1
|
Nordestgaard AT, Tybjærg-Hansen A, Mansbach H, Kersten S, Nordestgaard BG, Rosenson RS. Target Populations for Novel Triglyceride-Lowering Therapies. J Am Coll Cardiol 2025; 85:1876-1897. [PMID: 40368577 DOI: 10.1016/j.jacc.2025.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 05/16/2025]
Abstract
Lipoprotein lipase regulates triglyceride hydrolysis and contributes to cellular uptake of triglyceride-rich lipoprotein remnants. Multiple pathways modulate lipoprotein lipase activity, which has prompted interest in the development of drugs that increase lipoprotein lipase activity as means to reduce risk for acute pancreatitis, atherosclerotic cardiovascular disease, and metabolic dysfunction-associated steatohepatitis through reduction of circulating triglycerides and remnant cholesterol. The authors provide an overview of the target populations for agents that lower triglycerides and remnant cholesterol through increased lipoprotein lipase activity, the drugs being developed for these indications, including apolipoprotein C-III and angiopoietin-like protein 3, 3/8, and 4 inhibitors, and the epidemiologic and genetic evidence supporting the use of these drugs for the prevention of atherosclerotic cardiovascular disease and acute pancreatitis. In addition, the authors provide a corresponding overview of fibroblast growth factor-21 analogues that share many characteristics with these novel triglyceride-lowering drugs. Apolipoprotein C-III inhibitors, angiopoietin-like protein 3, 3/8, and 4 inhibitors, and fibroblast growth factor-21 analogues have pronounced triglyceride-lowering and remnant cholesterol-lowering effects. In clinical trials, apolipoprotein C-III inhibitors have been shown to lower risk for acute pancreatitis in patients with severe hypertriglyceridemia and are approved for this indication, while fibroblast growth factor-21 analogues reduce hepatic steatosis and fibrosis in patients with metabolic dysfunction-associated steatohepatitis. It remains to be seen whether these novel drugs may lower risk for atherosclerotic cardiovascular disease as well.
Collapse
Affiliation(s)
- Ask T Nordestgaard
- Center for Cardiovascular Disease Prevention, Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Clinical Biochemistry and the Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark.
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sander Kersten
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Noureddin M, Rinella ME, Chalasani NP, Neff GW, Lucas KJ, Rodriguez ME, Rudraraju M, Patil R, Behling C, Burch M, Chan DC, Tillman EJ, Zari A, de Temple B, Shringarpure R, Jain M, Rolph T, Cheng A, Yale K. Efruxifermin in Compensated Liver Cirrhosis Caused by MASH. N Engl J Med 2025. [PMID: 40341827 DOI: 10.1056/nejmoa2502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
BACKGROUND In phase 2 trials involving patients with stage 2 or 3 fibrosis caused by metabolic dysfunction-associated steatohepatitis (MASH), efruxifermin, a bivalent fibroblast growth factor 21 (FGF21) analogue, reduced fibrosis and resolved MASH. Data are needed on the efficacy and safety of efruxifermin in patients with compensated cirrhosis (stage 4 fibrosis) caused by MASH. METHODS In this phase 2b, randomized, placebo-controlled, double-blind trial, we assigned patients with MASH who had biopsy-confirmed compensated cirrhosis (stage 4 fibrosis) to receive subcutaneous efruxifermin (at a dose of 28 mg or 50 mg once daily) or placebo. The primary outcome was a reduction of at least one stage of fibrosis without worsening of MASH at week 36. Secondary outcomes included the same criterion at week 96. RESULTS A total of 181 patients underwent randomization and received at least one dose of efruxifermin or placebo. Of these patients, liver biopsy was performed in 154 patients at 36 weeks and in 134 patients at 96 weeks. At 36 weeks, a reduction in fibrosis without worsening of MASH occurred in 8 of 61 patients (13%) in the placebo group, in 10 of 57 patients (18%) in the 28-mg efruxifermin group (difference from placebo after adjustment for stratification factors, 3 percentage points; 95% confidence interval [CI], -11 to 17; P = 0.62), and in 12 of 63 patients (19%) in the 50-mg efruxifermin group (difference from placebo, 4 percentage points; 95% CI, -10 to 18; P = 0.52). At week 96, a reduction in fibrosis without worsening of MASH occurred in 7 of 61 patients (11%) in the placebo group, in 12 of 57 patients (21%) in the 28-mg efruxifermin group (difference from placebo, 10 percentage points; 95% CI, -4 to 24), and in 18 of 63 patients (29%) in the 50-mg efruxifermin group (difference from placebo, 16 percentage points; 95% CI, 2 to 30). Gastrointestinal adverse events were more common with efruxifermin; most events were mild or moderate. CONCLUSIONS In patients with compensated cirrhosis caused by MASH, efruxifermin did not significantly reduce fibrosis at 36 weeks. (Funded by Akero Therapeutics; SYMMETRY ClinicalTrials.gov number, NCT05039450.).
Collapse
Affiliation(s)
- Mazen Noureddin
- Houston Methodist Hospital, Houston
- Houston Research Institute, Houston
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago
| | | | - Guy W Neff
- Covenant Metabolic Specialists, Fort Myers, FL
| | | | | | | | | | | | - Mark Burch
- Akero Therapeutics, South San Francisco, CA
| | | | | | - Arian Zari
- Akero Therapeutics, South San Francisco, CA
| | | | | | - Meena Jain
- Akero Therapeutics, South San Francisco, CA
| | | | | | - Kitty Yale
- Akero Therapeutics, South San Francisco, CA
| |
Collapse
|
3
|
Ko D, Kim DH, Danpanichkul P, Nakano M, Rattananukrom C, Wijarnpreecha K, Ng CH, Muthiah MD. Liver cirrhosis in metabolic dysfunction-associated steatohepatitis. Gastroenterol Rep (Oxf) 2025; 13:goaf037. [PMID: 40351569 PMCID: PMC12065432 DOI: 10.1093/gastro/goaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 05/14/2025] Open
Abstract
In the present narrative review, we have summarized the current evidence on the natural progression of metabolic dysfunction-associated steatohepatitis (MASH) cirrhosis observed through the placebo arm in clinical trials and observational studies. The outcomes scrutinized throughout our review were histology-related changes, non-invasive fibrosis markers, indicators of decompensation, end-stage hepatic complications, and mortality reported during the different clinical trials. Given the short duration of clinical trials, observational studies were included to obtain better insight into the long-term progression and prognosis of MASH cirrhosis. Lastly, new updates about MASH cirrhosis treatments were listed, and the results of these randomized clinical trials were described to enhance our understanding of our current standing in the treatment of MASH cirrhosis.
Collapse
Affiliation(s)
- Donghyun Ko
- Department of Medicine, Bridgeport Hospital Yale New Haven Health, Bridgeport, CT, USA
| | - Do Han Kim
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Masahito Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Chitchai Rattananukrom
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Karn Wijarnpreecha
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Banner University Medical Center, Phoenix, AZ, USA
- BIO5 Institute, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Cheng Han Ng
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|
4
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
6
|
Cheung J, Cheung BMY, Yiu KH, Tse HF, Chan YH. Role of metabolic dysfunction-associated fatty liver disease in atrial fibrillation and heart failure: molecular and clinical aspects. Front Cardiovasc Med 2025; 12:1573841. [PMID: 40264510 PMCID: PMC12011764 DOI: 10.3389/fcvm.2025.1573841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a rising global health concern. In addition to direct hepatic complications, extra-hepatic complications, including cardiovascular diseases (CVD), type 2 diabetes (T2D), gastroesophageal reflux disease, chronic kidney disease and some malignancies, are increasingly recognized. CVD, including atrial fibrillation (AF) and heart failure (HF), is the leading cause of death in patients with MASLD. External factors, including excess energy intake, sedentary lifestyle and xenobiotic use, induce inflammation-related complications. MASLD, AF, and HF are associated with immune system activation, including the reprogramming of immune cells and the establishment of immune memory. Emerging evidence suggests that the heart and the liver cross-talk with each other through the diverse spectrum of autocrine, paracrine and endocrine mechanisms. Pro-inflammatory cytokines produced from the liver and the heart circulate systemically to orchestrate metabolic derangements that promote the systematic immune dysregulation in the heart-liver axis and the development of end-organ complications. Cardio-hepatic syndrome describes the clinical and biochemical evidence of hepatic dysfunction and cardiac pathology due to the interaction between the heart and the liver. Activation of inflammatory cascades, oxidative stress and immune system dysregulation underlie key mechanisms in bringing about such pathological changes. This review focuses on the current clinical and molecular evidence about the heart-liver cross-talk. It summarizes the epidemiological and pathophysiological associations of MASLD, AF and HF. In addition, we will discuss how repurposing currently available and emerging pharmacotherapies may help tackle the cardiovascular risks resulting from MASLD.
Collapse
Affiliation(s)
- Jamie Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bernard Man-Yung Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kai-Hang Yiu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, Shenzhen Hong Kong University Hospital, Hong Kong SAR, China
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, Shenzhen Hong Kong University Hospital, Hong Kong SAR, China
| | - Yap-Hang Chan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Experimental Medicine and Immunotherapeutics, Cambridge University Hospitals NHS Foundation Trust/University of Cambridge, Cambridge, United Kingdom
- Department of Cardiology, Royal Papworth Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
7
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
8
|
Wang X, Meng Q, Jia A, Zhou Y, Song D, Ma S, Li W, Zhang Z, Goldring C, Feng H, Wang M. Construction and Expression of Fc-FGF21 by Different Expression Systems and Comparison of Their Similarity and Difference with Efruxifermin by In Vitro and In Vivo Studies. Appl Biochem Biotechnol 2025; 197:2180-2196. [PMID: 39699797 PMCID: PMC11985657 DOI: 10.1007/s12010-024-05107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a potential serious disease, which almost has no available medicine for effective treatment today. Efruxifermin is a bivalent Fc-FGF21 candidate drug developed by Akero Therapeutics that has shown promising results in preclinical and clinical trials for NASH and may be approved in future. However, it is produced by Escherichia coli (E. coli) expressing system, which has no glycosylation modifications and is hard to purify for inclusion body. Suspension mammalian cell expression systems, human embryonic kidney 293 (HEK293), and Chinese hamster ovary (CHO) are good choice for protein expression of biopharmaceutical use. In this report, the objective was to produce Fc-FGF21 by mammalian cell expression systems, which enabled necessary glycosylation modifications to occur on the Fc-FGF21 protein and was relatively easy for future large-scale production. We observed that the target protein Fc-FGF21 could be easily degraded in CHO system, such as CHOK1SV or CHOZN, and it was hard to purify, whereas it was more stable in the HEK293 expressing system. Then, similarity between Fc-FGF21 from E. coli and Fc-FGF21 from HEK293 was focused by in vitro and in vivo studies, and we observed no significant difference between the proteins expressed from the two different expressing systems, indicating that a biosimilar of Efruxifermin has been developed successfully. Proteomics analysis from in vivo study samples further identified some potential biomarkers or FGF21 related signaling pathways. Taken together, this study demonstrates a good example of how to develop and validate a biosimilar for therapeutic purposes. In future, more efforts, such as mutation to FGF21 or linking FGF21 with effective antibody to form dual targets, could be done to obtain more effective FGF21 analogs.
Collapse
Affiliation(s)
- Xujia Wang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, SD334F, Suzhou, 215123, Jiangsu, China
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Qin Meng
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, SD334F, Suzhou, 215123, Jiangsu, China
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Aijuan Jia
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Yuehua Zhou
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Dandan Song
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Shaokang Ma
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Wei Li
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Zhuobing Zhang
- Department of Analytical Science, Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Christopher Goldring
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Hui Feng
- Shanghai Anlingke Biopharmaceutical Co., Ltd, Shanghai, China
| | - Mu Wang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, SD334F, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
9
|
Nakamura T, Masuda A, Nakano D, Amano K, Sano T, Nakano M, Kawaguchi T. Pathogenic Mechanisms of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)-Associated Hepatocellular Carcinoma. Cells 2025; 14:428. [PMID: 40136677 PMCID: PMC11941585 DOI: 10.3390/cells14060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer deaths worldwide. The etiology of HCC has now dramatically changed from viral hepatitis to metabolic dysfunction-associated steatotic liver disease (MASLD). The main pathogenesis of MASLD-related HCC is the hepatic lipid accumulation of hepatocytes, which causes chronic inflammation and the subsequent progression of hepatic fibrosis. Chronic hepatic inflammation generates oxidative stress and DNA damage in hepatocytes, which contribute to genomic instability, resulting in the development of HCC. Several metabolic and molecular pathways are also linked to chronic inflammation and HCC in MASLD. In particular, the MAPK and PI3K-Akt-mTOR pathways are upregulated in MASLD, promoting the survival and proliferation of HCC cells. In addition, MASLD has been reported to enhance the development of HCC in patients with chronic viral hepatitis infection. Although there is no approved medication for MASLD besides resmetirom in the USA, there are some preventive strategies for the onset and progression of HCC. Sodium-glucose cotransporter-2 (SGLT2) inhibitor, a class of medications, has been reported to exert anti-tumor effects on HCC by regulating metabolic reprogramming. Moreover, CD34-positive cell transplantation improves hepatic fibrosis by promoting intrahepatic angiogenesis and supplying various growth factors. Furthermore, exercise improves MASLD through an increase in energy consumption as well as changes in chemokines and myokines. In this review, we summarize the recent progress made in the pathogenic mechanisms of MASLD-associated HCC. Furthermore, we introduced new therapeutic strategies for preventing the development of HCC based on the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Toru Nakamura
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Keisuke Amano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Fukuoka Consulting and Support Center for Liver Diseases, Kurume 830-0011, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Fukuoka Consulting and Support Center for Liver Diseases, Kurume 830-0011, Japan
| | - Masahito Nakano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| |
Collapse
|
10
|
Theofilis P, Oikonomou E, Karakasis P, Pamporis K, Dimitriadis K, Kokkou E, Lambadiari V, Siasos G, Tsioufis K, Tousoulis D. FGF21 Analogues in Patients With Metabolic Diseases: Systematic Review and Meta-Analysis of Randomised Controlled Trials. Liver Int 2025; 45:e70016. [PMID: 39898512 DOI: 10.1111/liv.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND AND AIMS Liver-related complications are frequent in patients with metabolic diseases, with limited treatment options currently available. This systematic review and meta-analysis aimed to assess the effect of fibroblast growth factor-21 (FGF21) analogues on hepatic steatosis, inflammation and fibrosis in patients with metabolic diseases. METHODS We conducted a systematic literature search in Pubmed, Scopus and Web of Science for randomised controlled trials (RCTs) assessing the effect of FGF21 analogues on hepatic steatosis evaluated by hepatic fat fraction (HFF), inflammation and fibrosis compared to placebo. Adverse events (AEs) were also recorded. RESULTS Treatment with FGF21 analogues was associated with metabolic-associated steatohepatitis (MASH) resolution without fibrosis worsening (5 studies, risk ratio [RR] 4.40, 95% confidence interval [CI]: 2.41, 8.03, p < 0.001) and fibrosis improvement by 1 grade without MASH worsening (6 studies, RR 1.79, 95% CI: 1.24, 2.59, p = 0.002). FGF21 analogues significantly lowered HFF compared to placebo (6 studies, SMD -1.08, 95% CI: -1.28, -0.88, p < 0.001), while patients receiving FGF21 analogues were more likely to exhibit a reduction in HFF by 30% (10 studies, RR 4.08, 95% CI: 3.08, 5.40, p < 0.001) or 50% (6 studies, RR 10.43, 95% CI: 5.47, 19.87, p < 0.001). HFF normalisation (≤ 5%) was more frequently achieved with FGF21 analogues (6 studies, RR 14.58, 95% CI: 4.70, 45.18, p < 0.001). The results remained robust after sensitivity analyses. Serious AE and AE leading to drug discontinuation were similar in patients receiving FGF21 analogues or placebo. CONCLUSIONS FGF21 analogues can reduce hepatic steatosis, inflammation and fibrosis in patients with metabolic diseases, representing a possible treatment option for steatotic liver disease.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Pamporis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Dimitriadis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kokkou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Souza M, Amaral MJM, Lima LCV, Villela-Nogueira CA. Meta-Analysis of Placebo-Treated Patients: Dropout Rates From Treatment in MASH Randomised Controlled Trials. Aliment Pharmacol Ther 2025; 61:776-786. [PMID: 39807647 DOI: 10.1111/apt.18498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Dropout is common and affects the statistical power and randomization balance of randomised controlled trials (RCTs). AIMS To estimate the dropout rate in RCTs of metabolic dysfunction-associated steatohepatitis (MASH) and to examine factors associated with dropout in placebo-treated participants. METHODS PubMed and Cochrane databases were searched for phase 2-4 MASH RCTs with placebo arms through November 24, 2024. Dropout was defined as the attrition of patients included in the intention-to-treat analysis but did not complete treatment. RCTs were qualitatively reviewed to assess the expected and observed dropouts. Generalised linear mixed model was used to estimate pooled dropout rates. RESULTS Sixty RCTs with 3230 placebo-treated participants with MASH were analysed. Thirty-three RCTs reported the dropout rate used to estimate the effect size. Of these, 60.6%, 36.4%, and 3.0% had an expected dropout rate that was higher, lower, and similar, respectively, than the observed dropout rate in the placebo arm. Overall, the dropout rate was 11.06% (95% confidence interval [CI] 9.07 to 13.42), with a higher rate in phase 3-4 trials than in phase 2 trials. The corresponding rates due to adverse events, loss to follow-up and patient choice were 2.41% (95% CI 1.67 to 3.48), 1.79% (95% CI 1.06 to 2.99) and 4.06% (95% CI 2.97 to 5.53), respectively. Meta-regression determined that the dropout rate increased with longer treatment duration. CONCLUSION Placebo dropout in MASH RCTs is significant, mainly due to patient choice. Factors such as trial phase and treatment duration should be considered when calculating sample size in future clinical trials.
Collapse
Affiliation(s)
- Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio J M Amaral
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan C V Lima
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Cazac-Panaite GD, Lăcătușu CM, Grigorescu ED, Foșălău AB, Onofriescu A, Mihai BM. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J Clin Med 2025; 14:1042. [PMID: 40004572 PMCID: PMC11857078 DOI: 10.3390/jcm14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac-Panaite
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adina-Bianca Foșălău
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
13
|
Huang R, Zhang C, Mo X, Rao H. Outbreak of metabolic dysfunction-associated steatohepatitis pharmacotherapies in 2024: From resmetirom to tirzepatide. Chin Med J (Engl) 2025; 138:127-129. [PMID: 39654450 PMCID: PMC11745866 DOI: 10.1097/cm9.0000000000003417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Rui Huang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaodong Mo
- Peking University People’s Hospital, Department of Hematology, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| |
Collapse
|
14
|
Hakim A, Connally NJ, Schnitzler GR, Cho MH, Jiang ZG, Sunyaev SR, Gupta RM. Missing Regulation Between Genetic Association and Transcriptional Abundance for Hypercholesterolemia Genes. Genes (Basel) 2025; 16:84. [PMID: 39858631 PMCID: PMC11764661 DOI: 10.3390/genes16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels. One hypothesis is that genetically mediated variation in transcript abundance, detected via the analysis of expressed quantitative trait loci (eQTLs), is key to the biologic function of causal variants. Here, we investigate the hypothesis that non-coding GWAS risk variants affect the homeostatic expression of a nearby putatively causal gene for serum LDL-C levels. Methods: We establish a set of twenty-one expert-curated and validated genes implicated in hypercholesterolemia via dose-dependent pharmacologic modulation in human adults, for which the relevant tissue type has been established. We show that the expression of these LDL-C genes is impacted by eQTLs in relevant tissues and that there are significant genomic-risk loci in LDL-GWAS near these causal genes. We evaluate, using statistical colocalization, whether a single variant or set of variants in each genetic locus is responsible for the GWAS and eQTL signals. Results: Genome-wide association study results for serum LDL-C levels demonstrate that the 402 identified genomic-risk loci for LDL-C are highly enriched for known causal genes for LDL-C (OR 527, 95% CI 126-5376, p < 2.2 × 10-16). However, we find limited evidence for colocalization between GWAS signals near validated hypercholesterolemia genes and eQTLs in relevant tissues (colocalization rate of 26% at a locus-level colocalization probability > 50%). Conclusions: Our results highlight the complexity of genetic regulatory effects for causal hypercholesterolemia genes; we suggest that context-responsive eQTLs may explain the effects of non-coding GWAS hits that do not overlap with standard eQTLs.
Collapse
Affiliation(s)
- Aaron Hakim
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| | - Noah J. Connally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Gavin R. Schnitzler
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
| | - Z. Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Shamil R. Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Rajat M. Gupta
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| |
Collapse
|
15
|
Suzuki H, Fujiwara N, Singal AG, Baumert TF, Chung RT, Kawaguchi T, Hoshida Y. Prevention of liver cancer in the era of next-generation antivirals and obesity epidemic. Hepatology 2025:01515467-990000000-01139. [PMID: 39808821 PMCID: PMC7617594 DOI: 10.1097/hep.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly HCC and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease. Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients. The recent development of new therapeutic agents and modalities has opened unprecedented opportunities to refine primary, secondary, and tertiary HCC prevention strategies. For primary prevention (before exposure to risk factors), public health policies, such as universal HBV vaccination, have had a substantial prognostic impact. Secondary prevention (after or during active exposure to risk factors) includes regular HCC screening and chemoprevention. Emerging biomarkers and imaging modalities for HCC risk stratification and detection may enable individual risk-based personalized and cost-effective HCC screening. Clinical studies have suggested the potential utility of lipid-lowering, antidiabetic/obesity, and anti-inflammatory agents for secondary prevention, and some of them are being evaluated in prospective clinical trials. Computational and experimental studies have identified potential chemopreventive strategies directed at diverse molecular, cellular, and systemic targets for etiology-specific and/or agnostic interventions. Tertiary prevention (in conjunction with curative-intent therapies for HCC) is an area of active research with the development of new immune-based neoadjuvant/adjuvant therapies. Cholangiocarcinoma prevention may advance with recent efforts to elucidate risk factors. These advances will collectively lead to substantial improvements in liver cancer mortality rates.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas F. Baumert
- Inserm, U1110, Institute for Translational Medicine and Liver Diseases, University of Strasbourg, F-67000, France
- IHU Strasbourg, F-67000 Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, F-67000Strasbourg, France
| | - Raymond T. Chung
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Victorovich Garbuzenko D. Perspectives of Drug Therapy for Non-Alcoholic Steatohepatitis-Related Liver Fibrosis. FIBROSIS 2025; 3:10002-10002. [DOI: 10.70322/fibrosis.2025.10002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
|
17
|
Marek GW, Malhi H. MetALD: Does it require a different therapeutic option? Hepatology 2024; 80:1424-1440. [PMID: 38820071 DOI: 10.1097/hep.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.
Collapse
Affiliation(s)
- George W Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
18
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
19
|
Ali MH, Rehman OU, Talha M, Fatima E, Fatima L, Zain A, Haisbuzzaman MA. Efficacy and safety of the FGF19 analog aldafermin for the treatment of nonalcoholic steatohepatitis: a GRADE assessed systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:7072-7081. [PMID: 39649867 PMCID: PMC11623846 DOI: 10.1097/ms9.0000000000002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is increasingly concerning due to its rising prevalence. It encompasses conditions from simple steatosis to severe nonalcoholic steatohepatitis (NASH), posing risks such as fibrosis, cirrhosis, or hepatocellular carcinoma if untreated. This systematic review and meta-analysis aims to assess aldafermin, an FGF19 analog, for efficacy and safety in NASH patients. Methods Eligible studies were identified by searching PubMed, Cochrane Library, and Google Scholar, resulting in 1115 studies. Three RCTs were included. The risk of bias was assessed using the Cochrane Risk of Bias tool, and data synthesis utilized Review Manager software. The certainty of evidence was evaluated with the GRADE approach. Results In the 3 mg dose group, aldafermin significantly improved various parameters. The ELF score decreased notably (pooled MD: -0.46, 95% CI: -0.64 to -0.28; P<0.00001). Additionally, fibrosis improvement without NASH worsening showed a pooled MD of 8.15 (95% CI: -3.62 to 19.93; P<0.17), and fibrosis improvement with NASH resolution displayed a pooled MD of 10.16 (95% CI: 1.68-18.64; P=0.02). Furthermore, significant reductions were noted in absolute AST levels (pooled MD: -13.40, 95% CI: -18.66 to -8.14; P<0.00001) and absolute ALT levels (pooled MD: -19.92, 95% CI: -27.08 to -12.75; P<0.00001), suggesting improved liver function. Conclusion The meta-analysis indicates that aldafermin, particularly, the 3 mg dose, shows significant efficacy in improving liver histology and biochemical markers in NASH patients compared to placebo, along with a satisfactory safety profile.
Collapse
Affiliation(s)
- Mohammad Haris Ali
- Department of Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Lahore, Pakistan
| | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Muhammad Talha
- Department of Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Lahore, Pakistan
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Laveeza Fatima
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Ahmad Zain
- Department of Medicine, UCHealth Parkview Medical Center, Pueblo, Colorado, USA
| | | |
Collapse
|
20
|
Zhou D, Fan J. Drug treatment for metabolic dysfunction-associated steatotic liver disease: Progress and direction. Chin Med J (Engl) 2024; 137:2687-2696. [PMID: 39470028 PMCID: PMC11611247 DOI: 10.1097/cm9.0000000000003355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 10/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), also called non-alcoholic fatty liver disease, is the most epidemic chronic liver disease worldwide. Metabolic dysfunction-associated steatohepatitis (MASH) is the critical stage of MASLD, and early diagnosis and treatment of MASH are crucial for reducing the incidence of intrahepatic and extrahepatic complications. So far, pharmacotherapeutics for the treatment of MASH are still a major challenge, because of the complexity of the pathogenesis and heterogeneity of MASH. Many agents under investigation have shown impressive therapeutic effects by targeting different key pathways, including the attenuation of steatohepatitis or fibrosis or both. It is notable that thyroid hormone receptor-β agonist, resmetirom has become the first officially approved drug for treating MASH with fibrosis. Other agents such as peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 analogs, and fibroblast growth factor 21 analogs are awaiting approval. This review focuses on the current status of drug therapy for MASH and summarizes the latest results of new medications that have completed phase 2 or 3 clinical trials, and presents the future directions and difficulties of new drug research for MASH.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
21
|
Pericàs JM, Anstee QM, Augustin S, Bataller R, Berzigotti A, Ciudin A, Francque S, Abraldes JG, Hernández-Gea V, Pons M, Reiberger T, Rowe IA, Rydqvist P, Schabel E, Tacke F, Tsochatzis EA, Genescà J. A roadmap for clinical trials in MASH-related compensated cirrhosis. Nat Rev Gastroenterol Hepatol 2024; 21:809-823. [PMID: 39020089 DOI: 10.1038/s41575-024-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Although metabolic dysfunction-associated steatohepatitis (MASH) is rapidly becoming a leading cause of cirrhosis worldwide, therapeutic options are limited and the number of clinical trials in MASH-related compensated cirrhosis is low as compared to those conducted in earlier disease stages. Moreover, designing clinical trials in MASH cirrhosis presents a series of challenges regarding the understanding and conceptualization of the natural history, regulatory considerations, inclusion criteria, recruitment, end points and trial duration, among others. The first international workshop on the state of the art and future direction of clinical trials in MASH-related compensated cirrhosis was held in April 2023 at Vall d'Hebron University Hospital in Barcelona (Spain) and was attended by a group of international experts on clinical trials from academia, regulatory agencies and industry, encompassing expertise in MASH, cirrhosis, portal hypertension, and regulatory affairs. The presented Roadmap summarizes important content of the workshop on current status, regulatory requirements and end points in MASH-related compensated cirrhosis clinical trials, exploring alternative study designs and highlighting the challenges that should be considered for upcoming studies on MASH cirrhosis.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | - Ramón Bataller
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Morbid Obesity Unit Coordinator, Vall d'Hebron University Hospital, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada
| | - Virginia Hernández-Gea
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Peter Rydqvist
- Medical Department, Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Elmer Schabel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Joan Genescà
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Ayesh H, Beran A, Suhail S, Ayesh S, Niswender K. Comparative Analysis of Resmetirom vs. FGF21 Analogs vs. GLP-1 Agonists in MASLD and MASH: Network Meta-Analysis of Clinical Trials. Biomedicines 2024; 12:2328. [PMID: 39457640 PMCID: PMC11505228 DOI: 10.3390/biomedicines12102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic-Dysfunction Associated Steatohepatitis (MASH) are linked to obesity, type 2 diabetes, and metabolic syndrome, increasing liver-related morbidity and cardiovascular risk. Recent therapies, including Resmetirom, FGF21 analogs, and GLP-1 agonists, have shown promise. This network meta-analysis evaluates their comparative efficacy and safety. METHODS A literature search was conducted across PubMed, Scopus, Web of Science, and Cochrane Library. Included clinical trials addressed MASLD or MASH with Resmetirom, FGF21 analogs, or GLP-1 agonists. Statistical analyses used a random-effects model, calculating mean differences (MD) and relative risks (RR), with heterogeneity assessed using τ2, I2, and Q statistics. RESULTS MASH resolution was significantly higher for FGF21 (RR 4.84, 95% CI: 2.59 to 9.03), Resmetirom showed the most significant reduction in MRI-PDFF (MD -18.41, 95% CI: -23.60 to -13.22) and >30% fat reduction (RR 3.56, 95% CI: 2.41 to 5.26). Resmetirom significantly reduced ALT (MD -15.71, 95% CI: -23.30 to -8.13), AST (MD -12.28, 95% CI: -21.07 to -3.49), and GGT (MD -19.56, 95% CI: -34.68 to -4.44). FGF21 and GLP-1 also reduced these markers. Adverse events were significantly higher with Resmetirom (RR 1.47, 95% CI: 1.24 to 1.74), while GLP-1 and FGF21 showed non-significant trends towards increased risk. CONCLUSIONS Resmetirom and FGF21 show promise in treating MASLD and MASH, with Resmetirom particularly effective in reducing liver fat and improving liver enzymes. GLP-1 agonists also show benefits but to a lesser extent. Further long-term studies are needed to validate these findings and assess cost-effectiveness.
Collapse
Affiliation(s)
- Hazem Ayesh
- Deaconess Health System, Evansville, IN 47708, USA
| | - Azizullah Beran
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Kevin Niswender
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Dolovitsch de Oliveira F, Khalil SM, Sato EDBDS, de Souza MHG, Meine GC. Efficacy and Safety of Fibroblast Growth Factor 21 Analogues for Metabolic Dysfunction-Associated Steatohepatitis: A Systematic Review and Meta-Analysis. ANNALS OF NUTRITION & METABOLISM 2024; 81:51-60. [PMID: 39362207 DOI: 10.1159/000541583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Fibroblast growth factor 21 (FGF21) analogues may benefit patients with metabolic dysfunction-associated steatohepatitis (MASH). We aimed to compare the efficacy and safety of FGF21 analogues versus placebo for treating patients with MASH in randomized controlled trials (RCTs). METHODS We searched PubMed, Embase, and the Cochrane Library. Primary outcomes were fibrosis improvement ≥1 stage without worsening of MASH and MASH resolution without worsening of fibrosis. Secondary outcomes were relative reduction ≥30% of the hepatic fat fraction (HFF) measured by magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) and adverse events (AEs). RESULTS We included 7 RCTs (886 patients). FGF21 analogues had a higher probability of fibrosis improvement ≥1 stage without worsening of MASH (RR: 1.54; 95% CI: 1.07, 2.22), MASH resolution without worsening of fibrosis (RR: 3.31; 95% CI: 1.80, 6.06), and reduction ≥30% in the HFF by MRI-PDFF (RR: 3.03; 95% CI: 2.12, 4.33) than placebo, without significant difference in the risk of AEs. Subgroup analyses by the stage of fibrosis showed that FGF21 analogues improved fibrosis only among patients with fibrosis stages F1-F3. CONCLUSION FGF21 analogues appear to be an effective and safe treatment option for patients with MASH, although the impact on fibrosis improvement may be limited to non-cirrhotic patients.
Collapse
|
24
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
25
|
Gallego‐Durán R, Ampuero J, Maya‐Miles D, Pastor‐Ramírez H, Montero‐Vallejo R, Rivera‐Esteban J, Álvarez‐Amor L, Pareja MJ, Rico MC, Millán R, Robles‐Frías MJ, Aller R, Rojas Á, Muñoz‐Hernández R, Gil‐Gómez A, Gato S, García‐Lozano M, Arias‐Loste MT, Abad J, Calleja JL, Andrade RJ, Crespo J, González‐Rodríguez Á, García‐Monzón C, Andreola F, Pericás JM, Jalan R, Martín‐Bermudo F, Romero‐Gómez M. Fibroblast growth factor 21 is a hepatokine involved in MASLD progression. United European Gastroenterol J 2024; 12:1056-1068. [PMID: 38894596 PMCID: PMC11485537 DOI: 10.1002/ueg2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 06/21/2024] Open
Abstract
AIM We aimed to assess the role of FGF21 in metabolic dysfunction-associated steatotic liver disease (MASLD) at a multi-scale level. METHODS We used human MASLD pathology samples for FGF21 gene expression analyses (qPCR and RNAseq), serum to measure circulating FGF21 levels and DNA for genotyping the FGF21 rs838133 variant in both estimation and validation cohorts. A hepatocyte-derived cell line was exposed to free fatty acids at different timepoints. Finally, C57BL/6J mice were fed a high-fat and choline-deficient diet (CDA-HFD) for 16 weeks to assess hepatic FGF21 protein expression and FGF21 levels by ELISA. RESULTS A significant upregulation in FGF21 mRNA expression was observed in the liver analysed by both qPCR (fold change 5.32 ± 5.25 vs. 0.59 ± 0.66; p = 0.017) and RNA-Seq (3.5 fold; FDR: 0.006; p < 0.0001) in MASLD patients vs. controls. Circulating levels of FGF21 were increased in patients with steatohepatitis vs. bland steatosis (386.6 ± 328.9 vs. 297.9 ± 231.5 pg/mL; p = 0.009). Besides, sex, age, A-allele from FGF21, GG genotype from PNPLA3, ALT, type 2 diabetes mellitus and BMI were independently associated with MASH and significant fibrosis in both estimation and validation cohorts. In vitro exposure of Huh7.5 cells to high concentrations of free fatty acids (FFAs) resulted in overexpression of FGF21 (p < 0.001). Finally, Circulating FGF21 levels and hepatic FGF21 expression were found to be significantly increased (p < 0.001) in animals under CDA-HFD. CONCLUSIONS Hepatic and circulating FGF21 expression was increased in MASH patients, in Huh7.5 cells under FFAs and in CDA-HFD animals. The A-allele from the rs838133 variant was also associated with an increased risk of steatohepatitis and significant and advanced fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Rocío Gallego‐Durán
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Javier Ampuero
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Digestive Diseases UnitHospital Universitario Virgen del RocíoSevillaSpain
| | - Douglas Maya‐Miles
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Helena Pastor‐Ramírez
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Rocío Montero‐Vallejo
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Jesús Rivera‐Esteban
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Liver Unit, Internal Medicine Department, Vall d'Hebron University HospitalVall d'Hebron Institute for ResearchBarcelonaSpain
| | - Leticia Álvarez‐Amor
- Andalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER‐ University Pablo Olavide‐University of Seville‐CSICSevillaSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | | | - María Carmen Rico
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Raquel Millán
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | | | - Rocío Aller
- Digestive Diseases UnitHospital Clínico Universitario de ValladolidValladolidSpain
| | - Ángela Rojas
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Rocío Muñoz‐Hernández
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Antonio Gil‐Gómez
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - Sheila Gato
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - María García‐Lozano
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
| | - María Teresa Arias‐Loste
- Gastroenterology and Hepatology ServiceIDIVALMarqués de Valdecilla University HospitalSantanderSpain
| | - Javier Abad
- Digestive Diseases UnitHospital Universitario Puerta de HierroMadridSpain
| | - José Luis Calleja
- Digestive Diseases UnitHospital Universitario Puerta de HierroMadridSpain
| | - Raúl J. Andrade
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Digestive Diseases UnitInstituto de Investigación Biomédica de Málaga‐IBIMAHospital Universitario Virgen de la VictoriaUniversidad de MálagaMalagaSpain
| | - Javier Crespo
- Gastroenterology and Hepatology ServiceIDIVALMarqués de Valdecilla University HospitalSantanderSpain
| | - Águeda González‐Rodríguez
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
- Instituto de Investigaciones Biomédicas Sols‐Morreale (CSIC/UAM)MadridSpain
| | - Carmelo García‐Monzón
- Liver Research UnitHospital Universitario Santa CristinaInstituto de Investigación Sanitaria PrincesaMadridSpain
| | - Fausto Andreola
- Digestive Diseases UnitInstituto de Investigación Biomédica de Málaga‐IBIMAHospital Universitario Virgen de la VictoriaUniversidad de MálagaMalagaSpain
| | - Juan Manuel Pericás
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Liver Unit, Internal Medicine Department, Vall d'Hebron University HospitalVall d'Hebron Institute for ResearchBarcelonaSpain
| | - Rajiv Jalan
- Liver Failure GroupInstitute for Liver and Digestive HealthRoyal Free HospitalLondonUK
| | - Francisco Martín‐Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER‐ University Pablo Olavide‐University of Seville‐CSICSevillaSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Manuel Romero‐Gómez
- SeLiver GroupInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- CIBEREHDCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Digestive Diseases UnitHospital Universitario Virgen del RocíoSevillaSpain
| |
Collapse
|
26
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
27
|
Sass-Ørum K, Tagmose TM, Olsen J, Sjölander A, Wahlund PO, Han D, Vegge A, Reedtz-Runge S, Wang Z, Gao X, Wieczorek B, Lamberth K, Lykkegaard K, Nielsen PK, Thøgersen H, Yu M, Wang J, Drustrup J, Zhang X, Garibay P, Hansen K, Hansen AMK, Andersen B. Development of Zalfermin, a Long-Acting Proteolytically Stabilized FGF21 Analog. J Med Chem 2024; 67:11769-11788. [PMID: 39013015 DOI: 10.1021/acs.jmedchem.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we describe the development of the FGF21 analog zalfermin (NNC0194-0499, 15), intended for once-weekly sc dosing. Protein engineering was needed to address inherent druggability issues of the natural FGF21 hormone. Thus, deamidation of Asp121 was solved by mutation to glutamine, and oxidation of Met168 was solved by mutation to leucine. N-terminal region degradation by dipeptidyl peptidase IV was prevented by alanine residue elongation. To prevent inactivating metabolism by fibroblast activation protein and carboxypeptidase-like activity in the C-terminal region, and to achieve t1/2 extension (53 h in cynomolgus monkeys), we introduced a C18 fatty diacid at the penultimate position 180. The fatty diacid binds albumin in a reversible manner, such that the free fraction of zalfermin potently activates the FGF-receptor complex and retains receptor selectivity compared with FGF21, providing strong efficacy on body weight loss in diet-induced obese mice. Zalfermin is currently being clinically evaluated for the treatment of metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Kristian Sass-Ørum
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | | | - Jørgen Olsen
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Annika Sjölander
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Per-Olof Wahlund
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Dan Han
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Andreas Vegge
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | - Zhe Wang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Xiang Gao
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Birgit Wieczorek
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Kasper Lamberth
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | | | - Henning Thøgersen
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Mingrui Yu
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Jianhua Wang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Jørn Drustrup
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Xujia Zhang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Patrick Garibay
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Kristian Hansen
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | | |
Collapse
|
28
|
Mantovani A, Tilg H, Targher G. FGF-21 analogues for treatment of non-alcoholic steatohepatitis and fibrosis: a meta-analysis with fragility index of phase 2 randomised placebo-controlled trials. Gut 2024; 73:1400-1402. [PMID: 37758327 PMCID: PMC11287520 DOI: 10.1136/gutjnl-2023-331115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Alessandro Mantovani
- Endocrinology and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Giovanni Targher
- Endocrinology and Metabolism, Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore Don calabria Hospital, Negrar di Valpolicella, Italy
| |
Collapse
|
29
|
Jeong C, Han N, Jeon N, Rhee SJ, Staatz CE, Kim MS, Baek IH. Efficacy and Safety of Fibroblast Growth Factor-21 Analogs for the Treatment of Metabolic Dysfunction-Associated Steatohepatitis: A Systematic Review and Meta-Analysis. Clin Pharmacol Ther 2024; 116:72-81. [PMID: 38666606 DOI: 10.1002/cpt.3278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
Fibroblast growth factor (FGF)-21 analogs are potential therapeutic candidates for metabolic dysfunction-associated steatohepatitis (MASH). This systematic review and meta-analysis aimed to assess the efficacy and safety of the FGF-21 analogs, efruxifermin, pegbelfermin, and pegozafermin for MASH treatment. A comprehensive systematic review and meta-analysis of randomized controlled trials from five major databases was conducted. Primary efficacy outcomes focused on liver histological improvement, while secondary efficacy outcomes encompassed reductions in liver fat content and improvements in biochemical parameters. Safety outcomes examined included treatment-emergent adverse events (TEAEs), treatment-related TEAEs, TEAEs leading to discontinuation, and serious TEAEs. Eight eligible studies involving 963 patients were included in this review. Compared with the placebo group, the FGF-21 analog-treated group exhibited significantly improved primary efficacy outcomes, specifically ≥1 stage improvement in fibrosis with no worsening of MASH (risk ratio [RR] = 1.83; 95% confidence interval [CI] = 1.27-2.62) and at least two-point improvement in the non-alcoholic fatty liver disease activity score with no worsening of fibrosis (RR = 2.85; 95% CI = 2.06-3.95). Despite an increased risk of TEAEs (RR = 1.17; 95% CI = 1.08-1.27) and treatment-related adverse events (RR = 1.75; 95% CI = 1.40-2.19), FGF-21 analogs exhibited an acceptable safety profile. FGF-21 analogs were significantly better in achieving liver histological improvements and beneficial biochemical outcomes compared with placebo, with a tolerable safety pattern. These findings shed light on the efficacy and safety of FGF-21 analogs and provide valuable evidence for their application as MASH therapeutics.
Collapse
Affiliation(s)
| | - Nayoung Han
- College of Pharmacy, Jeju National University, Jeju, Korea
| | - Nakyung Jeon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Korea
| | - Su-Jin Rhee
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Korea
| | - Christine E Staatz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland, Australia
| | - Min-Soo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Korea
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland, Australia
- Functional Food & Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, Busan, Korea
| |
Collapse
|
30
|
Amoroso M, Augustin S, Moosmang S, Gashaw I. Non-invasive biomarkers prognostic of decompensation events in NASH cirrhosis: a systematic literature review. J Mol Med (Berl) 2024; 102:841-858. [PMID: 38753041 PMCID: PMC11213726 DOI: 10.1007/s00109-024-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 06/29/2024]
Abstract
Liver cirrhosis due to nonalcoholic steatohepatitis (NASH) is a life-threatening condition with increasing incidence world-wide. Although its symptoms are unspecific, it can lead to decompensation events such as ascites, hepatic encephalopathy, variceal hemorrhage, and hepatocellular carcinoma (HCC). In addition, an increased risk for cardiovascular events has been demonstrated in patients with NASH. Pharmacological treatments for NASH cirrhosis are not yet available, one of the reasons being the lack in surrogate endpoints available in clinical trials of NASH cirrhosis. The feasibility of non-invasive prognostic biomarkers makes them interesting candidates as possible surrogate endpoints if their change following treatment would result in better outcomes for patients in future clinical trials of NASH cirrhosis. In this systematic literature review, a summary of the available literature on the prognostic performance of non-invasive biomarkers in terms of cardiovascular events, liver-related events, and mortality is outlined. Due to the scarcity of data specific for NASH cirrhosis, this review includes studies on NAFLD whose evaluation focuses on cirrhosis. Our search strategy identified the following non-invasive biomarkers with prognostic value in studies of NASH patients: NAFLD fibrosis score (NFS), Fibrosis-4 (FIB-4), aspartate aminotransferase (AST) to platelet ratio index (APRI), enhanced liver fibrosis (ELF™), BARD (BMI, AST/ALT (alanine aminotransferase) ratio, diabetes), Hepamet Fibrosis Score (HFS), liver enzymes (AST + ALT), alpha-fetoprotein, platelet count, neutrophil to lymphocyte ratio (NLR), Lysyl oxidase-like (LOXL) 2, miR-122, liver stiffness, MEFIB (liver stiffness measured with magnetic resonance elastography (MRE) + FIB-4), and PNPLA3 GG genotype. The aim of the present systematic literature review is to provide the reader with a summary of the non-invasive biomarkers with prognostic value in NASH cirrhosis and give an evaluation of their utility as treatment monitoring biomarkers in future clinical trials.
Collapse
Affiliation(s)
| | | | - Sven Moosmang
- Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| | | |
Collapse
|
31
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
32
|
Lin R, Zhou J, Sun Q, Xin X, Hu Y, Zheng M, Feng Q. Meta-analysis: Efficacy and safety of fibroblast growth factor 21 analogues for the treatment of non-alcoholic steatohepatitis and non-alcoholic steatohepatitis-related fibrosis. Aliment Pharmacol Ther 2024; 59:802-811. [PMID: 38297816 DOI: 10.1111/apt.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) analogues have emerged as promising therapeutic targets for non-alcoholic steatohepatitis (NASH). However, the effects and safety of these analogues on NASH and NASH-related fibrosis remain unexplored. AIMS To estimate the efficacy and safety of FGF21 analogues for treating NASH and NASH-related fibrosis. METHODS PubMed, Embase, and the Cochrane Library were searched for relevant studies up to 11 October 2023. Primary outcomes were defined as the fibrosis improvement ≥1 stage without worsening of NASH and NASH resolution without worsening fibrosis. Secondary outcomes included biomarkers of fibrosis, liver injury, and metabolism. Treatment-related adverse events were also analysed. RESULTS Nine studies, including 1054 patients with biopsy-proven NASH and stage F1-F4 fibrosis, were identified. Seven studies reported histological outcomes. The relative risk (RR) for obtaining fibrosis improvement ≥1 stage efficacy was 1.79 (95% CI 1.29-2.48, I2 = 37%, p < 0.001) with FGF21 analogues relative to placebo. Although no statistically significant difference was observed between FGF21 analogues in NASH resolution, sensitivity analyses and fragility index suggest that this result is unstable. The drugs improved hepatic fat fraction (HFF), along with other biomarkers of fibrosis, liver injury, and metabolism (MRE, LSM, Pro-C3, ELF, ALT, AST, TG, HDL-C, and LDL-C). Additionally, no significant difference in serious adverse event incidence rate was observed (RR = 1.26, 95% CI 0.82-1.94, I2 = 24%, p = 0.3). CONCLUSIONS FGF21 analogues appear as promising agents for the treatment of NASH and NASH-related fibrosis, and they generally seem to be safe and well tolerated.
Collapse
Affiliation(s)
- Rutao Lin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghua Zhou
- Department of Cardiovascular Medicine, the Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinmei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Chui ZSW, Xue Y, Xu A. Hormone-based pharmacotherapy for metabolic dysfunction-associated fatty liver disease. MEDICAL REVIEW (2021) 2024; 4:158-168. [PMID: 38680683 PMCID: PMC11046571 DOI: 10.1515/mr-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions globally in parallel to the rising prevalence of obesity. Despite its significant burden, there is no approved pharmacotherapy specifically tailored for this disease. Many potential drug candidates for MAFLD have encountered setbacks in clinical trials, due to safety concerns or/and insufficient therapeutic efficacy. Nonetheless, several investigational drugs that mimic the actions of endogenous metabolic hormones, including thyroid hormone receptor β (THRβ) agonists, fibroblast growth factor 21 (FGF21) analogues, and glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed promising therapeutic efficacy and excellent safety profiles. Among them, resmetirom, a liver-targeted THRβ-selective agonist, has met the primary outcomes in alleviation of metabolic dysfunction-associated steatohepatitis (MASH), the advanced form of MAFLD, and liver fibrosis in phase-3 clinical trials. These hormone-based pharmacotherapies not only exhibit varied degrees of therapeutic efficacy in mitigating hepatic steatosis, inflammation and fibrosis, but also improve metabolic profiles. Furthermore, these three hormonal agonists/analogues act in a complementary manner to exert their pharmacological effects, suggesting their combined therapies may yield synergistic therapeutic benefits. Further in-depth studies on the intricate interplay among these metabolic hormones are imperative for the development of more efficacious combination therapies, enabling precision management of MAFLD and its associated comorbidities.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yaqian Xue
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Schnell O, Barnard-Kelly K, Battelino T, Ceriello A, Larsson HE, Fernández-Fernández B, Forst T, Frias JP, Gavin JR, Giorgino F, Groop PH, Heerspink HJL, Herzig S, Hummel M, Huntley G, Ibrahim M, Itzhak B, Jacob S, Ji L, Kosiborod M, Lalic N, Macieira S, Malik RA, Mankovsky B, Marx N, Mathieu C, Müller TD, Ray K, Rodbard HW, Rossing P, Rydén L, Schumm-Draeger PM, Schwarz P, Škrha J, Snoek F, Tacke F, Taylor B, Jeppesen BT, Tesfaye S, Topsever P, Vilsbøll T, Yu X, Standl E. CVOT Summit Report 2023: new cardiovascular, kidney, and metabolic outcomes. Cardiovasc Diabetol 2024; 23:104. [PMID: 38504284 PMCID: PMC10953147 DOI: 10.1186/s12933-024-02180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).
Collapse
Affiliation(s)
- Oliver Schnell
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany.
| | | | - Tadej Battelino
- University Medical Center, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Helena Elding Larsson
- Department of Pediatrics, Skåne University Hospital, Malmö/Lund, Sweden
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | | | - James R Gavin
- Emory University School of Medicine, Atlanta, GA, United States of America
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Per-Henrik Groop
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Medical School, Monash University, Melbourne, Australia
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan Herzig
- Division Diabetic Complications, Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Hummel
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany
| | - George Huntley
- Diabetes Leadership Council, Indianapolis, IN, United States of America
| | - Mahmoud Ibrahim
- Center for Diabetes Education, EDC, Charlotte, NC, United States of America
| | - Baruch Itzhak
- Clalit Health Services, Haifa, Israel
- Technion Faculty of Medicine, Haifa, Israel
| | - Stephan Jacob
- Practice for Prevention and Therapy and Cardio-Metabolic Institute, Villingen-Schwenningen, Germany
| | - Linong Ji
- Peking University People's Hospital, Xicheng District, Beijing, China
| | - Mikhail Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States of America
| | - Nebosja Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Ar-Rayyan, Doha, Qatar
| | - Boris Mankovsky
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Nikolaus Marx
- Clinic for Cardiology, Pneumology, Angiology and Internal Intensive Care Medicine (Medical Clinic I), RWTH Aachen University Hospital, Aachen, Germany
| | - Chantal Mathieu
- Department of Endocrinology, Catholic University Leuven, Leuven, Belgium
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Munich, Germany
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Kausik Ray
- School of Public Health, Imperial College London, London, United Kingdom
| | - Helena W Rodbard
- Endocrine and Metabolic Consultants, Rockville, MD, United States of America
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institute, Stockholm, Sweden
| | | | - Peter Schwarz
- Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Škrha
- Third Medical Department and Laboratory for Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frank Snoek
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bruce Taylor
- Diabetes Patient Advocacy Coalition, Tampa, FL, United States of America
| | | | - Solomon Tesfaye
- Sheffield Teaching Hospitals, Sheffield, United Kingdom
- University of Sheffield, Sheffield, United Kingdom
| | - Pinar Topsever
- Department of Family Medicine, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Türkiye
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eberhard Standl
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany
| |
Collapse
|
35
|
Wang Y, Yu H, Cen Z, Zhu Y, Wu W. Drug targets regulate systemic metabolism and provide new horizons to treat nonalcoholic steatohepatitis. Metabol Open 2024; 21:100267. [PMID: 38187470 PMCID: PMC10770762 DOI: 10.1016/j.metop.2023.100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH), is the advanced stage of nonalcoholic fatty liver disease (NAFLD) with rapidly rising global prevalence. It is featured with severe hepatocyte apoptosis, inflammation and hepatic lipogenesis. The drugs directly targeting the processes of steatosis, inflammation and fibrosis are currently under clinical investigation. Nevertheless, the long-term ineffectiveness and remarkable adverse effects are well documented, and new concepts are required to tackle with the root causes of NASH progression. We critically assess the recently validated drug targets that regulate the systemic metabolism to ameliorate NASH. Thermogenesis promoted by mitochondrial uncouplers restores systemic energy expenditure. Furthermore, regulation of mitochondrial proteases and proteins that are pivotal for intracellular metabolic homeostasis normalize mitochondrial function. Secreted proteins also improve systemic metabolism, and NASH is ameliorated by agonizing receptors of secreted proteins with small molecules. We analyze the drug design, the advantages and shortcomings of these novel drug candidates. Meanwhile, the structural modification of current NASH therapeutics significantly increased their selectivity, efficacy and safety. Furthermore, the arising CRISPR-Cas9 screen strategy on liver organoids has enabled the identification of new genes that mediate lipid metabolism, which may serve as promising drug targets. In summary, this article discusses the in-depth novel mechanisms and the multidisciplinary approaches, and they provide new horizons to treat NASH.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Hanhan Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
36
|
Horska K, Skrede S, Kucera J, Kuzminova G, Suchy P, Micale V, Ruda‐Kucerova J. Olanzapine, but not haloperidol, exerts pronounced acute metabolic effects in the methylazoxymethanol rat model. CNS Neurosci Ther 2024; 30:e14565. [PMID: 38421095 PMCID: PMC10850806 DOI: 10.1111/cns.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
AIM Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
- Section of Clinical Pharmacology, Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| | - Jan Kucera
- RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Physical Activities and Health, Faculty of Sports StudiesMasaryk UniversityBrnoCzech Republic
| | - Gabriela Kuzminova
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Pavel Suchy
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of PharmacologyUniversity of CataniaCataniaItaly
| | - Jana Ruda‐Kucerova
- Department of Pharmacology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
37
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
38
|
Machado MV. MASLD treatment-a shift in the paradigm is imminent. Front Med (Lausanne) 2023; 10:1316284. [PMID: 38146424 PMCID: PMC10749497 DOI: 10.3389/fmed.2023.1316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
MASLD prevalence is growing towards the leading cause of end-stage liver disease. Up to today, the most effective treatment is weight loss. Weight loss interventions are moving from lifestyle changes to bariatric surgery or endoscopy, and, more recently, to a new wave of anti-obesity drugs that can compete with bariatric surgery. Liver-targeted therapy is a necessity for those patients who already present liver fibrosis. The field is moving fast, and in the near future, we will testify to a disruptive change in MASLD treatment, similar to the paradigm-shift that occurred for hepatitis C almost one decade ago with direct antiviral agents.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
39
|
Puengel T, Tacke F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023. [PMID: 37376813 DOI: 10.1080/13543784.2023.2230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and strongly associated with metabolic disorders: obesity, type 2 diabetes (T2D), cardiovascular disease. Persistent metabolic injury results in inflammatory processes leading to nonalcoholic steatohepatitis (NASH), liver fibrosis and ultimately cirrhosis. To date, no pharmacologic agent is approved for the treatment of NASH. Fibroblast growth factor 21 (FGF21) agonism has been linked to beneficial metabolic effects ameliorating obesity, steatosis and insulin resistance, supporting its potential as a therapeutic target in NAFLD. AREAS COVERED Efruxifermin (EFX, also AKR-001 or AMG876) is an engineered Fc-FGF21 fusion protein with an optimized pharmacokinetic and pharmacodynamic profile, which is currently tested in several phase 2 clinical trials for the treatment of NASH, fibrosis and compensated liver cirrhosis. EFX improved metabolic disturbances including glycemic control, showed favorable safety and tolerability, and demonstrated antifibrotic efficacy according to FDA requirements for phase 3 trials. EXPERT OPINION While some other FGF-21 agonists (e.g. pegbelfermin) are currently not further investigated, available evidence supports the development of EFX as a promising anti-NASH drug in fibrotic and cirrhotic populations. However, antifibrotic efficacy, long-term safety and benefits (i.e. cardiovascular risk, decompensation events, disease progression, liver transplantation, mortality) remain to be determined.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
40
|
Crudele L, Garcia-Irigoyen O, Cariello M, Piglionica M, Scialpi N, Florio M, Piazzolla G, Suppressa P, Sabbà C, Gadaleta RM, Moschetta A. Total serum FGF-21 levels positively relate to visceral adiposity differently from its functional intact form. Front Endocrinol (Lausanne) 2023; 14:1159127. [PMID: 37409233 PMCID: PMC10319105 DOI: 10.3389/fendo.2023.1159127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Increased Fibroblast Growth Factor-21 (FGF-21) circulating levels have been described in obesity. In this observational study, we analysed a group of subjects with metabolic disorders to unravel the putative link between visceral adiposity and FGF-21 serum levels. Methods Total and intact serum FGF-21 concentration was measured with an ELISA assay respectively in 51 and 46 subjects, comparing FGF-21 levels in dysmetabolic conditions. We also tested Spearman's correlations between FGF-21 serum levels and biochemical and clinical metabolic parameters. Results FGF-21 was not significantly increased in high-risk conditions such as visceral obesity, Metabolic Syndrome, diabetes, smoking, and atherosclerosis. Waist Circumference (WC), but not BMI, positively correlated with total FGF-21 levels (r=0.31, p <0.05), while HDL-cholesterol (r=-0.29, p <0.05) and 25-OH Vitamin D (r=-0.32, p <0.05) showed a significant negative correlation with total FGF-21. ROC analysis of FGF-21 in prediction of increased WC, showed that patients with total FGF-21 level over cut-off value of 161.47 pg/mL presented with impaired FPG. Conversely, serum levels of the intact form of FGF-21 did not correlate with WC and other metabolic biomarkers. Conclusion Our newly calculated cut-off for total FGF-21 according to visceral adiposity identified subjects with fasting hyperglycemia. However, waist circumference correlates with total FGF-21 serum levels but does not correlate with intact FGF-21, suggesting that functional FGF-21 does not necessarily relate with obesity and metabolic features.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Natasha Scialpi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- National Institute for Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
41
|
Méndez-Sánchez N, Pal SC, Córdova-Gallardo J. How far are we from an approved drug for nonalcoholic steatohepatitis? Expert Opin Pharmacother 2023; 24:1021-1038. [PMID: 37092896 DOI: 10.1080/14656566.2023.2206953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Metabolic-associated fatty liver disease (MAFLD) previously known but still debatable, as nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disease and subsequent cirrhosis worldwide, accounting for around 30% of liver diseases. The change in its nomenclature has been brought about by the novel discoveries regarding its pathogenesis, in which metabolic dysfunction plays the most important role. It is widely known that for every disease, the treatment should always be targeted toward the underlying etiology and pathogenesis. AREAS COVERED MAFLD/NAFLD pathogenesis is heterogeneous, and includes multiple gene polymorphisms, presence of insulin resistance, as well as concomitant diseases that contribute to the disease onset and progression. As a result of this, even though lifestyle modification (owing to metabolic abnormalities) is the first line of treatment, multiple drugs have been tested to target each of the known pathways leading to MAFLD/NAFLD and progression of steatohepatitis. We aim to review the most relevant information regarding previous and ongoing research and recommendations regarding treatment of MAFLD/NAFLD. EXPERT OPINION Combination therapies associated to weight loss and exercise will be the optimal approach for these patients. It is important to evaluate each patient to select the specific combination according to patient characteristics.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Córdova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
| |
Collapse
|
42
|
Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci 2023; 24:ijms24098445. [PMID: 37176153 PMCID: PMC10178980 DOI: 10.3390/ijms24098445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions worldwide. Moreover, the prevalence of this liver disease is expected to increase rapidly in the near future, aligning with the rise in obesity and the aging of the population. The pathogenesis of NAFLD is considered to be complex and to include the interaction between genetic, metabolic, inflammatory, and environmental factors. It is now well documented that NAFLD is linked to the other conditions common to insulin resistance, such as abnormal lipid levels, metabolic syndrome, and type 2 diabetes mellitus. Additionally, it is considered that the insulin resistance may be one of the main mechanisms determining the disturbances in both bone tissue metabolism and skeletal muscles quality and functions in patients with NAFLD. To date, the association between NAFLD and osteoporosis has been described in several studies, though it worth noting that most of them included postmenopausal women or elderly patients and originated from Asia. However, taking into account the health and economic burdens of NAFLD, and the increasing prevalence of obesity in children and adolescents worldwide, further investigation of the relationship between osteopenia, osteoporosis and sarcopenia in NAFLD, including in young and middle-aged patients, is of great importance. In addition, this will help to justify active screening and surveillance of osteopenia and osteoporosis in patients with NAFLD. In this review, we will discuss various pathophysiological mechanisms and possible biologically active molecules that may interplay between NAFLD and bone tissue metabolism.
Collapse
Affiliation(s)
- Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu Elkina
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anton R Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|