1
|
Rivera-Hernandez T, Carnathan DG, Richter J, Marchant P, Cork AJ, Elangovan G, Henningham A, Cole JN, Choudhury B, Moyle PM, Toth I, Batzloff MR, Good MF, Agarwal P, Kapoor N, Nizet V, Silvestri G, Walker MJ. Efficacy of Alum-Adjuvanted Peptide and Carbohydrate Conjugate Vaccine Candidates against Group A Streptococcus Pharyngeal Infection in a Non-Human Primate Model. Vaccines (Basel) 2024; 12:382. [PMID: 38675764 PMCID: PMC11054769 DOI: 10.3390/vaccines12040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccine development against group A Streptococcus (GAS) has gained traction in the last decade, fuelled by recognition of the significant worldwide burden of the disease. Several vaccine candidates are currently being evaluated in preclinical and early clinical studies. Here, we investigate two conjugate vaccine candidates that have shown promise in mouse models of infection. Two antigens, the J8 peptide from the conserved C-terminal end of the M protein, and the group A carbohydrate lacking N-acetylglucosamine side chain (ΔGAC) were each conjugated to arginine deiminase (ADI), an anchorless surface protein from GAS. Both conjugate vaccine candidates combined with alum adjuvant were tested in a non-human primate (NHP) model of pharyngeal infection. High antibody titres were detected against J8 and ADI antigens, while high background antibody titres in NHP sera hindered accurate quantification of ΔGAC-specific antibodies. The severity of pharyngitis and tonsillitis signs, as well as the level of GAS colonisation, showed no significant differences in NHPs immunised with either conjugate vaccine candidate compared to NHPs in the negative control group.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Consejo Nacional de Humanidades Ciencia y Tecnología, Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Diane G. Carnathan
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (D.G.C.)
| | - Johanna Richter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | | | - Amanda J. Cork
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | - Gayathiri Elangovan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | - Anna Henningham
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Jason N. Cole
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Biswa Choudhury
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Peter M. Moyle
- School of Pharmacy, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; (M.R.B.)
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; (M.R.B.)
| | | | - Neeraj Kapoor
- Vaxcyte Inc., San Carlos, CA 94070, USA (P.A.); (N.K.)
| | - Victor Nizet
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Guido Silvestri
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (D.G.C.)
| | - Mark J. Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| |
Collapse
|
2
|
Topçu A, Kılıç S, Özgür E, Türkmen D, Denizli A. Inspirations of Biomimetic Affinity Ligands: A Review. ACS OMEGA 2022; 7:32897-32907. [PMID: 36157742 PMCID: PMC9494661 DOI: 10.1021/acsomega.2c03530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Affinity chromatography is a well-known method dependent on molecular recognition and is used to purify biomolecules by mimicking the specific interactions between the biomolecules and their substrates. Enzyme substrates, cofactors, antigens, and inhibitors are generally utilized as bioligands in affinity chromatography. However, their cost, instability, and leakage problems are the main drawbacks of these bioligands. Biomimetic affinity ligands can recognize their target molecules with high selectivity. Their cost-effectiveness and chemical and biological stabilities make these antibody analogs favorable candidates for affinity chromatography applications. Biomimetics applies to nature and aims to develop nanodevices, processes, and nanomaterials. Today, biomimetics provides a design approach to the biomimetic affinity ligands with the aid of computational methods, rational design, and other approaches to meet the requirements of the bioligands and improve the downstream process. This review highlighted the recent trends in designing biomimetic affinity ligands and summarized their binding interactions with the target molecules with computational approaches.
Collapse
Affiliation(s)
- Aykut
Arif Topçu
- Medical
Laboratory Program, Vocational School of Health Service, Aksaray University, 68100 Aksaray, Turkey
| | - Seçkin Kılıç
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Erdoğan Özgür
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Deniz Türkmen
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
3
|
Remans K, Lebendiker M, Abreu C, Maffei M, Sellathurai S, May MM, Vaněk O, de Marco A. Protein purification strategies must consider downstream applications and individual biological characteristics. Microb Cell Fact 2022; 21:52. [PMID: 35392897 PMCID: PMC8991485 DOI: 10.1186/s12934-022-01778-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.
Collapse
Affiliation(s)
- Kim Remans
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Mario Lebendiker
- Protein Purification Facility, The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840, Prague, Czech Republic
| | - Mariano Maffei
- Evvivax Biotech, Via di Castel Romano 100, 00128, Rome, Italy
| | | | - Marina M May
- AiCuris Anti-Infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840, Prague, Czech Republic
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000, Rožna Dolina-Nova Gorica, Slovenia.
| |
Collapse
|
4
|
Kay EJ, Terra VS. Production of Vaccines Using Biological Conjugation. Methods Mol Biol 2022; 2414:281-300. [PMID: 34784042 DOI: 10.1007/978-1-0716-1900-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of conjugate vaccines within an E. coli (Escherichia coli) host provides an inexhaustible supply without the need for culture of pathogenic organisms. The machinery for expression of glycan and acceptor protein, as well as the coupling enzyme, are all housed within the E. coli chassis, meaning that there are no additional steps required for individual purification and chemical conjugation of components. In addition, there are far fewer purification steps necessary to obtain a purified glycoconjugate for use in vaccine testing. Here we describe production and purification of a HIS-tagged Campylobacter jejuni AcrA protein conjugated to Streptococcus pneumoniae serotype 4 capsule.
Collapse
Affiliation(s)
- Emily J Kay
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Vanessa S Terra
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
5
|
Mesoporous metal organic frameworks functionalized with the amino acids as advanced sorbents for the removal of bacterial endotoxins from water: Optimization, regression and kinetic models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Jiménez-Chávez ÁDJ, Nava-García BK, Bustos-Jaimes I, Moreno-Fierros L. B19-VLPs as an effective delivery system for tumour antigens to induce humoral and cellular immune responses against triple negative breast cancer. Immunol Lett 2021; 239:77-87. [PMID: 34508790 DOI: 10.1016/j.imlet.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023]
Abstract
Cancer immunotherapy is emerging as a viable treatment option for several types of cancer. Active immunotherapy aims for the induction of specific antitumor immune responses; this goal requires strategies capable of increasing the immunogenicity of tumour antigens. Parvovirus B19 virus-like particles (B19-VLPs) formed of VP2 protein had been shown to be an effective multi-neoepitope delivery system capable of inducing specific cellular responses towards coupled antigens and reducing tumour growth and lung metastases in triple negative breast cancer mouse model. These findings encouraged us to further characterise these VP2 B19-VLPs by testing their capacity to simultaneously induce cellular and humoral responses towards other tumour-associated antigens, as this had not yet been evaluated. Here, we designed and evaluated in the 4T1 breast cancer model the prophylactic and therapeutic effect of VP2 B19-VLPs decorated with cellular (P53) and humoral (MUC1) epitopes. Balb/c mice were immunised with chimaeric VLPs, vehicle, or VLPs plus adjuvant. Tumour establishment and growth, lung metastasis, and cellular and humoral immune responses were evaluated. The prophylactic administration of chimaeric VLPs without adjuvant prevented the establishment of the tumour, while by therapeutic administration, chimaeric VLPs induced smaller tumour growth and decreased the number of metastases in the lung compared to wild-type VLPs. chimaeric VLPs induced high antibody titres towards the MUC1 epitope, as well as specific cellular responses towards P53 epitopes in lymph nodes local to the tumour. Our results reinforce and extend the utility of VP2 B19-VLPs as an encouraging tumour antigen delivery system in cancer immunotherapy able to improve tumour immunity in TNBC by inducing cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ángel de Jesús Jiménez-Chávez
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Brenda Katherine Nava-García
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Leticia Moreno-Fierros
- Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México.
| |
Collapse
|
7
|
Yenkoidiok-Douti L, Williams AE, Canepa GE, Molina-Cruz A, Barillas-Mury C. Engineering a Virus-Like Particle as an Antigenic Platform for a Pfs47-Targeted Malaria Transmission-Blocking Vaccine. Sci Rep 2019; 9:16833. [PMID: 31727945 PMCID: PMC6856133 DOI: 10.1038/s41598-019-53208-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
We recently characterized Pfs47, a protein expressed on the surface of sexual stages and ookinetes of Plasmodium falciparum, as a malaria transmission-blocking vaccine (TBV) target. Mice immunization induced antibodies that conferred strong transmission-reducing activity (TRA) at a concentration of 200 μg/mL. Here, we sought to optimize the Pfs47 vaccine to elicit higher titers of high-affinity antibodies, capable of inducing strong TRA at a lower concentration. We report the development and evaluation of a Pfs47-based virus-like particle (VLP) vaccine generated by conjugating our 58 amino acid Pfs47 antigen to Acinetobacter phage AP205-VLP using the SpyCatcher:SpyTag adaptor system. AP205-Pfs47 complexes (VLP-P47) formed particles of ~22 nm diameter that reacted with polyclonal anti-Pfs47 antibodies, indicating that the antigen was accessible on the surface of the particle. Mice immunized with VLP-P47 followed by a boost with Pfs47 monomer induced significantly higher antibody titers, with higher binding affinity to Pfs47, than mice that received two immunizations with either VLP-P47 (VLP-P47/VLP-P47) or the Pfs47 monomer (P47/P47). Purified IgG from VLP-P47/P47 mice had strong TRA (83-98%) at concentrations as low as 5 μg/mL. These results indicate that conjugating the Pfs47 antigen to AP205-VLP significantly enhanced antigenicity and confirm the potential of Pfs47 as a TBV candidate.
Collapse
Affiliation(s)
- Lampouguin Yenkoidiok-Douti
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Adeline E Williams
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gaspar E Canepa
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | | |
Collapse
|
8
|
Jiménez-Chávez ÁDJ, Moreno-Fierros L, Bustos-Jaimes I. Therapy with multi-epitope virus-like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine 2019; 37:7256-7268. [PMID: 31570181 DOI: 10.1016/j.vaccine.2019.09.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022]
Abstract
Triple-negative breast cancer is a major health problem that lacks molecular targets for therapy. Neoepitopes represent a viable option to induce antitumor immune responses, but they have limitations, such as low immunogenicity and tolerance induction. Parvovirus B19 virus-like particles may be used to deliver neoepitopes to prime cellular immunity. We designed and evaluated the therapeutic effect of VP2 B19-virus-like particles, with multi-neoepitopes, in a 4T1 breast cancer model. Balb/c mice received four therapeutic immunizations with multi-neoepitopes-virus-like, wild type-virus-like, vehicle, or virus-like plus Cry1Ac adjuvant particles, intraperitoneally and peritumorally. Tumor growth, lung macro-metastasis, and specific immune responses were evaluated. Therapeutic administration of multi-epitopes virus-like particles significantly delayed tumor growth and decreased the lung macro-metastasis number, in comparison to treatment with wild type-virus-like particles, which surprisingly also elicited antitumoral effects that were improved with the adjuvant. Only treatments with multi-epitope virus-like particles induced specific proliferative responses of CD8 and CD4 T lymphocytes and Granzyme-B production in lymphatic nodes local to the tumor. Treatment with recombinant multiple neoepitopes-virus-like particles induced specific cellular responses, inhibited tumor growth and macro-metastasis, thus B19-virus-like particles may function as an effective delivery system for neoepitopes for personalized immunotherapy.
Collapse
Affiliation(s)
- Ángel de Jesús Jiménez-Chávez
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Leticia Moreno-Fierros
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico.
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
9
|
Rivera-Hernandez T, Carnathan DG, Jones S, Cork AJ, Davies MR, Moyle PM, Toth I, Batzloff MR, McCarthy J, Nizet V, Goldblatt D, Silvestri G, Walker MJ. An Experimental Group A Streptococcus Vaccine That Reduces Pharyngitis and Tonsillitis in a Nonhuman Primate Model. mBio 2019; 10:e00693-19. [PMID: 31040243 PMCID: PMC6495378 DOI: 10.1128/mbio.00693-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Group A Streptococcus (GAS) infections account for an estimated 500,000 deaths every year. This bacterial pathogen is responsible for a variety of mild and life-threatening infections and the triggering of chronic autoimmune sequelae. Pharyngitis caused by group A Streptococcus (GAS), but not asymptomatic GAS carriage, is a prerequisite for acute rheumatic fever (ARF). Repeated bouts of ARF may trigger rheumatic heart disease (RHD), a major cause of heart failure and stroke accounting for 275,000 deaths annually. A vaccine that prevents pharyngitis would markedly reduce morbidity and mortality from ARF and RHD. Nonhuman primates (NHPs) have been utilized to model GAS diseases, and experimentally infected rhesus macaques develop pharyngitis. Here we use an NHP model of GAS pharyngitis to evaluate the efficacy of an experimental vaccine, Combo5 (arginine deiminase [ADI], C5a peptidase [SCPA], streptolysin O [SLO], interleukin-8 [IL-8] protease [SpyCEP], and trigger factor [TF]), specifically designed to exclude GAS components potentially linked to autoimmune complications. Antibody responses against all Combo5 antigens were detected in NHP serum, and immunized NHPs showed a reduction in pharyngitis and tonsillitis compared to controls. Our work establishes the NHP model as a gold standard for the assessment of GAS vaccines.IMPORTANCE GAS-related diseases disproportionally affect disadvantaged populations (e.g., indigenous populations), and development of a vaccine has been neglected. A recent strong advocacy campaign driven by the World Health Organization and the International Vaccine Institute has highlighted the urgent need for a GAS vaccine. One significant obstacle in GAS vaccine development is the lack of a widely used animal model to assess vaccine efficacy. Researchers in the field use a wide range of murine models of infection and in vitro assays, sometimes yielding conflicting results. Here we present the nonhuman primate pharyngeal infection model as a tool to assess vaccine-induced protection against colonization and clinical symptoms of pharyngitis and tonsillitis. We have tested the efficacy of an experimental vaccine candidate with promising results. We believe that the utilization of this valuable tool by the GAS vaccine research community could significantly accelerate the realization of a safe and effective GAS vaccine for humans.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Diane G Carnathan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Scott Jones
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Peter Doherty Institute, University of Melbourne, Parkville, VIC, Australia
| | - Peter M Moyle
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - James McCarthy
- Australian Infectious Diseases Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla, California, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Guido Silvestri
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Doosti M, Nassiri M, Nasiri K, Tahmoorespur M, Zibaee S. Immunogenic evaluation of FMD virus immuno-dominant epitopes coupled with IL-2/FcIgG in BALB/c mice. Microb Pathog 2019; 132:30-37. [PMID: 31004723 DOI: 10.1016/j.micpath.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/19/2018] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Previous studies on vaccine development against foot-and-mouth disease (FMD) virus reported that application of the inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immune-dominant epitopes showed they induced immune responses. In addition, for better and safer immunization, access to of efficient adjuvants against FMD virus seems to be critical. In this study, we produced epitope recombinant vaccines from the VP1 protein of the FMD virus for serotype O of Iran that conjugated with Fc Immunoglobulin (FcIgG) and Interleukin-2 (IL-2). Multiple-epitope constructs included Polytope, Polytope-IL2-FcIgG, Polytope-IL2, Polytope-FcIgG that cloned and expressed in E. coli BL21 (DE3). To evaluate whether these epitope recombinant vaccines induce immune responses, BALB/c mice were injected with the epitope recombinant vaccines and their immune responses were compared with a negative control group. The humoral and cellular immune responses were measured by ELISA. The results showed there were significant differences between the negative control group and other immunized mice with recombinant epitope proteins (p < 0.05). The results of total IgG, IgG1, IgG2a levels and secretion of IFN-γ, IL-4 and IL-10 revealed that immune responses were enhanced when the epitope recombinant vaccine of FMD virus coupled with IL-2 and FcIgG. Observations indicated that the epitope recombinant plasmid of the VP1 protein co-expressed with IL-2 and FcIgG was effective in inducing an enhanced immune response. Therefore, IL-2 and FcIgG could be recommended as a potential adjuvant for epitope recombinant vaccine of the VP1 protein from FMD virus.
Collapse
Affiliation(s)
- Mohammad Doosti
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran. https://www.researchgate.net/profile/Mojtaba_Tahmoorespur
| | - Saeed Zibaee
- Razi Vaccine and Serum Research Institute, Mashhad, Iran
| |
Collapse
|
11
|
Zhao P, Wang P, Dong S, Zhou Z, Cao Y, Yagita H, He X, Zheng SG, Fisher SJ, Fujinami RS, Chen M. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 2019; 3:292-305. [PMID: 30952980 PMCID: PMC6452906 DOI: 10.1038/s41551-019-0360-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)-an immune checkpoint factor expressed by activated T cells and B cells-is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Leitão ALODS, Caldas MCB, Eduardo de Araújo Padilha C, Nogueira da Costa C, Rocha PM, Canindé de Sousa Junior F, Ribeiro de Macedo G, Silvino dos Santos E. Recovery and purification of 503 antigen from Leishmania i. chagasi with simultaneous removal of lipopolysaccharides: Influence of immobilized metals and elution strategies during expanded bed adsorption (EBA). J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1565829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | - Patrícia Maria Rocha
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Francisco Canindé de Sousa Junior
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | |
Collapse
|
13
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
14
|
Broad application and optimization of a single wash-step for integrated endotoxin depletion during protein purification. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:101-107. [DOI: 10.1016/j.jchromb.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/05/2018] [Accepted: 05/19/2018] [Indexed: 11/18/2022]
|
15
|
Norris-Mullins B, Krivda JS, Smith KL, Ferrell MJ, Morales MA. Leishmania phosphatase PP5 is a regulator of HSP83 phosphorylation and essential for parasite pathogenicity. Parasitol Res 2018; 117:2971-2985. [PMID: 29982859 DOI: 10.1007/s00436-018-5994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Leishmania parasites are responsible for important neglected diseases in humans and animals, ranging from self-healing cutaneous lesions to fatal visceral manifestations. During the infectious cycle, Leishmania differentiates from the extracellular flagellated promastigote to the intracellular pathogenic amastigote. Parasite differentiation is triggered by changes in environmental cues, mainly pH and temperature. In general, extracellular signals are translated into stage-specific gene expression by a cascade of reversible protein phosphorylation regulated by protein kinases and phosphatases. Though protein kinases have been actively studied as potential anti-parasitic drug targets, our understanding of the biology of protein phosphatases in Leishmania is poor. We have previously reported the principal analysis of a novel protein phosphatase 5 (PP5) in Leishmania species. Here, we assessed the role of PP5 in parasite pathogenicity, where we uncovered, using transgenic PP5 over-expressing and PP5 null-mutant parasites, its importance in metacyclogeneisis, maintaining HSP83 phosphorylation homeostasis and virulence. All together, our results indicate the importance of PP5 in regulating parasite stress and adaptation during differentiation, making this protein an attractive potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph S Krivda
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kathryn L Smith
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Micah J Ferrell
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Miguel A Morales
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Moon S, Kong B, Jung YH, Kim Y, Yu S, Park JB, Shin J, Kweon DH. Endotoxin-free purification of recombinant membrane scaffold protein expressed in Escherichia coli. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Brune KD, Buldun CM, Li Y, Taylor IJ, Brod F, Biswas S, Howarth M. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization. Bioconjug Chem 2017; 28:1544-1551. [PMID: 28437083 DOI: 10.1021/acs.bioconjchem.7b00174] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Can M Buldun
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Iona J Taylor
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Florian Brod
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sumi Biswas
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Teodorowicz M, Perdijk O, Verhoek I, Govers C, Savelkoul HFJ, Tang Y, Wichers H, Broersen K. Optimized Triton X-114 assisted lipopolysaccharide (LPS) removal method reveals the immunomodulatory effect of food proteins. PLoS One 2017; 12:e0173778. [PMID: 28355240 PMCID: PMC5371287 DOI: 10.1371/journal.pone.0173778] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/27/2017] [Indexed: 01/20/2023] Open
Abstract
SCOPE Investigations into the immunological response of proteins is often masked by lipopolysaccharide (LPS) contamination. We report an optimized Triton X-114 (TX-114) based LPS extraction method for β-lactoglobulin (BLG) and soy protein extract suitable for cell-based immunological assays. METHODS AND RESULTS Optimization of an existing TX-114 based phase LPS extraction method resulted in >99% reduction of LPS levels. However, remaining TX-114 was found to interfere with LPS and protein concentration assays and decreased viability of THP-1 macrophages and HEK-Blue 293 cells. Upon screening a range of TX-114 extraction procedures, TX-114-binding beads were found to most effectively lower TX-114 levels without affecting protein structural properties. LPS-purified proteins showed reduced capacity to activate TLR4 compared to non-treated proteins. LPS-purified BLG did not induce secretion of pro-inflammatory cytokines from THP-1 macrophages, as non-treated protein did, showing that LPS contamination masks the immunomodulatory effect of BLG. Both HEK293 cells expressing TLR4 and differentiated THP-1 macrophages were shown as a relevant model to screen the protein preparations for biological effects of LPS contamination. CONCLUSION The reported TX-114 assisted LPS-removal from protein preparations followed by bead based removal of TX-114 allows evaluation of natively folded protein preparations for their immunological potential in cell-based studies.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | - Olaf Perdijk
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iris Verhoek
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | - Yongfu Tang
- Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Harry Wichers
- Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Kerensa Broersen
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| |
Collapse
|
19
|
de Sousa Junior FC, Ribeiro VT, Chibério AS, da Mata Costa LP, de Araújo Padilha CE, Martins DRA, de Macedo GR, dos Santos ES. Simultaneous recombinant 503 antigen recovery and endotoxin removal from E. coli M15 homogenate using expanded bed adsorption chromatography. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1305411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Caninde de Sousa Junior
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vitor Troccoli Ribeiro
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Abimaelle Silva Chibério
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Laura Pires da Mata Costa
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Gorete Ribeiro de Macedo
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Everaldo Silvino dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
20
|
Gilchuk P, Knight FC, Wilson JT, Joyce S. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols. Methods Mol Biol 2017; 1494:321-352. [PMID: 27718206 DOI: 10.1007/978-1-4939-6445-1_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA.,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA
| | - Frances C Knight
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - John T Wilson
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA.,Department of Chemical & Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA. .,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA.
| |
Collapse
|
21
|
Arora S, Saxena V, Ayyar BV. Affinity chromatography: A versatile technique for antibody purification. Methods 2016; 116:84-94. [PMID: 28012937 DOI: 10.1016/j.ymeth.2016.12.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022] Open
Abstract
Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed.
Collapse
Affiliation(s)
- Sushrut Arora
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - B Vijayalakshmi Ayyar
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
23
|
Pérez Sánchez L, Morera Díaz Y, Bequet-Romero M, Ramses Hernández G, Rodríguez Y, Castro Velazco J, Puente Pérez P, Ayala Avila M, Gavilondo JV. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate. Hum Vaccin Immunother 2016; 11:2030-7. [PMID: 25891359 DOI: 10.1080/21645515.2015.1029213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.
Collapse
Key Words
- ANOVA, Analysis of Variance
- Aluminum phosphate
- CFSE, Carboxyfluorescein succinimidyl ester
- CTL, Cytotoxic T lymphocyte
- ELISA, Enzyme-linked immune-sorbent assay
- FACS, Fluorescence-activated cell sorting
- GST, Glutathione S-transferase
- HPLC, High-performance liquid chromatography
- KDR, kinase domain receptor
- Ni-NTA, nickel-nitrilotriacetic acid
- PBMC, Peripheral blood mononuclear cells
- VEGF
- VEGF, vascular endothelial growth factor
- VEGFR2, vascular endothelial growth factor receptor 2
- VSSP, very small sized proteoliposomes
- adjuvant
- antibodies
- cancer therapeutic vaccine
Collapse
Affiliation(s)
- Lincidio Pérez Sánchez
- a Cancer Immunotherapy Laboratory; Department of Pharmaceuticals; Center for Genetic Engineering and Biotechnology (CIGB) ; Playa Cubanacan , Havana , Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mourão CA, Carmignotto GP, Bueno SMA. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:163-173. [DOI: 10.1016/j.jchromb.2016.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
25
|
Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid. PLoS Pathog 2016; 12:e1005518. [PMID: 27007252 PMCID: PMC4805298 DOI: 10.1371/journal.ppat.1005518] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, Biswas S, Howarth M. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci Rep 2016; 6:19234. [PMID: 26781591 PMCID: PMC4725971 DOI: 10.1038/srep19234] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.
Collapse
Affiliation(s)
- Karl D. Brune
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Iona J. Brian
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Martin F. Bachmann
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- University Institute of Immunology, University of Bern, Sahli Haus 2, Inselspital, Bern, CH-3010, Switzerland
| | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
27
|
Bresolin IRAP, Bresolin ITL, Pessoa A. Purification of Anti-Interleukin-6 Monoclonal Antibody Using Precipitation and Immobilized Metal-Ion Affinity Chromatography. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.2.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Iara Rocha Antunes Pereira Bresolin
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580 São Paulo, São Paulo 05508-000, Brazil
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo 09972-270, Brazil
| | - Igor Tadeu Lazzarotto Bresolin
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo 09972-270, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580 São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
28
|
Palacios C, Torioni de Echaide S, Mattion N. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein. Res Vet Sci 2014; 97:514-20. [PMID: 25458492 DOI: 10.1016/j.rvsc.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
Abstract
Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale.
Collapse
Affiliation(s)
- Carlos Palacios
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Susana Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Nora Mattion
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
29
|
Combining cationic liposomal delivery with MPL-TDM for cysteine protease cocktail vaccination against Leishmania donovani: evidence for antigen synergy and protection. PLoS Negl Trop Dis 2014; 8:e3091. [PMID: 25144181 PMCID: PMC4140747 DOI: 10.1371/journal.pntd.0003091] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 07/02/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND With the paucity of new drugs and HIV co-infection, vaccination remains an unmet research priority to combat visceral leishmaniasis (VL) requiring strong cellular immunity. Protein vaccination often suffers from low immunogenicity and poor generation of memory T cells for long-lasting protection. Cysteine proteases (CPs) are immunogenic proteins and key mediators of cellular functions in Leishmania. Here, we evaluated the vaccine efficacies of CPs against VL, using cationic liposomes with Toll like receptor agonists for stimulating host immunity against L. donovani in a hamster model. METHODOLOGY/PRINCIPAL FINDINGS Recombinant CPs type I (cpb), II (cpa) and III (cpc) of L. donovani were tested singly and in combination as a triple antigen cocktail for antileishmanial vaccination in hamsters. We found the antigens to be highly immunoreactive and persistent anti-CPA, anti-CPB and anti-CPC antibodies were detected in VL patients even after cure. The liposome-entrapped CPs with monophosphoryl lipid A-Trehalose dicorynomycolate (MPL-TDM) induced significantly high nitric oxide (up to 4 fold higher than controls) mediated antileishmanial activity in vitro, and resulted in strong in vivo protection. Among the three CPs, CPC emerged as the most potent vaccine candidate in combating the disease. Interestingly, a synergistic increase in protection was observed with liposomal CPA, CPB and CPC antigenic cocktail which reduced the organ parasite burden by 1013-1016 folds, and increased the disease-free survival of >80% animals at least up to 6 months post infection. Robust secretion of IFN-γ and IL-12, along with concomitant downregulation of Th2 cytokines, was observed in cocktail vaccinates, even after 3 months post infection. CONCLUSION/SIGNIFICANCE The present study is the first report of a comparative efficacy of leishmanial CPs and their cocktail using liposomal formulation with MPL-TDM against L. donovani. The level of protection attained has not been reported for any other subcutaneous single or polyprotein vaccination against VL.
Collapse
|
30
|
Zhang H, Fan D, Deng J, Zhu C, Hui J, Ma X. Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:124-9. [PMID: 25063101 DOI: 10.1016/j.msec.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3EU/ml at 25 mM TA buffer (pH7.8) with 150 mM NaCl when setting incubation time at 6h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials.
Collapse
Affiliation(s)
- Huizhi Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Chenghui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| |
Collapse
|
31
|
Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis 2013; 17:553-62. [PMID: 24154861 DOI: 10.1007/s10456-013-9402-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays an important role in retinal and subretinal neovascularization (NV). Increased levels of HIF-1 cause increased expression of vascular endothelial growth factor (VEGF-A) and current therapies for ocular NV focus on neutralizing VEGF-A, but there is mounting evidence that other HIF-1-responsive gene products may also participate. In this study, we tested the effect of a designed ankyrin repeat protein (DARPin) that selectively binds and antagonizes the hypoxia-regulated gene product PDGF-BB in three models of subretinal NV (relevant to neovascular age-related macular degeneration) and compared its effects to a DARPin that selectively antagonizes VEGF-A. Daily intraperitoneal injections of 10 mg/kg of the anti-PDGF-BB DARPin or 1 mg/kg of the anti-VEGF DARPin significantly suppressed subretinal NV from laser-induced rupture of Bruch's membrane. Injections of 1 mg/kg/day of the anti-PDGF-BB DARPin had no significant effect, but when combined with 1 mg/kg/day of the anti-VEGF-A DARPin there was greater suppression than injection of the anti-VEGF-A DARPin alone. In Vldlr (-/-) mice which spontaneously develop subretinal NV, intraocular injection of 1.85 μg of anti-PDGF-BB or anti-VEGF-A DARPin caused significant suppression of NV and when combined there was greater suppression than with either alone. The two DARPins also showed an additive effect in Tet/opsin/VEGF double transgenic mice, a particularly severe model of subretinal NV and exudative retinal detachment. In addition, intraocular injection of 1.85 μg of anti-PDGF-BB DARPin strongly suppressed ischemia-induced retinal NV, which is relevant to proliferative diabetic retinopathy and retinopathy of prematurity. These data demonstrate that PDGF-BB is another hypoxia-regulated gene product that along with VEGF-A contributes to ocular NV and suppression of both provides an additive effect.
Collapse
|
32
|
Allantoin as a solid phase adsorbent for removing endotoxins. J Chromatogr A 2013; 1310:15-20. [DOI: 10.1016/j.chroma.2013.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
|
33
|
Foster ES, Kimber I, Dearman RJ. Relationship between protein digestibility and allergenicity: comparisons of pepsin and cathepsin. Toxicology 2013; 309:30-8. [PMID: 23624183 DOI: 10.1016/j.tox.2013.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022]
Abstract
An association between protein allergenicity and resistance to pepsin digestion in the gastrointestinal tract has been proposed. However, although widely accepted, such an association is inconsistent with known labile allergens and resistant nonallergens. Given the central role of antigen presenting cells, and in particular dendritic cells (DC), in the development of allergic responses, the stability of allergens to intracellular processing may be more relevant than resistance to extracellular pepsin digestion. We have characterised the expression by DC of cathepsins (proteolytic enzymes), and compared the proteolytic activity of the most highly expressed cathepsin with pepsin for a range of 9 allergens and 4 putative nonallergens. Cathepsin expression in bone marrow-derived DC (BM-DC) derived from BALB/c strain mice was characterised by flow cytometry; cathepsins D, E and S were identified, with cathepsin D being the most highly expressed. Digestion studies revealed that the majority of allergens (5/9) were pepsin resistant, whereas non-allergens (3/4) were labile. If the generation of pepsin-resistant fragments was considered as a feature of allergenicity, this increased to 7/9 allergens and 4/4 nonallergens. In contrast, most of the proteins examined were resistant to cathepsin digestion, with significant digestion recorded for only 2/9 allergens and 2/4 non-allergens. Chemical reduction (to mimic intracellular reducing conditions) increased the susceptibility of proteins to digestion by cathepsins, but did not improve discrimination between allergens and nonallergens on this basis. These data confirm that there is a general relationship between resistance to digestion with pepsin and allergenicity. The relationship is not absolute, but the information gained from this characteristic does provide useful information in a weight of evidence approach for allergenicity assessment. The most abundant cathepsin detected in antigen processing BM-DC, cathepsin D, is not an appropriate substitute for pepsin. The hypothesis that pepsin stability may be a surrogate for stability to digestion within DC may still hold true, but consideration of a single enzyme in this context is possibly an oversimplification.
Collapse
Affiliation(s)
- Emily S Foster
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
34
|
Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis 2012; 16:101-11. [PMID: 22983424 PMCID: PMC3526737 DOI: 10.1007/s10456-012-9302-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 08/24/2012] [Indexed: 01/08/2023]
Abstract
The next-generation ophthalmic anti-VEGF therapeutics must aim at being superior to the currently available agents with regard to potency and improved drug delivery, while still being stable and safe to use at elevated concentrations. We show here the generation of a set of highly potent VEGF-A antagonistic DARPins (designed ankyrin repeat proteins) delivering these properties. DARPins with single-digit picomolar affinity to human VEGF-A were generated using ribosome display selections. Specific and potent human VEGF-A binding was confirmed by ELISA and endothelial cell sprouting assays. Cross-reactivity with VEGF-A of several species was confirmed by ELISA. Intravitreally injected DARPin penetrated into the retina and reduced fluorescein extravasation in a rabbit model of vascular leakage. In addition, topical DARPin application was found to diminish corneal neovascularization in a rabbit suture model, and to suppress laser-induced neovascularization in a rat model. Even at elevated doses, DARPins were safe to use. The fact that several DARPins are highly active in various assays illustrates the favorable class behavior of the selected binders. Anti-VEGF-A DARPins thus represent a novel class of highly potent and specific drug candidates for the treatment of neovascular eye diseases in both the posterior and the anterior eye chamber.
Collapse
|
35
|
|
36
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|
37
|
Ayyar BV, Arora S, Murphy C, O'Kennedy R. Affinity chromatography as a tool for antibody purification. Methods 2011; 56:116-29. [PMID: 22033471 DOI: 10.1016/j.ymeth.2011.10.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/29/2022] Open
Abstract
The global antibody market has grown exponentially due to increasing applications in research, diagnostics and therapy. Antibodies are present in complex matrices (e.g. serum, milk, egg yolk, fermentation broth or plant-derived extracts). This has led to the need for development of novel platforms for purification of large quantities of antibody with defined clinical and performance requirements. However, the choice of method is strictly limited by the manufacturing cost and the quality of the end product required. Affinity chromatography is one of the most extensively used methods for antibody purification, due to its high selectivity and rapidity. Its effectiveness is largely based on the binding characteristics of the required antibody and the ligand used for antibody capture. The approaches used for antibody purification are critically examined with the aim of providing the reader with the principles and practical insights required to understand the intricacies of the procedures. Affinity support matrices and ligands for affinity chromatography are discussed, including their relevant underlying principles of use, their potential value and their performance in purifying different types of antibodies, along with a list of commercially available alternatives. Furthermore, the principal factors influencing purification procedures at various stages are highlighted. Practical considerations for development and/or optimizations of efficient antibody-purification protocols are suggested.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | |
Collapse
|
38
|
Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C, Chatton B. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One 2011; 6:e23351. [PMID: 21858082 PMCID: PMC3156760 DOI: 10.1371/journal.pone.0023351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.
Collapse
Affiliation(s)
- Jessica Diring
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Barbara Camuzeaux
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Mariel Donzeau
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Marc Vigneron
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Claude Kedinger
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
- * E-mail:
| |
Collapse
|
39
|
Luke JM, Carnes AE, Sun P, Hodgson CP, Waugh DS, Williams JA. Thermostable tag (TST) protein expression system: engineering thermotolerant recombinant proteins and vaccines. J Biotechnol 2011; 151:242-50. [PMID: 21168452 PMCID: PMC7343246 DOI: 10.1016/j.jbiotec.2010.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/05/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
Methods to increase temperature stability of vaccines and adjuvants are needed to reduce dependence on cold chain storage. We report herein creation and application of pVEX expression vectors to improve vaccine and adjuvant manufacture and thermostability. Defined media fermentation yields of 6g/L thermostable toll-like receptor 5 agonist flagellin were obtained using an IPTG inducible pVEX-flagellin expression vector. Alternative pVEX vectors encoding Pyrococcus furiosus maltodextrin-binding protein (pfMBP) as a fusion partner improved Influenza hemagglutinin antigen vaccine solubility and thermostability. A pfMBP hemagglutinin HA2 domain fusion protein was a potent immunogen. Manufacturing processes that combined up to 5 g/L defined media fermentation yields with rapid, selective, thermostable pfMBP fusion protein purification were developed. The pVEX pfMBP-based thermostable tag (TST) platform is a generic protein engineering approach to enable high yield manufacture of thermostable recombinant protein vaccine components.
Collapse
Affiliation(s)
| | | | - Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
40
|
Kim K, Bae S, Hong J, Choi J, Ryoo S, Jhun H, Lee S, Her E, Hong K, Kim S. Generation of monoclonal antibodies against recombinant AtSIZ1. Hybridoma (Larchmt) 2010; 29:333-40. [PMID: 20715991 DOI: 10.1089/hyb.2010.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Post-translational modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins modulate many cellular processes in yeast and animals. Here we present the development of monoclonal antibodies (MAb) and polyclonal antibodies (PAb) against Arabidopsis SIZ1 (AtSIZ1) protein with high specificity. Mice were immunized with recombinant AtSIZ1 protein for generating monoclonal antibodies via the classic hybridoma production technique. Anti-AtSIZ1 MAb and PAb were able to detect endogenous AtSIZ1 in Arabidopsis wild type and its complementary line formed by transforming C-siz1-2 mutant with construct containing the AtSIZ1 gene under the control of the native promoter, but not the siz1-2 deletion mutant. These results show that these anti-AtSIZ MAbs are highly sensitive to detect endogenous AtSIZ1 and can be used for immunoblotting and other experimental methods. The new anti-AtSIZ1 MAbs will be essential tools used to investigate the role of AtSIZ1 in plant developmental biology.
Collapse
Affiliation(s)
- Kangchang Kim
- Division of Applied Life Science (Brain Korea 21 Program), PMBBRC, EB-NCRC, Gyeongsang National University, Jinju City, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bae S, Choi J, Hong J, Lee S, Her E, Choi W, Kim S, Choi Y, Kim S. Generation of Anti-Proteinase 3 Monoclonal Antibodies and Development of Immunological Methods to Detect Endogenous Proteinase 3. Hybridoma (Larchmt) 2010; 29:17-26. [DOI: 10.1089/hyb.2009.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Suyoung Bae
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Jida Choi
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Jaewoo Hong
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Siyoung Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Erk Her
- Department of Immunology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Wonhyuk Choi
- Department of Internal Medicine, College of Medicine, Konkuk University, Chungju City, Korea
| | - Sangmin Kim
- Department of Dermatology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Youngbum Choi
- Department of Dermatology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| |
Collapse
|
42
|
Bresolin ITL, Borsoi-Ribeiro M, Tamashiro WMSC, Augusto EFP, Vijayalakshmi MA, Bueno SMA. Evaluation of Immobilized Metal-Ion Affinity Chromatography (IMAC) as a Technique for IgG1 Monoclonal Antibodies Purification: The Effect of Chelating Ligand and Support. Appl Biochem Biotechnol 2009; 160:2148-65. [DOI: 10.1007/s12010-009-8734-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
43
|
Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Protein Expr Purif 2009; 64:76-81. [DOI: 10.1016/j.pep.2008.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/21/2022]
|
44
|
Camuzeaux B, Diring J, Hamard PJ, Oulad-Abdelghani M, Donzeau M, Vigneron M, Kedinger C, Chatton B. p38beta2-mediated phosphorylation and sumoylation of ATF7 are mutually exclusive. J Mol Biol 2008; 384:980-91. [PMID: 18950637 DOI: 10.1016/j.jmb.2008.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
Abstract
The ubiquitous activating transcription factor (ATF) 7 binds as a homodimer to the cAMP response element/TPA response element motifs present in the promoters of its target genes. ATF7 is homologous to ATF2 and heterodimerizes with Jun or Fos proteins, modulating their DNA-binding specificities. We previously demonstrated that TAF12, a component of the TFIID general transcription factor, mediates ATF7 transcriptional activity through direct interactions between the two proteins. By contrast, ATF7, but not ATF2, is modified in vivo by sumoylation, which restricts its subcellular localization, thereby inhibiting its transcriptional activity. In the present study, we dissect the mechanism of this functional switch. We characterized the multisite phosphorylation of the ATF7 activation domain and identified one of the involved kinase, p38beta2 mitogen-activated protein kinase. In addition, we show that epidermal growth factor treatment results in a two-step modification mechanism of ATF7 activation domain. The Thr53 residue is phosphorylated first by a presently unknown kinase, allowing p38beta2 mitogen-activated protein kinase to modify the Thr51 residue, excluding the sumoylation of ATF7 protein. The resulting activation of transcription is related to an increased association of TAF12 with this phosphorylated form of ATF7. Our data therefore conclusively establish that sumoylation and phosphorylation of ATF7 are two antagonistic posttranslational modifications.
Collapse
Affiliation(s)
- Barbara Camuzeaux
- Université de Strasbourg I, Institut Gilbert Laustriat, CNRS-UMR7175, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Strasbourg Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Quantification of cytokines and inflammatory mediators in a three-dimensional model of inflammatory arthritis. Cytokine 2008; 42:8-17. [DOI: 10.1016/j.cyto.2008.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 12/22/2022]
|
46
|
Ritzén U, Rotticci-Mulder J, Strömberg P, Schmidt SR. Endotoxin reduction in monoclonal antibody preparations using arginine. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 856:343-7. [PMID: 17644450 DOI: 10.1016/j.jchromb.2007.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/15/2007] [Accepted: 06/22/2007] [Indexed: 11/20/2022]
Abstract
A monoclonal antibody preparation was found to be contaminated with endotoxin. Several commercial endotoxin removal steps were attempted but failed to produce a significant reduction due to the fact that the endotoxin was associated with the antibody. Here, several methods for endotoxin removal based on immobilizing monoclonal antibodies to chromatographic media have been evaluated. A crucial step in this process was to dissociate the endotoxin from the protein surface for subsequent removal. This was accomplished by introducing different buffer additives in the mobile phase. In agreement with previous reports, non-ionic detergents efficiently removed endotoxin, but it was also found that 0.5M arginine performed equally well. Since arginine is a non-toxic common amino acid that can be readily removed, it was selected and successfully used in large-scale experiments. With this method, endotoxin could be reduced to <0.2 EU mg(-1) with recovery of the target protein being >95%. Since this procedure is easily integrated into the existing processes of mAb purification, it offers advantages in speed, cost and effort.
Collapse
Affiliation(s)
- Ulrika Ritzén
- Global Protein Science and Supply, AstraZeneca R&D Södertälje, SE-15185 Södertälje, Sweden.
| | | | | | | |
Collapse
|