, and the cholesterol transport-related protein expression. Results The bioactive compounds identified in POEE were categorized into 10 groups, including flavonoids (24), terpenoids (16), phenols (6), and alkaloids (4), and others. Network pharmacology predictions implicated POEE in modulating the "Lipid and Atherosclerosis" pathway. POEE significantly reduced total cholesterol (TC) and free cholesterol (FC) levels in ox-LDL-stimulated macrophages, attenuating foam cell formation. Furthermore, POEE enhanced reverse cholesterol transport (RCT) by upregulating the expressions of ATP-binding cassette transporters ABCA1 and ABCG1 to promote cholesterol efflux, while suppressing CD36 and MSR1 expressions to inhibit cholesterol uptake. In vivo, POEE administration lowered serum triglycerides (TG), TC, FC, and LDL-C levels; elevated HDL-C; and ameliorated carotid artery lesions in AS rats. Concordantly, ABCA1 expression was upregulated and that of MSR1 was downregulated in POEE-treated carotid tissues. Conclusion POEE alleviates atherosclerosis by enhancing RCT through regulation of cholesterol efflux and uptake pathways. POEE may be a promising therapeutic candidate for AS.
Collapse
Affiliation(s)
- Bin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Shanshan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jialei Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Nie
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Peina Zhou
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
9
|
Mo W, Peng Y, Zheng Y, Zhao S, Deng L, Fan X. Extracellular vesicle-mediated bidirectional communication between the liver and other organs: mechanistic exploration and prospects for clinical applications. J Nanobiotechnology 2025; 23:190. [PMID: 40055724 PMCID: PMC11889855 DOI: 10.1186/s12951-025-03259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
The liver, functioning as an endocrine organ, secretes a variety of substances that influence the activities of other body organs. Conversely, molecules generated by organs such as bone, the gut, and adipose tissue can also impact liver function. Accumulating evidence suggests bidirectional communication between the liver and other organs. However, research on how extracellular vesicles (EVs), which transport active molecular mediators, contribute to this interorgan communication is still in its nascent stages. EVs are capable of transporting functional molecules, including lipids, nucleic acids, and proteins, thereby affecting recipient cells across different organs at the biological level. This review examines the role of EVs in facilitating bidirectional communication between the liver and other organs such as bone, the cardiovascular system, the gut, the pancreas, the brain, the lungs, the kidneys, and adipose tissue. It explores their potential in disease treatment and highlights the challenges in understanding EV-mediated interorgan interactions. The contribution of mediator-carrying EVs to two-way communication between the liver and other organs remains an area of ongoing investigation. Future research will provide a more comprehensive theoretical foundation to clarify the precise mechanisms governing communication between the liver and other organs, pinpoint medical targets, and expand the application of EVs within the realm of precision medicine.
Collapse
Affiliation(s)
- Wenhui Mo
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunke Peng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shenglan Zhao
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liling Deng
- Department of Endocrinology and Metabolism, Chongqing Emergency Medical Centre, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Marjot T. New evidence of cross-disease communication between heart and liver. J Hepatol 2025; 82:541-543. [PMID: 39721919 DOI: 10.1016/j.jhep.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, UK; Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, UK.
| |
Collapse
|
11
|
Fan X, Peng Y, Li B, Wang X, Liu Y, Shen Y, Liu G, Zheng Y, Deng Q, Liu J, Yang L. Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410439. [PMID: 39804962 PMCID: PMC11884600 DOI: 10.1002/advs.202410439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway. Briefly, injured liver secreted increased amounts of EVs into circulation, which are then engulfed primarily by macrophages in skeletal muscle and subsequently induce cGAS-STING signaling and its-mediated inflammatory response in muscles. In contrast, suppression of hepatic EV secretion or STING signaling significantly alleviated cirrhosis-induced skeletal muscle inflammation and muscle atrophy in vivo. Circulating EVs from cirrhotic patients showed higher levels of mtDNA, and the levels of EV-mtDNA positively correlated with the severity of liver injury. In injured hepatocytes, mitochondrial damage promoted the release of cytosolic mtDNA and the subsequent secretion of mtDNA-enriched EVs. This study reveals that injured hepatocyte-derived EVs induce skeletal muscle inflammation via the mtDNA‒STING axis, while targeted blockade of liver EV secretion or STING signaling represents a potential therapeutic approach for preventing cirrhosis-associated skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yunke Peng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Bo Li
- Department of RadiologyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yifeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Guofeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyCenter for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
12
|
Zeng Z, Zhao Z, Yuan Q, Yang S, Wang Z, Wang Z, Zeng S, Li A, Chen Q, Zhu G, Xiao X, Luo G, Luo H, Li J, Zu X, Xie H, Liu J. Hepatic Steatosis Aggravates Vascular Calcification via Extracellular Vesicle-Mediated Osteochondrogenic Switch of Vascular Smooth Muscle Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408660. [PMID: 39680681 PMCID: PMC11791995 DOI: 10.1002/advs.202408660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/18/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has risen sharply. This condition is strongly associated with the risk of cardiovascular disease (CVD), but how MAFLD affects the development and progression of CVD, particularly concerning vascular calcification, remains unclear. Herein, extracellular vesicles (EVs) are identified from steatotic hepatocytes as a trigger that accelerated the progression of both vascular intimal and medial calcification. Steatotic hepatocytes are found to release more EVs, which are able to reach the vascular tissue, be taken up by vascular smooth muscle cells (VSMCs), and promote their osteogenic differentiation. Within these toxic vesicles, a protein cargo is identified called lectin galactoside-binding soluble 3 binding protein (Lgals3bp) that acted as a potent inducer of osteochondrogenic transformation in VSMCs. Both the inhibition of EV release and the liver-specific knockdown of Lgals3bp profoundly attenuated vascular calcification. This work partially explains the reason for the high incidence of vascular calcification in MAFLD and unveils a novel mechanism that may be used to prevent or treat cardiovascular complications in patients with MAFLD.
Collapse
Affiliation(s)
- Zhao‐Lin Zeng
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Institute of Cardiovascular DiseaseKey Lab for Arteriosclerology of Hunan ProvinceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Zhi‐Bo Zhao
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Qing Yuan
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Shi‐Qi Yang
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Zhen‐Xing Wang
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Zuo Wang
- Institute of Cardiovascular DiseaseKey Lab for Arteriosclerology of Hunan ProvinceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Shi‐Yu Zeng
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - An‐Qi Li
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Qian Chen
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Guo‐Qiang Zhu
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Xin‐Hua Xiao
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Guang‐Hua Luo
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Hai‐Yan Luo
- Department of GastroenterologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Jiao‐Yang Li
- Department of Occupational and Environmental HealthSchool of Public HealthWuhan UniversityWuhan430071P. R. China
| | - Xu‐Yu Zu
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Hui Xie
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jiang‐Hua Liu
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| |
Collapse
|
13
|
Liu ZC, Fu HJ, Li NC, Deng FJ, Gan YK, Ye YJ, Huang BH, Liu C, Chen JH, Li XF. Systematic pharmacology and experimental validation to elucidate the inflammation-associated mechanism of Huanglian Wendan (HLWD) decoction in the treatment of MAFLD associated with atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118841. [PMID: 39299361 DOI: 10.1016/j.jep.2024.118841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic-associated fatty liver disease (MAFLD) and atherosclerosis are very common disorders that frequently coexist. The therapeutic efficacy of Huanglian Wendan (HLWD) decoction, a traditional Chinese medicine (TCM) prescription, is satisfactory in treating MAFLD associated with atherosclerosis. However, the underlying mechanisms through which HLWD exerts its effects need to be elucidated. Given the complex composition of HLWD and its multiple therapeutic targets, pharmacological investigation is challenging. AIM OF THIS STUDY This study aimed to identify the effective compounds in HLWD and elucidate the mechanisms involved in its therapeutic effect on MAFLD associated with atherosclerosis. MATERIALS AND METHODS We used a systematic pharmacology method to identify effective compounds present in HLWD and determine the mechanism by which it affects MAFLD associated with atherosclerosis. The effective components of HLWD were identified through ultrahigh-performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Next, a comprehensive in silico method was used to predict potential related targets and disease targets for these compounds to establish corresponding pathways. The accuracy of our assumed systemic pharmacology results was determined by conducting follow-up experiments. RESULTS By conducting UHPLC-Q-Orbitrap HRMS combined with network analysis, we identified 18 potentially active components of HLWD and assessed the inflammatory regulatory mechanism by which it affects MAFLD associated with atherosclerosis on the basis of 52 key targets. We used a high-fat, high-cholesterol (HFHC)-induced mice model of MAFLD associated with atherosclerosis to confirm our results. We found that administering HLWD significantly improved the appearance of their liver and reduced their body weight, liver weight, blood lipids, hepatic damage, and hepatic pathology. HLWD also decreased atherosclerotic lesion areas, foam cells, and inflammatory cells in the aorta. HLWD showed anti-inflammatory effects, suppressed M1 polarization, and promoted M2 polarization in the liver and aorta. HLWD might also regulate peroxisome proliferator-activated receptor-γ (PPARγ)/nuclear factor kappa-B (NF-κB) signaling to influence macrophage polarization and inflammation. CONCLUSIONS Our results showed that HLWD protected against HFHC diet-induced MAFLD associated with atherosclerosis by regulating PPARγ/NF-κB signaling, thus adjusting macrophage polarization and inflammation. Additionally, pharmacochemistry research, network pharmacology analysis, and experimental verification can be combined to form a comprehensive model used in studies on TCM.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Huan-Jie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, PR China.
| | - Ning-Cen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Fang-Jun Deng
- Department of Cardiovascular, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300150, PR China.
| | - Yong-Kang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300150, PR China.
| | - Yu-Jia Ye
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Bing-Hui Huang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Chang Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Jin-Hong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong Province, 261053, PR China.
| | - Xiao-Feng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, PR China.
| |
Collapse
|
14
|
Ionescu VA, Gheorghe G, Bacalbasa N, Diaconu CC. Metabolic Dysfunction-Associated Steatotic Liver Disease: Pathogenetic Links to Cardiovascular Risk. Biomolecules 2025; 15:163. [PMID: 40001466 PMCID: PMC11852489 DOI: 10.3390/biom15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is correlated with an increased cardiovascular risk, independent of other traditional risk factors. The mechanisms underlying this pathogenic link are complex yet remain incompletely elucidated. Among these, the most significant are visceral adiposity, low-grade inflammation and oxidative stress, endothelial dysfunction, prothrombotic status, insulin resistance, dyslipidemia and postprandial hyperlipemia, gut dysbiosis, and genetic mutations. Cardiovascular diseases are the leading cause of death in patients with MASLD. These patients have an increased incidence of coronary artery disease, carotid artery disease, structural and functional cardiac abnormalities, and valvulopathies, as well as arrhythmias and cardiac conduction disorders. In this review, we present the latest data on the association between MASLD and cardiovascular risk, focusing on the pathogenic mechanisms that explain the correlation between these two pathologies. Given the high rates of cardiovascular morbidity and mortality among patients with MASLD, we consider it imperative to raise awareness of the risks associated with this condition within the general population. Further research is essential to clarify the mechanisms underlying the increased cardiovascular risk linked to MASLD. This understanding may facilitate the identification of new diagnostic and prognostic biomarkers for these patients, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Visceral Surgery, Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania;
- Department of Surgery, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
15
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
López de Las Hazas MDC, Tomé-Carneiro J, Balaguer L, de la Peña G, Chapado LA, Alonso-Bernáldez M, Del Saz-Lara A, Gil-Zamorano J, Burgos-Ramos E, Rodríguez-Pérez M, Gómez-Coronado D, Dávalos A. Dietary plant microRNAs as potential regulators of cellular cholesterol efflux. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:315-324. [PMID: 38584064 DOI: 10.1016/j.arteri.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
AIM Epidemiological evidence suggests adherence to vegetable-rich diets is associated to atheroprotective effects and bioactive components are most likely to play a relevant role. The notion of inter-kingdom regulation has opened a new research paradigm and perhaps microRNAs (miRNAs) from edible vegetables could influence consumer gene expression and lead to biological effects. We aimed to investigate the potential impact of broccoli-derived miRNAs on cellular cholesterol efflux in vitro. METHODS Four miRNAs (miR159a, miR159b, miR166a and miR403) from Brassica oleracea var. italica (broccoli), a widely consumed cruciferous vegetable, were selected for further investigation, based on their high abundancy in this vegetable and their presence in other plants. Selected miRNAs were synthesized with a 3'-terminal 2'-O-methylation and their cellular toxicity, in vitro gastrointestinal resistance and cellular uptake were evaluated. Potential target genes within the mammalian transcriptome were assessed in silico following pathway analysis. In vitro cholesterol efflux was assessed in human THP-1-derived macrophages. RESULTS miRNAs survival to in vitro GI digestion was around 1%, although some variation was seen between the four candidates. Cellular uptake by mammalian cells was confirmed, and an increase in cholesterol efflux was observed. Pathway analysis suggested these miRNAs are involved in biological processes related to phosphorylation, phosphatidylinositol and Wnt signaling, and to the insulin/IGF pathway. CONCLUSIONS Health-promoting properties attributed to cruciferous vegetables, might be mediated (at least in part) through miRNA-related mechanisms.
Collapse
Affiliation(s)
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Livia Balaguer
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Marta Alonso-Bernáldez
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad Castilla-La Mancha, Toledo, Spain
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad Castilla-La Mancha, Toledo, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain; Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
17
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
18
|
Ebrahimi F, Ebrahimi R, Hagström H, Sundström J, Sun J, Bergman D, Forss A, Ludvigsson JF. Risk of Major Adverse Cardiovascular Outcomes in Families With MASLD: A Population-Based Multigenerational Cohort Study. Circ Cardiovasc Qual Outcomes 2024; 17:e010912. [PMID: 39503614 DOI: 10.1161/circoutcomes.124.010912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a risk factor for cardiovascular disease. However, whether family members of individuals with MASLD also share an increased cardiovascular risk is unknown. METHODS We created a nationwide multigenerational cohort study identifying all family members of Swedish adults diagnosed with biopsy-proven MASLD (1969-2017) and of matched general population comparators (by age, sex, calendar year, and county of residence). We calculated incidence rates and used Cox models to calculate adjusted hazard ratios (aHRs) and 95% CIs for incident major adverse cardiovascular events (MACE), including acute myocardial infarction, stroke, hospitalization for heart failure, or cardiovascular death. Cox models were adjusted for education, country of birth, diabetes, hypertension, obesity, dyslipidemia, chronic kidney disease, chronic obstructive pulmonary disease, and the Charlson comorbidity index. RESULTS We identified 22 267 MASLD first-degree relatives (FDRs; parents, siblings, and offspring) and 5687 MASLD spouses, as well as 118 056 comparator FDRs and 29 389 comparator spouses without earlier cardiovascular disease. Overall, the mean age was 41.8 years (SD, 18.0), and 51.5% were females. Over a median of 24.6 years, the incidence rate for MACE was higher in MASLD FDRs than in comparator FDRs (65.0 versus 62.5/10 000 person-years; aHR, 1.06 [95% CI, 1.01-1.11]). MASLD FDRs had higher rates of acute myocardial infarction (23.0 versus 20.9/10 000 person-years; aHR, 1.09 [95% CI, 1.01-1.18]) and cardiovascular death (aHR, 1.09 [95% CI, 1.01-1.18]). Across generations of FDRs, the risk of MACE was uniformly increased with no differences by relationship (ie, parents, siblings, and offspring; Pinteraction>0.05). MASLD spouses were also at an increased risk of MACE (117.6 versus 103.5/10 000 person-years; aHR, 1.09 [95% CI, 1.01-1.18]). CONCLUSIONS First-degree relatives of individuals with biopsy-proven MASLD are at slightly higher risk of incident MACE, but absolute risks do not support early screening for cardiovascular disease. Shared lifestyle factors may be the main contributors, as spouses of MASLD patients also had higher risks of MACE.
Collapse
Affiliation(s)
- Fahim Ebrahimi
- Department of Medical Epidemiology and Biostatistics (F.E., J. Sun, D.B., A.F., J.F.L.), Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland (F.E.)
| | - Ramin Ebrahimi
- Division of Cardiology, Department of Internal Medicine B, University Medicine Greifswald, Germany (R.E.)
| | - Hannes Hagström
- Department of Medicine, Huddinge (H.H.), Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden (H.H.)
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Sweden (J. Sundström)
| | - Jiangwei Sun
- Department of Medical Epidemiology and Biostatistics (F.E., J. Sun, D.B., A.F., J.F.L.), Karolinska Institutet, Stockholm, Sweden
| | - David Bergman
- Department of Medical Epidemiology and Biostatistics (F.E., J. Sun, D.B., A.F., J.F.L.), Karolinska Institutet, Stockholm, Sweden
| | - Anders Forss
- Department of Medical Epidemiology and Biostatistics (F.E., J. Sun, D.B., A.F., J.F.L.), Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics (F.E., J. Sun, D.B., A.F., J.F.L.), Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Sweden (J.F.L.)
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.F.L.)
| |
Collapse
|
19
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
21
|
Bai Y, Nan Y, Wu T, Zhu A, Xie X, Sun Y, Deng Y, Dou Z, Hu X, Zhou R, Xu S, Zhang Y, Fan J, Ju D. Lipid Nanoparticle-Mediated Delivery of CRISPR-Cas9 Against Rubicon Ameliorates NAFLD by Modulating CD36 Along with Glycerophospholipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400493. [PMID: 38894572 PMCID: PMC11336963 DOI: 10.1002/advs.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of various chronic metabolic hepatic diseases with limited therapeutics. Rubicon, an essential regulator in lysosomal degradation, is reported to exacerbate hepatic steatosis in NAFLD mice and patients, indicating its probability of being a therapeutic target for NAFLD treatment. In this study, the therapeutic potential of Rubicon blockage is investigated. Lipid nanoparticles carrying Rubicon-specific CRISPR-Cas9 components exhibited liver accumulation, cell internalization, and Rubicon knockdown. A single administration of the nanoparticles results in attenuated lipid deposition and hepatic steatosis, with lower circulating lipid levels and decreased adipocyte size in NAFLD mice. Furthermore, the increase of phosphatidylcholine and phosphatidylethanolamine levels can be observed in the NAFLD mice livers after Rubicon silencing, along with regulatory effects on metabolism-related genes such as CD36, Gpcpd1, Chka, and Lpin2. The results indicate that knockdown of Rubicon improves glycerophospholipid metabolism and thereby ameliorates the NAFLD progression, which provides a potential strategy for NAFLD therapy via the restoration of Rubicon.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xinlei Xie
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yun Sun
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Yong Deng
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Zihan Dou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Rongrui Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Shuwen Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yuanzhen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
- Shanghai Hailu Biological Technology Co., Ltd.Shanghai201200P. R. China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
| |
Collapse
|
22
|
Zeng Y, Cui X, Li H, Wang Y, Cheng M, Zhang X. Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases. Regen Ther 2024; 26:1069-1077. [PMID: 39582802 PMCID: PMC11585476 DOI: 10.1016/j.reth.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The mechanical microenvironment plays a crucial regulatory role in the growth and development of cells. Mechanical stimuli, including shear, tensile, compression, and extracellular matrix forces, significantly influence cell adhesion, migration, proliferation, differentiation, and various other cellular functions. Extracellular vesicles (EVs) are involved in numerous physiological and pathological processes, with their occurrence and secretion being strictly regulated by the mechanical microenvironment. Recent studies have confirmed that alterations in the mechanical microenvironment are present in cardiovascular diseases, and the components of EVs can respond to changes in mechanical signals, thereby impacting the progression of these diseases. Additionally, engineered EVs, created by leveraging mechanical microenvironments, can serve as natural drug-delivery vehicles for treating and managing specific diseases. This article systematically reviews the regulatory mechanisms through which the mechanical microenvironment influences EVs and summarizes the role and advancements of EVs derived from this environment in the context of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yanhui Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| |
Collapse
|
23
|
Gato S, García-Fernández V, Gil-Gómez A, Rojas Á, Montero-Vallejo R, Muñoz-Hernández R, Romero-Gómez M. Navigating the Link Between Non-alcoholic Fatty Liver Disease/Non-alcoholic Steatohepatitis and Cardiometabolic Syndrome. Eur Cardiol 2024; 19:e03. [PMID: 38807856 PMCID: PMC11131154 DOI: 10.15420/ecr.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/27/2023] [Indexed: 05/30/2024] Open
Abstract
The global prevalence of non-alcoholic fatty liver disease (NAFLD) is nearly 25% and is increasing rapidly. The spectrum of liver damage in NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis, characterised by the presence of lobular inflammation and hepatocyte ballooning degeneration, with or without fibrosis, which can further develop into cirrhosis and hepatocellular carcinoma. Not only is NAFLD a progressive liver disease, but numerous pieces of evidence also point to extrahepatic consequences. Accumulating evidence suggests that patients with NAFLD are also at increased risk of cardiovascular disease (CVD); in fact, CVDs are the most common cause of mortality in patients with NAFLD. Obesity, type 2 diabetes and higher levels of LDL are common risk factors in both NAFLD and CVD; however, how NAFLD affects the development and progression of CVD remains elusive. In this review, we comprehensively summarise current data on the key extrahepatic manifestations of NAFLD, emphasising the possible link between NAFLD and CVD, including the role of proprotein convertase substilisin/kenin type 9, extracellular vesicles, microbiota, and genetic factors.
Collapse
Affiliation(s)
- Sheila Gato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Vanessa García-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
| | - Antonio Gil-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Ángela Rojas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Montero-Vallejo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Muñoz-Hernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Departamento de Fisiología, Facultad de Biología, Universidad de SevillaSeville, Spain
| | - Manuel Romero-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen del RocíoSeville, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de SevillaSeville, Spain
| |
Collapse
|
24
|
Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024; 73:691-702. [PMID: 38228377 DOI: 10.1136/gutjnl-2023-330595] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common chronic liver disease globally and is currently estimated to affect up to 38% of the global adult population. NAFLD is a multisystem disease where systemic insulin resistance and related metabolic dysfunction play a pathogenic role in the development of NAFLD and its most relevant liver-related morbidities (cirrhosis, liver failure and hepatocellular carcinoma) and extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain types of extrahepatic cancers. In 2023, three large multinational liver associations proposed that metabolic dysfunction-associated steatotic liver disease (MASLD) should replace the term NAFLD; the name chosen to replace non-alcoholic steatohepatitis was metabolic dysfunction-associated steatohepatitis (MASH). Emerging epidemiological evidence suggests an excellent concordance rate between NAFLD and MASLD definitions-that is, ~99% of individuals with NAFLD meet MASLD criteria. In this narrative review, we provide an overview of the literature on (a) the recent epidemiological data on MASLD and the risk of developing CVD and malignant complications, (b) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of these extrahepatic complications and (c) the diagnosis and assessment of CVD risk and potential treatments to reduce CVD risk in people with MASLD or MASH.
Collapse
Affiliation(s)
- Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore Don Calabria Hospital and Department of Medicine University of Verona, Negrar di Valpolicella (VR), Italy
| | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Wei S, Wang L, Evans PC, Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today 2024; 29:103910. [PMID: 38301798 DOI: 10.1016/j.drudis.2024.103910] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-β (THRβ) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.
Collapse
Affiliation(s)
- Shulin Wei
- School of Life Sciences, Jilin University, Changchun, China; Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the most recent evidence exploring the role of lipid droplets in steatotic liver disease (SLD). We highlight the breadth of mechanisms by which lipid droplets may contribute to the progression of SLD with a particular focus on the role of lipid droplets as inducers of mechanical stress within hepatocytes and genetic mutations in lipid droplet associated proteins. Finally, this review provides an update on clinical trials exploring the therapeutic potential and strategies targeting lipid droplets. RECENT FINDINGS The size, composition and location of hepatic lipid droplets strongly influence the pathological role of these organelles in SLD. Emerging studies are beginning to elucidate the importance of lipid droplet induced hepatocyte mechanical stress. Novel strategies targeting lipid droplets, including the effects of lipid droplet associated protein mutations, show promising therapeutic potential. SUMMARY Much more than a histological feature, lipid droplets are complex heterogenous organelles crucial to cellular metabolism with important causative roles in the development and progression of SLD. Lipid droplet induced mechanical stress may exacerbate hepatic inflammation and fibrogenesis and potentially contribute to the development of a pro-carcinogenic hepatic environment. The integration of advancements in genetics and molecular biology in upcoming treatments aspires to transcend symptomatic alleviation and address the fundamental causes and pathological development of SLD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Chen J, Ren T, Xie L, Hu H, Li X, Maitusong M, Zhou X, Hu W, Xu D, Qian Y, Cheng S, Yu K, Wang JA, Liu X. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat Commun 2024; 15:557. [PMID: 38228638 PMCID: PMC10792006 DOI: 10.1038/s41467-024-44726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Collapse
Affiliation(s)
- Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, P.R. China
| | - Miribani Maitusong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Jian An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, P.R. China.
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| |
Collapse
|