1
|
Lange AB, Leyria J, Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen Comp Endocrinol 2022; 321-322:114030. [PMID: 35317995 DOI: 10.1016/j.ygcen.2022.114030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Rhodnius prolixus, the blood gorging kissing bug, is a model insect, extensively used by Sir Vincent Wigglesworth and others, upon which the foundations of insect physiology, endocrinology, and development are built. It is also medically important, being a principal vector of Trypanosoma cruzi, the causative agent of Chagas disease in humans. The blood meal stimulates and enables egg production, and since an adult mated female can take several blood meals, each female can produce hundreds of offspring. Understanding the reproductive biology of R. prolixus is therefore of some critical importance for controlling the transmission of Chagas disease. The R. prolixus genome is available and so the post-genomic era has arrived for this historic model insect. This review focuses on the female reproductive system and coordination over the production of eggs, emphasizing the classical (neuro)endocrinological studies that led to a model describing inputs from feeding and mating, and the neural control of egg-laying. We then review recent insights brought about by molecular analyses, including transcriptomics, that confirm, support, and considerably extends this model. We conclude this review with an updated model describing the events leading to full expression of egg production, and also provide a consideration of questions for future exploration and experimentation.
Collapse
Affiliation(s)
- Angela B Lange
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Jimena Leyria
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
2
|
Sapkota R, Nakatsu CH, Scharf ME. Regulation of host phenotypic plasticity by gut symbiont communities in the eastern subterranean termite (Reticulitermes flavipes). J Exp Biol 2021; 224:272131. [PMID: 34515310 DOI: 10.1242/jeb.242553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). Although physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene treatment, highest mortality in kanamycin+methoprene treatment, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation, respectively, occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results, we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.
Collapse
Affiliation(s)
- Rajani Sapkota
- Department of Entomology, Purdue University, West Lafayette IN 47907, USA
| | - Cindy H Nakatsu
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette IN 47907, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
3
|
Molecular underpinnings of division of labour among workers in a socially complex termite. Sci Rep 2021; 11:18269. [PMID: 34521896 PMCID: PMC8440649 DOI: 10.1038/s41598-021-97515-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Division of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.
Collapse
|
4
|
Korb J, Greiner C, Foget M, Geiler A. How Can Termites Achieve Their Unparalleled Postembryonic Developmental Plasticity? A Test for the Role of Intermolt-Specific High Juvenile Hormone Titers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Termites are “social cockroaches” and amongst the most phenotypically plastic insects. The different castes (i.e., two types of reproductives, workers, and soldiers) within termite societies are all encoded by a single genome and present the result of differential postembryonic development. Besides the default progressive development into winged sexuals of solitary hemimetabolous insects, termites have two postembryonic, non-terminal molts (stationary and regressive; i.e., molts associated, respectively, with no change or reduction of size/morphological differentiation) which allow them to retain workers, and two terminal developmental types to become soldiers and replacement reproductives. Despite this unique plasticity, especially the mechanisms underlying the non-terminal development are poorly understood. In 1982, Nijhout and Wheeler proposed a model how this diversity might have evolved. They proposed that varying juvenile hormone (JH) titers at the start, mid-phase, and end of each intermolt period account for the developmental diversity. We tested this rarely addressed model in the lower termite Cryptotermes secundus using phase-specific pharmacological manipulations of JH titers. Our results partially support the Nijhout and Wheeler model. These data are supplemented with gene expression studies of JH-related genes that characterize different postembryonic developmental trajectories. Our study provides new insights into the evolution of the unique postembryonic developmental plasticity of termites that constitutes the foundation of their social life.
Collapse
|
5
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
6
|
Xie Y, Wang M, Zhang L, Wu X, Yang X, Tobe SS. Synthesis and biological activity of FGLamide allatostatin analogs with Phe3residue modifications. J Pept Sci 2016; 22:600-6. [DOI: 10.1002/psc.2906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Xie
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
- Department of Cell and Systems Biology; University of Toronto; 25 Harbord St. Toronto ON M5S 3G5 Canada
- State Key Laboratory of the Discovery and Development of Novel Pesticide; Shenyang Sinochem Agrochemicals R&D Co. Ltd.; Shenyang 110021 China
| | - Meizi Wang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Li Zhang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Xiaoqing Wu
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing 100193 China
| | - Stephen S. Tobe
- Department of Cell and Systems Biology; University of Toronto; 25 Harbord St. Toronto ON M5S 3G5 Canada
| |
Collapse
|
7
|
Wende F, Meyering-Vos M, Hoffmann KH. IDENTIFICATION OF THE FGL-AMIDE ALLATOSTATIN GENE OF THE PRIMITIVE TERMITE Mastotermes darwiniensis AND THE WOODROACH Cryptocercus darwini. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:88-108. [PMID: 26513739 DOI: 10.1002/arch.21310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Allatostatins with the C-terminal ending Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide (FGLa/ASTs) are widespread neuropeptides with multiple functions. The gene encoding the FGLa/AST polypeptide precursor was first isolated from cockroaches and since then could be identified in many insects and crustaceans. With its strictly conserved regions in combination with variable regions the gene seems to be a good candidate for phylogenetic analyses between closely and distantly related species. Here, the structure of the FGLa/AST gene of the most primitive termite, the giant northern termite Mastotermes darwiniensis Froggatt, was identified. The FGLa/AST gene of the woodroach Cryptocercus darwini was also determined. Precursor sequences of both species possess the general organization of dictyopteran FGLa/AST precursors containing 14 putative FGLa/AST peptides. In M. darwiniensis, only 11 out of the 14 FGLa/AST-like peptides possess the C-terminal conserved region Y/FXFGL/I/V/M and four of the putative peptide structures are not followed by a Gly residue that would lead to nonamidated peptides. Phylogenetic analyses show the high degree of similarity of dictyopteran FGLa/AST sequences. The position of termites, nested within the Blattaria, confirms that termites have evolved from primitive cockroaches.
Collapse
Affiliation(s)
- Franziska Wende
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | | - Klaus H Hoffmann
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Felix RC, Trindade M, Pires IRP, Fonseca VG, Martins RS, Silveira H, Power DM, Cardoso JCR. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes. PLoS One 2015; 10:e0130347. [PMID: 26135459 PMCID: PMC4489612 DOI: 10.1371/journal.pone.0130347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anopheles/classification
- Anopheles/genetics
- Anopheles/metabolism
- Calcium Signaling
- Evolution, Molecular
- Fat Body/chemistry
- Fat Body/metabolism
- Female
- Gene Expression
- Genome, Insect
- Glucose/metabolism
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Intestinal Mucosa/metabolism
- Intestines/chemistry
- Mice
- Molecular Sequence Data
- Multigene Family
- Ovary/chemistry
- Ovary/metabolism
- Phylogeny
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Galanin/chemistry
- Receptors, Galanin/genetics
- Receptors, Galanin/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Reproduction/genetics
- Sequence Alignment
- Synteny
Collapse
Affiliation(s)
- Rute C. Felix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Isa R. P. Pires
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Vera G. Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Rute S. Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Henrique Silveira
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Deborah M. Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
- * E-mail:
| |
Collapse
|
10
|
Xie Y, Zhang L, Wu XQ, Zhang CL, Yang XL, Tobe SS. Probing the active conformation of FGLamide allatostatin analogs with N-terminal modifications using NMR spectroscopy and molecular modeling. Peptides 2015; 68:214-8. [PMID: 25014881 DOI: 10.1016/j.peptides.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
The FGLamide allatostatins (ASTs) can inhibit the production of juvenile hormone in vitro, and they therefore are regarded as possible insect growth regulator candidates for pest control. To understand the structural features of the ASTs that cause the differences in their activity the pentapeptide and four N-terminal modifications of AST analogs (H17, K9, K10 and K23) were selected to investigate their conformations. From NMR spectroscopy and molecular modeling, it is clear that K23 and K9 have a type IV β-turn and a γ turn in DMSO, respectively. The pentapeptide, H17 and K10 form a flexible conformation. Our study indicates that this flexible conformation could be an important and indispensable structural element for activity, whereas the turn structure may not be especially significant for biological activity.
Collapse
Affiliation(s)
- Yong Xie
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, Canada M5S 3G5; State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry Co. Ltd., Shenyang 110021, PR China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xiao Qing Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Chuan Liang Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xin Ling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, Canada M5S 3G5.
| |
Collapse
|
11
|
Xie Y, Zhang L, Zhang C, Wu X, Deng X, Yang X, Tobe SS. Synthesis, biological activity, and conformational study of N-methylated allatostatin analogues inhibiting juvenile hormone biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2870-2876. [PMID: 25751662 DOI: 10.1021/acs.jafc.5b00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An allatostatin (AST) neuropeptide mimic (H17) is a potential insect growth regulator, which inhibits the production of juvenile hormone (JH) by the corpora allata. To determine the effect of conformation of novel AST analogues and their ability to inhibit JH biosynthesis, eight insect AST analogues were synthesized using H17 as the lead compound by N-methylation scanning, which is a common strategy for improving the biological properties of peptides. A bioassay using JH production by corpora allata of the cockroach Diploptera punctata indicated that single N-methylation mimics (analogues 1-4) showed more activity than double N-methylation mimics (analogues 5-8). Especially, analogues 1 and 4 showed roughly equivalent activity to that of H17, with IC50 values of 5.17 × 10(-8) and 6.44 × 10(-8) M, respectively. Molecular modeling based on nuclear magnetic resonance data showed that the conformation of analogues 1 and 4 seems to be flexible, whereas analogues 2 and 3 showed a type IV β-turn. This flexible linear conformation was hypothesized to be a new important and indispensable structural element beneficial to the activity of AST mimics.
Collapse
Affiliation(s)
- Yong Xie
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- ‡Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
- §State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry Company, Limited, Shenyang, Liaoning 110021, People's Republic of China
| | - Li Zhang
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chuanliang Zhang
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiaoqing Wu
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- ‡Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Xile Deng
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinling Yang
- †Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Stephen S Tobe
- ‡Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
12
|
Nouzova M, Rivera-Perez C, Noriega FG. Allatostatin-C reversibly blocks the transport of citrate out of the mitochondria and inhibits juvenile hormone synthesis in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 57:20-6. [PMID: 25500428 PMCID: PMC4293212 DOI: 10.1016/j.ibmb.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 05/13/2023]
Abstract
Aedes aegypti allatostatin-C (AeaAST-C or PISCF-AST) is a strong and fast reversible inhibitor of juvenile hormone III (JH III) synthesis by the corpora allata (CA) of mosquitoes; however, its mechanism of action remains poorly understood. AeaAST-C showed no inhibitory activity in the presence of any of the intermediate precursors of JH III indicating that the AeaAST-C target is located before the entry of acetyl-CoA in the pathway. Stimulation experiments using different sources of carbon (glucose, pyruvate, acetate and citrate) suggest that AST-C acts after pyruvate is transformed to citrate in the mitochondria. In vitro inhibition of the citrate mitochondrial carrier (CIC) mimicked the effect of AeaAST-C, and was overridden by addition of citrate or acetate. Our results provide compelling evidence that AeaAST-C inhibits JH III synthesis by blocking the CIC carrier that transports citrate from the mitochondria to the cytosol, obstructing the production of cytoplasmic acetyl-CoA that sustains JH III synthesis in the CA of mosquitoes.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
13
|
Raychoudhury R, Sen R, Cai Y, Sun Y, Lietze VU, Boucias DG, Scharf ME. Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). INSECT MOLECULAR BIOLOGY 2013; 22:155-71. [PMID: 23294456 DOI: 10.1111/imb.12011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Termites are highly eusocial insects that thrive on recalcitrant materials like wood and soil and thus play important roles in global carbon recycling and also in damaging wooden structures. Termites, such as Reticulitermes flavipes (Rhinotermitidae), owe their success to their ability to extract nutrients from lignocellulose (a major component of wood) with the help of gut-dwelling symbionts. With the aim to gain new insights into this enzymatic process we provided R. flavipes with a complex lignocellulose (wood) or pure cellulose (paper) diet and followed the resulting differential gene expression on a custom oligonucleotide-microarray platform. We identified a set of expressed sequence tags (ESTs) with differential abundance between the two diet treatments and demonstrated the source (host/symbiont) of these genes, providing novel information on termite nutritional symbiosis. Our results reveal: (1) the majority of responsive wood- and paper-abundant ESTs are from host and symbionts, respectively; (2) distinct pathways are associated with lignocellulose and cellulose feeding in both host and symbionts; and (3) sets of diet-responsive ESTs encode putative digestive and wood-related detoxification enzymes. Thus, this study illuminates the dynamics of termite nutritional symbiosis and reveals a pool of genes as potential targets for termite control and functional studies of termite-symbiont interactions.
Collapse
Affiliation(s)
- R Raychoudhury
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tarver MR, Coy MR, Scharf ME. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:92-108. [PMID: 22550027 DOI: 10.1002/arch.21030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation.
Collapse
Affiliation(s)
- Matthew R Tarver
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
15
|
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:199-226. [PMID: 22401884 DOI: 10.1016/j.asd.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Owing to their experimental amenability, insect nervous systems continue to be in the foreground of investigations into information processing in - ostensibly - simple neuronal networks. Among the cerebral neuropil regions that hold a particular fascination for neurobiologists are the paired mushroom bodies, which, despite their function in other behavioral contexts, are most renowned for their role in learning and memory. The quest to understand the processes that underlie these capacities has been furthered by research focusing on unraveling neuroanatomical connections of the mushroom bodies and identifying key players that characterize the molecular machinery of mushroom body neurons. However, on a cellular level, communication between intrinsic and extrinsic mushroom body neurons still remains elusive. The present account aims to provide an overview on the repertoire of neuropeptides expressed in and utilized by mushroom body neurons. Existing data for a number of insect representatives is compiled and some open gaps in the record are filled by presenting additional original data.
Collapse
Affiliation(s)
- Carsten M Heuer
- Philipps-University Marburg, Department of Biology, Animal Physiology, Marburg, Germany.
| | | | | | | |
Collapse
|
16
|
Wang C, Chin-Sang I, Bendena WG. The FGLamide-allatostatins influence foraging behavior in Drosophila melanogaster. PLoS One 2012; 7:e36059. [PMID: 22558326 PMCID: PMC3338617 DOI: 10.1371/journal.pone.0036059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/28/2012] [Indexed: 11/27/2022] Open
Abstract
Allatostatins (ASTs) are multifunctional neuropeptides that generally act in an inhibitory fashion. ASTs were identified as inhibitors of juvenile hormone biosynthesis. Juvenile hormone regulates insect metamorphosis, reproduction, food intake, growth, and development. Drosophila melanogaster RNAi lines of PheGlyLeu-amide-ASTs (FGLa/ASTs) and their cognate receptor, Dar-1, were used to characterize roles these neuropeptides and their respective receptor may play in behavior and physiology. Dar-1 and FGLa/AST RNAi lines showed a significant reduction in larval foraging in the presence of food. The larval foraging defect is not observed in the absence of food. These RNAi lines have decreased for transcript levels which encodes cGMP- dependent protein kinase. A reduction in the for transcript is known to be associated with a naturally occuring allelic variation that creates a sitter phenotype in contrast to the rover phenotype which is caused by a for allele associated with increased for activity. The sitting phenotype of FGLa/AST and Dar-1 RNAi lines is similar to the phenotype of a deletion mutant of an AST/galanin-like receptor (NPR-9) in Caenorhabditis elegans. Associated with the foraging defect in C. elegans npr-9 mutants is accumulation of intestinal lipid. Lipid accumulation was not a phenotype associated with the FGLa/AST and Dar-1 RNAi lines.
Collapse
Affiliation(s)
- Christine Wang
- Department of Biology, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
| | - Ian Chin-Sang
- Department of Biology, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
| | - William G. Bendena
- Department of Biology, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Korb J, Hoffmann K, Hartfelder K. Molting dynamics and juvenile hormone titer profiles in the nymphal stages of a lower termite, Cryptotermes secundus (Kalotermitidae)--signatures of developmental plasticity. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:376-383. [PMID: 22245373 DOI: 10.1016/j.jinsphys.2011.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/17/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Termites are social cockroaches and this sociality is founded on a high plasticity during development. Three molting types (progressive, stationary and regressive molts) are fundamental to achieve plasticity during alate/sexual development, and they make termites a major challenge to any model on endocrine regulation in insect development. As the endocrine signatures underpinning this plasticity are barely understood, we studied the developmental dynamics and their underlying juvenile hormone (JH) titers in a wood-dwelling termite, Cryptotermes secundus, which is characterized by an ancestral life style of living in dead wood and individuals being totipotent in development. The following general pattern elements could be identified during winged sexual development (i) regressive molts were accompanied by longer intermolt periods than other molting types, (ii) JH titers decreased gradually during the developmental transition from larva (immatures without wing buds), to nymph (immatures with wing buds), to winged adult, (iii) in all nymphal stages, the JH titer rose before the next molt and dropped thereafter within the first week, (iv) considerable variation in JH titers occurred in the midphase of the molting cycle of the 2nd and 3rd nymphal instar, inferring that this variation may reflect the underlying endocrine signature of each of the three molting types, (v) the 4th nymphal instar, the shortest of all, seems to be a switch point in development, as nymphs in this stage mainly developed progressively. When comparing these patterns with endocrine signatures seen in cockroaches, the developmental program of Cryptotermes can be interpreted as a co-option and repetitive use of hormonal dynamics of the post dorsal-closure phase of cockroach embryonic development.
Collapse
Affiliation(s)
- Judith Korb
- Biologie I, Universität Regensburg, Germany.
| | | | | |
Collapse
|
18
|
Zandawala M, Lytvyn Y, Taiakina D, Orchard I. Cloning of the cDNA, localization, and physiological effects of FGLamide-related allatostatins in the blood-gorging bug, Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:10-21. [PMID: 22061445 DOI: 10.1016/j.ibmb.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/27/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
Allatostatins (ASTs) are insect neuropeptides that were first identified as inhibitors of juvenile hormone biosynthesis by the corpora allata. There are three families of ASTs in insects, defined by their C-terminus conserved regions, one of which is FGLamide. Here we determine, for the first time in a hemipteran, the complete 1013 bp cDNA sequence encoding the Rhodnius prolixus FGLa/ASTs (Rhopr-FGLa/ASTs), and confirm the transcript size using northern blot. Phylogenetic analysis suggests that the Rhopr-FGLa/AST prepropeptide is most similar to the FGLa/AST precursors identified in Hymenoptera. Reverse-transcriptase PCR demonstrates that the Rhopr-FGLa/AST transcript is highly expressed in the central nervous system (CNS) in unfed fifth-instar R. prolixus, and is reduced in expression in CNS dissected from one day old blood-fed insects. Fluorescent in situ hybridization shows transcript expression in neurons in each ganglion of the CNS, but also in cells located on peripheral nerves. Rhopr-FGLa/ASTs dose-dependently inhibit contractions of the anterior midgut and hindgut, suggesting a role in feeding-related physiological events.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6.
| | | | | | | |
Collapse
|
19
|
Tarver MR, Schmelz EA, Scharf ME. Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:771-777. [PMID: 21356212 DOI: 10.1016/j.jinsphys.2011.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes.
Collapse
Affiliation(s)
- Matthew R Tarver
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
20
|
Martínez-Pérez F, Bendena WG, Chang BSW, Tobe SS. Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure. Peptides 2011; 32:509-17. [PMID: 20950662 DOI: 10.1016/j.peptides.2010.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023]
Abstract
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site.
Collapse
Affiliation(s)
- Francisco Martínez-Pérez
- Department of Cell and Systems Biology, University of Toronto, 110 St. George St., Toronto, ON M5S 3G5, Canada
| | | | | | | |
Collapse
|
21
|
Chan KK, Abel DS, Stay B. Fine structure of corpora allata of castes with different rates of juvenile hormone production in the termite Reticulitermes flavipes. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:26-38. [PMID: 20849977 DOI: 10.1016/j.asd.2010.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
The aim of this work is to describe corpora allata (CA) of several castes of the termite Reticulitermes flavipes that have different rates of juvenile hormone (JH) synthesis, with respect to differences in fine structure, volume, and intensity of allatostatin immunoreactivity in their innervation. The castes chosen are workers and their potential derivatives, apterous secondary reproductives and pre-soldiers (the precursors of soldiers). These castes, at the stages chosen, produce JH at low, high and intermediate rates respectively. Hormone production is positively correlated with volume and negatively correlated with intensity of allatostatin immunoreactivity in axons within the glands. Characteristics of fine structure that correlate with increased activity are increase in abundance and width of mitochondria, decrease in ability to fix and visualize smooth endoplasmic reticulum. These features have previously been described for CA of cockroaches and other insects. Glycogen in the CA of all of the castes studied, especially the large amounts in highly active glands of physogastric apterous reproductive females, is the most striking difference between the CA cells of R. flavipes and previously described CA of cockroaches, in which glycogen is absent throughout the reproductive cycles. This suggests that glycogen is an important source of energy for hormone production by termite CA.
Collapse
Affiliation(s)
- Kuen K Chan
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
22
|
Robertson L, Lange AB. Neural substrate and allatostatin-like innervation of the gut of Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:893-901. [PMID: 20452355 DOI: 10.1016/j.jinsphys.2010.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Allatostatin-like immunoreactivity (ALI) is widely distributed in processes and varicosities on the fore-, mid-, and hindgut of the locust, and within midgut open-type endocrine-like cells. ALI is also observed in cells and processes in all ganglia of the central nervous system (CNS) and the stomatogastric nervous system (SNS). Ventral unpaired median neurons (VUMs) contained ALI within abdominal ganglia IV-VII. Neurobiotin retrograde fills of the branches of the 11th sternal nerve that innervate the hindgut revealed 2-4 VUMs in abdominal ganglia IV-VIIth, which also contain ALI. The VIIIth abdominal ganglion contained three ventral medial groups of neurons that filled with neurobiotin and contained ALI. The co-localization of ALI in the identified neurons suggests that these cells are the source of ALI on the hindgut. A retrograde fill of the nerves of the ingluvial ganglia that innervate the foregut revealed numerous neurons within the frontal ganglion and an extensive neuropile in the hypocerebral ganglion, but there seems to be no apparent co-localization of neurobiotin and ALI in these neurons, indicating the source of ALI on the foregut comes via the brain, through the SNS.
Collapse
Affiliation(s)
- Lisa Robertson
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ont, Canada.
| | | |
Collapse
|
23
|
Nuss AB, Forschler BT, Crim JW, TeBrugge V, Pohl J, Brown MR. Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Peptides 2010; 31:419-28. [PMID: 19747517 DOI: 10.1016/j.peptides.2009.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/22/2022]
Abstract
Neuropeptide F (NPF)-like immunoreactivity was previously found to be abundant in the eastern subterranean termite, Reticulitermes flavipes. Purification of the NPF from a whole body extract of worker termites was accomplished in the current study by HPLC and heterologous radioimmunoassay for an NPF-related peptide, Helicoverpa zea Midgut Peptide-I. A partial amino acid sequence allowed determination of the corresponding cDNA that encoded an open reading frame deduced for authentic R. flavipes NPF (Ref NPF): KPSDPEQLADTLKYLEELDRFYSQVARPRFa. Effects of synthetic NPFs on muscle contractions were investigated for isolated foreguts and hindguts of workers, with Drm NPF inhibiting spontaneous contractions of hindguts. Phylogenetic analysis of invertebrate NPF sequences reveals two separate groupings, with Ref NPF occurring within a clade composed exclusively of arthropods.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Entomology, 413 Biological Sciences Building, University of Georgia, Athens, GA 30602-2603, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Elliott KL, Chan KK, Stay B. Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor. Peptides 2010; 31:402-7. [PMID: 19793542 DOI: 10.1016/j.peptides.2009.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
Abstract
The allatostatins (ASTs) with Phe-Gly-Leu-amide C-terminal sequence are multifunctional neuropeptides discovered as inhibitors of juvenile hormone (JH) synthesis by corpora allata (CA) of cockroaches. Although these ASTs inhibit JH synthesis only in cockroaches, crickets, termites and locusts, isolation of peptides or of cDNA/genomic DNA or analysis of genomes indicates their occurrence in many orders of insects with the exception of coleopterans. The gene for these ASTs has not been found in the genome of the red flour beetle Tribolium castaneum (Family Tenebrionidae). Yet, in view of widespread occurrence of these peptides in insects, crustaceans and nematodes, they would be expected to occur in beetles. This study provides evidence for the presence of FGLa-like ASTs in the tenebrionid beetle, Tenebrio molitor, and scarabid beetle, Popillia japonica. Extract of brain from both beetles inhibited JH synthesis by cockroach CA dose dependently and reversibly. 20 brain equivalents of T. molitor and P. japonica extracts inhibited JH synthesis 64+/-5 and 65+/-0.6% respectively. Antibody against cockroach allatostatin (Diploptera punctata AST-7) used in an enzyme-linked immunosorbent assay reacted with brain extract of these beetles. Antibody against D. punctata AST-5 localized FGLa-like ASTs in the brain and subesophageal ganglion of T. molitor and P. japonica. In addition, pretreatment of T. molitor brain extract with anti-D. punctata AST-5 reduced the inhibition of JH synthesis and pretreatment of anti-D. punctata AST-5 with D. punctata AST-5 diminished the immunoreactivity of the antibody. Thus we predict that FGLa-like allatostatins will be found in beetles.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, 163 Jefferson Street, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
25
|
Abstract
FGLamide allatostatins are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders and also show myomodulatory activity. The FGLamide allatostatin (AST) gene structure in Dictyoptera is intronless within the ORF, whereas in 9 species of Diptera, the FGLamide AST ORF has one intron. To investigate the evolutionary history of AST intron structure, (intron early versus intron late hypothesis), all available Arthropoda FGLamide AST gene sequences were examined from genome databases with reference to intron presence and position/phase. Three types of FGLamide AST ORF organization were found: intronless in I. scapularis and P. humanus corporis; one intron in D. pulex, A. pisum, A. mellifera and five Drosophila sp.; two introns in N. vitripennis, B. mori strains, A. aegypti, A. gambiae and C. quinquefasciatus. The literature suggests that for the majority of genes examined, most introns exist between codons (phase 0) which may reflect an ancient function of introns to separate protein modules. 60% of the FGLamide AST ORFs introns were between the first and second base within a codon (phase 1), 28% were between the second and third nucleotides within a codon (phase two) and 12% were phase 0. As would be required for correct intron splicing consensus sequence, 84% of introns were in codons starting with guanine. The positioning of introns was a maximum of 9 codons from a dibasic cleavage site. Our results suggest that the introns in the analyzed species support the intron late model.
Collapse
|
26
|
Korb J, Hoffmann K, Hartfelder K. Endocrine signatures underlying plasticity in postembryonic development of a lower termite,Cryptotermes secundus(Kalotermitidae). Evol Dev 2009; 11:269-77. [DOI: 10.1111/j.1525-142x.2009.00329.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Elliott KL, Hehman GL, Stay B. Isolation of the gene for the precursor of Phe-Gly-Leu-amide allatostatins in the termite Reticulitermes flavipes. Peptides 2009; 30:855-60. [PMID: 19428761 DOI: 10.1016/j.peptides.2009.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/26/2022]
Abstract
Allatostatins (ASTs), with a C-terminal sequence Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide, are multifunctional neuropeptides that were first discovered by their ability to inhibit juvenile hormone (JH) synthesis by the corpora allata (CA) in cockroaches. These A-type ASTs have since been demonstrated to inhibit JH synthesis in crickets, termites and more recently locusts. The gene for the precursor of A-type ASTs has been identified in several species of cockroaches, in crickets and in locusts, but not yet in termites, although 5 AST peptides were isolated from the lower termite Reticulitermes flavipes that are identical to known cockroach ASTs. In this study, primers designed from AST amino acid sequences of cockroaches are used to identify the gene for the preproAST peptides in R. flavipes. In addition, the expression of the gene in brain tissues is demonstrated for egg-laying and non-egg-laying neotenic reproductives. The gene codes for 14 individual peptides and its sequence is closer to that of cockroaches and the cricket than to that of other insect orders in which these peptides do not act as allatostatins. Among the known cockroach AST genes, the termite AST gene is most similar to that of Periplaneta americana, a species belonging to the primitive family Blattidae.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
28
|
|
29
|
Elliott KL, Chan KK, Teesch L, Clor O, Stay B. Identification of Phe-Gly-Leu-amide type allatostatin-7 in Reticulitermes flavipes: its localization in tissues and relation to juvenile hormone synthesis. Peptides 2009; 30:495-506. [PMID: 18652864 DOI: 10.1016/j.peptides.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
The allatostatins (ASTs), with a Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide C-terminus, are neuropeptides that occur in many orders of insects, but are known to inhibit juvenile hormone (JH) synthesis by corpora allata (CA) only in cockroaches, crickets, and termites. 5 AST peptides with similar sequences to those of 6 species of cockroaches have been isolated and sequenced from extract of brain tissue of the termite Reticulitermes flavipes. The amino acid sequence of a 6th peptide, R. flavipes AST-7, determined by LC-MS/MS following HPLC fractionation of brain extract, is S-P-S-S-G-N-Q-R-L-Y-G-F-G-L-NH(2). The 8 terminal amino acids are identical to AST-7 of the cockroach Diploptera punctata. R. flavipes and D. punctata AST-7s inhibited JH synthesis by CA of both species equally and their affinity for antibody against D. punctata AST-7 is similar. Immunoreactivity of termite tissue with this antibody indicates neuro- and myomodulatory activity of the peptide in addition to its demonstrated allatostatic function. The density of AST immunostaining in axons within the CA of R. flavipes and the rate of JH synthesis by similar glands were negatively correlated. This is evidence that when AST is abundant in the glands it is being released in vivo to limit JH production.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Dubuque Street, Iowa Avenue, Iowa City, IA 52242, United States
| | | | | | | | | |
Collapse
|
30
|
Vargo EL, Husseneder C. Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:379-403. [PMID: 18793101 DOI: 10.1146/annurev.ento.54.110807.090443] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Molecular genetic techniques have made contributions to studies on subterranean termites at all levels of biological organization. Most of this work has focused on Reticulitermes and Coptotermes, two ecologically and economically important genera. DNA sequence data have significantly improved our understanding of the systematics and taxonomy of these genera. Techniques of molecular biology have provided important new insights into the process of caste differentiation. Population genetic markers, primarily microsatellites, have furthered our understanding of the life history, population biology, community ecology, and invasion biology of subterranean termites. Recent results on the behavioral ecology of subterranean termites reveal a picture different from long-held views, especially those concerning colony breeding structures and foraging ranges. As additional molecular tools and genomic resources become available, and as more subterranean termite researchers incorporate molecular techniques into their approaches, we can expect accelerating advances in all aspects of the biology of this group.
Collapse
Affiliation(s)
- Edward L Vargo
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695-7613, USA.
| | | |
Collapse
|
31
|
Korb J, Hartfelder K. Life history and development--a framework for understanding developmental plasticity in lower termites. Biol Rev Camb Philos Soc 2008; 83:295-313. [PMID: 18979593 DOI: 10.1111/j.1469-185x.2008.00044.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Termites (Isoptera) are the phylogenetically oldest social insects, but in scientific research they have always stood in the shadow of the social Hymenoptera. Both groups of social insects evolved complex societies independently and hence, their different ancestry provided them with different life-history preadaptations for social evolution. Termites, the 'social cockroaches', have a hemimetabolous mode of development and both sexes are diploid, while the social Hymenoptera belong to the holometabolous insects and have a haplodiploid mode of sex determination. Despite this apparent disparity it is interesting to ask whether termites and social Hymenoptera share common principles in their individual and social ontogenies and how these are related to the evolution of their respective social life histories. Such a comparison has, however, been much hampered by the developmental complexity of the termite caste system, as well as by an idiosyncratic terminology, which makes it difficult for non-termitologists to access the literature. Here, we provide a conceptual guide to termite terminology based on the highly flexible caste system of the "lower termites". We summarise what is known about ultimate causes and underlying proximate mechanisms in the evolution and maintenance of termite sociality, and we try to embed the results and their discussion into general evolutionary theory and developmental biology. Finally, we speculate about fundamental factors that might have facilitated the unique evolution of complex societies in a diploid hemimetabolous insect taxon. This review also aims at a better integration of termites into general discussions on evolutionary and developmental biology, and it shows that the ecology of termites and their astounding phenotypic plasticity have a large yet still little explored potential to provide insights into elementary evo-devo questions.
Collapse
Affiliation(s)
- Judith Korb
- Biologie I, Universität Regensburg D-93040 Regensburg, Germany.
| | | |
Collapse
|
32
|
Yagi KJ, Elliott KL, Teesch L, Tobe SS, Stay B. Isolation of cockroach Phe-Gly-Leu-amide allatostatins from the termite Reticulitermes flavipes and their effect on juvenile hormone synthesis. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:939-948. [PMID: 18387628 DOI: 10.1016/j.jinsphys.2008.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/13/2007] [Accepted: 01/10/2008] [Indexed: 05/26/2023]
Abstract
Immunoreactivity to cockroach Diploptera punctata allatostatin-7 (Dippu AST-7) has been demonstrated previously in axons innervating the corpora allata of the termite Reticulitermes flavipes. This peptide and Dippu AST-11 inhibited juvenile hormone (JH) synthesis by corpora allata (CA) of brachypterous neotenic reproductives (secondary reproductives) of termites. The present study shows that R. flavipes CA are also inhibited by Dippu AST-2, AST-5, AST-8, and AST-9 at approximately the same rank order of potency as demonstrated in D. punctata. Another allatostatin from Periplaneta americana (Peram AST-12) also inhibits JH synthesis by R. flavipes CA. Sensitivity to the allatostatins is higher in glands with low rates of JH synthesis than in those with relatively high JH synthetic rates as has been demonstrated in CA from male and female secondary reproductives as well as in those from non-egg-laying and egg-laying females. The identical inhibitory effects of R. flavipes brain extract on CA from both D. punctata and R. flavipes and the isolation and identification of five cockroach allatostatins (Dippu AST-1, AST-2, AST-5, AST-8, and Peram AST-12) from termite brain extract reflect the close relationship between cockroaches and termites.
Collapse
Affiliation(s)
- K J Yagi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ont., Canada M5S 3G5
| | | | | | | | | |
Collapse
|
33
|
Hult EF, Weadick CJ, Chang BSW, Tobe SS. Reconstruction of ancestral FGLamide-type insect allatostatins: a novel approach to the study of allatostatin function and evolution. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:959-968. [PMID: 18541257 DOI: 10.1016/j.jinsphys.2008.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 05/26/2023]
Abstract
Allatostatins (ASTs) are a class of regulatory neuropeptides, with diverse functions, found in an array of invertebrate phyla. ASTs have complex gene structure, in which individual ASTs are cleaved from a precursor peptide. Little is known about the molecular evolution of AST structure and function, even in extensively studied groups such as cockroaches. This paper presents the application of a novel technique for the analysis of this system, that of ancestral reconstruction, whereby ancestral amino acid sequences are resurrected in the laboratory. We inferred the ancestral sequences of a well-characterized peptide, AST 7, for the insect ancestor, as well as several cockroach ancestors. Peptides were assayed for in vitro inhibition of JH production in Diploptera punctata and Periplaneta americana. Our results surprisingly, indicate a decrease in potency of the ancestral cockroach AST7 peptide in comparison with more ancient ones such as the ancestral insect peptide, as well as more recently evolved cockroach peptides. We propose that this unexpected decrease in peptide potency at the cockroach ancestor may be related to the concurrent increase in peptide copy number in the lineages leading to cockroaches. This model is consistent with current physiological data, and may be linked to the increased role of ASTs in the regulation of reproductive processes in the cockroaches.
Collapse
Affiliation(s)
- Ekaterina F Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ont., Canada M5S 3G5
| | | | | | | |
Collapse
|
34
|
Cornette R, Gotoh H, Koshikawa S, Miura T. Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:922-930. [PMID: 18541259 DOI: 10.1016/j.jinsphys.2008.04.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 05/26/2023]
Abstract
Termites are social insects, presenting morphologically distinct castes, performing specific tasks in the colony. The developmental processes underlying caste differentiation are mainly controlled by juvenile hormone (JH). Although many fragmentary data support this fact, there was no comparative work on JH titers during the caste differentiation processes. In this study, JH titer variation was investigated using a liquid chromatography-mass spectrometry (LC-MS) quantification method in all castes of the Japanese damp-wood termite Hodotermopsis sjostedti, especially focusing on the soldier caste differentiation pathway, which was induced by treatment with a JH analog. Hemolymph JH titers fluctuated between 20 and 720pg/microl. A peak of JH was observed during molting events for the pseudergate stationary molt and presoldier differentiation, but this peak was absent prior to the imaginal molt. Soldier caste differentiation was generally associated with high JH titers and nymph to alate differentiation with low JH titers. However, JH titer rose in females during alate maturation, probably in relation to vitellogenesis. In comparison, JH titer was surprisingly low in neotenics. On the basis of these results in both natural and artificial conditions, the current model for JH action on termite caste differentiation is discussed and re-appraised.
Collapse
Affiliation(s)
- Richard Cornette
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
35
|
Clark L, Lange AB, Zhang JR, Tobe SS. The roles of Dippu-allatostatin in the modulation of hormone release in Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:949-958. [PMID: 18479700 DOI: 10.1016/j.jinsphys.2008.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
Dippu-allatostatins (ASTs) have pleiotropic effects in Locusta migratoria. Dippu-ASTs act as releasing factors for adipokinetic hormone I (AKH I) from the corpus cardiacum (CC) and also alter juvenile hormone (JH) biosynthesis and release from the corpus allatum (CA). Dippu-AST-like immunoreactivity is found within lateral neurosecretory cells (LNCs) of the brain and axons within the paired nervi corporis cardiaci II (NCC II) to the CC and the CA, where there are extensive processes and nerve endings over both of these neuroendocrine organs. There was co-localization of Dippu-AST-like and proctolin-like immunoreactivity within these regions. Dippu-ASTs increase the release of AKH I in a dose-dependent manner, with thresholds below 10(-11)M (Dippu-AST 7) and between 10(-13) and 10(-12)M (Dippu-AST 2). Both proctolin and Dippu-AST 2 caused an increase in the cAMP content of the glandular lobe of the CC. Dippu-AST 2 also altered the release of JH from the locust CA, but this effect depended on the concentration of peptide and the basal release rates of the CA. These physiological effects for Dippu-ASTs in Locusta have not been shown previously.
Collapse
Affiliation(s)
- L Clark
- Department of Biology, University of Toronto Mississauga, Mississauga, Ont., Canada L5L 1C6.
| | | | | | | |
Collapse
|
36
|
Lungchukiet P, Zhang J, Tobe SS, Bendena WG. Quantification of allatostatin receptor mRNA levels in the cockroach, Diploptera punctata, using real-time PCR. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:981-987. [PMID: 18541258 DOI: 10.1016/j.jinsphys.2008.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 04/13/2008] [Accepted: 04/16/2008] [Indexed: 05/26/2023]
Abstract
The cockroach allatostatin receptor (Dippu-AstR) is a 425 amino acid G-protein coupled receptor that is related to the mammalian galanin receptor. Using relative standard curve real-time PCR analysis, changes in Dippu-AstR mRNA expression levels were examined in tissues of adult mated and virgin female Diploptera punctata. Tissues were chosen that were either known targets of allatostatin (Dippu-AST) action or sites of Dippu-AST localization. Tissues examined included brain, corpora allata (CA), gut, ovaries, testes and abdominal ganglia. Dippu-AstR was expressed in all tissues examined for 7 days after adult emergence. Juvenile hormone (JH) biosynthesis is known to peak on day 5 post-emergence in mated females. In mated females, Dippu-AstR mRNA was at the highest levels on day 6 post-emergence in brain and CA and day 2 post-emergence in midgut. Dippu-AstR expression was found to correlate with the decline in JH biosynthesis noted on day 5 post-emergence and early inhibition of feeding. Dippu-AstR mRNA expression in virgin female midgut and CA was dramatically elevated on days 6 and 7, respectively. Expression of Dippu-AstR mRNA was found to be similar in the abdominal ganglia of mated or virgin females. Ovarian Dippu-AstR expression declined to low levels by day 4. Testes exhibited maximal Dippu-AstR mRNA expression on days 4 and 7 of adult life. A role for Dippu-AST in testes of Diploptera is unknown.
Collapse
|
37
|
Elliott KL, Stay B. Changes in juvenile hormone synthesis in the termite Reticulitermes flavipes during development of soldiers and neotenic reproductives from groups of isolated workers. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:492-500. [PMID: 18187146 DOI: 10.1016/j.jinsphys.2007.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 11/21/2007] [Accepted: 11/27/2007] [Indexed: 05/25/2023]
Abstract
Workers of Reticulitermes flavipes were isolated in groups of increasing numbers to determine the in vitro rates of juvenile hormone (JH) synthesis by individual pairs of corpora allata (CA) as other castes differentiated. Only neotenic reproductives developed in groups of 12. Mean JH synthesis rates increased after 5 weeks but only a few individuals had significantly higher rates, about 0.4 pmol/pair/h, which occurred at about 3 weeks before neotenics developed. Soldiers and neotenics developed in groups of 50. Mean rates increased to a peak at week 6 after isolation, but only a few individuals had rates approaching 1 pmol/pair/h, which occurred at the same time after isolation as the development of pre-soldiers. JH synthesis by CA of pharate pre-soldiers and soldiers was low compared to that of pharate workers and neotenics. CA of pre-soldiers attained a peak mean rate of JH synthesis of 0.9 pmol/pair/h at 6 days of age, whereas CA of soldiers attained only a peak mean rate of 0.3 pmol/pair/h. These measurements of JH synthesis by individual pairs of CA suggest that the few workers destined to become pre-soldiers have 2.5-fold higher JH synthesis than the few that would develop into neotenic reproductives, and show that a cycle of synthesis accompanies the development of pre-soldiers into soldiers.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
38
|
Christie AE, Sousa GL, Rus S, Smith CM, Towle DW, Hartline DK, Dickinson PS. Identification of A-type allatostatins possessing -YXFGI/Vamide carboxy-termini from the nervous system of the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 2008; 155:526-33. [PMID: 17950732 DOI: 10.1016/j.ygcen.2007.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/23/2007] [Accepted: 09/12/2007] [Indexed: 11/24/2022]
Abstract
The copepod crustacean Calanus finmarchicus plays a critical role in the ecology of the Gulf of Maine and other regions of the North Atlantic. To increase our understanding of the physiology of this species, a normalized, whole organism cDNA library was constructed, and expressed sequence tags (ESTs) of the clones were generated. Among these ESTs was one with homology to known cDNAs encoding prepro-A-type allatostatins (A-type ASTs), a well-known family of arthropod peptides that regulate juvenile hormone production in insects. Sequence analysis of the clone from which the EST was generated, with subsequent translation of its open reading frame, showed it to encode five novel A-type ASTs, whose mature structures were predicted to be APYGFGIamide, pE/EPYGFGIamide, ALYGFGIamide, pE/EPYNFGIamide, and pQ/QPYNFGVamide. Each of the peptides is present as a single copy within the prepro-hormone with the exception of APYGFGIamide, which is present in three copies. Surprisingly, the organization of the Calanus prepro-A-type AST, specifically the number of encoded A-type peptides, is more similar to those of insects than it is to the known decapod crustacean prepro-hormones. Moreover, the Calanus A-type ASTs possess isoleucine or valine residues at their carboxy (C)-termini rather than leucine, which is present in most other family members. Wholemount immunohistochemistry suggests that six pairs of somata produce the native Calanus A-type ASTs: five in the protocerebrum and one in the suboesophageal region. To the best of our knowledge, our report is the first characterization of a neuropeptidergic system in a copepod, the first identification of A-type ASTs from a non-decapod crustacean, the first report of crustacean A-type ASTs possessing isoleucine C-terminal residues, and the first report from any species of an A-type peptide possessing a valine C-terminal residue.
Collapse
Affiliation(s)
- Andrew E Christie
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lungchukiet P, Donly BC, Zhang J, Tobe SS, Bendena WG. Molecular cloning and characterization of an allatostatin-like receptor in the cockroach Diploptera punctata. Peptides 2008; 29:276-85. [PMID: 18237821 DOI: 10.1016/j.peptides.2007.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Two Drosophila receptors (AlstR/DAR-1 and DAR-2) with sequence similarity to mammalian galanin receptors have been previously identified. These receptors have been shown to form specific interactions with neuropeptides that resemble cockroach allatostatins (ASTs), which have a characteristic Tyr/Phe-Xaa-Phe-Gly-Leu-NH2 carboxyl-terminus. We hypothesized that similar allatostatin receptors exist in the cockroach Diploptera punctata that may regulate the numerous effects that this family of peptides exerts on a range of target tissues. The polymerase chain reaction (PCR) was used, with primer design based on the Drosophila allatostatin receptor (AlstR). Using these primers, a putative allatostatin-like receptor cDNA was isolated from a lambda ZAP-cDNA library prepared from the corpora allata of the D. punctata. As an approach to testing the function of this receptor in vivo, the technique of double-stranded RNA (dsRNA) gene interference was tested. Initial experiments suggest that the putative inhibition of receptor RNA expression may increase juvenile hormone (JH) production.
Collapse
|
40
|
Elliott KL, Stay B. Juvenile hormone synthesis as related to egg development in neotenic reproductives of the termite Reticulitermes flavipes, with observations on urates in the fat body. Gen Comp Endocrinol 2007; 152:102-10. [PMID: 17434168 DOI: 10.1016/j.ygcen.2007.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
The relationship between juvenile hormone (JH) synthesis and egg development, which is well documented in cockroaches, is much less studied in their close relatives, the termites. In this study of neotenic reproductives of the subterranean termite Reticulitermes flavipes, in vitro rates of juvenile hormone (JH) synthesis by corpora allata (CA) are related to vitellogenic egg development and the size of CA. The first study compared brachypterous and apterous neotenics in their first cycle of egg development and a second study compared physogastric and non-physogastric brachypterous and apterous neotenics. In both studies, rates of JH synthesis correlated with the size of CA as indicated by their length. Unlike the cockroach in which all basal oocytes are in the same stage of development, those in termites are in various stages. In brachypterous and apterous in the first cycle of egg development, CA with high rates of JH synthesis were from females with early vitellogenic basal oocytes, whereas CA with low rates of JH synthesis were from females with either pre-vitellogenic or mature basal oocytes. This pattern of JH synthesis is similar to the cycle of JH synthesis correlated with oocyte development in several cockroach species. In later oocyte maturations, CA from physogastric apterous females with ovaries containing mature, as well as growing oocytes, showed a wide range of JH production; the CA with the highest rates of JH synthesis were from females with the highest proportion of early vitellogenic oocytes suggesting that both mature and early vitellogenic oocytes interact to regulate JH synthesis. Rates of JH synthesis were related to the number of vitellogenic ovarioles. Physogastric brachypterous neotenics, compared to the other classes of neotenic females, had CA with 2- to 4-fold higher rates of JH synthesis and ovaries with 2.5- to 8-fold greater number of vitellogenic ovarioles. However, both physogastric brachypterous and apterous neotenics had more vitellogenic basal oocytes and less urate in their fat bodies than the respective non-physogastric neotenics. These results demonstrate the similarities and differences between the classes of neotenic termites and between reproductive females in cockroaches and termites.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
41
|
Zhou X, Tarver MR, Scharf ME. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 2007; 134:601-10. [PMID: 17215309 DOI: 10.1242/dev.02755] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Worker termites of the genus Reticulitermes are temporally-arrested juvenile forms that can terminally differentiate into adultsoldier- or reproductive-caste phenotypes. Soldier-caste differentiation is a developmental transition that is induced by high juvenile hormone (JH) titers. Recently, a status quo hexamerin mechanism was identified, which reduces JH efficacy and maximizes colony fitness via the maintenance of high worker-caste proportions. Our goal in these studies was to investigate more thoroughly the influences of the hexamerins on JH-dependent gene expression in termite workers. Our approach involved RNA interference (RNAi), bioassays and quantification of gene expression. We first investigated the expression of 17 morphogenesis-associated genes in response to RNAi-based hexamerin silencing. Hexamerin silencing resulted in significant downstream impacts on 15 out of the 17 genes, suggesting that these genes are members of a JH-responsive genomic network. Next, we compared gene-expression profiles in workers after RNAi-based hexamerin silencing to that of (i) untreated workers that were held away from the colony; and (ii) workers that were also held away from the colony, but with ectopic JH. Here, although there was no correlation between hexamerin silencing and colony-release effects, we observed a significant correlation between hexamerin silencing and JH-treatment effects. These findings provide further evidence supporting the hypothesis that the hexamerins modulate JH availability, thus limiting the impacts of JH on termite caste polyphenism. Results are discussed in a context relative to outstanding questions on termite developmental biology, particularly on regulatory gene networks that respond to JH-, colony- and environmental-cues.
Collapse
Affiliation(s)
- Xuguo Zhou
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA
| | | | | |
Collapse
|
42
|
Stay B, Tobe SS. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. ANNUAL REVIEW OF ENTOMOLOGY 2007; 52:277-99. [PMID: 16968202 DOI: 10.1146/annurev.ento.51.110104.151050] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Allatostatins are pleiotropic neuropeptides for which one function in insects is the inhibition of juvenile hormone synthesis. Juvenile hormone, an important regulator of development and reproduction in insects, is produced by the corpora allata. Mandibular organs, the crustacean homologs of insect corpora allata, produce precursors of juvenile hormone with putatively similar functions. Three types of allatostatins in insects have been isolated: FGLamides, W(X)(6)Wamides, and PISCFs. All act rapidly and reversibly; however, although these types occur in all groups of insects studied, they act as inhibitors of juvenile hormone production in only some groups. Only the FGLamide-type peptides have been isolated in crustaceans, in which they may function to stimulate production of hormone by the mandibular glands, as occurs in early cockroach embryos. Much remains to be learned in order to understand the role of allatostatins in the modulation of hormone production.
Collapse
Affiliation(s)
- Barbara Stay
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1911, USA.
| | | |
Collapse
|
43
|
Zhou X, Song C, Grzymala TL, Oi FM, Scharf ME. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. INSECT MOLECULAR BIOLOGY 2006; 15:749-61. [PMID: 17201768 DOI: 10.1111/j.1365-2583.2006.00675.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression.
Collapse
Affiliation(s)
- X Zhou
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA
| | | | | | | | | |
Collapse
|
44
|
Yin GL, Chen Q, Yang WJ. Naturally occurring antisense RNA of allatostatin gene in the prawn, Macrobrachium rosenbergii. Comp Biochem Physiol B Biochem Mol Biol 2006; 146:20-5. [PMID: 17055761 DOI: 10.1016/j.cbpb.2006.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/06/2006] [Accepted: 08/21/2006] [Indexed: 11/15/2022]
Abstract
Allatostatins are important regulatory neuropeptides which are widely distributed in invertebrates and execute their functions through either neural or humoral routes. However, the regulatory mechanism of the gene expression is unclear. In this paper, we report a naturally occurring antisense transcript, named as asMacro-AST A, of the crustacean FGLamide allatostatin gene (Macro-AST A) from the prawn, Macrobrachium rosenbergii. The asMacro-AST A contains an 843-bp sequence fully complementary to the 3' end of the Macro-AST A. To our knowledge, this is the first report of a natural antisense transcript in crustacean and the first endogenous antisense transcript of all identified allatostatin genes. Northern blotting analysis demonstrated that the gene was expressed in the thoracic ganglia where the sense gene was also expressed. Furthermore, we have detected a RNA-RNA duplex between the sense-antisense complementary region by using RNase protection analysis and RT-PCR. These results suggest that the antisense gene may play a role in the regulation of Macro-AST A gene expression.
Collapse
Affiliation(s)
- Guo-Li Yin
- Institute of Cell Biology and Genetics, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058 P. R. China
| | | | | |
Collapse
|
45
|
Maestro JL, Bellés X. Silencing allatostatin expression using double-stranded RNA targeted to preproallatostatin mRNA in the German cockroach. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:73-9. [PMID: 16703616 DOI: 10.1002/arch.20123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
YXFGL-NH(2) family allatostatins (ASTs) were isolated from cockroach brain extracts based on their capacity to inhibit juvenile hormone (JH) biosynthesis in corpora allata (CA) incubated in vitro. Subsequently, the inhibitory activity of synthetic ASTs was demonstrated experimentally, although these peptides were shown to be active as JH inhibitors only in cockroaches, crickets, and termites. Here, we sought to examine whether ASTs are true physiological regulators of JH synthesis. To this end, we used RNA interference methodologies and the cockroach Blattella germanica as a model. Treatments with double-stranded RNA targeting the allatostatin gene in females of B. germanica produced a rapid and long-lasting reduction in mRNA and peptide levels in both brain and midgut during the reproductive cycle. Nevertheless, while brain AST levels were reduced approximately 70-80%, JH synthesis did not increase in any of the age groups tested.
Collapse
Affiliation(s)
- José L Maestro
- Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain.
| | | |
Collapse
|
46
|
Meyering-Vos M, Merz S, Sertkol M, Hoffmann KH. Functional analysis of the allatostatin-A type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:492-504. [PMID: 16731345 DOI: 10.1016/j.ibmb.2006.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 05/09/2023]
Abstract
Double-stranded RNA (dsRNA) gene interference is an efficient method to silence gene expression in a sequence specific manner. Here we show, that dsRNA targeting the allatostatin (AS)-A type (FGL/I/V-amide) gene of Gryllus bimaculatus (Ensifera, Gryllidae) and Spodoptera frugiperda (Lepidoptera, Noctuidae) injected into freshly moulted larvae or adult crickets and moths produced a rapid and long-lasting reduction in the mRNA levels in various tissues. The effect lasted up to 7 days. Following dsRNA injection, the juvenile hormone (JH) titers in the hemolymph were clearly raised in both species. AS-dsRNA injection induced a reduced body weight in larval and adult crickets and the imaginal moult was incomplete. Silencing allatostatin type-A expression also reduced the egg and testes development in crickets, and the oviposition rate was drastically diminished in both species.
Collapse
Affiliation(s)
- Martina Meyering-Vos
- Department of Animal Ecology I, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.
| | | | | | | |
Collapse
|
47
|
Yin GL, Yang JS, Cao JX, Yang WJ. Molecular cloning and characterization of FGLamide allatostatin gene from the prawn, Macrobrachium rosenbergii. Peptides 2006; 27:1241-50. [PMID: 16376458 DOI: 10.1016/j.peptides.2005.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/15/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Allatostatins are important regulatory neuropeptides that inhibit juvenile hormone (JH) biosynthesis by the corpora allata (CA) in insects. However, to date, the structure and expression of the gene encoding allatostatins have not been reported in any species other than insects. In this study, we used a combination of a semi-nested polymerase chain reaction (PCR) and screening of a central nervous system cDNA library of Macrobrachium rosenbergii to isolate and sequence a cDNA clone (2885 bp) encoding a 701 amino acid FGLamide allatostatin precursor polypeptide. This is the first reported allatostatin gene in crustacean. The deduced precursor was conceptually split into at least 35 FGLamide allatostatins at dibasic cleavage sites (Lys and Lys/Arg), far more than reported for any other known FGLamide allatostatin precursors from insects (13-14 allatostatins). Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the gene was expressed in the brain, gut, thoracic and abdominal ganglia, but not in the heart, muscle, ovary, gill, or hepatopancreas. Furthermore, developmentally-dependent expression of the gene was observed in the brain and thoracic ganglia of the prawn by using semi-quantitative RT-PCR analysis.
Collapse
Affiliation(s)
- Guo-Li Yin
- College of Life Sciences, Zhejiang University, 232 Wensan Road, Hangzhou, Zhejiang 310012, PR China
| | | | | | | |
Collapse
|
48
|
Zhou X, Oi FM, Scharf ME. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci U S A 2006; 103:4499-504. [PMID: 16537425 PMCID: PMC1450200 DOI: 10.1073/pnas.0508866103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Indexed: 11/18/2022] Open
Abstract
Lower termites express a unique form of eusocial polyphenism in that totipotent workers can differentiate into either soldier or reproductive caste phenotypes. In this initial effort using RNA interference in termites, we found that two hexamerin genes, Hex-1 and Hex-2, participate in the regulation of caste polyphenism. Our methodology involved a dual gene-silencing approach that used a single short-interfering RNA fragment to silence the two homologous hexamerin genes. We performed validation studies that evaluated effects on nontarget housekeeping genes, silencing of a nonhousekeeping control gene, and effects at the protein level. We found that the two hexamerin proteins, which are inducible by the morphogenetic juvenile hormone and which constitute a significant proportion of total termite protein, suppress juvenile-hormone-dependent worker differentiation to the soldier caste phenotype. This mechanism allows termite colonies to retain high proportions of altruistic worker caste members, thus apparently enhancing colony-inclusive fitness. These findings demonstrate a unique status quo regulatory mechanism for termite worker caste retention and provide an example of previously undescribed preadult developmental/caste-regulatory genes from any social insect.
Collapse
Affiliation(s)
- Xuguo Zhou
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611-0620
| | - Faith M. Oi
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611-0620
| | - Michael E. Scharf
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611-0620
| |
Collapse
|