1
|
Meyer LK, Keenan C, Nichols KE. Clinical Characteristics and Treatment of Familial Hemophagocytic Lymphohistiocytosis. Hematol Oncol Clin North Am 2025; 39:553-575. [PMID: 40133142 DOI: 10.1016/j.hoc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) comprises a group of autosomal recessive disorders characterized by germline loss-of-function variants that negatively impact lymphocyte cytotoxicity. These disorders exhibit variable clinical presentations, most often in association with severe hyperinflammation. fHLH is diagnosed through clinical and laboratory assessments as well as genetic testing and immunologic assays. In the absence of therapy to control the hyperactive immune system, fHLH is generally fatal. Treatment has historically taken the form of cytotoxic chemotherapy and/or immunosuppressive therapy, although targeted inhibitors of inflammatory cytokines and their downstream signaling are increasingly being utilized. Definitive treatment requires allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Lauren K Meyer
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Camille Keenan
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1170, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Baer B, Lin J, Schaaf KR, Ware LB, Shaver CM, Bastarache JA. Matrix metalloproteinase-7 is dispensable in a mouse model of sepsis-induced acute lung injury. PLoS One 2025; 20:e0321349. [PMID: 40341670 PMCID: PMC12061409 DOI: 10.1371/journal.pone.0321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/05/2025] [Indexed: 05/10/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of acute lung injury whose pathogenesis is characterized by excessive lung inflammation and alveolar-capillary barrier permeability. Matrix metalloproteinase 7 (MMP7) can regulate leukocyte recruitment and the production of pro-inflammatory cytokines, but whether it plays a role in acute lung injury (ALI) is an unanswered question. We hypothesized that global loss of MMP7 would attenuate sepsis-induced ALI and systemic inflammation. To test this, male and female MMP7 knockout (MMP7KO) mice and wild-type (WT) littermates were exposed to a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced through intraperitoneal injection of cecal slurry (CS; 1.6mg/g) or 5% dextrose (control) followed by exposure to hyperoxia (HO; FiO2=0.95) or room air (control, FiO2=0.21). At 24-hours post-CS+HO, we measured weight loss, illness severity, and body temperature. The mice were then sacrificed, and samples from the lungs, kidneys, spleen, blood, peritoneal wash, and bronchoalveolar lavage (BAL) fluid were collected for analysis. Bacterial burden was assessed in the peritoneum, lung, and spleen. Lung inflammation was assessed by BAL inflammatory cell recruitment and pro-inflammatory cytokine concentrations as well as lung tissue mRNA expression of pro-inflammatory cytokines. Alveolar-capillary barrier disruption was quantified by BAL total protein, BAL immunoglobulin M, and lung wet-to-dry weight ratios. Histologic evidence of lung injury was evaluated using a histological scoring system. Systemic inflammation was measured through plasma pro-inflammatory cytokines and peritoneal inflammatory cells. Kidney function, inflammation, and injury were assessed through plasma urea nitrogen concentrations, as well as tissue levels of pro-inflammatory cytokines, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Relative mRNA expression of MMP-7, MMP-9, and MMP-2 was also quantified in both lung and kidney tissue through qPCR. At 24-hours post-CS+HO all mice developed ALI. Septic mice also had increased systemic inflammation, kidney inflammation, kidney injury, and kidney dysfunction compared to controls. Loss of MMP7 did not affect markers of inflammation, organ injury, or organ dysfunction. Interestingly, septic male mice exhibited more severe illness, systemic and lung inflammation, lung injury, and lung expression of matrix metalloproteinases, while septic female mice exhibited more kidney inflammation, kidney injury, and kidney expression of matrix metalloproteinases. In conclusion, MMP7 is not essential for the development or resolution of sepsis-induced ALI in this model and likely plays a limited role in the condition.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kaitlyn R. Schaaf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Avouac J, Kay J, Choy E. Personalised treatment of rheumatoid arthritis based on cytokine profiles and synovial tissue signatures: potentials and challenges. Semin Arthritis Rheum 2025; 73:152740. [PMID: 40339302 DOI: 10.1016/j.semarthrit.2025.152740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune, chronic inflammatory disease that mainly affects the joints and periarticular soft tissues. Although there have been significant advances in RA treatment over the past two decades, approximately 40% of patients do not respond to first-line biological disease-modifying antirheumatic drugs (bDMARDs). Physicians often use an empirical, trial-and-error approach to select bDMARDs to treat patients with RA. This is inefficient and can be costly for healthcare systems which have limited resources. Unlike in oncology, where molecular pathology helps guide targeted therapies, reliable, predictive biomarkers for drug response in RA are yet to be identified. This narrative review aims to summarise current knowledge on novel biomarkers of disease activity and drug response in RA, with a particular focus on serum cytokine profiles and macrophage and fibroblast subsets in synovial tissue. We also highlight key areas of further research that could advance the development of targeted therapies for patients with RA. METHODS We searched PubMed to identify studies pertaining to biomarkers of disease activity and drug response in the treatment of RA. RESULTS We present a detailed overview of the key studies that have identified serum cytokine profiles and synovial macrophage and fibroblast subsets as novel biomarkers of disease activity and drug response in RA. CONCLUSION A novel, evidence-based approach to precision medicine in RA, which involves tailoring treatment based on cytokine profiles and synovial tissue signatures, shows promise for improving patient care. However, more research is needed to identify biomarkers that predict drug response.
Collapse
Affiliation(s)
- Jérôme Avouac
- Service de Rhumatologie, Hôpital Cochin, AP-HP Centre Université Paris Cité, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and UMass Chan Medical School, 119 Belmont Street, Worcester, MA 01605, United States.
| | - Ernest Choy
- Rheumatology Section, Division of Infection and Immunity, Cardiff University School of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, Wales, UK.
| |
Collapse
|
4
|
McKinski K, Tang H, Wang K, Birchler M, Wright M. Comparison of highly sensitive, multiplex immunoassay platforms for streamlined clinical cytokine quantification. Bioanalysis 2025; 17:17-29. [PMID: 39703153 PMCID: PMC11749433 DOI: 10.1080/17576180.2024.2442190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Selecting the optimal platforms to quantitate cytokines is challenging due to varying performance and the plethora of options available. AIMS To compare performance of three highly sensitive, multiplex assays on three different platforms - MSD S-plex, Olink Target 48, and Quanterix SP-X - to MSD V-plex which is widely used for quantitative cytokine assay. METHODS Serum and stimulated plasma samples were analyzed across each platform. The proportion of quantifiable samples was compared for each analyte and correlation analyses were performed to relate the data. For MSD S-plex, parallelism and antibody pair knockdown experiments gauged specificity of the kit. RESULTS MSD S-plex was the most sensitive multiplex platform followed by Olink Target 48, Quanterix SP-X, and MSD V-plex. Concentrations across platforms differed greatly for some cytokines, but all platforms showed strong correlation. Results for MSD S-plex were confirmed by parallelism and knockdown. CONCLUSION MSD S-plex should be a priority platform for ultra-sensitive assay. Olink Target 48 offers an enticing combination of sensitivity and multiplex capability that warrants consideration when many cytokines require quantitation. MSD V-plex, MSD S-plex and Olink quantitative assays offer high utility across drug development programs, but fit-for-purpose performance should be assessed on a per-analyte basis.
Collapse
Affiliation(s)
- Kevin McKinski
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Huaping Tang
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Kai Wang
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Mary Birchler
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Mike Wright
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Stevenage, UK
| |
Collapse
|
5
|
Scholaert M, Peries M, Braun E, Martin J, Serhan N, Loste A, Bruner A, Basso L, Chaput B, Merle E, Descargues P, Pagès E, Gaudenzio N. Multimodal profiling of biostabilized human skin modules reveals a coordinated ecosystem response to injected mRNA-1273 COVID-19 vaccine. Allergy 2024; 79:3341-3359. [PMID: 39157907 PMCID: PMC11657073 DOI: 10.1111/all.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The field of drug development is witnessing a remarkable surge in the development of innovative strategies. There is a need to develop technological platforms capable of generating human data prior to progressing to clinical trials. METHODS Here we introduce a new flexible solution designed for the comprehensive monitoring of the natural human skin ecosystem's response to immunogenic drugs over time. Based on unique bioengineering to preserve surgical resections in a long survival state, it allows for the first time a comprehensive analysis of resident immune cells response at both organ and single-cell levels. RESULTS Upon injection of the mRNA-1273 COVID-19 vaccine, we characterized precise sequential molecular events triggered upon detection of the exogenous substance. The vaccine consistently targets DC/macrophages and mast cells, regardless of the administration route, while promoting specific cell-cell communications in surrounding immune cell subsets. CONCLUSION Given its direct translational relevance, this approach provides a multiscale vision of genuine human tissue immunity that could pave the way toward the development of new vaccination and drug development strategies.
Collapse
Affiliation(s)
- Manon Scholaert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| | | | | | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Audrey Bruner
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Benoît Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil HospitalCHU ToulouseToulouseFrance
| | | | | | | | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| |
Collapse
|
6
|
Murphy MB, Yang Z, Subati T, Farber-Eger E, Kim K, Blackwell DJ, Fleming MR, Stark JM, Van Amburg JC, Woodall KK, Van Beusecum JP, Agrawal V, Smart CD, Pitzer A, Atkinson JB, Fogo AB, Bastarache JA, Kirabo A, Wells QS, Madhur MS, Barnett JV, Murray KT. LNK/SH2B3 loss of function increases susceptibility to murine and human atrial fibrillation. Cardiovasc Res 2024; 120:899-913. [PMID: 38377486 PMCID: PMC11218690 DOI: 10.1093/cvr/cvae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/07/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1β inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Action Potentials/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/genetics
- Benzylamines/pharmacology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Heart Rate/drug effects
- Inflammation Mediators/metabolism
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Phenotype
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Matthew B Murphy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Zhenjiang Yang
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Tuerdi Subati
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Eric Farber-Eger
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Kyungsoo Kim
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Daniel J Blackwell
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Matthew R Fleming
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Joshua M Stark
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Joseph C Van Amburg
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Kaylen K Woodall
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Justin P Van Beusecum
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Vineet Agrawal
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Charles D Smart
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - James B Atkinson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, 1161 21 Avenue South, Nashville, TN 37232, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, 1161 21 Avenue South, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Quinn S Wells
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Meena S Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Joey V Barnett
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Katherine T Murray
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Brummel NE, Hughes CG, McNeil JB, Pandharipande PP, Thompson JL, Orun OM, Raman R, Ware LB, Bernard GR, Harrison FE, Ely EW, Girard TD. Systemic inflammation and delirium during critical illness. Intensive Care Med 2024; 50:687-696. [PMID: 38647548 DOI: 10.1007/s00134-024-07388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The purpose of this study was to determine associations between markers of inflammation and endogenous anticoagulant activity with delirium and coma during critical illness. METHODS In this prospective cohort study, we enrolled adults with respiratory failure and/or shock treated in medical or surgical intensive care units (ICUs) at 5 centers. Twice per day in the ICU, and daily thereafter, we assessed mental status using the Richmond Agitation Sedation Scale (RASS) and the Confusion Assessment Method-Intensive Care Unit (CAM-ICU). We collected blood samples on study days 1, 3, and 5, measuring levels of C-reactive protein (CRP), interferon gamma (IFN-γ), interleukin (IL)-1 beta (IL-1β), IL-6, IL-8, IL-10, IL-12, matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), and protein C using validated protocols. We used multinomial logistic regression to analyze associations between biomarkers and the odds of delirium or coma versus normal mental status the following day, adjusting for age, sepsis, Sequential Organ Failure Assessment (SOFA), study day, corticosteroids, and sedatives. RESULTS Among 991 participants with a median age (interquartile range, IQR) of 62 [53-72] years and enrollment SOFA of 9 [7-11], higher concentrations of IL-6 (odds ratio [OR] [95% CI]: 1.8 [1.4-2.3]), IL-8 (1.3 [1.1-1.5]), IL-10 (1.5 [1.2-1.8]), TNF-α (1.2 [1.0-1.4]), and TNFR1 (1.3 [1.1-1.6]) and lower concentrations of protein C (0.7 [0.6-0.8])) were associated with delirium the following day. Higher concentrations of CRP (1.4 [1.1-1.7]), IFN-γ (1.3 [1.1-1.5]), IL-6 (2.3 [1.8-3.0]), IL-8 (1.8 [1.4-2.3]), and IL-10 (1.5 [1.2-2.0]) and lower concentrations of protein C (0.6 [0.5-0.8]) were associated with coma the following day. IL-1β, IL-12, and MMP-9 were not associated with mental status. CONCLUSION Markers of inflammation and possibly endogenous anticoagulant activity are associated with delirium and coma during critical illness.
Collapse
Affiliation(s)
- Nathan E Brummel
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
| | - Christopher G Hughes
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Division of Anesthesia Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Brennan McNeil
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pratik P Pandharipande
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Division of Anesthesia Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer L Thompson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Onur M Orun
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rameela Raman
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lorraine B Ware
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gordon R Bernard
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fiona E Harrison
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA
- Center for Quality Aging, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC) Service, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Timothy D Girard
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, TN, USA.
- Clinical Research Investigation and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh, 638 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Wang Y, Bednarcik M, Ament C, Cheever ML, Cummings S, Geng T, Gunasekara DB, Houston N, Kouba K, Liu Z, Shippar J. Immunoassays and Mass Spectrometry for Determination of Protein Concentrations in Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38607999 PMCID: PMC11046482 DOI: 10.1021/acs.jafc.3c09188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Quantifying protein levels in genetically modified (GM) crops is crucial in every phase of development, deregulation, and seed production. Immunoassays, particularly enzyme-linked immunosorbent assay, have been the primary protein quantitation techniques for decades within the industry due to their efficiency, adaptability, and credibility. Newer immunoassay technologies like Meso Scale Discovery and Luminex offer enhanced sensitivity and multiplexing capabilities. While mass spectrometry (MS) has been widely used for small molecules and protein detection in the pharmaceutical and agricultural industries (e.g., biomarkers, endogenous allergens), its use in quantifying protein levels in GM crops has been limited. However, as trait portfolios for GM crop have expanded, MS has been increasingly adopted due to its comparable sensitivity, increased specificity, and multiplexing capabilities. This review contrasts the benefits and limitations of immunoassays and MS technologies for protein measurement in GM crops, considering factors such as cost, convenience, and specific analytical needs. Ultimately, both techniques are suitable for assessing protein concentrations in GM crops, with MS offering complementary capabilities to immunoassays. This comparison aims to provide insights into selecting between these techniques based on the user's end point needs.
Collapse
Affiliation(s)
- Yanfei Wang
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Mark Bednarcik
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Christopher Ament
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| | - Matthew L. Cheever
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Simone Cummings
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Tao Geng
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Dulan B. Gunasekara
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Norma Houston
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Kristen Kouba
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Zi Liu
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Jeffrey Shippar
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| |
Collapse
|
9
|
Behrens EM. Cytokines in Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:173-183. [PMID: 39117815 DOI: 10.1007/978-3-031-59815-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As the eponymous mediators of the cytokine storm syndrome, cytokines are a pleomorphic and diverse set of soluble molecules that activate or suppress immune functions in a wide variety of ways. The relevant cytokines for each CSS are likely a result of differing combinations of environmental triggers and host susceptibilities. Because cytokines or their receptors may be specifically targeted by biologic therapeutics, understanding which cytokines are relevant for disease initiation and propagation for each unique CSS is of major clinical importance. This chapter will review what is known about the role of cytokines across the spectrum of CSS.
Collapse
Affiliation(s)
- Edward M Behrens
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Marín-Romero A, Pernagallo S. A comprehensive review of Dynamic Chemical Labelling on Luminex xMAP technology: a journey towards Drug-Induced Liver Injury testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6139-6149. [PMID: 37965948 DOI: 10.1039/d3ay01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Drug-Induced Liver Injury (DILI) is a grave global adverse event that can result in fatal consequences, causing drug failures, market withdrawals, and regulatory warnings, leading to substantial financial losses. The early detection of DILI remains a significant challenge in global healthcare. Although circulating microRNAs (miRs) show promise as clinical biomarkers for DILI, the current analytical methods for their measurement are insufficient. There is a pressing need for rapid and reliable miR detection methods that eliminate the need for nucleic acid extraction and PCR-based amplification. This review highlights recent advancements achieved by integrating Dynamic Chemical Labelling (DCL) with Luminex xMAP technology. This powerful combination has resulted in groundbreaking bead-based assays that allow (1) the direct, multiplex detection of miRs, and (2) the simultaneous testing of miR and protein biomarkers. This triple capability enables a comprehensive assessment that significantly enhances the detection and analysis of crucial biomarkers, thus improving the understanding and diagnosis of DILI. In conclusion, this review offers valuable insights into the capabilities and potential applications of these groundbreaking assays in DILI research, as well as their potential use in other diagnostic and research domains that require direct or multiplex analysis of miRs or analysis of miRs in combination with proteins.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| |
Collapse
|
11
|
Hamilton RG, Croote D, Lupinek C, Matsson P. Evolution Toward Chip-Based Arrays in the Laboratory Diagnosis of Human Allergic Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2991-2999. [PMID: 37597694 DOI: 10.1016/j.jaip.2023.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Multiplex-based specific IgE antibody assays have emerged into the clinical immunology laboratory through the combined use of pure, recombinant allergenic molecules and new methods to simultaneously and accurately analyze specific IgE antibodies to hundreds of allergens. This review traces the historical development and examines outstanding questions related to the strengths and limitations of these new molecular allergen multipex technologies for the assessment of human allergic sensitization. Multiplexed technologies are poised to provide the most cost-effective and comprehensive evaluation of patients with suspected allergy as compared with the commonly used singleplex autoanalyzers. How analytically sensitive and quantitative are the multiplex technologies, down to 0.1 kUA/L? Because each allergen is viewed as a unique assay, how will analytical and clinical performance be documented at the manufacturing and clinical laboratory levels to guarantee reproducibility and obtain government regulatory clearance? Will interference by naturally occurring allergen-specific IgG compromise analytical performance? Successful resolution of these and other questions covered in this review will position multiplex technologies to become the single most-effective means of screening patients for allergic sensitization, assessing IgE antibody cross-reactivity, and planning therapy directed at the patient with allergy.
Collapse
Affiliation(s)
- Robert G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | | | | | - Per Matsson
- Clinical Laboratory Standards Institute, Malvern, Pa
| |
Collapse
|
12
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
13
|
Goh XX, Tang PY, Tee SF. Meta-analysis of soluble tumour necrosis factor receptors in severe mental illnesses. J Psychiatr Res 2023; 165:180-190. [PMID: 37515950 DOI: 10.1016/j.jpsychires.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Tumour necrosis factor (TNF), as an innate immune defense molecule, functions through binding to TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2). Peripheral levels of soluble TNFR1 (sTNFR1) and soluble TNFR2 (sTNFR2) were widely measured in severe mental illnesses (SMIs) including schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) but inconsistencies existed. Hence, the present meta-analysis was conducted to identify the overall association between plasma/serum sTNFR1 and sTNFR2 levels and SMIs. Published studies were searched using Pubmed and Scopus. Data were analysed using Comprehensive Meta-Analysis version 2. Hedges's g effect sizes and 95% confidence intervals were pooled using fixed-effect or random-effects models. Heterogeneity, publication bias and study quality were assessed. Sensitivity analysis and subgroup analysis were performed. Our findings revealed that sTNFR1 level was significantly higher in SMI, particularly in BD. The sTNFR2 level significantly elevated in SMI but with smaller effect size. These findings further support the association between altered immune system and inflammatory abnormalities in SMI, especially in patients with BD. Subgroup analysis showed that younger age of onset, longer illness duration and psychotropic medication raised both sTNFR levels, especially sTNFR1, as these factors may contribute to the activation of inflammation. Future studies were suggested to identify the causality between TNFR pathway and SCZ, BD and MDD respectively using homogenous group of each SMI, and to determine the longitudinal effect of each psychotropic medication on TNFR pathway.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia.
| |
Collapse
|
14
|
Donley J, Jani D, Zhu T, Xiang Y, Gorovits B, Arkin S. Evolution of Antidrug Antibody Assays During the Development of Anti-Tissue Factor Pathway Inhibitor Monoclonal Antibody Marstacimab. AAPS J 2023; 25:84. [PMID: 37610502 DOI: 10.1208/s12248-023-00847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Tissue factor pathway inhibitor (TFPI) is an endogenous inhibitor of the extrinsic coagulation pathway. In patients with hemophilia A or B, inhibition of TFPI is an alternative therapeutic approach that augments the extrinsic coagulation pathway. Marstacimab is an investigational fully human monoclonal antibody that binds and neutralizes TFPI and is being evaluated as a prophylactic treatment to prevent or reduce the frequency of bleeding episodes in patients with severe hemophilia A or B, with or without inhibitors (antibodies against coagulation factors). However, the efficacy, safety, and pharmacokinetics of marstacimab may be affected by the induction of antidrug antibody (ADA) responses. Here, we describe the evolution and validation of three quasi-quantitative electrochemiluminescence-based methods to detect marstacimab ADAs, starting from their use in a first-in-human phase 1 study to their use in phase 2 and 3 clinical studies of patients with severe hemophilia. For all three methods, validation criteria evaluated the performance of the assays in screening and confirmatory cut points, precision, selectivity, drug tolerance, target interference, and stability. Additional criteria for validation were dilution linearity (Methods 1 and 2) and low positive control concentration, prozone effect, plate homogeneity, and robustness (Method 3). The three methods met validation criteria and are a potentially valuable tool in detecting the induction of marstacimab ADAs during treatment in patients with hemophilia.
Collapse
Affiliation(s)
- Jean Donley
- Pfizer Biomedicine Design, Andover, Massachusetts, USA
| | | | - Tong Zhu
- Pfizer Inc, Cambridge, Massachusetts, USA
| | - Yuhong Xiang
- Pfizer Biomedicine Design, Andover, Massachusetts, USA
| | | | - Steven Arkin
- Rare Disease Research Unit, Pfizer Worldwide Research & Development, 610 Main St., 2nd Floor, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
15
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Zyrianova T, Zou K, Lopez B, Liao A, Gu C, Olcese R, Schwingshackl A. Activation of Endothelial Large Conductance Potassium Channels Protects against TNF-α-Induced Inflammation. Int J Mol Sci 2023; 24:4087. [PMID: 36835507 PMCID: PMC9961193 DOI: 10.3390/ijms24044087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Elevated TNF-α levels in serum and broncho-alveolar lavage fluid of acute lung injury patients correlate with mortality rates. We hypothesized that pharmacological plasma membrane potential (Em) hyperpolarization protects against TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells through inhibition of inflammatory Ca2+-dependent MAPK pathways. Since the role of Ca2+ influx in TNF-α-mediated inflammation remains poorly understood, we explored the role of L-type voltage-gated Ca2+ (CaV) channels in TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells. The CaV channel blocker, Nifedipine, decreased both CCL-2 and IL-6 secretion, suggesting that a fraction of CaV channels is open at the significantly depolarized resting Em of human microvascular pulmonary endothelial cells (-6 ± 1.9 mV), as shown by whole-cell patch-clamp measurements. To further explore the role of CaV channels in cytokine secretion, we demonstrated that the beneficial effects of Nifedipine could also be achieved by Em hyperpolarization via the pharmacological activation of large conductance K+ (BK) channels with NS1619, which elicited a similar decrease in CCL-2 but not IL-6 secretion. Using functional gene enrichment analysis tools, we predicted and validated that known Ca2+-dependent kinases, JNK-1/2 and p38, are the most likely pathways to mediate the decrease in CCL-2 secretion.
Collapse
Affiliation(s)
- Tatiana Zyrianova
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathlyn Zou
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Lopez
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andy Liao
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Gu
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Departments of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Departments of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Schwingshackl
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Methods and Advances in the Design, Testing and Development of In Vitro Diagnostic Instruments. Processes (Basel) 2023. [DOI: 10.3390/pr11020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the continuous improvement of medical testing and instrumentation engineering technologies, the design, testing and development methods of in vitro diagnostic instruments are developing rapidly. In vitro diagnostic instruments are also gradually developing into a class of typical high-end medical equipment. The design of in vitro diagnostic instruments involves a variety of medical diagnostic methods and biochemical, physical and other related technologies, and its development process involves complex system engineering. This paper systematically organizes and summarizes the design, testing and development methods of in vitro diagnostic instruments and their development in recent years, focusing on summarizing the related technologies and core aspects of the R&D process, and analyzes the development trend of the in vitro diagnostic instrument market.
Collapse
|
18
|
Brand RM, Pitlor D, Metter EJ, Dudley B, Karloski E, Zyhowski A, Brand RE, Uttam S. rxCOV is a quantitative metric for assessing immunoassay analyte fidelity. Sci Rep 2023; 13:88. [PMID: 36596931 PMCID: PMC9810650 DOI: 10.1038/s41598-022-27309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Immunoassay based bioanalytical measurements are widely used in a variety of biomedical research and clinical settings. In these settings they are assumed to faithfully represent the experimental conditions being tested and the sample groups being compared. Although significant technical advances have been made in improving sensitivity and quality of the measurements, currently no metrics exist that objectively quantify the fidelity of the measured analytes with respect to noise associated with the specific assay. Here we introduce ratio of cross-coefficient-of-variation (rxCOV), a fidelity metric for objectively assessing immunoassay analyte measurement quality when comparing its differential expression between different sample groups or experimental conditions. We derive the metric from first principles and establish its feasibility and applicability using simulated and experimental data. We show that rxCOV assesses fidelity independent of statistical significance, and importantly, identifies when latter is meaningful. We also discuss its importance in the context of averaging experimental replicates for increasing signal to noise ratio. Finally, we demonstrate its application in a Lynch Syndrome case study. We conclude by discussing its applicability to multiplexed immunoassays, other biosensing assays, and to paired and unpaired data. We anticipate rxCOV to be adopted as a simple and easy-to-use fidelity metric for performing robust and reproducible biomedical research.
Collapse
Affiliation(s)
- Rhonda M. Brand
- grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Danielle Pitlor
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - E. Jeffrey Metter
- grid.267301.10000 0004 0386 9246Department of Neurology, University of Tennessee, Memphis, TN USA
| | - Beth Dudley
- grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Eve Karloski
- grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Ashley Zyhowski
- grid.21925.3d0000 0004 1936 9000Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Randall E. Brand
- grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Shikhar Uttam
- grid.21925.3d0000 0004 1936 9000UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
19
|
Casanova NG, Reyes-Hernon V, Gregory T, Sun B, Bermudez T, Hufford MK, Oita RC, Camp SM, Hernandez-Molina G, Serrano JR, Sun X, Fimbres J, Mirsaeidi M, Sammani S, Bime C, Garcia JGN. Biochemical and genomic identification of novel biomarkers in progressive sarcoidosis: HBEGF, eNAMPT, and ANG-2. Front Med (Lausanne) 2022; 9:1012827. [PMID: 36388923 PMCID: PMC9640603 DOI: 10.3389/fmed.2022.1012827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Progressive pulmonary fibrosis is a serious complication in subjects with sarcoidosis. The absence of reliable, non-invasive biomarkers that detect early progression exacerbates the difficulty in predicting sarcoidosis severity. To potentially address this unmet need, we evaluated a panel of markers for an association with sarcoidosis progression (HBEGF, NAMPT, IL1-RA, IL-6, IL-8, ANG-2). This panel encompasses proteins related to inflammation, vascular injury, cell proliferation, and fibroblast mitogenesis processes. Methods Plasma biomarker levels and biomarker protein expression in lung and lymph nodes tissues (immunohistochemical studies) from sarcoidosis subjects with limited disease and progressive (complicated) sarcoidosis were performed. Gene expression of the protein-coding genes included in this panel was analyzed using RNAseq in sarcoidosis granulomatous tissues from lung and lymph nodes. Results Except for IL-8, plasma levels of each biomarker—eNAMPT, IL-1RA, IL-6, ANG-2, and HBEGF—were significantly elevated in sarcoidosis subjects compared to controls. In addition, plasma levels of HBEGF were elevated in complicated sarcoidosis, while eNAMPT and ANG-2 were observed to serve as markers of lung fibrosis in a subgroup of complicated sarcoidosis. Genomic studies corroborated HBEGF and NAMPT among the top dysregulated genes and identified cytokine-related and fibrotic pathways in lung granulomatous tissues from sarcoidosis. Conclusion These findings suggest HBEGF, eNAMPT, and ANG-2 may serve as potential novel indicators of the clinical severity of sarcoidosis disease.
Collapse
Affiliation(s)
- Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes-Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Taylor Gregory
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew K. Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Radu C. Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | | | | | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jocelyn Fimbres
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mehdi Mirsaeidi
- Department of Medicine, College of Medicine, University of Florida, Jacksonville, FL, United States
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
20
|
Biodistribution Analysis of an Anti-EGFR Antibody in the Rat Brain: Validation of CSF Microcirculation as a Viable Pathway to Circumvent the Blood-Brain Barrier for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14071441. [PMID: 35890344 PMCID: PMC9324388 DOI: 10.3390/pharmaceutics14071441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid (CSF) microcirculation refers to CSF flow through brain or spinal parenchyma. CSF enters the tissue along the perivascular spaces of the penetrating arteries where it mixes with the interstitial fluid circulating through the extracellular space. The potential of harnessing CSF microcirculation for drug delivery to deep areas of the brain remains an area of controversy. This paper sheds additional light on this debate by showing that ABT-806, an EGFR-specific humanized IgG1 monoclonal antibody (mAb), reaches both the cortical and the deep subcortical layers of the rat brain following intra-cisterna magna (ICM) injection. This is significant because the molecular weight of this mAb (150 kDa) is highest among proteins reported to have penetrated deeply into the brain via the CSF route. This finding further confirms the potential of CSF circulation as a drug delivery system for a large subset of molecules offering promise for the treatment of various brain diseases with poor distribution across the blood-brain barrier (BBB). ABT-806 is the parent antibody of ABT-414, an antibody-drug conjugate (ADC) developed to engage EGFR-overexpressing glioblastoma (GBM) tumor cells. To pave the way for future efficacy studies for the treatment of GBM with an intra-CSF administered ADC consisting of a conjugate of ABT-806 (or of one of its close analogs), we verified in vivo the binding of ABT-414 to GBM tumor cells implanted in the cisterna magna and collected toxicity data from both the central nervous system (CNS) and peripheral tissues. The current study supports further exploration of harnessing CSF microcirculation as an alternative to systemic delivery to achieve higher brain tissue exposure, while reducing previously reported ocular toxicity with ABT-414.
Collapse
|
21
|
Bime C, Casanova NG, Camp SM, Oita RC, Ndukum J, Hernon VR, Oh DK, Li Y, Greer PJ, Whitcomb DC, Papachristou GI, Garcia JGN. Circulating eNAMPT as a biomarker in the critically ill: acute pancreatitis, sepsis, trauma, and acute respiratory distress syndrome. BMC Anesthesiol 2022; 22:182. [PMID: 35705899 PMCID: PMC9198204 DOI: 10.1186/s12871-022-01718-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT) exhibits dual functionality – as an intracellular enzyme regulating nicotinamide adenine dinucleotide metabolism and as an extracellular secreted protein (eNAMPT) to function as a cytokine regulator of innate immunity via binding to Toll-Like receptor 4 and NF-κB activation. In limited preclinical and clinical studies, eNAMPT was implicated in the pathobiology of acute respiratory distress syndrome (ARDS) suggesting that eNAMPT could potentially serve as a diagnostic and prognostic biomarker. We investigated the feasibility of circulating eNAMPT levels to serve as a biomarker in an expanded cohort of patients with ARDS and ARDS-predisposing conditions that included acute pancreatitis, sepsis, and trauma with comparisons to controls. Methods A total of 671 patients and 179 healthy controls were included in two independent cohorts. Plasma and serum eNAMPT levels were quantified using one of two complementary Enzyme-linked Immunosorbent Assays. After log base 2 variance stabilizing transformation of plasma/serum eNAMPT measurements, differences between healthy controls and each disease cohort were compared using linear regression or a generalized estimating equation (GEE) model where applicable. Complementary analyses included sensitivity, specificity, positive predictive values, negative predictive values, and the area under the receiver operating curve. Results Compared to controls, circulating eNAMPT levels were significantly elevated in subjects with acute pancreatitis, sepsis, trauma, and ARDS (all p < 0.01). In the acute pancreatitis cohort, circulating eNAMPT levels positively correlated with disease severity (p < 0.01). Conclusions Circulating eNAMPT levels are novel biomarker in the critically ill with acute pancreatitis, sepsis, trauma, and/or ARDS with the potential to reflect disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01718-1.
Collapse
Affiliation(s)
- Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Juliet Ndukum
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dong Kyu Oh
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yansong Li
- US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Phil J Greer
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ariel Precision Medicine, Pittsburgh, PA, USA
| | - David C Whitcomb
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Georgios I Papachristou
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ohio State University College of Medicine, Columbus, OH, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
22
|
Jiang W, Jones JC, Shankavaram U, Sproull M, Camphausen K, Krauze AV. Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications. Cancers (Basel) 2022; 14:2227. [PMID: 35565358 PMCID: PMC9105298 DOI: 10.3390/cancers14092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The development and advancement of aptamer technology has opened a new realm of possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a powerful tool in disease-specific research, such as supporting the discovery and validation of clinically relevant biomarkers. One of the fundamental challenges underlying past and current proteomic technology has been the difficulty of translating proteomic datasets into standards of practice. Aptamers provide the capacity to generate single panels that span over 7000 different proteins from a singular sample. However, as a recent technology, they also present unique challenges, as the field of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing these large datasets and the novel considerations that must be made in response to the differentiation amongst current proteomic platforms and aptamers. We address these analytical considerations with respect to surveying initial data, deploying proper statistical methodologies to identify differential protein expressions, and applying datasets to discover multimarker and pathway-level findings. Additionally, we present aptamer datasets within the multi-omics landscape by exploring the intersectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics, alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer datasets will substantially enhance current efforts to generate translatable findings for the clinic.
Collapse
Affiliation(s)
- Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, NIH/NCI/CCR, Bethesda, MD 20892, USA;
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| |
Collapse
|
23
|
Andrews MR, Ceasar J, Tamura K, Langerman SD, Mitchell VM, Collins BS, Baumer Y, Gutierrez Huerta CA, Dey AK, Playford MP, Mehta NN, Powell-Wiley TM. Neighborhood environment perceptions associate with depression levels and cardiovascular risk among middle-aged and older adults: Data from the Washington, DC cardiovascular health and needs assessment. Aging Ment Health 2021; 25:2078-2089. [PMID: 32691611 PMCID: PMC7855489 DOI: 10.1080/13607863.2020.1793898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Little is understood about associations between neighborhood characteristics and depression, a cardiovascular disease (CVD) risk factor, in diverse populations. We examined relationships between perceived/objective neighborhood characteristics, depression, and CVD markers within the Washington, DC CV Health/Needs Assessment, an evaluation among predominantly African-American (AA) adults in resource-limited DC communities. METHOD Factor analysis of overall neighborhood environment perception (NEP) identified three NEP sub-scores:1) violence; 2) physical/social environment; 3) social cohesion (higher score = more favorable perception). Objective neighborhood characteristics were measured by geospatially-derived scores of walkability, transportation, and crime. Depression was defined by the revised Center for Epidemiologic Studies Depression Scale (CESD-R). We used linear-regression modeling to examine neighborhood measures and CESD-R associations. To investigate a subsequent connection with CVD risk, we examined relationships between CESD-R and CVD-associated cytokines in a population subset. RESULTS Participants (N = 99; mean age = 59.06; 99% AA) had a mean CESD-R score = 5.8(SD = 8.88). In adjusted models, CESD-R scores decreased by 0.20 units (p = 0.01) for every overall NEP unit-increase. Perceived physical/social environment (β = -0.34, p = 0.04) and social cohesion (β = -0.82, p = 0.01) were related to CESD-R while perceived violence was not (β = -0.28, p = 0.1). Of objective neighborhood environment measures (i.e. walk, transit, bike, personal crime, and property crime scores), only property crime score was associated with depression (β = 4.99, p < 0.03). In population subset (n = 42), higher CESD-R associated with higher IL-1β (β = 21.25, p < 0.01) and IL-18 (β = 0.006, p = 0.01). CONCLUSION Favorable neighborhood perceptions are related to lower depressive symptoms in a predominantly AA cohort from Washington, DC resource-limited communities. Neighborhood perceptions appear to be strongly associated with depressive symptoms compared to objective characteristics. Increasing CESD-R scores were related to higher pro-inflammatory markers. Improving neighborhood perceptions may be beneficial to psychological well-being and CV health for urban minority residents.
Collapse
Affiliation(s)
- Marcus R. Andrews
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joniqua Ceasar
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kosuke Tamura
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven D. Langerman
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA;,Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Brummel NE, Hughes CG, Thompson JL, Jackson JC, Pandharipande P, McNeil JB, Raman R, Orun OM, Ware LB, Bernard GR, Ely EW, Girard TD. Inflammation and Coagulation during Critical Illness and Long-Term Cognitive Impairment and Disability. Am J Respir Crit Care Med 2021; 203:699-706. [PMID: 33030981 DOI: 10.1164/rccm.201912-2449oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: The biological mechanisms of long-term cognitive impairment and disability after critical illness are unclear.Objectives: To test the hypothesis that markers of acute inflammation and coagulation are associated with subsequent long-term cognitive impairment and disability.Methods: We obtained plasma samples from adults with respiratory failure or shock on Study Days 1, 3, and 5 and measured concentrations of CRP (C-reactive protein), IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL-12, MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), soluble TNF receptor 1, and protein C. At 3 and 12 months after discharge, we assessed global cognition, executive function, and activities of daily living. We analyzed associations between markers and outcomes using multivariable regression, adjusting for age, sex, education, comorbidities, baseline cognition, doses of sedatives and opioids, stroke risk (in cognitive models), and baseline disability scores (in disability models).Measurements and Main Results: We included 548 participants who were a median (interquartile range) of 62 (53-72) years old, 88% of whom were mechanically ventilated, and who had an enrollment Sequential Organ Failure Assessment score of 9 (7-11). After adjusting for covariates, no markers were associated with long-term cognitive function. Two markers, CRP and MMP-9, were associated with greater disability in basic and instrumental activities of daily living at 3 and 12 months. No other markers were consistently associated with disability outcomes.Conclusions: Markers of systemic inflammation and coagulation measured early during critical illness are not associated with long-term cognitive outcomes and demonstrate inconsistent associations with disability outcomes. Future studies that pair longitudinal measurement of inflammation and related pathways throughout the course of critical illness and during recovery with long-term outcomes are needed.
Collapse
Affiliation(s)
- Nathan E Brummel
- Division of Pulmonary, Critical Care, and Sleep Medicine and.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee
| | - Christopher G Hughes
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Anesthesiology Critical Care Medicine in the Department of Anesthesiology
| | - Jennifer L Thompson
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee
| | - James C Jackson
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Allergy, Pulmonary, and Critical Care Medicine.,Department of Psychiatry.,Center for Health Services Research, and
| | - Pratik Pandharipande
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Anesthesiology Critical Care Medicine in the Department of Anesthesiology
| | - J Brennan McNeil
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Rameela Raman
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Onur M Orun
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lorraine B Ware
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Gordon R Bernard
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Allergy, Pulmonary, and Critical Care Medicine
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Division of Allergy, Pulmonary, and Critical Care Medicine.,Center for Health Services Research, and.,Center for Quality Aging, Vanderbilt University Medical Center, Nashville, Tennessee.,Geriatric Research, Education and Clinical Center Service, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Timothy D Girard
- Critical Illness, Brain Dysfunction, and Survivorship Center, Nashville, Tennessee.,Clinical Research, Investigation, and Systems Modeling of Acute illness Center in the Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Farmer N, Gutierrez-Huerta CA, Turner BS, Mitchell VM, Collins BS, Baumer Y, Wallen GR, Powell-Wiley TM. Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4296. [PMID: 33919545 PMCID: PMC8072883 DOI: 10.3390/ijerph18084296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neighborhoods and the microbiome are linked to cardiovascular disease (CVD), yet investigations to identify microbiome-related factors at neighborhood levels have not been widely investigated. We sought to explore relationships between neighborhood deprivation index (NDI) and the microbial metabolite, trimethylamine-N-oxide. We hypothesized that inflammatory markers and dietary intake would be mediators of the relationship. METHODS African-American adults at risk for CVD living in the Washington, DC area were recruited to participate in a cross-sectional community-based study. US census-based neighborhood deprivation index (NDI) measures (at the census-tract level) were determined. Serum samples were analyzed for CVD risk factors, cytokines, and the microbial metabolite, trimethylamine-N-oxide (TMAO). Self-reported dietary intake based on food groups was collected. RESULTS Study participants (n = 60) were predominantly female (93.3%), with a mean (SD) age of 60.83 (+/-10.52) years. Mean (SD) NDI was -1.54 (2.94), and mean (SD) TMAO level was 4.99 (9.65) µmol/L. Adjusting for CVD risk factors and BMI, NDI was positively associated with TMAO (β = 0.31, p = 0.02). Using mediation analysis, the relationship between NDI and TMAO was significantly mediated by TNF-α (60.15%) and interleukin)-1 β (IL; 49.96%). When controlling for clustering within neighborhoods, the NDI-TMAO association was no longer significant (β = 5.11, p = 0.11). However, the association between NDI and IL-1 β (β = 0.04, p = 0.004) and TNF-α (β = 0.17, p = 0.003) remained. Neither NDI nor TMAO was significantly associated with daily dietary intake. Conclusion and Relevance: Among a small sample of African-American adults at risk for CVD, there was a significant positive relationship with NDI and TMAO mediated by inflammation. These hypothesis-generating results are initial and need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Nicole Farmer
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
| | - Gwenyth R. Wallen
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.A.G.-H.); (B.S.T.); (V.M.M.); (B.S.C.); (Y.B.); (T.M.P.-W.)
- Intramural Research Program, National Institute on Minority and Health Disparities, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Powell-Wiley TM, Dey AK, Rivers JP, Chaturvedi A, Andrews MR, Ceasar JN, Claudel SE, Mitchell VM, Ayers C, Tamura K, Gutierrez-Huerta CA, Teague HL, Oeser SG, Goyal A, Joshi AA, Collins BS, Baumer Y, Chung ST, Sumner AE, Playford MP, Tawakol A, Mehta NN. Chronic Stress-Related Neural Activity Associates With Subclinical Cardiovascular Disease in a Community-Based Cohort: Data From the Washington, D.C. Cardiovascular Health and Needs Assessment. Front Cardiovasc Med 2021; 8:599341. [PMID: 33778019 PMCID: PMC7988194 DOI: 10.3389/fcvm.2021.599341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Psychosocial stress correlates with cardiovascular (CV) events; however, associations between physiologic measures of stressors and CVD remain incompletely understood, especially in racial/ethnic minority populations in resource-limited neighborhoods. We examined associations between chronic stress-related neural activity, measured by amygdalar 18Fluorodeoxyglucose (18FDG) uptake, and aortic vascular FDG uptake (arterial inflammation measure) in a community-based cohort. Methods: Forty participants from the Washington, DC CV Health and Needs Assessment (DC-CHNA), a study of a predominantly African-American population in resource-limited urban areas and 25 healthy volunteers underwent detailed phenotyping, including 18FDG PET/CT for assessing amygdalar activity (AmygA), vascular FDG uptake, and hematopoietic (leukopoietic) tissue activity. Mediation analysis was used to test whether the link between AmygA and vascular FDG uptake was mediated by hematopoietic activity. Results: AmygA (1.11 ± 0.09 vs. 1.05 ± 0.09, p = 0.004) and vascular FDG uptake (1.63 ± 0.22 vs. 1.55 ± 0.17, p = 0.05) were greater in the DC-CHNA cohort compared to volunteers. Within the DC-CHNA cohort, AmygA associated with vascular FDG uptake after adjustment for Framingham score and body mass index (β = 0.41, p = 0.015). The AmygA and aortic vascular FDG uptake relationship was in part mediated by splenic (20.2%) and bone marrow (11.8%) activity. Conclusions: AmygA, or chronic stress-related neural activity, associates with subclinical CVD risk in a community-based cohort. This may in part be mediated by the hematopoietic system. Our findings of this hypothesis-generating study are suggestive of a potential relationship between chronic stress-related neural activity and subclinical CVD in an African American community-based population. Taken together, these findings suggest a potential mechanism by which chronic psychosocial stress, such as stressors that can be experienced in adverse social conditions, promotes greater cardiovascular risk amongst resource-limited, community-based populations most impacted by cardiovascular health disparities. However, larger prospective studies examining these findings in other racially and ethnically diverse populations are necessary to confirm and extend these findings.
Collapse
Affiliation(s)
- Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States.,Intramural Research Program, National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, MD, United States
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Joshua P Rivers
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States.,Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Chaturvedi
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Marcus R Andrews
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Joniqua N Ceasar
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Sophie E Claudel
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Valerie M Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Colby Ayers
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kosuke Tamura
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Cristhian A Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Steffen G Oeser
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Aditya Goyal
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Aditya A Joshi
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Billy S Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Stephanie T Chung
- Section on Ethnicity and Health, Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, United States
| | - Anne E Sumner
- Intramural Research Program, National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, MD, United States.,Section on Ethnicity and Health, Diabetes Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, United States
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Thom G, McIntosh A, Messow CM, Leslie WS, Barnes AC, Brosnahan N, McCombie L, Malkova D, Al-Mrabeh A, Zhyzhneuskaya S, Welsh P, Sattar N, Taylor R, Lean MEJ. Weight loss-induced increase in fasting ghrelin concentration is a predictor of weight regain: Evidence from the Diabetes Remission Clinical Trial (DiRECT). Diabetes Obes Metab 2021; 23:711-719. [PMID: 33289256 DOI: 10.1111/dom.14274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023]
Abstract
AIM To investigate whether appetite-related hormones were predictors of weight regain in the Diabetes Remission Clinical Trial (DiRECT). MATERIALS AND METHODS DiRECT is a cluster-randomized clinical trial, designed to assess the effect of weight loss on type 2 diabetes remission. For this post hoc analysis, data were available for 253 (147 interventions, 106 controls) individuals with type 2 diabetes (age 53.6 ± 7.5 years, body mass index 34.7 ± 4.4 kg/m2 , 59% men). Intervention participants received a 24-month weight management programme, and controls remained on usual diabetes care. Fasting plasma concentrations of leptin, ghrelin, glucagon-like peptide-1 and peptide YY were measured at baseline, 12 months and 24 months in all participants, and at 5 months in a subset of participants in the intervention (n = 56) and control groups (n = 22). Potential predictors were examined using multivariable linear regression models. RESULTS The intervention group lost 14.3 ± 6.0% body weight at 5 months but regained weight over time, with weight losses of 10.0 ± 7.5% at 12 months and 7.6 ± 6.3% at 24 months. Weight loss in controls was 1.1 ± 3.7% and 2.1 ± 5.0% at 12 and 24 months, respectively. Body weight increased by 2.3% (95% confidence interval [CI] 0.4, 4.1; P = 0.019) between 12 and 24 months for every 1-ng/mL increase in ghrelin between baseline and 12 months, and weight regain between 12 and 24 months was increased by 1.1% (95% CI 0.2, 2.0; P = 0.023) body weight for every 1-ng/mL increase in ghrelin at 12 months. CONCLUSION The rise in ghrelin (but not any other measured hormone) during diet-induced weight loss was a predictor of weight regain during follow-up, and concentrations remained elevated over time, suggesting a small but significant compensatory drive to regain weight. Attenuating the effects of ghrelin may improve weight-loss maintenance.
Collapse
Affiliation(s)
- George Thom
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Alasdair McIntosh
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Claudia-Martina Messow
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Wilma S Leslie
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Alison C Barnes
- Human Nutrition Research Centre, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Naomi Brosnahan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Louise McCombie
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Ahmad Al-Mrabeh
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sviatlana Zhyzhneuskaya
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
28
|
Ratnik K, Rull K, Hanson E, Kisand K, Laan M. Single-Tube Multimarker Assay for Estimating the Risk to Develop Preeclampsia. J Appl Lab Med 2020; 5:1156-1171. [PMID: 32395752 DOI: 10.1093/jalm/jfaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/18/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Preeclampsia (PE) affects 2%-8% of all pregnancies worldwide. The predictive value of the currently used maternal serum fms-like tyrosine kinase-1/ placental growth factor (sFlt-1/PlGF) test is < 40% for PE onset within 4 weeks. We aimed to develop an innovative multiplex assay to improve PE prediction. METHODS The 6PLEX assay combining the measurements of ADAM12, sENG, leptin, PlGF, sFlt-1, and PTX3 was developed for the Luminex® xMAP platform. Assay performance was evaluated using 61 serum samples drawn from 53 pregnant women between 180 and 275 gestational days: diagnosed PE cases, n = 4; cases with PE onset within 4-62 days after sampling, n = 25; controls, n = 32. The B·R·A·H·M·S Kryptor sFlt-1/PlGF test (Thermo Fisher Scientific, Hennigsdorf, Germany) was applied as an external reference. Alternative PE prediction formulae combining 6PLEX measurements with clinical parameters were developed. RESULTS There was a high correlation in sFlt-1/PlGF estimated for individual sera between the 6PLEX and B·R·A·H·M·S Kryptor immunoassays (Spearman's r = 0.93, P < 0.0001). The predictive power of the 6PLEX combined with gestational age and maternal weight at sampling reached AUC 0.99 (95% CI 0.97-1.00) with sensitivity 100.0% and specificity 96.9%. In all models, sFlt-1/PlGF derived from the B·R·A·H·M·S immunoassays exhibited the lowest AUC value (<0.87) and sensitivity (<80%) with broad confidence intervals (13%-92%). The estimated prognostic yield of the 6PLEX compared to the B·R·A·H·M·S assay was significantly higher (96.5% vs 73.7%; P = 0.0005). CONCLUSIONS The developed single-tube multimarker assay for PE risk estimation in combination with clinical symptoms reached high prognostic yield (96.5%) and exhibited superior performance compared to the sFlt-1/PlGF test.
Collapse
Affiliation(s)
- Kaspar Ratnik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia.,SYNLAB Eesti OÜ, Tallinn 11313, Estonia
| | - Kristiina Rull
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu 50406, Estonia.,Women's Clinic of Tartu University Hospital, Tartu 50406, Estonia
| | - Ele Hanson
- Department of Obstetrics and Gynaecology, University of Tartu, Tartu 50406, Estonia.,Women's Clinic of Tartu University Hospital, Tartu 50406, Estonia
| | - Kalle Kisand
- Department of Internal Medicine, University of Tartu, Tartu 50406, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
29
|
Bernotiene E, Bagdonas E, Kirdaite G, Bernotas P, Kalvaityte U, Uzieliene I, Thudium CS, Hannula H, Lorite GS, Dvir-Ginzberg M, Guermazi A, Mobasheri A. Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Front Med (Lausanne) 2020; 7:572977. [PMID: 33195320 PMCID: PMC7609858 DOI: 10.3389/fmed.2020.572977] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Biomarkers, especially biochemical markers, are important in osteoarthritis (OA) research, clinical trials, and drug development and have potential for more extensive use in therapeutic monitoring. However, they have not yet had any significant impact on disease diagnosis and follow-up in a clinical context. Nevertheless, the development of immunoassays for the detection and measurement of biochemical markers in OA research and therapy is an active area of research and development. The evaluation of biochemical markers representing low-grade inflammation or extracellular matrix turnover may permit OA prognosis and expedite the development of personalized treatment tailored to fit particular disease severities. However, currently detection methods have failed to overcome specific hurdles such as low biochemical marker concentrations, patient-specific variation, and limited utility of single biochemical markers for definitive characterization of disease status. These challenges require new and innovative approaches for development of detection and quantification systems that incorporate clinically relevant biochemical marker panels. Emerging platforms and technologies that are already on the way to implementation in routine diagnostics and monitoring of other diseases could potentially serve as good technological and strategic examples for better assessment of OA. State-of-the-art technologies such as advanced multiplex assays, enhanced immunoassays, and biosensors ensure simultaneous screening of a range of biochemical marker targets, the expansion of detection limits, low costs, and rapid analysis. This paper explores the implementation of such technologies in OA research and therapy. Application of novel immunoassay-based technologies may shed light on poorly understood mechanisms in disease pathogenesis and lead to the development of clinically relevant biochemical marker panels. More sensitive and specific biochemical marker immunodetection will complement imaging biomarkers and ensure evidence-based comparisons of intervention efficacy. We discuss the challenges hindering the development, testing, and implementation of new OA biochemical marker assays utilizing emerging multiplexing technologies and biosensors.
Collapse
Affiliation(s)
- Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Heidi Hannula
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Gabriela S. Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali Guermazi
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston, MA, United States
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
30
|
Consoli DC, Jesse JJ, Klimo KR, Tienda AA, Putz ND, Bastarache JA, Harrison FE. A Cecal Slurry Mouse Model of Sepsis Leads to Acute Consumption of Vitamin C in the Brain. Nutrients 2020; 12:E911. [PMID: 32224930 PMCID: PMC7231213 DOI: 10.3390/nu12040911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (ascorbate, ASC) is a critical antioxidant in the body with specific roles in the brain. Despite a recent interest in vitamin C therapies for critical care medicine, little is known about vitamin C regulation during acute inflammation and critical illnesses such as sepsis. Using a cecal slurry (CS) model of sepsis in mice, we determined ASC and inflammatory changes in the brain following the initial treatment. ASC levels in the brain were acutely decreased by approximately 10% at 4 and 24 h post CS treatment. Changes were accompanied by a robust increase in liver ASC levels of up to 50%, indicating upregulation of synthesis beginning at 4 h and persisting up to 7 days post CS treatment. Several key cytokines interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor alpha (TNFα), and chemokine (C-X-C motif) ligand 1 (CXCL1, KC/Gro) were also significantly elevated in the cortex at 4 h post CS treatment, although these levels returned to normal by 48 h. These data strongly suggest that ASC reserves are directly challenged throughout illness and recovery from sepsis. Given the timescale of this response, decreases in cortical ASC are likely driven by hyper-acute neuroinflammatory processes. However, future studies are required to confirm this relationship and to investigate how this deficiency may subsequently impact neuroinflammation.
Collapse
Affiliation(s)
- David C. Consoli
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| | - Jordan J. Jesse
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Kelly R. Klimo
- Undergraduate Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA;
| | - Adriana A. Tienda
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| | - Nathan D. Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Fiona E. Harrison
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| |
Collapse
|
31
|
Meegan JE, Shaver CM, Putz ND, Jesse JJ, Landstreet SR, Lee HNR, Sidorova TN, McNeil JB, Wynn JL, Cheung-Flynn J, Komalavilas P, Brophy CM, Ware LB, Bastarache JA. Cell-free hemoglobin increases inflammation, lung apoptosis, and microvascular permeability in murine polymicrobial sepsis. PLoS One 2020; 15:e0228727. [PMID: 32012200 PMCID: PMC6996826 DOI: 10.1371/journal.pone.0228727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Increased endothelial permeability is central to the pathogenesis of sepsis and leads to organ dysfunction and death but the endogenous mechanisms that drive increased endothelial permeability are not completely understood. We previously reported that cell-free hemoglobin (CFH), elevated in 80% of patients with sepsis, increases lung microvascular permeability in an ex vivo human lung model and cultured endothelial cells. In this study, we augmented a murine model of polymicrobial sepsis with elevated circulating CFH to test the hypothesis that CFH increases microvascular endothelial permeability by inducing endothelial apoptosis. Mice were treated with an intraperitoneal injection of cecal slurry with or without a single intravenous injection of CFH. Severity of illness, mortality, systemic and lung inflammation, endothelial injury and dysfunction and lung apoptosis were measured at selected time points. We found that CFH added to CS increased sepsis mortality, plasma inflammatory cytokines as well as lung apoptosis, edema and inflammation without affecting large vessel reactivity or vascular injury marker concentrations. These results suggest that CFH is an endogenous mediator of increased endothelial permeability and apoptosis in sepsis and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Jamie E. Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nathan D. Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jordan J. Jesse
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Stuart R. Landstreet
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Han Noo Ri Lee
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Tatiana N. Sidorova
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - J. Brennan McNeil
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - James L. Wynn
- Departments of Pediatrics, Pathology, Immunology, and Experimental Medicine, University of Florida Health, Gainesville, FL, United States of America
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Padmini Komalavilas
- Division of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Colleen M. Brophy
- Division of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
32
|
Veerabhadrappa B, Delaby C, Hirtz C, Vialaret J, Alcolea D, Lleó A, Fortea J, Santosh MS, Choubey S, Lehmann S. Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer's disease: Where do we stand? Crit Rev Clin Lab Sci 2019; 57:99-113. [PMID: 31661652 DOI: 10.1080/10408363.2019.1678011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by progressive decline of cognitive abilities. Amyloid beta peptides (Aβ), Tau proteins and the phosphorylated form of the Tau protein, p-Tau, are the core pathological biomarkers of the disease, and their detection for the diagnosis of patients is progressively being implemented. However, to date, their quantification is mostly performed on cerebrospinal fluid (CSF), the collection of which requires an invasive lumbar puncture. Early diagnosis has been shown to be important for disease-modifying treatment, which is currently in development, to limit the progression of the disease. Nevertheless, the diagnosis is often delayed to the point where the disease has already progressed, and the tools currently available do not allow for a systematic follow-up of patients. Thus, the search for a molecular signature of AD in a body fluid such as blood or saliva that can be collected in a minimally invasive way offers hope. A number of methods have been developed for the quantification of core biomarkers, especially in easily accessible fluids such as the blood, that improve their accuracy, specificity and sensitivity. This review summarizes and compares these approaches, focusing in particular on their use for Aβ detection, the earliest biomarker to be modified in the course of AD. The review also discusses biomarker quantification in CSF, blood and saliva and their clinical applications.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Center for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, India
| | - Constance Delaby
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France.,Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christophe Hirtz
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Jérôme Vialaret
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mysore Sridhar Santosh
- Center for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, India
| | | | - Sylvain Lehmann
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Shaver CM, Paul MG, Putz ND, Landstreet SR, Kuck JL, Scarfe L, Skrypnyk N, Yang H, Harrison FE, de Caestecker MP, Bastarache JA, Ware LB. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. Am J Physiol Renal Physiol 2019; 317:F922-F929. [PMID: 31364379 PMCID: PMC6843044 DOI: 10.1152/ajprenal.00375.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.
Collapse
Affiliation(s)
- Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda G Paul
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamie L Kuck
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nataliya Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Development and validation of a multiplexed drug level assay in support of combination biologics therapy clinical studies. J Pharm Biomed Anal 2019; 171:204-211. [DOI: 10.1016/j.jpba.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
|
35
|
Koelman L, Pivovarova-Ramich O, Pfeiffer AFH, Grune T, Aleksandrova K. Cytokines for evaluation of chronic inflammatory status in ageing research: reliability and phenotypic characterisation. IMMUNITY & AGEING 2019; 16:11. [PMID: 31139232 PMCID: PMC6530020 DOI: 10.1186/s12979-019-0151-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Background There is a growing interest in the role of inflammageing for chronic disease development. Cytokines are potent soluble immune mediators that can be used as target biomarkers of inflammageing; however, their measurement in human samples has been challenging. This study aimed to assess the reliability of a pro- and anti-inflammatory cytokine panel in a sample of healthy people measured with a novel electrochemiluminescent multiplex immunoassay platform (Meso Scale Discovery, MSD), and to characterize their associations with metabolic and inflammatory phenotypes. Results Overall, the majority of cytokines were above the limit of detection (in at least 85.3% of the samples). Cytokines IL-6, IL-8, TNF-α, IL-10, IL-13, and IFN-γ showed overall good to fair reliability (ICC > 0.40), whereas IL-1β, IL-2, IL-4, and IL-12p70 showed poor reliability (ICC < 0.40). The reliability estimates were not substantially influenced by participants' age, sex, obesity and C-reactive protein (CRP) levels. As expected, cytokine concentrations were elevated with advanced age most pronouncedly for IL-6, IL-8, Il-2, IFN- γ, and TNF-α. No major associations with metabolic phenotypes were observed for most cytokines, with the exception of a positive association between IL-6 and TNF-α with body mass index and CRP (ρ: 0.36; ρ: 0.20; ρ: 0.53; ρ: 0.22, respectively), and IFN-γ and IL-10 with CRP (ρ: 0.23 and ρ: 0.19, respectively). Conclusions Single measurements of selected cytokines using MSD platform, including IL-6, IL-8, IL-10, IL-13, TNF-α, and IFN-γ have shown to be representative of an individual's average level over time and could be suitable for use in prospective epidemiological and clinical studies. Such studies are highly warranted to characterize associations of cytokines with phenotypes and diseases associated with ageing.
Collapse
Affiliation(s)
- Liselot Koelman
- 1Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Olga Pivovarova-Ramich
- 3Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,4German Center for Diabetes Research (DZD), Neuherberg, Germany.,5Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany.,7Senior Scientist Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- 3Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,4German Center for Diabetes Research (DZD), Neuherberg, Germany.,5Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Tilman Grune
- 6Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Krasimira Aleksandrova
- 1Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| |
Collapse
|
36
|
|
37
|
Frew JW, Hawkes JE, Krueger JG. A systematic review and critical evaluation of inflammatory cytokine associations in hidradenitis suppurativa. F1000Res 2018; 7:1930. [PMID: 30828428 PMCID: PMC6392156 DOI: 10.12688/f1000research.17267.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 01/04/2023] Open
Abstract
Background: The pathogenesis of hidradenitis suppurativa (HS) remains unclear. In order to develop effective treatment strategies, a deeper understanding of pathophysiology is needed. This is impaired by multiple small studies with inconsistent methodologies and the impact of co-occurring pro-inflammatory conditions such as smoking and obesity. Methods: This systematic review aimed to collate all published reports of cytokine studies in tissue, blood, serum and exudate. It was registered with PROSPERO (Registration number CRD42018104664) performed in line with the PRISMA checklist. Results: 19 studies were identified comprising 564 individual HS patients and 198 control patients examining 81 discrete cytokines. Methodology was highly varied and the quality of studies was generally low. There was a large degree of variance between the measured levels of cytokines. 78.2% of cytokines demonstrated heterogeneity by the chi-squared test for homogeneity and hence meta-analysis was not deemed appropriate. However, a strong and significant IL-17 signalling component was identified. Conclusions: Cytokines consistently elevated in lesional, peri-lesional and unaffected tissue are identified and discussed. Areas for further investigation include the role of dendritic cells in HS; the contribution of obesity, smoking, diabetes and the microbiome to cytokine profiles in HS; and examining the natural history of this disease through longitudinal measurements of cytokines over time.
Collapse
Affiliation(s)
- John W Frew
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, 10065, USA
| | - Jason E Hawkes
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, 10065, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
38
|
Stephen L, Schwarz E, Guest PC. Multiplex Immunoassay Profiling of Serum in Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:149-156. [PMID: 28353231 DOI: 10.1007/978-3-319-52479-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labour than in single immunoassays. This chapter details the methods to develop and manufacture a 5-plex immunoassay for the Luminex® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. An example will be given for the analysis of five hormones (glucagon-like peptide 1, growth hormone, insulin, leptin and thyroid-stimulating hormone) in serum samples from schizophrenia patients and controls.
Collapse
Affiliation(s)
- Laurie Stephen
- Ampersand Biosciences, 3 Main Street, Saranac Lake, NY, USA.
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255 F/01, Cidade Universitária ZeferinoVaz, 13083-862, Campinas, Brazil
| |
Collapse
|
39
|
Mohd Hanafiah K, Arifin N, Bustami Y, Noordin R, Garcia M, Anderson D. Development of Multiplexed Infectious Disease Lateral Flow Assays: Challenges and Opportunities. Diagnostics (Basel) 2017; 7:E51. [PMID: 28880218 PMCID: PMC5617951 DOI: 10.3390/diagnostics7030051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Lateral flow assays (LFAs) are the mainstay of rapid point-of-care diagnostics, with the potential to enable early case management and transform the epidemiology of infectious disease. However, most LFAs only detect single biomarkers. Recognizing the complex nature of human disease, overlapping symptoms and states of co-infections, there is increasing demand for multiplexed systems that can detect multiple biomarkers simultaneously. Due to innate limitations in the design of traditional membrane-based LFAs, multiplexing is arguably limited to a small number of biomarkers. Here, we summarize the need for multiplexed LFA, key technical and operational challenges for multiplexing, inherent in the design and production of multiplexed LFAs, as well as emerging enabling technologies that may be able to address these challenges. We further identify important areas for research in efforts towards developing multiplexed LFAs for more impactful diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| | - Norsyahida Arifin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Rahmah Noordin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mary Garcia
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| | - David Anderson
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| |
Collapse
|
40
|
Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ. Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 2017; 12:44. [PMID: 28592329 PMCID: PMC5463400 DOI: 10.1186/s13024-017-0187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. Methods We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. Results We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. Conclusions One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark. .,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | | | - Karina Fog
- , H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
41
|
Belzeaux R, Lefebvre MN, Lazzari A, Le Carpentier T, Consoloni JL, Zendjidjian X, Abbar M, Courtet P, Naudin J, Boucraut J, Gressens P, Glaichenhaus N, Ibrahim EC. How to: Measuring blood cytokines in biological psychiatry using commercially available multiplex immunoassays. Psychoneuroendocrinology 2017; 75:72-82. [PMID: 27810706 DOI: 10.1016/j.psyneuen.2016.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
Abstract
Cytokines produced by both immune and non-immune cells are likely to play roles in the development and/or progression of psychiatric disorders. Indeed, many investigators have compared the blood cytokine levels in psychiatric patients with those of healthy controls or monitored their levels in patients during disease progression to identify biomarkers. Nevertheless, very few studies have confirmed that such cytokines remain stable in healthy individuals through periods of weeks and months. This is an important issue to consider before using blood cytokine levels as biomarkers of disease traits, disease state, or treatment response. Although multiplex assay technology represents an advance in identifying biomarkers because it allows simultaneous examination of large panels of analytes from a small volume of sample, it is necessary to verify whether these assays yield enough sensitivity and reproducibility when applied to the blood from neuropsychiatric patients. Therefore, we compared two multiplex immunoassays, the bead-based Luminex® (Bio-Rad) and the electro-chemiluminescence-based V-plex® (MesoScaleDiscovery), for the detection and quantification of 31 cytokines, chemokines and growth factors in both the sera and plasma of patients with major depressive episodes (MDE) and age- and sex-matched healthy control subjects during a 30-week period. Although both platforms exhibited low coefficients of variability (CV) between the duplicates in the calibration curves, the linearity was better in general for the V-PLEX® platform. However, neither platform was able to detect the absolute values for all of the tested analytes. Among the 16 analytes that were detected by both assays, the intra-assay reproducibility was in general better with the V-PLEX® platform. Although it is not a general rule that the results from sera and plasma will be correlated, consistent results were more frequent with the V-PLEX® platform. Furthermore, the V-PLEX® results were more consistent with the gold standard ELISA simplex assay for IL-6 in both sera and plasma. The intra-individual variability of the measurements, among the sera and plasma for the 4 samples harvested from each healthy individual, was low for Eotaxin, G-CSF, IL-4, IL-7, IL-9, IL-12p40, IL-12p70, IL-15, MIP-1β, PDGF-BB, TNF, TNF-β and VEGF, but intermediate or high for IFN-γ, IL-6, IL-8, IL-10, and IP10. Together, these data suggest that extreme caution is needed in translating the results of multiplex cytokine profiling into biomarker discovery in psychiatry.
Collapse
Affiliation(s)
- Raoul Belzeaux
- Aix-Marseille Univ., CNRS, CRN2M-UMR7286, Marseille, France; Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France
| | | | - Anne Lazzari
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, INSERM, Université de Nice-Sophia Antipolis Valbonne, France
| | - Tifenn Le Carpentier
- Inserm, U1141, Paris, France; Univ. Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France
| | - Julia-Lou Consoloni
- Aix-Marseille Univ., CNRS, CRN2M-UMR7286, Marseille, France; Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France
| | - Xavier Zendjidjian
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Mocrane Abbar
- Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire Carémeau, Nîmes, France
| | - Philippe Courtet
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Département des Urgences et Post-Urgences Psychiatriques, Centre Hospitalier Régional Universitaire, Hôpital Lapeyronie, Montpellier, France
| | - Jean Naudin
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - José Boucraut
- Aix-Marseille Univ., CNRS, CRN2M-UMR7286, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France; Laboratoire d'Immunologie, AP-HM, Hôpital de la Conception, Marseille, France
| | - Pierre Gressens
- Inserm, U1141, Paris, France; Univ. Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, INSERM, Université de Nice-Sophia Antipolis Valbonne, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ., CNRS, CRN2M-UMR7286, Marseille, France; Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France.
| |
Collapse
|
42
|
Abstract
Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labor than single immunoassays. This chapter details the methods to develop and manufacture multiplex assays for the Luminex® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. The assay optimization, detection of cross-reactivity, and minimizing antibody interactions and matrix interferences will be addressed.
Collapse
Affiliation(s)
- Laurie Stephen
- Ampersand Biosciences, 3 Main Street, Saranac Lake, NY, USA.
| |
Collapse
|
43
|
Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S80-92. [PMID: 26418704 DOI: 10.1097/ftd.0000000000000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to the urgent need for new reliable biomarkers to complement the guidance of the immunosuppressive therapy, a huge number of biomarker candidates to be implemented in clinical practice have been introduced to the transplant community. This includes a diverse range of molecules with very different molecular weights, chemical and physical properties, ex vivo stabilities, in vivo kinetic behaviors, and levels of similarity to other molecules, etc. In addition, a large body of different analytical techniques and assay protocols can be used to measure biomarkers. Sometimes, a complex software-based data evaluation is a prerequisite for appropriate interpretation of the results and for their reporting. Although some analytical procedures are of great value for research purposes, they may be too complex for implementation in a clinical setting. Whereas the proof of "fitness for purpose" is appropriate for validation of biomarker assays used in exploratory drug development studies, a higher level of analytical validation must be achieved and eventually advanced analytical performance might be necessary before diagnostic application in transplantation medicine. A high level of consistency of results between laboratories and between methods (if applicable) should be obtained and maintained to make biomarkers effective instruments in support of therapeutic decisions. This overview focuses on preanalytical and analytical aspects to be considered for the implementation of new biomarkers for adjusting immunosuppression in a clinical setting and highlights critical points to be addressed on the way to make them suitable as diagnostic tools. These include but are not limited to appropriate method validation, standardization, education, automation, and commercialization.
Collapse
|
44
|
Hillström A, Bylin J, Hagman R, Björhall K, Tvedten H, Königsson K, Fall T, Kjelgaard-Hansen M. Measurement of serum C-reactive protein concentration for discriminating between suppurative arthritis and osteoarthritis in dogs. BMC Vet Res 2016; 12:240. [PMID: 27793205 PMCID: PMC5084410 DOI: 10.1186/s12917-016-0868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
Background In a dog with joint pain, it is important to determine whether it has suppurative joint disease, characterized by exudation of neutrophils in the synovial fluid, or not, as this affects choice of diagnostic tests and treatments. The aim of this study was to evaluate whether measurement of serum C-reactive protein (CRP) concentration could be used to discriminate between dogs with suppurative arthritis and osteoarthritis (OA). Furthermore, the concentrations of serum and synovial fluid interleukin (IL) 6 concentrations were measured in dogs with joint disease and in healthy dogs, and were correlated to serum CRP concentrations. Methods Dogs with joint pain were enrolled prospectively and were classified to have suppurative arthritis or OA based on synovial fluid analysis and radiographic/arthroscopic findings. Healthy Beagles were enrolled as a comparative group. CRP and IL-6 concentrations were measured with canine-specific immunoassays. The performance of CRP concentration in discriminating between dogs with suppurative arthritis and OA was evaluated using a previously established clinical decision limit for CRP (20 mg/l), and by receiver operator characteristic (ROC) curve and logistic regression analysis. Comparisons of CRP and IL-6 concentrations between groups were performed using t-tests, and correlations by Spearman rank correlation coefficients. Results Samples were obtained from 31 dogs with suppurative arthritis, 34 dogs with OA, and 17 healthy dogs. Sixty-two out of 65 dogs with joint disease were correctly classified using the clinical decision limit for CRP. Evaluation of ROC curve and regression analysis indicated that serum CRP concentrations could discriminate between suppurative arthritis and OA. Dogs with suppurative arthritis had higher serum CRP and serum and synovial fluid IL-6 concentrations compared to dogs with OA (p < 0.001). Dogs with OA had higher synovial fluid IL-6 concentrations (p < 0.001), but not higher serum CRP (p = 0.29) or serum IL-6 (p = 0.07) concentrations, compared to healthy dogs. There was a positive correlation between synovial fluid IL-6 and serum CRP concentrations (rs = 0.733, p < 0.001), and between serum IL-6 and serum CRP concentrations (rs = 0.729, p < 0.001). Conclusion CRP concentration was found to discriminate well between dogs with suppurative arthritis and OA.
Collapse
Affiliation(s)
- Anna Hillström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jonas Bylin
- Evidensia Södra Djursjukhuset, Stockholm, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Björhall
- Department of Translational Sciences, RIA IMed, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Harold Tvedten
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
45
|
Abstract
In contrast to traditional singleplex assays that provide values for only a single analyte in a single biological sample, multiplex assays are a time- and resource-efficient high-throughput approach that provides the opportunity to determine numerous analytes within a single- and small-sample volume. In this editorial on an article by Dorn et al. in this issue of Psychosomatic Medicine, we provide a brief description of the advantages and challenges related to multiplex assays. Although the use of multiplexing as a tool has been relatively limited in biobehavioral research, more recent studies are taking advantage of this technology to obtain deeper insight into regulatory patterns in health and disease states. Multiplex approaches range from several targets to global target profiling that importantly enable unbiased biomarker and pathway discovery.
Collapse
Affiliation(s)
- Paul J. Mills
- Department of Family Medicine and Public Health, Center of
Excellence for Research and Training in Integrative Health, University of
California, San Diego, La Jolla, CA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA
| | - Christine T. Peterson
- Department of Family Medicine and Public Health, Center of
Excellence for Research and Training in Integrative Health, University of
California, San Diego, La Jolla, CA
| |
Collapse
|
46
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 539] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
47
|
A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid42 and DJ-1 in Human Cerebrospinal Fluid. PLoS One 2016; 11:e0153564. [PMID: 27116005 PMCID: PMC4846093 DOI: 10.1371/journal.pone.0153564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/31/2016] [Indexed: 01/17/2023] Open
Abstract
The quantification of four distinct proteins (α-synuclein, β-amyloid1-42, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins (‘tetraplex’) in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid42, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid42 to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed.
Collapse
|
48
|
Shaver CM, Upchurch CP, Janz DR, Grove BS, Putz ND, Wickersham NE, Dikalov SI, Ware LB, Bastarache JA. Cell-free hemoglobin: a novel mediator of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 310:L532-41. [PMID: 26773065 PMCID: PMC4796260 DOI: 10.1152/ajplung.00155.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Patients with the acute respiratory distress syndrome (ARDS) have elevated levels of cell-free hemoglobin (CFH) in the air space, but the contribution of CFH to the pathogenesis of acute lung injury is unknown. In the present study, we demonstrate that levels of CFH in the air space correlate with measures of alveolar-capillary barrier dysfunction in humans with ARDS (r = 0.89, P < 0.001) and in mice with ventilator-induced acute lung injury (r = 0.89, P < 0.001). To investigate the specific contribution of CFH to ARDS, we studied the impact of purified CFH in the mouse lung and on cultured mouse lung epithelial (MLE-12) cells. Intratracheal delivery of CFH in mice causes acute lung injury with air space inflammation and alveolar-capillary barrier disruption. Similarly, in MLE-12 cells, CFH increases proinflammatory cytokine expression and increases paracellular permeability as measured by electrical cell-substrate impedance sensing. Next, to determine whether these effects are mediated by the iron-containing heme moiety of CFH, we treated mice with intratracheal hemin, the chloride salt of heme, and found that hemin was sufficient to increase alveolar permeability but failed to induce proinflammatory cytokine expression or epithelial cell injury. Together, these data identify CFH in the air space as a previously unrecognized driver of lung epithelial injury in human and experimental ARDS and suggest that CFH and hemin may contribute to ARDS through different mechanisms. Interventions targeting CFH and heme in the air space could provide a new therapeutic approach for ARDS.
Collapse
Affiliation(s)
- Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Cameron P Upchurch
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David R Janz
- Section of Pulmonary and Critical Care Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana
| | - Brandon S Grove
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nancy E Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sergey I Dikalov
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| |
Collapse
|
49
|
Shaver CM, Grove BS, Putz ND, Clune JK, Lawson WE, Carnahan RH, Mackman N, Ware LB, Bastarache JA. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor. Am J Respir Cell Mol Biol 2016; 53:719-27. [PMID: 25884207 DOI: 10.1165/rcmb.2014-0179oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.
Collapse
Affiliation(s)
- Ciara M Shaver
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brandon S Grove
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nathan D Putz
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jennifer K Clune
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - William E Lawson
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,2 Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Robert H Carnahan
- 3 Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nigel Mackman
- 4 Thrombosis and Hemostasis Program, Division of Hematology and Oncology, University of North Carolina McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; and
| | - Lorraine B Ware
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,5 Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Julie A Bastarache
- 1 Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
50
|
Jani D, Allinson J, Berisha F, Cowan KJ, Devanarayan V, Gleason C, Jeromin A, Keller S, Khan MU, Nowatzke B, Rhyne P, Stephen L. Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand Binding Assays in Drug Development. AAPS JOURNAL 2015; 18:1-14. [PMID: 26377333 DOI: 10.1208/s12248-015-9820-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022]
Abstract
Multiplex ligand binding assays (LBAs) are increasingly being used to support many stages of drug development. The complexity of multiplex assays creates many unique challenges in comparison to single-plexed assays leading to various adjustments for validation and potentially during sample analysis to accommodate all of the analytes being measured. This often requires a compromise in decision making with respect to choosing final assay conditions and acceptance criteria of some key assay parameters, depending on the intended use of the assay. The critical parameters that are impacted due to the added challenges associated with multiplexing include the minimum required dilution (MRD), quality control samples that span the range of all analytes being measured, quantitative ranges which can be compromised for certain targets, achieving parallelism for all analytes of interest, cross-talk across assays, freeze-thaw stability across analytes, among many others. Thus, these challenges also increase the complexity of validating the performance of the assay for its intended use. This paper describes the challenges encountered with multiplex LBAs, discusses the underlying causes, and provides solutions to help overcome these challenges. Finally, we provide recommendations on how to perform a fit-for-purpose-based validation, emphasizing issues that are unique to multiplex kit assays.
Collapse
Affiliation(s)
- Darshana Jani
- Pfizer Inc., One Burtt Road, Andover, Massachusetts, 01810, USA.
| | - John Allinson
- LGC Ltd, Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | - Flora Berisha
- Kyowa-Kirin Pharmaceuticals, 212 Carnegie Center #101, Princeton, New Jersey, 08540, USA
| | - Kyra J Cowan
- Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | | | - Carol Gleason
- Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA
| | - Andreas Jeromin
- Quanterix Corporation, 113 Hartwell Avenue, Lexington, Massachusetts, 02421, USA
| | - Steve Keller
- Abbvie Inc., 1500 Seaport Blvd, Redwood City, California, 94063, USA
| | - Masood U Khan
- KCAS Bioanalytical and Biomarker Services, 12400 Shawnee Mission Parkway, Shawnee, Kansas, 66216, USA
| | - Bill Nowatzke
- Radix Biosolutions, 111 Cooperative Way #120, Georgetown, Texas, 78626, USA
| | - Paul Rhyne
- Quintiles Corporation, 1600 Terrell Mill Road Suite 100, Marietta, Georgia, 30067, USA
| | - Laurie Stephen
- Ampersand Biosciences, LLC, 3 Main St., Saranac Lake, New York, 12983, USA
| |
Collapse
|