1
|
Wellach K, Riemer AB. Highly sensitive live-cell imaging-based cytotoxicity assay enables functional validation of rare epitope-specific CTLs. Front Immunol 2025; 16:1558620. [PMID: 40406125 PMCID: PMC12095279 DOI: 10.3389/fimmu.2025.1558620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Many immunotherapeutic approaches aim to induce epitope-specific T-cell cytotoxicity. However, the identification-and especially the functional validation-of suitable epitopes by in vitro cytotoxicity assays can be challenging, particularly when the number of available epitope-specific cytotoxic T cells (CTLs) is limited. Here, we present a highly sensitive image-based cytotoxicity assay that allows the functional analysis of rare epitope-specific T cells. The live-cell imaging-based setup combines transient red labeling of target cells with a green caspase 3/7 probe, allowing reliable measurement of the fraction of apoptotic target cells. Time-course analysis enables the monitoring of subtle differences. This highly flexible assay can be applied to assess the killing of either target cells with endogenous epitope presentation or those artificially loaded with the epitope of interest. Analysis of assay sensitivity demonstrated that cytotoxicity mediated by as few as 0.1% epitope-specific CTLs in a T-cell culture can still be detected. The epitope-specificity of the assay was additionally validated by specific upregulation of PD-1 and LAG-3 on epitope-specific T cells, as well as the epitope-specific induction of interferon-γ release. Finally, the assay was successfully applied to functionally validate human papillomavirus (HPV)16 epitopes, by detecting epitope-specific killing of established patient-derived tumor cell lines by rare T-cell populations expanded from peripheral blood. Overall, this cytotoxicity assay setup provides a straightforward approach to assess the cytotoxic capacity of rare epitope-specific T cells and enables the analysis of T-cell responses against endogenously presented epitopes.
Collapse
Affiliation(s)
- Kathrin Wellach
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), Molecular Vaccine Design, Partner Site Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Angelika B. Riemer
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), Molecular Vaccine Design, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Logun M, Wang X, Sun Y, Bagley SJ, Li N, Desai A, Zhang DY, Nasrallah MP, Pai ELL, Oner BS, Plesa G, Siegel D, Binder ZA, Ming GL, Song H, O'Rourke DM. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell 2025; 32:181-190.e4. [PMID: 39657679 PMCID: PMC11808387 DOI: 10.1016/j.stem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Patient-derived tumor organoids have been leveraged for disease modeling and preclinical studies but rarely applied in real time to aid with interpretation of patient treatment responses in clinics. We recently demonstrated early efficacy signals in a first-in-human, phase 1 study of dual-targeting chimeric antigen receptor (CAR)-T cells (EGFR-IL13Rα2 CAR-T cells) in patients with recurrent glioblastoma. Here, we analyzed six sets of patient-derived glioblastoma organoids (GBOs) treated concurrently with the same autologous CAR-T cell products as patients in our phase 1 study. We found that CAR-T cell treatment led to target antigen reduction and cytolysis of tumor cells in GBOs, the degree of which correlated with CAR-T cell engraftment detected in patients' cerebrospinal fluid (CSF). Furthermore, cytokine release patterns in GBOs mirrored those in patient CSF samples over time. Our findings highlight a unique trial design and GBOs as a valuable platform for real-time assessment of CAR-T cell bioactivity and insights into immunotherapy efficacy.
Collapse
Affiliation(s)
- Meghan Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusha Sun
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nannan Li
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arati Desai
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Ling-Lin Pai
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bike Su Oner
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald Siegel
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Hongjun Song
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Garaeva L, Komarova E, Emelianova S, Putevich E, Konevega AL, Margulis B, Guzhova I, Shtam T. Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo. Biomedicines 2024; 12:2759. [PMID: 39767665 PMCID: PMC11674020 DOI: 10.3390/biomedicines12122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Stress protein HSP70 administered exogenously has demonstrated high potential as an efficient adjuvant in antitumor immune response. To enhance the antigen-presenting activity, bioavailability, and stability of exogenous recombinant human HSP70, we propose incorporating it into plant extracellular vesicles. Earlier, we found that grapefruit-derived extracellular vesicles (GEV) were able to store the protein with no loss of its major function, chaperone activity. Methods: In this study, we tested whether HSP70 loaded into GEV (GEV-HSP70) could elicit an antitumor immune response in cellular and animal models of colorectal cancer. Results: To test the hypothesis in vitro, human and mouse colorectal cancer cell lines were used. We have shown that the addition of HSP70, either in free form or as part of GEVs, increases the sensitivity of human (HCT-116, DLD1) or mouse (CT-26) colon cancer cells to mouse cytotoxic lymphocytes and human NK-92 cells. Moreover, the amount of protein in the form of GEV-HSP70 required to cause the same activation of antitumor immunity was 20 times less than when HSP70 was added in free form. In a colon carcinoma model in vivo, GEV-HSP70 were inoculated subcutaneously into BALB/c mice together with CT-26 cells to form a tumor node. As compared with the control groups, we observed an increase in the lifespan of animals and a decrease in the tumor size, as well as a decrease in the level of TGFB1 IL-10 factors in the blood plasma. In vitro analysis of the immunomodulatory activity of GEV-HSP70 showed that antitumor response in GEV-HSP70-treated mice was associated with the accumulation of CD8+ cells. Conclusions: These results demonstrate the high feasibility and efficacy of the new technique based on HSP70 encapsulated in plant vesicles in activation of the specific response to colon tumors.
Collapse
Affiliation(s)
- Luiza Garaeva
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roshcha 1, Gatchina 188300, Russia; (L.G.); (S.E.); (E.P.); (A.L.K.)
| | - Elena Komarova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.K.); (B.M.)
| | - Svetlana Emelianova
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roshcha 1, Gatchina 188300, Russia; (L.G.); (S.E.); (E.P.); (A.L.K.)
| | - Elena Putevich
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roshcha 1, Gatchina 188300, Russia; (L.G.); (S.E.); (E.P.); (A.L.K.)
| | - Andrey L. Konevega
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roshcha 1, Gatchina 188300, Russia; (L.G.); (S.E.); (E.P.); (A.L.K.)
| | - Boris Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.K.); (B.M.)
| | - Irina Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.K.); (B.M.)
| | - Tatiana Shtam
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roshcha 1, Gatchina 188300, Russia; (L.G.); (S.E.); (E.P.); (A.L.K.)
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.K.); (B.M.)
| |
Collapse
|
4
|
Baraniuk JN, Eaton-Fitch N, Marshall-Gradisnik S. Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2024; 15:1440643. [PMID: 39483457 PMCID: PMC11524851 DOI: 10.3389/fimmu.2024.1440643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024] Open
Abstract
Reduced natural killer (NK) cell cytotoxicity is the most consistent immune finding in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Meta-analysis of the published literature determined the effect size of the decrement in ME/CFS. Databases were screened for papers comparing NK cell cytotoxicity in ME/CFS and healthy controls. A total of 28 papers and 55 effector:target cell ratio (E:T) data points were collected. Cytotoxicity in ME/CFS was significantly reduced to about half of healthy control levels, with an overall Hedges' g of 0.96 (0.75-1.18). Heterogeneity was high but was explained by the range of E:T ratios, different methods, and potential outliers. The outcomes confirm reproducible NK cell dysfunction in ME/CFS and will guide studies using the NK cell model system for pathomechanistic investigations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024542140.
Collapse
Affiliation(s)
- James N. Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Mowat J, Carretero R, Leder G, Aiguabella Font N, Neuhaus R, Berndt S, Günther J, Friberg A, Schäfer M, Briem H, Raschke M, Miyatake Ondozabal H, Buchmann B, Boemer U, Kreft B, Hartung IV, Offringa R. Discovery of BAY-405: An Azaindole-Based MAP4K1 Inhibitor for the Enhancement of T-Cell Immunity against Cancer. J Med Chem 2024; 67:17429-17453. [PMID: 39331123 PMCID: PMC11472321 DOI: 10.1021/acs.jmedchem.4c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFβ), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients. Here, we describe the systematic optimization of azaindole-based lead compound 1, resulting in the discovery of potent and selective MAP4K1 inhibitor 38 (BAY-405) that displays nanomolar potency in biochemical and cellular assays as well as in vivo exposure after oral dosing. BAY-405 enhances T-cell immunity and overcomes the suppressive effect of PGE2 and TGFβ. Treatment of tumor-bearing mice shows T-cell-dependent antitumor efficacy. MAP4K1 inhibition in conjunction with PD-L1 blockade results in a superior antitumor impact, illustrating the complementarity of the single agent treatments.
Collapse
Affiliation(s)
| | - Rafael Carretero
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | - Roland Neuhaus
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | - Hans Briem
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | | | - Ulf Boemer
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | - Rienk Offringa
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
- Division
of Molecular Oncology of Gastrointestinal Tumors, Department of Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
6
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
7
|
Foulke JG, Chen L, Chang H, McManus CE, Tian F, Gu Z. Optimizing Ex Vivo CAR-T Cell-Mediated Cytotoxicity Assay through Multimodality Imaging. Cancers (Basel) 2024; 16:2497. [PMID: 39061136 PMCID: PMC11274748 DOI: 10.3390/cancers16142497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
CAR-T cell-based therapies have demonstrated remarkable efficacy in treating malignant cancers, especially liquid tumors, and are increasingly being evaluated in clinical trials for solid tumors. With the FDA's initiative to advance alternative methods for drug discovery and development, full human ex vivo assays are increasingly essential for precision CAR-T development. However, prevailing ex vivo CAR-T cell-mediated cytotoxicity assays are limited by their use of radioactive materials, lack of real-time measurement, low throughput, and inability to automate, among others. To address these limitations, we optimized the assay using multimodality imaging methods, including bioluminescence, impedance tracking, phase contrast, and fluorescence, to track CAR-T cells co-cultured with CD19, CD20, and HER2 luciferase reporter cancer cells in real-time. Additionally, we varied the ratio of CAR-T cells to cancer cells to determine optimal cytotoxicity readouts. Our findings demonstrated that the CAR-T cell group effectively attacked cancer cells, and the optimized assay provided superior temporal and spatial precision measurements of ex vivo CAR-T killing of cancer cells, confirming the reliability, consistency, and high throughput of the optimized assay.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tian
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Zhizhan Gu
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| |
Collapse
|
8
|
Luah YH, Wu T, Cheow LF. Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate. Nat Biomed Eng 2024; 8:248-262. [PMID: 37652987 DOI: 10.1038/s41551-023-01089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Assays for assessing cell-mediated cytotoxicity are largely target-cell-centric and cannot identify and isolate subpopulations of cytotoxic effector cells. Here we describe an assay compatible with flow cytometry for the accurate identification and sorting of functional killer-cell subpopulations in co-cultures. The assay, which we named PAINTKiller (for 'proximity affinity intracellular transfer identification of killer cells'), relies on the detection of an intracellular fluorescent protein 'painted' by a lysed cell on the surface of the lysing cytotoxic cell (specifically, on cell lysis the intracellular fluorescein derivative carboxyfluorescein succinimidyl ester is captured on the surface of the natural killer cell by an antibody for anti-fluorescein isothiocyanate linked to an antibody for the pan-leucocyte surface receptor CD45). The assay can be integrated with single-cell RNA sequencing for the analysis of molecular pathways associated with cell cytotoxicity and may be used to uncover correlates of functional immune responses.
Collapse
Affiliation(s)
- Yen Hoon Luah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore
| | - Tongjin Wu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Eugene-Norbert M, Cuffel A, Riou G, Jean L, Blondel C, Dehayes J, Bisson A, Giverne C, Brotin E, Denoyelle C, Poulain L, Boyer O, Martinet J, Latouche JB. Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells. J Immunol Methods 2024; 525:113603. [PMID: 38147898 DOI: 10.1016/j.jim.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.
Collapse
Affiliation(s)
- Misa Eugene-Norbert
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Alexis Cuffel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Clara Blondel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Justine Dehayes
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Aurélie Bisson
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Camille Giverne
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Emilie Brotin
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France
| | - Christophe Denoyelle
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Laurent Poulain
- Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Jérémie Martinet
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
| | - Jean-Baptiste Latouche
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| |
Collapse
|
10
|
Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors. Biomolecules 2023; 13:biom13030459. [PMID: 36979394 PMCID: PMC10046313 DOI: 10.3390/biom13030459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.
Collapse
|
11
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Logun M, Colonna MB, Mueller KP, Ventarapragada D, Rodier R, Tondepu C, Piscopo NJ, Das A, Chvatal S, Hayes HB, Capitini CM, Brat DJ, Kotanchek T, Edison AS, Saha K, Karumbaiah L. Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products. Cytotherapy 2023; 25:670-682. [PMID: 36849306 PMCID: PMC10159906 DOI: 10.1016/j.jcyt.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | | | - Riley Rodier
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Chaitanya Tondepu
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Amritava Das
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | | | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
13
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
14
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
15
|
Hsp70-containing extracellular vesicles are capable of activating of adaptive immunity in models of mouse melanoma and colon carcinoma. Sci Rep 2021; 11:21314. [PMID: 34716378 PMCID: PMC8556270 DOI: 10.1038/s41598-021-00734-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains. To study Hsp70 forms released from cells we employed the assay consisting of two affinity chromatography methods. Hsp70 content in culture medium and extracellular vesicles (EVs) was measured with the aid of ELISA. The properties and composition of EVs were assessed using nanoparticle tracking analysis and immunoblotting. The activity of immune cells was studied using an assay of cytotoxic lymphocytes, and for in vivo studies we employed methods of affinity separation of lymphocyte fractions. Analyzing B16 melanoma cells treated with recombinant Hsp70 we found that the chaperone triggered extracellular transport of its endogenous analog in soluble and enclosed in EVs forms; both species efficiently penetrated adjacent cells and this secondary transport was corroborated with the strong increase of Natural Killer (NK) cell toxicity towards melanoma. When B16 and CT-26 colon cancer cells before their injection in animals were treated with Hsp70-enriched EVs, a powerful anti-cancer effect was observed as shown by a two-fold reduction in tumor growth rate and elevation of life span. We found that the immunomodulatory effect was due to the enhancement of the CD8-positive response and anti-tumor cytokine accumulation; supporting this there was no delay in CT-26 tumor growth when Hsp70-enriched EVs were grafted in nude mice. Importantly, pre-treatment of B16 cells with Hsp70-bearing EVs resulted in a decline of arginase-1-positive macrophages, showing no generation of tumor-associated macrophages. In conclusion, Hsp70-containing EVs generated by specifically treated cancer cells give a full-scale and effective pattern of anti-tumor immune responses.
Collapse
|
16
|
Ishii M, Ando J, Yamazaki S, Toyota T, Ohara K, Furukawa Y, Suehara Y, Nakanishi M, Nakashima K, Ohshima K, Nakauchi H, Ando M. iPSC-Derived Neoantigen-Specific CTL Therapy for Ewing Sarcoma. Cancer Immunol Res 2021; 9:1175-1186. [PMID: 34385178 DOI: 10.1158/2326-6066.cir-21-0193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
The prognosis of Ewing sarcoma caused by EWS/FLI1 fusion is poor, especially after metastasis. Although therapy with CTLs targeted against altered EWS/FLI1 sequences at the gene break/fusion site may be effective, CTLs generated from peripheral blood are often exhausted because of continuous exposure to tumor antigens. We addressed this by generating induced pluripotent stem cell (iPSC)-derived functionally rejuvenated CTLs (rejT) directed against the neoantigen encoded by the EWS/FLI1 fusion gene. In this study, we examined the antitumor effects of EWS/FLI1-rejTs against Ewing sarcoma. The altered amino acid sequence at the break/fusion point of EWS/FLI1, when presented as a neoantigen, evokes an immune response that targets EWS/FLI1 + sarcoma. Although the frequency of generated EWS/FLI1-specific CTLs was only 0.003%, we successfully established CTL clones from a healthy donor. We established iPSCs from a EWS/FLI1-specific CTL clone and redifferentiated them into EWS/FLI1-specific rejTs. To evaluate cytotoxicity, we cocultured EWS/FLI1-rejTs with Ewing sarcoma cell lines. EWS/FLI1-rejTs rapidly and continuously suppressed the proliferation of Ewing sarcoma for >40 hours. Using a Ewing sarcoma xenograft mouse model, we verified the antitumor effect of EWS/FLI1-rejTs via imaging, and EWS/FLI1-rejTs conferred a statistically significant survival advantage. "Off-the-shelf" therapy is less destructive and disruptive than chemotherapy, and radiation is always desirable, particularly in adolescents, whom Ewing sarcoma most often affects. Thus, EWS/FLI1-rejTs targeting a Ewing sarcoma neoantigen could be a promising new therapeutic tool.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Blood Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kazuo Ohara
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Tsukuba, Ibaraki, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume City, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume City, Fukuoka, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, California
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
17
|
Healy K, Pavesi A, Parrot T, Sobkowiak MJ, Reinsbach SE, Davanian H, Tan AT, Aleman S, Sandberg JK, Bertoletti A, Sällberg Chen M. Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions. JHEP Rep 2021; 3:100318. [PMID: 34377970 PMCID: PMC8327138 DOI: 10.1016/j.jhepr.2021.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.
Collapse
Key Words
- 5-OP-RU, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil
- APC, allophycocyanin
- Adoptive cell transfer
- CAR, chimeric antigen receptor
- CCR, CC chemokine receptor
- CXCL, chemokine (CXC) ligand
- CXCR, CXC chemokine receptor
- ConT, conventional T
- DCI, dead cell index
- FMO, fluorescence minus one
- FSC, forward scatter
- HBV
- HCC
- HCC, hepatocellular carcinoma
- HLA, human leukocyte antigen
- IFN, interferon
- IR, irrelevant peptide
- MAIT cells
- MAIT, mucosal-associated invariant T
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MR1, MHC class I-related molecule
- PBMC, peripheral blood mononuclear cell
- PE, phycoerythrin
- PMA, phorbol myristate acetate
- RT, room temperature
- SSC, side scatter
- TCR, T cell receptor
- TCR-T cells
- TNF, tumour necrosis function
- UMAP, Uniform Manifold Approximation and Projection
- VCAM-1, vascular cell adhesion molecule-1
- VLA-4, very late antigen-4
Collapse
Affiliation(s)
- Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, A∗STAR, Singapore
| | - Tiphaine Parrot
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Susanne E. Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anthony T. Tan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Bertoletti
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | |
Collapse
|
18
|
Holmen Olofsson G, Idorn M, Carnaz Simões AM, Aehnlich P, Skadborg SK, Noessner E, Debets R, Moser B, Met Ö, thor Straten P. Vγ9Vδ2 T Cells Concurrently Kill Cancer Cells and Cross-Present Tumor Antigens. Front Immunol 2021; 12:645131. [PMID: 34149689 PMCID: PMC8208807 DOI: 10.3389/fimmu.2021.645131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The human Vγ9Vδ2 T cell is a unique cell type that holds great potential in immunotherapy of cancer. In particular, the therapeutic potential of this cell type in adoptive cell therapy (ACT) has gained interest. In this regard optimization of in vitro expansion methods and functional characterization is desirable. We show that Vγ9Vδ2 T cells, expanded in vitro with zoledronic acid (Zometa or ZOL) and Interleukin-2 (IL-2), are efficient cancer cell killers with a trend towards increased killing efficacy after prolonged expansion time. Thus, Vγ9Vδ2 T cells expanded for 25 days in vitro killed prostate cancer cells more efficiently than Vγ9Vδ2 T cells expanded for 9 days. These data are supported by phenotype characteristics, showing increased expression of CD56 and NKG2D over time, reaching above 90% positive cells after 25 days of expansion. At the early stage of expansion, we demonstrate that Vγ9Vδ2 T cells are capable of cross-presenting tumor antigens. In this regard, our data show that Vγ9Vδ2 T cells can take up tumor-associated antigens (TAA) gp100, MART-1 and MAGE-A3 - either as long peptide or recombinant protein - and then present TAA-derived peptides on the cell surface in the context of HLA class I molecules, demonstrated by their recognition as targets by peptide-specific CD8 T cells. Importantly, we show that cross-presentation is impaired by the proteasome inhibitor lactacystin. In conclusion, our data indicate that Vγ9Vδ2 T cells are broadly tumor-specific killers with the additional ability to cross-present MHC class I-restricted peptides, thereby inducing or supporting tumor-specific αβTCR CD8 T cell responses. The dual functionality is dynamic during in vitro expansion, yet, both functions are of interest to explore in ACT for cancer therapy.
Collapse
Affiliation(s)
- Gitte Holmen Olofsson
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Manja Idorn
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ana Micaela Carnaz Simões
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Signe Koggersbøl Skadborg
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Elfriede Noessner
- Helmholtz Zentrum München, Germany Research Center for Environmental Health, Immunoanalytics, Research Group Tissue control of immunocytes, Munich, Germany
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, Netherlands
| | - Bernhard Moser
- Division of Infection & Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Özcan Met
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|
20
|
Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One 2021; 16:e0248491. [PMID: 33720984 PMCID: PMC7959359 DOI: 10.1371/journal.pone.0248491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The microplate assay with Chinese Hamster Ovary (CHO) cells is currently used as a safety test to monitor the residual pertussis toxin (PT) amount in acellular pertussis antigens prior to vaccine formulation. The assay is based on the findings that the exposure of CHO cells to PT results in a concentration-dependent clustering response which can be used to estimate the amount of PT in a sample preparation. A major challenge with the current CHO cell assay methodology is that scoring of PT-induced clustering is dependent on subjective operator visual assessment using light microscopy. In this work, we have explored the feasibility of replacing the microscopy readout for the CHO cell assay with the xCELLigence Real-Time Cell Analysis system (ACEA BioSciences, a part of Agilent). The xCELLigence equipment is designed to monitor cell adhesion and growth. The electrical impedance generated from cell attachment and proliferation is quantified via gold electrodes at the bottom of the cell culture plate wells, which is then translated into a unitless readout called cell index. Results showed significant decrease in the cell index readouts of CHO cells exposed to PT compared to the cell index of unexposed CHO cells. Similar endpoint concentrations were obtained when the PT reference standard was titrated with either xCELLigence or microscopy. Testing genetically detoxified pertussis samples unspiked or spiked with PT further supported the sensitivity and reproducibility of the xCELLigence assay in comparison with the conventional microscopy assay. In conclusion, the xCELLigence RTCA system offers an alternative automated and higher throughput method for evaluating PT-induced clustering in CHO cells.
Collapse
Affiliation(s)
- Lidice Bernardo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
- * E-mail:
| | - Lucas Corallo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Judy Caterini
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Lucy Gisonni-Lex
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
21
|
Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc 2021; 16:1331-1342. [PMID: 33589826 DOI: 10.1038/s41596-020-00467-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The antitumor efficacy of genetically engineered 'living drugs', including chimeric antigen receptor and T-cell receptor T cells, is influenced by their activation, proliferation, inhibition, and exhaustion. A sensitive and reproducible cytotoxicity assay that collectively reflects these functions is an essential requirement for translation of these cellular therapeutic agents. Here, we compare various in vitro cytotoxicity assays (including chromium release, bioluminescence, impedance, and flow cytometry) with respect to their experimental setup, appropriate uses, advantages, and disadvantages, and measures to overcome their limitations. We also highlight the US Food and Drug Administration (FDA) directives for a potency assay for release of clinical cell therapy products. In addition, we discuss advanced assays of repeated antigen exposure and simultaneous testing of combinations of immune effector cells, immunomodulatory antibodies, and targets with variable antigen expression. This review article should help to equip investigators with the necessary knowledge to select appropriate cytotoxicity assays to test the efficacy of immunotherapeutic agents alone or in combination.
Collapse
|
22
|
Kasahara Y, Shin C, Kubo N, Mihara K, Iwabuchi H, Takachi T, Imamura M, Saitoh A, Imai C. Development and characterisation of NKp44-based chimeric antigen receptors that confer T cells with NK cell-like specificity. Clin Transl Immunology 2020; 9:e1147. [PMID: 32670576 PMCID: PMC7341825 DOI: 10.1002/cti2.1147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/11/2020] [Accepted: 05/31/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives One of the reasons as to why chimeric antigen receptors (CAR)-T cell therapy for malignancies other than CD19- or BCMA-positive tumors has yet to produce remarkable progress is the paucity of targetable antigens. NKp44 is only expressed by activated natural killer cells and detects a variety of transformed cells, while it reportedly does not react with normal tissues. The aim of this study is to develop CAR-T cell that can target multiple types of tumor cells. Methods We created a series of novel CAR constructs in first-generation (1G) and second-generation (2G) CAR format with the extracellular immunoglobulin-like domain of NKp44 (NKp44-CAR). Results Transduction of the best 1G construct into human primary T cells led to specific cytotoxic effects and cytokine secretion upon encountering multiple types of neoplastic cells including AML, T-ALL and childhood solid tumors. Replacement of the extracellular hinge domain of NKp44 with that of CD8α resulted in diminished CAR function. The 1G NKp44-CAR-T cells exhibited significantly better tumor control in long-term co-culture assays compared with activated NK cells, as well as with NK cells transduced with identical NKp44-CAR. T cells transduced with the best 2G-CAR construct with 4-1BB co-stimulatory domain proliferated at significantly higher levels upon single antigen exposure and showed significantly better tumor control compared with the 1G-CAR and 2G-CAR with CD28 co-stimulatory domain. Conclusions NKp44-based CAR endows T cells with NK cell-like anti-tumor specificity. The CAR gene created in this study will be useful for the development of novel gene-modified T-cell immunotherapy.
Collapse
Affiliation(s)
- Yasushi Kasahara
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Chansu Shin
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Nobuhiro Kubo
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Keichiro Mihara
- International Regenerative Medical Center Fujita Health University Aichi Japan
| | - Haruko Iwabuchi
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Takayuki Takachi
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Masaru Imamura
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Akihiko Saitoh
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Chihaya Imai
- Department of Pediatrics Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| |
Collapse
|
23
|
Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071757. [PMID: 32630618 PMCID: PMC7409312 DOI: 10.3390/cancers12071757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
One of the greatest challenges in the cancer immunotherapy field is the need to biologically rationalize and broaden the clinical utility of immune checkpoint inhibitors (ICIs). The balance between metabolism and immune response has critical implications for overcoming the major weaknesses of ICIs, including their lack of universality and durability. The last decade has seen tremendous advances in understanding how the immune system's ability to kill tumor cells requires the conspicuous metabolic specialization of T-cells. We have learned that cancer cell-associated metabolic activities trigger shifts in the abundance of some metabolites with immunosuppressory roles in the tumor microenvironment. Yet very little is known about the tumor cell-intrinsic metabolic traits that control the immune checkpoint contexture in cancer cells. Likewise, we lack a comprehensive understanding of how systemic metabolic perturbations in response to dietary interventions can reprogram the immune checkpoint landscape of tumor cells. We here review state-of-the-art molecular- and functional-level interrogation approaches to uncover how cell-autonomous metabolic traits and diet-mediated changes in nutrient availability and utilization might delineate new cancer cell-intrinsic metabolic dependencies of tumor immunogenicity. We propose that clinical monitoring and in-depth molecular evaluation of the cancer cell-intrinsic metabolic traits involved in primary, adaptive, and acquired resistance to cancer immunotherapy can provide the basis for improvements in therapeutic responses to ICIs. Overall, these approaches might guide the use of metabolic therapeutics and dietary approaches as novel strategies to broaden the spectrum of cancer patients and indications that can be effectively treated with ICI-based cancer immunotherapy.
Collapse
|
24
|
Schober SJ, Thiede M, Gassmann H, Prexler C, Xue B, Schirmer D, Wohlleber D, Stein S, Grünewald TGP, Busch DH, Richter GHS, Burdach SEG, Thiel U. MHC Class I-Restricted TCR-Transgenic CD4 + T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo. Cells 2020; 9:cells9071581. [PMID: 32610710 PMCID: PMC7408051 DOI: 10.3390/cells9071581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2-/-gc-/- mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5-6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS.
Collapse
Affiliation(s)
- Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Busheng Xue
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - David Schirmer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Dirk Wohlleber
- Institute of Molecular Immunology/Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, 81674 Munich, Germany;
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
| | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
- Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81674 Munich, Germany;
| | - Guenther H. S. Richter
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan E. G. Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Munich, 80336 Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| |
Collapse
|
25
|
Nielsen M, Krarup-Hansen A, Hovgaard D, Petersen MM, Loya AC, Westergaard MCW, Svane IM, Junker N. In vitro 4-1BB stimulation promotes expansion of CD8 + tumor-infiltrating lymphocytes from various sarcoma subtypes. Cancer Immunol Immunother 2020; 69:2179-2191. [PMID: 32472369 DOI: 10.1007/s00262-020-02568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Tumor-specific tumor-infiltrating lymphocytes (TILs) can be in vitro expanded and have the ability to induce complete and durable tumor regression in some patients with melanoma following adoptive cell therapy (ACT). In this preclinical study, we investigated the feasibility of expanding TIL from sarcomas, as well as performing functional in vitro analyses on these. TILs were expanded in vitro by the use of IL2 stimulation with or without the addition of 4-1BB and CD3 antibodies. Phenotypical and functional analyses were mainly performed by flow cytometry. TILs were expanded from 25 of 28 (89%) tumor samples from patients with 9 different sarcoma subtypes. TILs were predominantly αβ T-cells of effector memory subtype with CD4+ dominance. In particular, CD8+ TIL highly expressed LAG3 and to a lesser degree PD-1 and BTLA. In total, 10 of 20 TIL cultures demonstrated in vitro recognition of autologous tumor. In some cases, the fraction of tumor-reactive T cells was more than 20%. 4-1BB stimulation augmented expansion kinetics and favored CD8+ occurrence. In conclusion, TIL expansion from sarcoma is feasible and expanded TILs highly express LAG3 and comprise multifunctional tumor-reactive T-cells.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | - Dorrit Hovgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Mørk Petersen
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anand Chainsukh Loya
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
26
|
Nakazawa T, Natsume A, Nishimura F, Morimoto T, Matsuda R, Nakamura M, Yamada S, Nakagawa I, Motoyama Y, Park YS, Tsujimura T, Wakabayashi T, Nakase H. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells 2020; 9:cells9040998. [PMID: 32316275 PMCID: PMC7227242 DOI: 10.3390/cells9040998] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM), which is the most common malignant brain tumor, is resistant to standard treatments. Immunotherapy might be a promising alternative for the treatment of this cancer. Chimeric antigen receptor (CAR) is an artificially modified fusion protein that can be engineered to direct the specificity and function of T cells against tumor antigens. However, the antitumor effects of EGFRvIII-targeting CAR-T (EvCAR-T) cells in GBM are limited. The inhibitory effect is induced by the interaction between programmed cell death protein 1 (PD-1) on activated EvCAR-T cells and its ligands on GBM cells. In the present study, PD-1-disrupted EvCAR-T cells were established using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The sgRNA/Cas9 expression vectors designed precisely disrupted the target region of PD-1 and inhibited the expression of PD-1 in EvCAR-T cells. The PD-1-disrupted EvCAR-T cells had an in vitro growth inhibitory effect on EGFRvIII-expressing GBM cells without altering the T-cell phenotype and the expression of other checkpoint receptors. In the future, the in vivo antitumor effect of this vector should be evaluated in order to determine if it could be applied clinically for improving the efficacy of EvCAR-T cell-based adoptive immunotherapy for GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Correspondence: ; Tel.: +81-744-22-3051
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan; (A.N.); (T.W.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan;
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | | | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan; (A.N.); (T.W.)
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (F.N.); (T.M.); (R.M.); (M.N.); (S.Y.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| |
Collapse
|
27
|
Lübke M, Spalt S, Kowalewski DJ, Zimmermann C, Bauersfeld L, Nelde A, Bichmann L, Marcu A, Peper JK, Kohlbacher O, Walz JS, Le-Trilling VTK, Hengel H, Rammensee HG, Stevanović S, Halenius A. Identification of HCMV-derived T cell epitopes in seropositive individuals through viral deletion models. J Exp Med 2020; 217:e20191164. [PMID: 31869419 PMCID: PMC7062530 DOI: 10.1084/jem.20191164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.
Collapse
Affiliation(s)
- Maren Lübke
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stefanie Spalt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Daniel J. Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Janet Kerstin Peper
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Fasbender F, Obholzer M, Metzler S, Stöber R, Hengstler JG, Watzl C. Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol 2020; 94:439-448. [PMID: 32060585 DOI: 10.1007/s00204-020-02668-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Drug-induced liver injury (DILI) represents one of the major causes why drugs have to be withdrawn from the market. In this study, we describe a new interaction between drug-exposed hepatocytes and natural killer (NK) cells. In a previous genome-wide expression analysis of primary human hepatocytes that had been exposed to clinically relevant concentrations of 148 drugs, we found that several activating ligands for NK cell receptors were regulated by various drugs (e.g., valproic acid, ketoconazole, promethazine, isoniazid). Especially expression of the activating NKG2D ligands (MICA, MICB and ULBPs) and the NKp30 ligand B7-H6 were upregulated in primary human hepatocytes upon exposure to many different drugs. Using the human hepatocyte cell lines Huh7 and HepG2, we confirmed that protein levels of activating NK cell ligands were elevated after drug exposure. Hepatocyte cell lines or primary human hepatocytes co-cultivated with NK cells caused enhanced NK cell activation after pretreatment with drugs at in vivo relevant concentrations compared to solvent controls. Enhanced NK cell activation was evident by increased cytotoxicity against hepatocytes and interferon (IFN)-γ production. NK cell activation could be blocked by specific antibodies against activating NK cell receptors. These data support the hypothesis that NK cells can modulate drug-induced liver injury by direct interaction with hepatocytes resulting in cytotoxicity and IFN-γ production.
Collapse
Affiliation(s)
- Frank Fasbender
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Martin Obholzer
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Sarah Metzler
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Regina Stöber
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
29
|
Khanal D, Zhang F, Song Y, Hau H, Gautam A, Yamaguchi S, Uertz J, Mills S, Kondyurin A, Knowles JC, Georgiou G, Ramzan I, Cai W, Ng KW, Chrzanowski W. Biological impact of nanodiamond particles - label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology 2019; 13:1210-1226. [PMID: 31522585 DOI: 10.1080/17435390.2019.1650970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current methods for the assessment of nanoparticle safety that are based on 2D cell culture models and fluorescence-based assays show limited sensitivity and they lack biomimicry. Consequently, the health risks associated with the use of many nanoparticles have not yet been established. There is a need to develop in vitro models that mimic physiology more accurately and enable high throughput assessment. There is also a need to set up new assays that offer high sensitivity and are label-free. Here we developed 'mini-liver' models using scaffold-free bioprinting and used these models together with label-free nanoscale techniques for the assessment of toxicity of nanodiamond produced by laser-assisted technology. Results showed that NDs induced cytotoxicity in a concentration and exposure-time dependent manner. The loss of cell function was confirmed by increased cell stiffness, decreased cell membrane barrier integrity and reduced cells mobility. We further showed that NDs elevated the production of reactive oxygen species and reduced cell viability. Our approach that combined mini-liver models with label-free high-resolution techniques showed improved sensitivity in toxicity assessment. Notably, this approach allowed for label-free semi-high throughput measurements of nanoparticle-cell interactions, thus could be considered as a complementary approach to currently used methods.
Collapse
Affiliation(s)
- Dipesh Khanal
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Fan Zhang
- Brigham & Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales , Sydney , Australia
| | - Herman Hau
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Archana Gautam
- School of Materials Science and Engineering, Nanyang Technological University , Singapore City , Singapore
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | | | | | - Alexey Kondyurin
- School of Physics, The University of Sydney , Sydney , Australia
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London , UK.,The Discoveries Centre for Regenerative and Precision Medicine , UCL Campus , London , UK.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan , Korea
| | - George Georgiou
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London , UK
| | - Iqbal Ramzan
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Weidong Cai
- School of Computer Science, The University of Sydney , Sydney , Australia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University , Singapore City , Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| |
Collapse
|
30
|
Rabinovich PM, Zhang J, Kerr SR, Cheng BH, Komarovskaya M, Bersenev A, Hurwitz ME, Krause DS, Weissman SM, Katz SG. A versatile flow-based assay for immunocyte-mediated cytotoxicity. J Immunol Methods 2019; 474:112668. [PMID: 31525367 DOI: 10.1016/j.jim.2019.112668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
Cell-mediated cytotoxicity is a critical function of the immune system in mounting defense against pathogens and cancers. Current methods that allow direct evaluation of cell-mediated cytotoxicity suffer from a wide-range of drawbacks. Here, we present a novel strategy to measure cytotoxicity that is direct, sensitive, rapid, and highly adaptable. Moreover, it allows accurate measurement of viability of both target and effector cells. Target cells are fluorescently labeled with a non-toxic, cell-permeable dye that covalently binds to cell proteins, including nuclear proteins. The labeled target cells are incubated with effector cells to begin killing. Following the killing reaction, the cell mixture is incubated with another dye that specifically stains proteins of dead cells, including nuclear proteins. In the final step, cell nuclei are released by Triton X-100, and analyzed by flow cytometry. This results in four nuclear staining patterns that separate target and effector nuclei as well as nuclei of live and dead cells. Analyzing nuclei, instead of cells, greatly reduces flow cytometry errors caused by the presence of target-effector cell aggregates. Target killing time can often be reduced to 2 h and the assay can be done in a high throughput format. We have successfully validated this assay in a variety of cytotoxicity scenarios including those mediated by NK-92 cells, Chimeric Antigen Receptor (CAR)-T cells, and Tumor Infiltrating Lymphocytes (TIL). Therefore, this technique is broadly applicable, highly sensitive and easily administered, making it a powerful tool to assess immunotherapy-based, cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Peter M Rabinovich
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Jialing Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Samuel R Kerr
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Bao-Hui Cheng
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Marina Komarovskaya
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Alexey Bersenev
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Michael E Hurwitz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06525, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Diane S Krause
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA; Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06525, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06525, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA.
| |
Collapse
|
31
|
Monitoring kinetics reveals critical parameters of IgA-dependent granulocyte-mediated anti-tumor cell cytotoxicity. J Immunol Methods 2019; 473:112644. [PMID: 31404549 DOI: 10.1016/j.jim.2019.112644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/26/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Human IgA antibodies effectively engage myeloid cells for the FcαRI-dependent antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells. Established methods to investigate ADCC are the 51chromium and Calcein release assays. Their critical limitations are the end-point measurement, the unspecific release of the probes, the requirement of target cells in suspension and thus do not reflect physiologic conditions of adherently growing cells. Here we report the label-free real-time monitoring of granulocyte-mediated ADCC using an impedance-based method. We investigated the efficacy of an engineered epidermal growth factor receptor (EGFR)-directed IgA2 antibody to engage neutrophils for ADCC against a panel of adherently growing EGFR-expressing cancer cell lines majorly head and neck squamous cell carcinoma (HNSCC). The impedance assay allowed the documentation of the IgA-neutrophil-and FcαRI-signaling dependent ADCC of adherently growing target cells. While at a short-term it provided comparable results to release assays, in the long run real time monitoring also revealed cell-line specific kinetics and long-term efficacy. Although short-term results may depend on EGFR expression, long-term efficacy did not correlate with the surface level of EGFR nor of the myeloid checkpoint CD47 pointing to additional critical parameters to predict the treatment efficacy. Real-time monitoring of neutrophil-mediated ADCC allowed documenting effector cell activity and exhaustion. Along with excess expression of Mac-1 ligands, which may explain the target cell resistance, this eventually leads to tumor cell outgrowth at later time points. In conclusion, the impedance assay provides valuable information on the kinetics, effector cell performance, efficacy and critical parameters of IgA-dependent granulocyte-mediated cytotoxicity and is expected to become an important tool in its evaluation.
Collapse
|
32
|
Peeters MJW, Dulkeviciute D, Draghi A, Ritter C, Rahbech A, Skadborg SK, Seremet T, Carnaz Simões AM, Martinenaite E, Halldórsdóttir HR, Andersen MH, Olofsson GH, Svane IM, Rasmussen LJ, Met Ö, Becker JC, Donia M, Desler C, Thor Straten P. MERTK Acts as a Costimulatory Receptor on Human CD8 + T Cells. Cancer Immunol Res 2019; 7:1472-1484. [PMID: 31266785 DOI: 10.1158/2326-6066.cir-18-0841] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
Abstract
The TAM family of receptor tyrosine kinases (TYRO3, AXL, and MERTK) is known to be expressed on antigen-presenting cells and function as oncogenic drivers and as inhibitors of inflammatory responses. Both human and mouse CD8+ T cells are thought to be negative for TAM receptor expression. In this study, we show that T-cell receptor (TCR)-activated human primary CD8+ T cells expressed MERTK and the ligand PROS1 from day 2 postactivation. PROS1-mediated MERTK signaling served as a late costimulatory signal, increasing proliferation and secretion of effector and memory-associated cytokines. Knockdown and inhibition studies confirmed that this costimulatory effect was mediated through MERTK. Transcriptomic and metabolic analyses of PROS1-blocked CD8+ T cells demonstrated a role of the PROS1-MERTK axis in differentiation of memory CD8+ T cells. Finally, using tumor-infiltrating lymphocytes (TIL) from melanoma patients, we show that MERTK signaling on T cells improved TIL expansion and TIL-mediated autologous cancer cell killing. We conclude that MERTK serves as a late costimulatory signal for CD8+ T cells. Identification of this costimulatory function of MERTK on human CD8+ T cells suggests caution in the development of MERTK inhibitors for hematologic or solid cancer treatment.
Collapse
Affiliation(s)
- Marlies J W Peeters
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark.
| | - Donata Dulkeviciute
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Arianna Draghi
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Cathrin Ritter
- Translational Skin Cancer Research, University Hospital Essen, German Cancer Consortium (DKTK) Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Rahbech
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Signe K Skadborg
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Tina Seremet
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Ana Micaela Carnaz Simões
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Evelina Martinenaite
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | | | - Mads Hald Andersen
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Gitte Holmen Olofsson
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark
| | - Inge Marie Svane
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark.,Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| | - Özcan Met
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark.,Department of Oncology, University Hospital Herlev, Copenhagen, Denmark.,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C Becker
- Translational Skin Cancer Research, University Hospital Essen, German Cancer Consortium (DKTK) Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Donia
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark.,Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| | - Per Thor Straten
- Department of Hematology, Center for Cancer Immune Therapy, University Hospital Herlev, Copenhagen, Denmark. .,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Tan AT, Yang N, Lee Krishnamoorthy T, Oei V, Chua A, Zhao X, Tan HS, Chia A, Le Bert N, Low D, Tan HK, Kumar R, Irani FG, Ho ZZ, Zhang Q, Guccione E, Wai LE, Koh S, Hwang W, Chow WC, Bertoletti A. Use of Expression Profiles of HBV-DNA Integrated Into Genomes of Hepatocellular Carcinoma Cells to Select T Cells for Immunotherapy. Gastroenterology 2019; 156:1862-1876.e9. [PMID: 30711630 DOI: 10.1053/j.gastro.2019.01.251] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/26/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-specific T-cell receptors (TCRs) for immunotherapy. METHODS HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV messenger RNAs (mRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies. We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBV mRNA. Autologous T cells were engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively transferred to the patients in increasing numbers (1 × 104-10 × 106 TCR+ T cells/kg) weekly for 112 days or 1 year. We monitored patients' liver function, serum levels of cytokines, and standard blood parameters. Antitumor efficacy was assessed based on serum levels of alpha fetoprotein and computed tomography of metastases. RESULTS HCC cells that did not express whole HBV antigens contained short HBV mRNAs, which encode epitopes that are recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from HBV-DNA in patients' metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1-year period of T-cell administration. CONCLUSIONS HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be used to treat a wider population of patients with HBV-associated HCC.
Collapse
Affiliation(s)
| | - Ninghan Yang
- Genome Institute of Singapore, Agency for Science and Technology (A*STAR), Singapore
| | | | - Vincent Oei
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | | | | - Adeline Chia
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology, Agency for Science and Technology (A*STAR), Singapore
| | - Hiang Keat Tan
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Rajneesh Kumar
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Farah Gillan Irani
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore
| | | | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-Sen University, Guandong, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science and Technology (A*STAR), Singapore
| | - Lu-En Wai
- Lion TCR Pte Ltd, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore
| | - William Hwang
- Department of Haematology, Singapore General Hospital, Singapore
| | - Wan Cheng Chow
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore.
| |
Collapse
|
34
|
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, Zhang J, Song C, Zarr M, Zhou X, Han X, Archer KA, O'Neill T, Herbst RS, Boto AN, Sanmamed MF, Langermann S, Rimm DL, Chen L. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 2019; 25:656-666. [PMID: 30833750 PMCID: PMC7175920 DOI: 10.1038/s41591-019-0374-x] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Overexpression of the B7-H1 (PD-L1) molecule in the tumor microenvironment (TME) is a major immune evasion mechanism in some patients with cancer, and antibody blockade of the B7-H1/PD-1 interaction can normalize compromised immunity without excessive side-effects. Using a genome-scale T cell activity array, we identified Siglec-15 as a critical immune suppressor. While only expressed on some myeloid cells normally, Siglec-15 is broadly upregulated on human cancer cells and tumor-infiltrating myeloid cells, and its expression is mutually exclusive to B7-H1, partially due to its induction by macrophage colony-stimulating factor and downregulation by IFN-γ. We demonstrate that Siglec-15 suppresses antigen-specific T cell responses in vitro and in vivo. Genetic ablation or antibody blockade of Siglec-15 amplifies anti-tumor immunity in the TME and inhibits tumor growth in some mouse models. Taken together, our results support Siglec-15 as a potential target for normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jingwei Sun
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Toki
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jianping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xu Zhou
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xue Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Roy S Herbst
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Agedi N Boto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019. [PMID: 30718808 DOI: 10.1038/s41416-019-0384-y] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark. .,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Kumari S, Achazi K, Dey P, Haag R, Dernedde J. Design and Synthesis of PEG-Oligoglycerol Sulfates as Multivalent Inhibitors for the Scavenger Receptor LOX-1. Biomacromolecules 2019; 20:1157-1166. [PMID: 30642176 DOI: 10.1021/acs.biomac.8b01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a cell surface scavenger receptor. The protein is involved in binding and internalization of oxidized low-density lipoprotein (oxLDL), which leads under pathophysiological circumstances to plaque formation in arteries and initiation of atherosclerosis. A structural feature of LOX-1 relevant to oxLDL binding is the "basic spine" motif consisting of linearly aligned arginine residues stretched over the dimer surface. Inhibition of LOX-1 can be done by blocking these positively charged motifs. Here we report on the design, synthesis, and evaluation of a series of novel LOX-1 inhibitors having different numbers of sulfates and polyethylene glycerol (PEG) spacer. Two molecules, compounds 6b and 6d, showed binding affinity in the low nM range, i.e. 45.8 and 47.4 nM, respectively. The in vitro biological studies reveal that these molecules were also able to block the interaction of LOX-1 with its cognate ligands oxLDL, aged RBC, and bacteria.
Collapse
Affiliation(s)
- Shalini Kumari
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Pradip Dey
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin , Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1 , 13353 Berlin , Germany
| |
Collapse
|
37
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019; 120:424-434. [PMID: 30718808 PMCID: PMC6461863 DOI: 10.1038/s41416-019-0384-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Ayala-Charca G, Munidasa S, Ghafar-Zadeh E, Magerowski S. A high-throughput impedimetric platform for cellular analysis: Design, Implementation and Experimental Results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4261-4264. [PMID: 30441295 DOI: 10.1109/embc.2018.8513396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high-throughput impedance spectroscopy measurement system was designed and developed for the purpose of biological analysis. This platform consists of a microchip containing a microelectrode array and a multiplexing interface system. Herein we put forward the proposed platform and demonstrate its functionality by performing impedance analysis using N2a cells and its associated medium. The early experimental results demonstrated the high-through impedimetric system to be a strong basis for future modification and development.
Collapse
|
39
|
Feliz-Mosquea YR, Christensen AA, Wilson AS, Westwood B, Varagic J, Meléndez GC, Schwartz AL, Chen QR, Mathews Griner L, Guha R, Thomas CJ, Ferrer M, Merino MJ, Cook KL, Roberts DD, Soto-Pantoja DR. Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 2018; 172:69-82. [PMID: 30056566 PMCID: PMC6195817 DOI: 10.1007/s10549-018-4884-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND A perennial challenge in systemic cytotoxic cancer therapy is to eradicate primary tumors and metastatic disease while sparing normal tissue from off-target effects of chemotherapy. Anthracyclines such as doxorubicin are effective chemotherapeutic agents for which dosing is limited by development of cardiotoxicity. Our published evidence shows that targeting CD47 enhances radiation-induced growth delay of tumors while remarkably protecting soft tissues. The protection of cell viability observed with CD47 is mediated autonomously by activation of protective autophagy. However, whether CD47 protects cancer cells from cytotoxic chemotherapy is unknown. METHODS We tested the effect of CD47 blockade on cancer cell survival using a 2-dimensional high-throughput cell proliferation assay in 4T1 breast cancer cell lines. To evaluate blockade of CD47 in combination with chemotherapy in vivo, we employed the 4T1 breast cancer model and examined tumor and cardiac tissue viability as well as autophagic flux. RESULTS Our high-throughput screen revealed that blockade of CD47 does not interfere with the cytotoxic activity of anthracyclines against 4T1 breast cancer cells. Targeting CD47 enhanced the effect of doxorubicin chemotherapy in vivo by reducing tumor growth and metastatic spread by activation of an anti-tumor innate immune response. Moreover, systemic suppression of CD47 protected cardiac tissue viability and function in mice treated with doxorubicin. CONCLUSIONS Our experiments indicate that the protective effects observed with CD47 blockade are mediated through upregulation of autophagic flux. However, the absence of CD47 in did not elicit a protective effect in cancer cells, but it enhanced macrophage-mediated cancer cell cytolysis. Therefore, the differential responses observed with CD47 blockade are due to autonomous activation of protective autophagy in normal tissue and enhancement immune cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Yismeilin R Feliz-Mosquea
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ashley A Christensen
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Brian Westwood
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Giselle C Meléndez
- Internal Medicine, Section on Cardiovascular Medicine, Pathology Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony L Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lesley Mathews Griner
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria J Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
- Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
40
|
Płaczek M, Wątróbska-Świetlikowska D, Stefanowicz-Hajduk J, Drechsler M, Ochocka JR, Sznitowska M. Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: Emulsions, liposomes and aqueous lecithin dispersions (WLDs). Eur J Pharm Sci 2018; 127:92-101. [PMID: 30342174 DOI: 10.1016/j.ejps.2018.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Lecithin and isolated phospholipids (mainly phosphatidylcholine) have been used for years as pharmaceutical excipients in parenteral formulations: submicron emulsions, liposomes and mixed micelles. Under development are also other lecithin-based drug delivery systems, e.g. aqueous lecithin dispersions (WLDs). The aim of the study was to investigate the properties and potential cytotoxicity of 7 different phospholipid-based dispersions intended for parenteral administration: emulsions, liposomes and WLDs. Each formulation contained egg phosphatidylcholine (PC) in the concentration range of 0.6-5.0%, and to some formulations other surfactants, such as polysorbate 80 (P80), Solutol HS 15 (HS) and cholesterol (Ch) were added. Particles in all dispersions were homogenous (PDI < 0.26) and submicron in size (Z-average in the range of approx. 100-260 nm). The cytotoxicity of all tested formulations was evaluated by means of 3 independent methods: a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a real-time xCELLigence (RTCA) system, and a flow cytometry analysis, using two cell lines: human embryonic kidney 293 (HEK-293) and human promyelocytic leukaemia (HL-60). The results indicated that regardless of the test method and cell line type, the cytotoxicity of all formulations was low, especially when dispersions diluted to concentrations of =10% were tested. A more pronounced cytotoxic effect was noticed only for the following formulations: E-P80 (emulsion containing P80), WLD (unbuffered aqueous lecithin dispersion) and L-Ch (liposomes containing Ch), tested as less diluted (concentration 10% or 25%). IC50 values measured for these dispersions (on HL-60 cells) amounted to: 10.4 ± 0.5% (v/v), 14.4 ± 0.2% (v/v) and 24.2 ± 0.6% (v/v), respectively. Our investigation confirmed the biocompatibility of all tested phospholipid-based formulations: emulsions, liposomes and also newly-developed WLDs, which can be considered as safe parenteral drug carriers.
Collapse
Affiliation(s)
- Marcin Płaczek
- Department of Pharmaceutical Technology, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | | | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Key Lab of Electron and Optical Microscopy, University of Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany
| | - Jadwiga Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
41
|
Jin BY, Campbell TE, Draper LM, Stevanović S, Weissbrich B, Yu Z, Restifo NP, Rosenberg SA, Trimble CL, Hinrichs CS. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018; 3:99488. [PMID: 29669936 DOI: 10.1172/jci.insight.99488] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) T cell therapy is a promising cancer treatment modality. However, its successful development for epithelial cancers may depend on the identification of high-avidity TCRs directed against tumor-restricted target antigens. The human papillomavirus (HPV) E7 antigen is an attractive therapeutic target that is constitutively expressed by HPV+ cancers but not by healthy tissues. It is unknown if genetically engineered TCR T cells that target E7 can mediate regression of HPV+ cancers. We identified an HPV-16 E7-specific, HLA-A*02:01-restricted TCR from a uterine cervix biopsy from a woman with cervical intraepithelial neoplasia. This TCR demonstrated high functional avidity, with CD8 coreceptor-independent tumor targeting. Human T cells transduced to express the TCR specifically recognized and killed HPV-16+ cervical and oropharyngeal cancer cell lines and mediated regression of established HPV-16+ human cervical cancer tumors in a mouse model. These findings support the therapeutic potential of this approach and established the basis for an E7 TCR gene therapy clinical trial in patients with metastatic HPV+ cancers (NCT02858310).
Collapse
Affiliation(s)
- Benjamin Y Jin
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tracy E Campbell
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Lindsey M Draper
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Martinez EM, Klebanoff SD, Secrest S, Romain G, Haile ST, Emtage PCR, Gilbert AE. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines. SLAS DISCOVERY 2018; 23:603-612. [PMID: 29634393 DOI: 10.1177/2472555218768745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.
Collapse
|
43
|
de Wolf C, van de Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human T cells used in anti-tumor immunotherapy. Cytotherapy 2018; 20:601-622. [PMID: 29598903 DOI: 10.1016/j.jcyt.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/06/2023]
Abstract
The adaptive immune system is known to play an important role in anti-neoplastic responses via induction of several effector pathways, resulting in tumor cell death. Because of their ability to specifically recognize and kill tumor cells, the potential use of autologous tumor-derived and genetically engineered T cells as adoptive immunotherapy for cancer is currently being explored. Because of the variety of potential T cell-based medicinal products at the level of starting material and manufacturing process, product-specific functionality assays are needed to ensure quality for individual products. In this review, we provide an overview of in vitro potency assays suggested for characterization and release of different T cell-based anti-tumor products. We discuss functional assays, as presented in scientific advices and literature, highlighting specific advantages and limitations of the various assays. Because the anticipated in vivo mechanism of action for anti-tumor T cells involves tumor recognition and cell death, in vitro potency assays based on the cytotoxic potential of antigen-specific T cells are most evident. However, assays based on other T cell properties may be appropriate as surrogates for cytotoxicity. For all proposed assays, biological relevance of the tests and correlation of the read-outs with in vivo functionality need to be substantiated with sufficient product-specific (non-)clinical data. Moreover, further unraveling the complex interaction of immune cells with and within the tumor environment is expected to lead to further improvement of the T cell-based products. Consequently, increased knowledge will allow further optimized guidance for potency assay development.
Collapse
Affiliation(s)
- Charlotte de Wolf
- Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
44
|
Abstract
The use of impedance-based label free cell analysis is increasingly popular and has many different applications. Here, we report that a real-time cell analyzer (RTCA) can be used to study the stimulation of Natural Killer (NK) cells. Engagement of NK cells via plate-bound antibodies directed against different activating surface receptors could be measured in real time using the label-free detection of impedance. The change in impedance was dependent on early signal transduction events in the NK cells as it was blocked by inhibitors of Src-family kinases and by inhibiting actin polymerization. While CD16 was the only receptor that could induce a strong change in impedance in primary NK cells, several activating receptors induced changes in impedance in expanded NK cells. Using PBMCs we could detect T cell receptor-mediated T cell activation and CD16-mediated NK cell activation in the same sample. Performing a dose-response analysis for the Src-family kinases inhibitor PP1 we show that T cells are more sensitive to inhibition compared to NK cells. Our data demonstrate that the RTCA can be used to detect physiological activation events in NK cells in a label-free and real-time fashion.
Collapse
|
45
|
Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, Yong WH, Li G, Cloughesy TF, Liau LM, Prins RM. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 2018; 19:796-807. [PMID: 28115578 DOI: 10.1093/neuonc/now287] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Adaptive immune resistance in the tumor microenvironment appears to attenuate the immunotherapeutic targeting of glioblastoma (GBM). In this study, we identified a tumor-infiltrating myeloid cell (TIM) population that expands in response to dendritic cell (DC) vaccine treatment. The aim of this study was to understand how this programmed death ligand 1 (PD-L1)-expressing population restricts activation and tumor-cytolytic function of vaccine-induced tumor-infiltrating lymphocytes (TILs). Methods To test this hypothesis in our in vivo preclinical model, we treated mice bearing intracranial gliomas with DC vaccination ± murine anti-PD-1 monoclonal antibody (mAb) blockade or a colony stimulating factor 1 receptor inhibitor (CSF-1Ri) (PLX3397) and measured overall survival. We then harvested and characterized the PD-L1+ TIM population and its role in TIL activation and tumor cytolysis in vitro. Results Our data indicated that the majority of PD-L1 expression in the GBM environment is contributed by TIMs rather than by tumor cells themselves. While PD-1 blockade partially reversed the TIL dysfunction, targeting TIMs directly with CSF-1Ri altered TIM expression of key chemotactic factors associated with promoting increased TIL infiltration after vaccination. Neither PD-1 mAb nor CSF-1Ri had a demonstrable therapeutic benefit alone, but when combined with DC vaccination, a significant survival benefit was observed. When the tripartite regimen was given (DC vaccine, PD-1 mAb, PLX3397), long-term survival was noted together with an increase in the number of TILs and TIL activation. Conclusion Together, these studies elucidate the role that TIMs play in mediating adaptive immune resistance in the GBM microenvironment and provide evidence that they can be manipulated pharmacologically with agents that are clinically available. Development of immune resistance in response to active vaccination in GBM can be reversed with dual administration of CSF-1Ri and PD-1 mAb.
Collapse
Affiliation(s)
- Joseph P Antonios
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Diana Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Joey R Orpilla
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Namjo P Shin
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Shaina Sedighim
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Janet Treger
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Sylvia Odesa
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Alexander Tucker
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Gang Li
- Department of Biostatistics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| |
Collapse
|
46
|
Cerignoli F, Abassi YA, Lamarche BJ, Guenther G, Santa Ana D, Guimet D, Zhang W, Zhang J, Xi B. In vitro immunotherapy potency assays using real-time cell analysis. PLoS One 2018; 13:e0193498. [PMID: 29499048 PMCID: PMC5834184 DOI: 10.1371/journal.pone.0193498] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow.
Collapse
Affiliation(s)
- Fabio Cerignoli
- ACEA Biosciences, San Diego, California, United States of America
| | - Yama A. Abassi
- ACEA Biosciences, San Diego, California, United States of America
| | | | - Garret Guenther
- ACEA Biosciences, San Diego, California, United States of America
| | - David Santa Ana
- ACEA Biosciences, San Diego, California, United States of America
| | - Diana Guimet
- ACEA Biosciences, San Diego, California, United States of America
| | - Wen Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Jing Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Biao Xi
- ACEA Biosciences, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chandran PA, Laske K, Cazaly A, Rusch E, Schmid-Horch B, Rammensee HG, Ottensmeier CH, Gouttefangeas C. Validation of Immunomonitoring Methods for Application in Clinical Studies: The HLA-Peptide Multimer Staining Assay. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2018; 94:342-353. [PMID: 27363684 DOI: 10.1002/cyto.b.21397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Validated assays are essential to generate data with defined specificity, consistency, and reliability. Although the process of validation is required for applying immunoassays in the context of clinical studies, reports on systematic validation of in vitro T cell assays are scarce so far. We recently validated our HLA-peptide multimer staining assay in a systematic manner so as to qualify the method for monitoring antigen-specific T cell responses after immunotherapy. METHODS Parameters of the assay, specificity, precision, linearity, sensitivity, and robustness were assessed systematically. Experiments were designed to address specifically each parameter and are detailed. RESULTS Nonspecific multimer staining was below the acceptance limit of 0.02% multimer(+) CD8(+) cells. The assay showed acceptable precision in all dimensions it was repeated (CV < 10%) and also demonstrated a linear detection (R2 > 0.99) of antigen specific cells. CONCLUSIONS We succeeded in validating the HLA-multimer staining assay in a systematic manner. Additionally, we propose a technical framework and recommendations that can be applied for validating other T cell assessment methods. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Angelica Cazaly
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | | | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
48
|
Schiller CB, Braciak TA, Fenn NC, Seidel UJE, Roskopf CC, Wildenhain S, Honegger A, Schubert IA, Schele A, Lämmermann K, Fey GH, Jacob U, Lang P, Hopfner KP, Oduncu FS. CD19-specific triplebody SPM-1 engages NK and γδ T cells for rapid and efficient lysis of malignant B-lymphoid cells. Oncotarget 2018; 7:83392-83408. [PMID: 27825135 PMCID: PMC5347777 DOI: 10.18632/oncotarget.13110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022] Open
Abstract
Triplebodies are antibody-derived recombinant proteins carrying 3 antigen-binding domains in a single polypeptide chain. Triplebody SPM-1 was designed for lysis of CD19-bearing malignant B-lymphoid cells through the engagement of CD16-expressing cytolytic effectors, including NK and γδ T cells. SPM-1 is an optimized version of triplebody ds(19-16-19) and includes humanization, disulfide stabilization and the removal of potentially immunogenic sequences. A three-step chromatographic procedure yielded 1.7 - 5.5 mg of purified, monomeric protein per liter of culture medium. In cytolysis assays with NK cell effectors, SPM-1 mediated potent lysis of cancer-derived B cell lines and primary cells from patients with various B-lymphoid malignancies, which surpassed the ADCC activity of the therapeutic antibody Rituximab. EC50-values ranged from 3 to 86 pM. Finally, in an impedance-based assay, SPM-1 mediated a particularly rapid lysis of CD19-bearing target cells by engaging and activating both primary and expanded human γδ T cells from healthy donors as effectors. These data establish SPM-1 as a useful tool for a kinetic analysis of the cytolytic reactions mediated by γδ T and NK cells and as an agent deserving further development towards clinical use for the treatment of B-lymphoid malignancies.
Collapse
Affiliation(s)
- Christian B Schiller
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Todd A Braciak
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Nadja C Fenn
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ursula J E Seidel
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Claudia C Roskopf
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Sarah Wildenhain
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | | | - Ingo A Schubert
- Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexandra Schele
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Kerstin Lämmermann
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | | | | | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Fuat S Oduncu
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
49
|
Targeting Human-Cytomegalovirus-Infected Cells by Redirecting T Cells Using an Anti-CD3/Anti-Glycoprotein B Bispecific Antibody. Antimicrob Agents Chemother 2017; 62:AAC.01719-17. [PMID: 29038280 PMCID: PMC5740302 DOI: 10.1128/aac.01719-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.
Collapse
|
50
|
Stevanović S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, Robins HS, Robbins PF, Klebanoff CA, Rosenberg SA, Hinrichs CS. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017; 356:200-205. [PMID: 28408606 DOI: 10.1126/science.aak9510] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
Immunotherapy has clinical activity in certain virally associated cancers. However, the tumor antigens targeted in successful treatments remain poorly defined. We used a personalized immunogenomic approach to elucidate the global landscape of antitumor T cell responses in complete regression of human papillomavirus-associated metastatic cervical cancer after tumor-infiltrating adoptive T cell therapy. Remarkably, immunodominant T cell reactivities were directed against mutated neoantigens or a cancer germline antigen, rather than canonical viral antigens. T cells targeting viral tumor antigens did not display preferential in vivo expansion. Both viral and nonviral tumor antigen-specific T cells resided predominantly in the programmed cell death 1 (PD-1)-expressing T cell compartment, which suggests that PD-1 blockade may unleash diverse antitumor T cell reactivities. These findings suggest a new paradigm of targeting nonviral antigens in immunotherapy of virally associated cancers.
Collapse
Affiliation(s)
- Sanja Stevanović
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarah R Helman
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Harlan S Robins
- Adaptive Biotechnologies, Seattle, WA 98102, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, New York, NY 10065, USA
| | | | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|