1
|
Meuti ME, Fyie LR, Fiorta M, Denlinger DL. Trade-offs between Winter Survival and Reproduction in Female Insects. Integr Comp Biol 2024; 64:1667-1678. [PMID: 38664063 DOI: 10.1093/icb/icae027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 12/21/2024] Open
Abstract
In temperate environments, most species of insects enter an arrested state of development, known as diapause, that enables them to survive the adverse environmental conditions associated with winter. Although diapause is restricted to a single life stage within species of insects, there are examples of insects that overwinter in the egg, larval, pupal, and adult stages. Here we offer a targeted, non-systematic literature review examining how overwintering impacts subsequent reproduction in female insects. Several factors, including the lifestage at which insects overwinter, the type of energy investment strategy females use for breeding, elements of the winter environment, and contributions from male insects can influence trade-offs that female insects face between overwintering survival and post-diapause reproduction. Additionally, climate change and elements of the urban environment, including light pollution and higher temperatures in cities, can exacerbate or ameliorate trade-offs faced by reproducing female insects. Better understanding the trade-offs between overwintering survival and reproduction in insects not only enhances our understanding of the underlying physiological mechanisms and ecological processes governing diapause and reproduction, but also provides opportunities to better manage insect pests and/or support beneficial insects.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lydia R Fyie
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Maria Fiorta
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - David L Denlinger
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
2
|
Hagadorn MA, Hunter FK, DeLory T, Johnson MM, Pitts-Singer TL, Kapheim KM. Maternal body condition and season influence RNA deposition in the oocytes of alfalfa leafcutting bees ( Megachile rotundata). Front Genet 2023; 13:1064332. [PMID: 36685934 PMCID: PMC9845908 DOI: 10.3389/fgene.2022.1064332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Maternal effects are an important source of phenotypic variance, whereby females influence offspring developmental trajectory beyond direct genetic contributions, often in response to changing environmental conditions. However, relatively little is known about the mechanisms by which maternal experience is translated into molecular signals that shape offspring development. One such signal may be maternal RNA transcripts (mRNAs and miRNAs) deposited into maturing oocytes. These regulate the earliest stages of development of all animals, but are understudied in most insects. Here we investigated the effects of female internal (body condition) and external (time of season) environmental conditions on maternal RNA in the maturing oocytes and 24-h-old eggs (24-h eggs) of alfalfa leafcutting bees. Using gene expression and WGCNA analysis, we found that females adjust the quantity of mRNAs related to protein phosphorylation, transcriptional regulation, and nuclease activity deposited into maturing oocytes in response to both poor body condition and shorter day lengths that accompany the late season. However, the magnitude of these changes was higher for time of season. Females also adjusted miRNA deposition in response to seasonal changes, but not body condition. We did not observe significant changes in maternal RNAs in response to either body condition or time of season in 24-h eggs, which were past the maternal-to-zygotic transition. Our results suggest that females adjust the RNA transcripts they provide for offspring to regulate development in response to both internal and external environmental cues. Variation in maternal RNAs may, therefore, be important for regulating offspring phenotype in response to environmental change.
Collapse
Affiliation(s)
- Mallory A. Hagadorn
- Department of Biology, Department of Biology, Utah State University, Logan, UT, United States
| | - Frances K. Hunter
- Department of Biology, Department of Biology, Utah State University, Logan, UT, United States
| | - Tim DeLory
- Department of Biology, Department of Biology, Utah State University, Logan, UT, United States
| | - Makenna M. Johnson
- Department of Biology, Department of Biology, Utah State University, Logan, UT, United States,United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Logan, UT, United States
| | - Theresa L. Pitts-Singer
- United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Logan, UT, United States
| | - Karen M. Kapheim
- Department of Biology, Department of Biology, Utah State University, Logan, UT, United States,*Correspondence: Karen M. Kapheim ,
| |
Collapse
|
3
|
Campos RE, Di Battista CM, De Majo MS, Montini P, Fischer S. Photoperiod affects female life history traits in temperate populations of Aedes aegypti from South America. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In many insects, short photoperiods induce females to lay diapausing eggs, which are associated with a reduction in female fecundity, and/or with an increase in their growth rate, allowing for a larger size at adulthood. The effects of short photoperiods may also differ among populations, depending on the different selection pressures imposed by the winter conditions. Thus, this study aimed to experimentally assess the effects of short photoperiods on Aedes aegypti, an invasive mosquito species that also vectors several viral diseases. We compared life history parameters of the females reared from the first larval instar under contrasting photoperiods, in two populations from the temperate region of Argentina, one with a milder winter (BA) and the other with a harsher winter (SB). The results showed a significant increase in the time to oviposition, a trend to a larger size of females (significant only for SB) and higher inhibition of egg hatching (more pronounced in SB), in response to short photoperiods. No differences in fecundity were detected among treatments. The different reaction norms of the populations in female body size and egg hatching response suggest an adaptation to local conditions, which might favour a further expansion of A. aegypti towards colder climates.
Collapse
Affiliation(s)
- Raúl E Campos
- Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, Universidad Nacional de La Plata- CONICET, CCT La Plata , La Plata, Buenos Aires Province , Argentina
| | - Cristian M Di Battista
- Instituto de Limnología ‘Dr. Raúl A. Ringuelet’, Universidad Nacional de La Plata- CONICET, CCT La Plata , La Plata, Buenos Aires Province , Argentina
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA- CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires City , Argentina
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA- CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires City , Argentina
| | - Pedro Montini
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA- CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires City , Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA- CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires City , Argentina
| |
Collapse
|
4
|
Lee IH, Duvall LB. Maternally Instigated Diapause in Aedes albopictus: Coordinating Experience and Internal State for Survival in Variable Environments. Front Behav Neurosci 2022; 16:778264. [PMID: 35548691 PMCID: PMC9082357 DOI: 10.3389/fnbeh.2022.778264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is one of the most dangerous invasive species in the world. Females bite mammalian hosts, including humans, to obtain blood for egg development. The ancestral range of Ae. albopictus likely spanned from India to Japan and this species has since invaded a substantial portion of the globe. Ae. albopictus can be broadly categorized into temperate and tropical populations. One key to their ability to invade diverse ecological spaces is the capacity of females to detect seasonal changes and produce stress-resistant eggs that survive harsh winters. Females living in temperate regions respond to cues that predict the onset of unfavorable environmental conditions by producing eggs that enter maternally instigated embryonic diapause, a developmentally arrested state, which allows species survival by protecting the embryos until favorable conditions return. To appropriately produce diapause eggs, the female must integrate environmental cues and internal physiological state (blood feeding and reproductive status) to allocate nutrients and regulate reproduction. There is variation in reproductive responses to environmental cues between interfertile tropical and temperate populations depending on whether females are actively producing diapause vs. non-diapause eggs and whether they originate from populations that are capable of diapause. Although diapause-inducing environmental cues and diapause eggs have been extensively characterized, little is known about how the female detects gradual environmental changes and coordinates her reproductive status with seasonal dynamics to lay diapause eggs in order to maximize offspring survival. Previous studies suggest that the circadian system is involved in detecting daylength as a critical cue. However, it is unknown which clock network components are important, how these connect to reproductive physiology, and how they may differ between behavioral states or across populations with variable diapause competence. In this review, we showcase Ae. albopictus as an emerging species for neurogenetics to study how the nervous system combines environmental conditions and internal state to optimize reproductive behavior. We review environmental cues for diapause induction, downstream pathways that control female metabolic changes and reproductive capacity, as well as diapause heterogeneity between populations with different evolutionary histories. We highlight genetic tools that can be implemented in Ae. albopictus to identify signaling molecules and cellular circuits that control diapause. The tools and discoveries made in this species could translate to a broader understanding of how environmental cues are interpreted to alter reproductive physiology in other species and how populations with similar genetic and circuit organizations diversify behavioral patterns. These approaches may yield new targets to interfere with mosquito reproductive capacity, which could be exploited to reduce mosquito populations and the burden of the pathogens they transmit.
Collapse
Affiliation(s)
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University in the City of New York, New York, NY, United States
| |
Collapse
|
5
|
Edillo F, Ymbong RR, Bolneo AA, Hernandez RJ, Fuentes BL, Cortes G, Cabrera J, Lazaro JE, Sakuntabhai A. Temperature, season, and latitude influence development-related phenotypes of Philippine Aedes aegypti (Linnaeus): Implications for dengue control amidst global warming. Parasit Vectors 2022; 15:74. [PMID: 35248140 PMCID: PMC8898531 DOI: 10.1186/s13071-022-05186-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Dengue is endemic in the Philippines. Aedes aegypti is the primary vector. This study aimed to determine the hatching behavior and viability of Ae. aegypti first-generation (F1) eggs when exposed to temperature and photoperiod regimes under laboratory conditions. Methods Parental eggs were collected from selected highland and lowland sites in the Philippine big islands (Luzon, Visayas, and Mindanao) during the wet (2017–2018) and dry (2018) seasons. F1 egg cohorts were exposed separately in environmental chambers at 18, 25, and 38 °C with respective photoperiods for 6 weeks. Phenotypes (percent pharate larvae [PPL], hatch rates [HRs], and reproductive outputs [ROs]) were determined. Results Results of multivariate analyses of variance (MANOVA) between seasons showed significant main effects of temperature, season, and big island on all phenotypes across all sites. Significant interaction effects between seasons on all phenotypes across sites were shown between or among (1) season and big island, (2) season and temperature, (3) big island and temperature, (4) season, big island, and temperature, (5) big island, altitude, and temperature, and (6) season, big island, altitude, and temperature. Factors associated with the big islands might include their ecology, available breeding sites, and day lengths due to latitudinal differences, although they were not measured in the field. MANOVA results within each season on all phenotypes across sites showed (1) significant main effects of big island and temperature, and (2) significant interaction effects between big island and temperature within the wet season and (3) between temperature and photoperiod within the dry season. PPL were highest at 18 °C and were formed even at 38 °C in both seasons. Pharate larvae might play an adaptive role in global warming, expanded distribution to highlands, and preponderance to transmit human diseases. HRs in both seasons were highest at 25 °C and lowest at 38 °C. ROs were highest at 25 °C in the wet season and at 18 °C in the dry season. Conclusions Temperature and latitude of Philippine big islands influenced the development-related phenotypes of Ae. aegypti in both seasons. The two seasons influenced the phenotypes and their interaction effects with big island and/or temperature and/or altitude. Recommendations include year-round enhanced 4S control strategies for mosquito vectors and water pipeline installation in rural highlands. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05186-x.
Collapse
Affiliation(s)
- Frances Edillo
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines.
| | - Rhoniel Ryan Ymbong
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Alyssa Angel Bolneo
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Ric Jacob Hernandez
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Bianca Louise Fuentes
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Garren Cortes
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Joseph Cabrera
- Mosquito Research Laboratory, Biology Department, University of San Carlos-Talamban Campus, Cebu City, Philippines
| | - Jose Enrico Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, 75015, Paris, France
| |
Collapse
|
6
|
Loetti V, De Majo MS, Campos RE, Di Battista CM, Fischer S. Effect of Parental Photoperiod on Body Size and Developmental Time of Aedes aegypti (Diptera: Culicidae) in Buenos Aires City. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1638-1642. [PMID: 33704455 DOI: 10.1093/jme/tjab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Many insects use photoperiod as a signal to anticipate upcoming unfavorable conditions. Photoperiod sensitivity may be a relevant factor in Aedes (Stegomyia) aegypti (L.) populations at the cool margins of the species' range, where winter conditions have a strong effect on population dynamics. In this study, we evaluated the effect of parental photoperiod on preimaginal survival and developmental time, and on wing length for the first generation of Ae. aegypti from a temperate region (Buenos Aires City, Argentina). Our experiment started with eggs from parents exposed to short-day (SD; 10:14 [L:D]) or long-day (LD; 14:10 [L:D]) photoperiods during their entire life span. Eggs were stored under the same photoperiod (SD or LD) as their parents for 91 d, until immersion. After hatching, larvae were reared until adult emergence in thermal baths at one of two constant temperatures (17 or 23°C), at a photoperiod of 12:12 (L:D) h and fed ad libitum. Survival from larva I to adult emergence was not affected either by parental photoperiod or rearing temperature. At a rearing temperature of 23°C, female offspring from the SD parental photoperiod developed faster and had shorter wings compared with those from the LD parental photoperiod. No effect of parental photoperiod was observed on female offspring reared at 17°C. In male offspring, parental photoperiod had no effect on developmental time and wing length, independently of the rearing temperature. Results indicate that the parental photoperiod may affect some offspring traits. This effect may be a characteristic of Ae. aegypti populations in temperate regions to deal with the winter conditions.
Collapse
Affiliation(s)
- Verónica Loetti
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata - CONICET, CCT La Plata, Boulevard 120 and 62 Nº 1437, La Plata, Buenos Aires, Argentina
| | - Cristian M Di Battista
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata - CONICET, CCT La Plata, Boulevard 120 and 62 Nº 1437, La Plata, Buenos Aires, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
7
|
Saeed MM, Tougeron K, Raza ABM, Afzal M, Aqueel A, Le Goff GJ, Renoz F, Pirotte J, Hance T. Transgenerational phenotypic plasticity of diapause induction and related fitness cost in a commercial strain of the parasitoid Aphidius ervi Haliday. INSECT SCIENCE 2021; 28:780-792. [PMID: 32336036 DOI: 10.1111/1744-7917.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Diapause is an adaptation that insects have evolved to synchronize their life cycle with that of seasonal climatic changes and resources availability. However, cues for its induction are not always clear and, in some cases, a maternal effect may be involved. At the population level, just a part of the individuals may exhibit diapause with important consequences in terms of winter survival. Moreover, clear indicators of diapause state are difficult to identify. Diapause induction was thus investigated in the aphid parasitoid species Aphidius ervi Haliday (Hymenoptera: Braconidae) developing in the aphid Sitobion avenae (Hemiptera: Aphididae) at four crossed photothermal regimes (16 °C and 8 °C, 16:8 h L:D and 8:16 h L:D), and during 2 successive generations. We analyzed the reliability of changes in mummy color to assess for the diapausing state compared to dissections, and we measured parasitoid morphological and physiological traits. We observed that the proportion of dark brown mummies increased after one generation under low photothermal regime compared to other regimes. No diapause was recorded at 16 °C, 16:8 h L:D, while we observed 16.2% and 67.5% diapause incidence at 8 °C, 8:16 h L:D, at 1st and 2nd generation, respectively. Diapause induction is thus increased by short day-length conditions and low temperatures as well as by maternal effects. All parasitoid life-history traits (weight, size, fat content, water content, egg-load, and longevity) were affected by the photothermal regime and/or the generation. These results raise new questions on the environmental thresholds needed to induce diapause and on survival and adaptation potential of commercially available parasitoid strains in different environments.
Collapse
Affiliation(s)
- Muhammad Mubashir Saeed
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Abu Bakar Muhammad Raza
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Afzal
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Anjum Aqueel
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Guillaume Jean Le Goff
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Jennifer Pirotte
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
8
|
Krupa E, Henon N, Mathieu B. Diapause characterisation and seasonality of Aedes japonicus japonicus (Diptera, Culicidae) in the northeast of France. ACTA ACUST UNITED AC 2021; 28:45. [PMID: 34037519 PMCID: PMC8152802 DOI: 10.1051/parasite/2021045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022]
Abstract
The invasive mosquito Aedes japonicus japonicus (Theobald, 1901) settled in 2013 in the Alsace region, in the northeast of France. In this temperate area, some mosquito species use diapause to survive cold winter temperatures and thereby foster settlement and dispersal. This study reports diapause and its seasonality in a field population of Ae. japonicus in the northeast of France. For two years, eggs were collected from May to the beginning of November. They were most abundant in summer and became sparse in late October. Diapause eggs were determined by the presence of a fully developed embryo in unhatched eggs after repeated immersions. Our study showed effective diapause of Ae. japonicus in this part of France. At the start of the egg-laying period (week 20), we found up to 10% of eggs under diapause, and this rate reached 100% in October. The 50% cut-off of diapause incidence was determined by the end of summer, leading to an average calculated maternal critical photoperiod of 13 h 23 min. Interestingly, diapause was shown to occur in part of the eggs even at the earliest period of the two seasons, i.e. in May of each year. Even though we observed that the size of eggs was positively correlated with diapause incidence, morphology cannot be used as the unique predictive indicator of diapause status due to overlapping measurements between diapausing and non-diapausing eggs. This study provides new knowledge on diapause characterisation and invasive traits of Ae. japonicus.
Collapse
Affiliation(s)
- Eva Krupa
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Nicolas Henon
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Bruno Mathieu
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| |
Collapse
|
9
|
Mensch J, Di Battista C, De Majo MS, Campos RE, Fischer S. Increased size and energy reserves in diapausing eggs of temperate Aedes aegypti populations. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104232. [PMID: 33798504 DOI: 10.1016/j.jinsphys.2021.104232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Many insects overwinter in diapause, a pre-programmed anticipated response to unfavorable environmental conditions, often induced by a short-day photoperiod. Diapause involves morphological changes and increased energy stores required for metabolic demands during winter. In diapausing mosquito eggs, the accumulation of lipids plays an important role, because these molecules are the primary fuel consumed during embryogenesis and pharate larvae metabolism, and have a key role in egg desiccation resistance. The supposed inability of the mosquito Aedes aegypti to lay diapausing eggs has been recently challenged by a study on a temperate population, which showed that the inhibition of egg hatching in response to short days is possible in this species. Thus, the aim of the present study was to assess the effects of parental photoperiod on embryonic diapause-related traits, such as the triglyceride content and size of eggs laid, of two populations whose localities of origin differ in their winter length. Two colonies were maintained for each population: one under a Short-Day Photoperiod (SD: 10 h:14 h - Light:Dark) and the other under a Long-Day Photoperiod (LD: 14 h:10 h - Light:Dark). The eggs obtained from each combination of population and light treatment were used for size measurement (length, width and volume) and for the quantification of triglyceride content. Egg size showed differences between photoperiod treatments, with larger width and volume in eggs from the SD treatment. Remarkably, eggs from the SD treatment accumulated twice as many triglycerides as those from the LD treatment. Also, the eggs derived from the population having the longer winter accumulated larger amounts of triglycerides. The higher lipid content is probably contributing to a better survival during the cold season in both populations. The photoperiod-induced response in egg size and amount of triglycerides observed in this study support the hypothesis that the Ae. aegypti populations studied are able to lay diapausing eggs, a fact that provides physiological bases for the further expansion of this species to colder regions.
Collapse
Affiliation(s)
- Julián Mensch
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - Cristian Di Battista
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
11
|
Garzón MJ, Maffey L, Lizuain A, Soto D, Diaz PC, Leporace M, Salomón OD, Schweigmann NJ. Temperature and photoperiod effects on dormancy status and life cycle parameters in Aedes albopictus and Aedes aegypti from subtropical Argentina. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:97-105. [PMID: 32827166 DOI: 10.1111/mve.12474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16 °C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day-length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.
Collapse
Affiliation(s)
- M J Garzón
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución, Grupo de Estudio de Mosquitos, Buenos Aires, Argentina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - L Maffey
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución, Grupo de Estudio de Mosquitos, Buenos Aires, Argentina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - A Lizuain
- Administración Nacional de Laboratorios e Institutos de la Salud "Dr. Carlos G. Malbrán", Centro Nacional de Diagnóstico e Investigación en Endemoepidemias, Buenos Aires, Argentina
| | - D Soto
- Administración Nacional de Laboratorios e Institutos de la Salud "Dr. Carlos G. Malbrán", Instituto Nacional de Medicina Tropical-INMeT, Puerto Iguazú, Argentina
| | - P C Diaz
- Administración Nacional de Laboratorios e Institutos de la Salud "Dr. Carlos G. Malbrán", Instituto Nacional de Medicina Tropical-INMeT, Puerto Iguazú, Argentina
| | - M Leporace
- Laboratorio de Control de Vectores Entomológicos de Importancia Sanitaria (LaCVEIS), Fundación H. A. Barceló, Santo Tomé, Argentina
| | - O D Salomón
- Administración Nacional de Laboratorios e Institutos de la Salud "Dr. Carlos G. Malbrán", Instituto Nacional de Medicina Tropical-INMeT, Puerto Iguazú, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N J Schweigmann
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución, Grupo de Estudio de Mosquitos, Buenos Aires, Argentina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
12
|
Deng F, Wu S, Wu Y, Liu X, Wu P, Zhai Z. Identification of mucins and their expression in the vector mosquito Aedes albopictus. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:297-305. [PMID: 33207050 DOI: 10.1111/jvec.12400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Mucins, the main structural components of vertebrate respiratory, digestive and reproductive tract mucus, as well as insect peritrophic matrix, play important roles in protecting host cells from invading microbes and difficult external environments. Mucins are characterized by highly glycosylated proteins constituting the mucin domain that is rich in repetitive sequences of threonine, serine, and proline (PTS). Despite potential important roles, mosquito mucins remain largely uncharacterized. Here, we performed bioinformatics analyses to identify proteins with PTS repeat domain and predicted 43 mucins or mucin-related proteins in Aedes albopictus. Gene expression analysis revealed that these mucins are dynamically expressed across different development stages and in different organs of Aedes albopictus. Of note, blood feeding upregulated AALF016448 and AALF013291 expression in the midgut, fat body, and ovary, raising the possibility that these mucins play potential roles in reproduction, digestion, and intestinal defense against invading pathogens upon blood feeding. Our in silico identification, followed by expressional validation, thus established a valuable resource for further dissecting the functions of mucins for vector control.
Collapse
Affiliation(s)
- Fangqing Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Si Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Pa Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
13
|
Noh MY, Kim SH, Gorman MJ, Kramer KJ, Muthukrishnan S, Arakane Y. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103386. [PMID: 32315743 DOI: 10.1016/j.ibmb.2020.103386] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Eggs from Aedes mosquitoes exhibit desiccation resistance that helps them to survive and spread as human disease vectors throughout the world. Previous studies have suggested that eggshell/chorion melanization and/or serosal cuticle formation are important for desiccation resistance. In this study, using dsRNAs for target genes, we analyzed the functional importance of two ovary-specific yellow genes, AalY-g and AalY-g2, in the resistance to egg desiccation of the Asian tiger mosquito, Aedes albopictus, a species in which neither the timing of the melanization nor temporal development of the serosal cuticle is correlated with desiccation resistance. Injections of dsAalY-g, dsAalY-g2 or dsAalY-g/g2 (co-injection) into adult females have no effect on their fecundity. However, initial melanization is delayed by 1-2 h with the eggshells eventually becoming black similar to that observed in eggs from dsEGFP-injected control females. In addition, the shape of the eggs from dsAalY-g, -g2 and -g/g2-treated females is abnormally crescent-shaped and the outermost exochorion is more fragile and partially peeled off. dsEGFP control eggs, like those from the wild-type strain, acquire resistance to desiccation between 18 and 24 h after oviposition (HAO). In contrast, ~80% of the 24 HAO dsAalY-g and dsAalY-g2 eggs collapse when they are transferred to a low humidity environment. In addition, there is no electron-dense outer endochorion evident in either dsAalY-g or dsAalY-g2 eggs. These results support the hypothesis that AalY-g and AalY-g2 regulate the timing of eggshell darkening and are required for integrity of the exochorion as well as for rigidity, normal morphology and formation of the outer endochorion, a structure that apparently is critical for desiccation resistance of the Ae. albopictus egg.
Collapse
Affiliation(s)
- Mi Young Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Sung Hyun Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
14
|
Metelmann S, Caminade C, Jones AE, Medlock JM, Baylis M, Morse AP. The UK's suitability for Aedes albopictus in current and future climates. J R Soc Interface 2020; 16:20180761. [PMID: 30862279 PMCID: PMC6451397 DOI: 10.1098/rsif.2018.0761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is able to transmit various pathogens to humans and animals and it has already caused minor outbreaks of dengue and chikungunya in southern Europe. Alarmingly, it is spreading northwards and its eggs have been found in the UK in 2016 and 2017. Climate-driven models can help to analyse whether this originally subtropical species could become established in northern Europe. But so far, these models have not considered the impact of the diurnal temperature range (DTR) experienced by mosquitoes in the field. Here, we describe a dynamical model for the life cycle of Ae. albopictus, taking into account the DTR, rainfall, photoperiod and human population density. We develop a new metric for habitat suitability and drive our model with different climate data sets to analyse the UK's suitability for this species. For now, most of the UK seems to be rather unsuitable, except for some densely populated and high importation risk areas in southeast England. But this picture changes in the next 50 years: future scenarios suggest that Ae. albopictus could become established over almost all of England and Wales, indicating the need for continued mosquito surveillance.
Collapse
Affiliation(s)
- S Metelmann
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - C Caminade
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A E Jones
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK
| | - J M Medlock
- 3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK.,4 Medical Entomology Group, Public Health England , London UK
| | - M Baylis
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A P Morse
- 2 School of Environmental Sciences, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| |
Collapse
|
15
|
Cole EL, Empringham JS, Biro C, Thompson GJ, Rosengaus RB. Relish as a Candidate Marker for Transgenerational Immune Priming in a Dampwood Termite (Blattodae: Archeotermopsidae). INSECTS 2020; 11:E149. [PMID: 32120840 PMCID: PMC7143124 DOI: 10.3390/insects11030149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Natural selection should favor the transfer of immune competence from one generation to the next in a context-dependent manner. Transgenerational immune priming (TGIP) is expected to evolve when species exploit pathogen-rich environments and exhibit extended overlap of parent-offspring generations. Dampwood termites are hemimetabolous, eusocial insects (Blattodea: Archeotermopsidae) that possess both of these traits. We predict that offspring of pathogen-exposed queens of Zootermopsis angusticollis will show evidence of a primed immune system relative to the offspring of unexposed controls. We found that Relish transcripts, one of two immune marker loci tested, were enhanced in two-day-old embryos when laid by Serratia-injected queens. These data implicate the immune deficiency (IMD) signaling pathway in TGIP. Although an independent antibacterial assay revealed that embryos do express antibacterial properties, these do not vary as a function of parental treatment. Taken together, Z. angusticollis shows transcriptional but not translational evidence for TGIP. This apparent incongruence between the transcriptional and antimicrobial response from termites suggests that effectors are either absent in two-day-old embryos or their activity is too subtle to detect with our antibacterial assay. In total, we provide the first suggestive evidence of transgenerational immune priming in a termite.
Collapse
Affiliation(s)
- Erin L. Cole
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Jessica S. Empringham
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Colette Biro
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Graham J. Thompson
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Rebeca B. Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| |
Collapse
|
16
|
Tougeron K, Devogel M, van Baaren J, Le Lann C, Hance T. Trans-generational effects on diapause and life-history-traits of an aphid parasitoid. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104001. [PMID: 31874137 DOI: 10.1016/j.jinsphys.2019.104001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Transgenerational effects act on a wide range of insects' life-history traits and can be involved in the control of developmental plasticity, such as diapause expression. Decrease in or total loss of winter diapause expression recently observed in some species could arise from inhibiting maternal effects. In this study, we explored transgenerational effects on diapause expression and traits in one commercial and one Canadian field strain of the aphid parasitoid Aphidius ervi. These strains were reared under short photoperiod (8:16 h LD) and low temperature (14 °C) conditions over two generations. Diapause levels, developmental times, physiological and morphological traits were measured. Diapause levels increased after one generation in the Canadian field but not in the commercial strain. For both strains, the second generation took longer to develop than the first one. Tibia length and wing surface decreased over generations while fat content increased. A crossed-generations experiment focusing on the industrial parasitoid strain showed that offspring from mothers reared at 14 °C took longer to develop, were heavier, taller with wider wings and with more fat reserves than those from mothers reared at 20 °C (8:16 h LD). No effect of the mother rearing conditions was shown on diapause expression. Additionally to direct plasticity of the offspring, results suggest transgenerational plasticity effects on diapause expression, development time, and on the values of life-history traits. We demonstrated that populations showing low diapause levels may recover higher levels through transgenerational plasticity in response to diapause-induction cues, provided that environmental conditions are reaching the induction-thresholds specific to each population. Transgenerational plasticity is thus important to consider when evaluating how insects adapt to changing environments.
Collapse
Affiliation(s)
- K Tougeron
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101, Sherbrooke Est, Montréal, Québec H1X 2B2, Canada; Univ Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35000 Rennes, France; Earth and Life Institute, Centre de recherche sur la biodiversité, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - M Devogel
- Univ Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35000 Rennes, France; Earth and Life Institute, Centre de recherche sur la biodiversité, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - J van Baaren
- Univ Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35000 Rennes, France
| | - C Le Lann
- Univ Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35000 Rennes, France
| | - T Hance
- Earth and Life Institute, Centre de recherche sur la biodiversité, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Tran A, Mangeas M, Demarchi M, Roux E, Degenne P, Haramboure M, Le Goff G, Damiens D, Gouagna LC, Herbreteau V, Dehecq JS. Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example-Application to the development of an operational mapping tool of vector populations. PLoS One 2020; 15:e0227407. [PMID: 31951601 PMCID: PMC6968851 DOI: 10.1371/journal.pone.0227407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/18/2019] [Indexed: 01/05/2023] Open
Abstract
Mosquitoes are responsible for the transmission of major pathogens worldwide. Modelling their population dynamics and mapping their distribution can contribute effectively to disease surveillance and control systems. Two main approaches are classically used to understand and predict mosquito abundance in space and time, namely empirical (or statistical) and process-based models. In this work, we used both approaches to model the population dynamics in Reunion Island of the 'Tiger mosquito', Aedes albopictus, a vector of dengue and chikungunya viruses, using rainfall and temperature data. We aimed to i) evaluate and compare the two types of models, and ii) develop an operational tool that could be used by public health authorities and vector control services. Our results showed that Ae. albopictus dynamics in Reunion Island are driven by both rainfall and temperature with a non-linear relationship. The predictions of the two approaches were consistent with the observed abundances of Ae. albopictus aquatic stages. An operational tool with a user-friendly interface was developed, allowing the creation of maps of Ae. albopictus densities over the whole territory using meteorological data collected from a network of weather stations. It is now routinely used by the services in charge of vector control in Reunion Island.
Collapse
Affiliation(s)
- Annelise Tran
- CIRAD, UMR TETIS, Sainte-Clotilde, Reunion, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, Reunion, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- * E-mail:
| | | | | | | | - Pascal Degenne
- CIRAD, UMR TETIS, Sainte-Clotilde, Reunion, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Marion Haramboure
- CIRAD, UMR TETIS, Sainte-Clotilde, Reunion, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, Reunion, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | | | | | | |
Collapse
|
18
|
Xia D, Guo X, Hu T, Li L, Teng PY, Yin QQ, Luo L, Xie T, Wei YH, Yang Q, Li SK, Wang YJ, Xie Y, Li YJ, Wang CM, Yang ZC, Chen XG, Zhou XH. Photoperiodic diapause in a subtropical population of Aedes albopictus in Guangzhou, China: optimized field-laboratory-based study and statistical models for comprehensive characterization. Infect Dis Poverty 2018; 7:89. [PMID: 30107859 PMCID: PMC6092856 DOI: 10.1186/s40249-018-0466-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes albopictus is among the 100 most invasive species worldwide and poses a major risk to public health. Photoperiodic diapause provides a crucial ecological basis for the adaptation of this species to adverse environments. Ae. albopictus is the vital vector transmitting dengue virus in Guangzhou, but its diapause activities herein remain obscure. METHODS In the laboratory, yeast powder and food slurry were compared for a proper diapause determination method, and the critical photoperiod (CPP) was tested at illumination times of 11, 11.5, 12, 12.5, 13, and 13.5 h. A 4-parameter logistic (4PL) regression model was selected to estimate the CPP. In the field, the seasonal dynamics of the Ae. albopictus population, egg diapause, and hatching of overwintering eggs were investigated monthly, weekly, and daily, respectively. A distributed lag non-linear model (DLNM) was used to assess the associations of diapause with meteorological factors. RESULTS In the laboratory, both the wild population and the Foshan strain of Ae. albopictus were induced to diapause at an incidence greater than 80%, and no significant difference (P > 0.1) was observed between the two methods for identifying diapause. The CPP of this population was estimated to be 12.312 h of light. In the field, all of the indexes of the wild population were at the lowest levels from December to February, and the Route Index was the first to increase in March. Diapause incidence displayed pronounced seasonal dynamics. It was estimated that the day lengths of 12.111 h at week2016, 43 and 12.373 h at week2017, 41 contributed to diapause in 50% of the eggs. Day length was estimated to be the main meteorological factor related to diapause. CONCLUSIONS Photoperiodic diapause of Ae. albopictus in Guangzhou of China was confirmed and comprehensively elucidated in both the laboratory and the field. Diapause eggs are the main form for overwintering and begin to hatch in large quantities in March in Guangzhou. Furthermore, this study also established an optimized investigation system and statistical models for the study of Ae. albopictus diapause. These findings will contribute to the prevention and control of Ae. albopictus and mosquito-borne diseases.
Collapse
Affiliation(s)
- Dan Xia
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiang Guo
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tian Hu
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Li Li
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Ping-Ying Teng
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qing-Qing Yin
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Tian Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yue-Hong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Qian Yang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shu-Kai Li
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu-Ji Wang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yi-Ji Li
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chun-Mei Wang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhi-Cong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Hong Zhou
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
19
|
Polačik M, Smith C, Reichard M. Maternal source of variability in the embryo development of an annual killifish. J Evol Biol 2017; 30:738-749. [DOI: 10.1111/jeb.13038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 01/24/2023]
Affiliation(s)
- M. Polačik
- Institute of Vertebrate Biology; Czech Academy of Sciences; Brno Czech Republic
| | - C. Smith
- Institute of Vertebrate Biology; Czech Academy of Sciences; Brno Czech Republic
- School of Biology; University of St Andrews; St Andrews United Kingdom
- Bell-Pettigrew Museum of Natural History; University of St Andrews; St Andrews United Kingdom
| | - M. Reichard
- Institute of Vertebrate Biology; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
20
|
Tantely ML, Goodman SM, Rakotondranaivo T, Boyer S. Review of West Nile virus circulation and outbreak risk in Madagascar: Entomological and ornithological perspectives. Parasite 2016; 23:49. [PMID: 27849515 PMCID: PMC5112766 DOI: 10.1051/parasite/2016058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/23/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile fever (WNF) is a zoonotic disease, occurring nearly globally. In Madagascar, West Nile virus (WNV) was first detected in 1978 from wild birds and the virus is currently distributed across the island, but no epidemic or epizootic period has been recorded. One fatal human case of WNV infection was reported in 2011, suggesting a "tip of the iceberg" phenomenon of a possible WNF epidemic/epizootic on the island. The main objective of this literature-based survey is to review patterns of WNV circulation in Madagascar from the entomological and ornithological points of view. Among the 235 mosquito species described from Madagascar, 29 species are widely associated with WNV infection; 16 of them are found naturally infected with WNV on the island and categorized into major, candidate, and potential vectors of WNV according to their vector capacity. This study upholds the hypothesis that WNV enzooticity is independent of annual movements of migratory birds passing through Madagascar. Moreover, the lack of regular migratory bird flux between Africa and Madagascar would reduce the probability of transmission and the subsequent reintroduction of the virus into locally occurring mosquito species. Given that Palearctic migratory birds are strongly implicated in the transmission of WNV, we highlight notable differences in the movements and species diversity of these birds in Madagascar as compared to eastern and northern Africa. Risk factors from this two-pronged approach are presented for the emergence of WNF outbreak.
Collapse
Affiliation(s)
- Michaël Luciano Tantely
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Steven M. Goodman
-
Field Museum of Natural History 1400 South Lake Shore Drive Chicago
60605 Illinois USA
-
Association Vahatra BP 3972 Antananarivo 101 Madagascar
| | - Tsirinaina Rakotondranaivo
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Sébastien Boyer
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| |
Collapse
|
21
|
Guzzetta G, Montarsi F, Baldacchino FA, Metz M, Capelli G, Rizzoli A, Pugliese A, Rosà R, Poletti P, Merler S. Potential Risk of Dengue and Chikungunya Outbreaks in Northern Italy Based on a Population Model of Aedes albopictus (Diptera: Culicidae). PLoS Negl Trop Dis 2016; 10:e0004762. [PMID: 27304211 PMCID: PMC4909274 DOI: 10.1371/journal.pntd.0004762] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/14/2016] [Indexed: 01/12/2023] Open
Abstract
The rapid invasion and spread of Aedes albopictus (Skuse, 1894) within new continents and climatic ranges has created favorable conditions for the emergence of tropical arboviral diseases in the invaded areas. We used mosquito abundance data from 2014 collected across ten sites in northern Italy to calibrate a population model for Aedes albopictus and estimate the potential of imported human cases of chikungunya or dengue to generate the condition for their autochthonous transmission in the absence of control interventions. The model captured intra-year seasonality and heterogeneity across sites in mosquito abundance, based on local temperature patterns and the estimated site-specific mosquito habitat suitability. A robust negative correlation was found between the latter and local late spring precipitations, indicating a possible washout effect on larval breeding sites. The model predicts a significant risk of chikungunya outbreaks in most sites if a case is imported between the beginning of summer and up to mid-November, with an average outbreak probability between 4.9% and 25%, depending on the site. A lower risk is predicted for dengue, with an average probability between 4.2% and 10.8% for cases imported between mid-July and mid-September. This study shows the importance of an integrated entomological and medical surveillance for the evaluation of arboviral disease risk, which is a precondition for designing cost-effective vector control programs.
Collapse
Affiliation(s)
| | - Fabrizio Montarsi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | | | - Markus Metz
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Piero Poletti
- Fondazione Bruno Kessler, Trento, Italy
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | | |
Collapse
|
22
|
Erguler K, Smith-Unna SE, Waldock J, Proestos Y, Christophides GK, Lelieveld J, Parham PE. Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS One 2016; 11:e0149282. [PMID: 26871447 PMCID: PMC4752251 DOI: 10.1371/journal.pone.0149282] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/03/2016] [Indexed: 01/04/2023] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is a highly invasive vector species. It is a proven vector of dengue and chikungunya viruses, with the potential to host a further 24 arboviruses. It has recently expanded its geographical range, threatening many countries in the Middle East, Mediterranean, Europe and North America. Here, we investigate the theoretical limitations of its range expansion by developing an environmentally-driven mathematical model of its population dynamics. We focus on the temperate strain of Ae. albopictus and compile a comprehensive literature-based database of physiological parameters. As a novel approach, we link its population dynamics to globally-available environmental datasets by performing inference on all parameters. We adopt a Bayesian approach using experimental data as prior knowledge and the surveillance dataset of Emilia-Romagna, Italy, as evidence. The model accounts for temperature, precipitation, human population density and photoperiod as the main environmental drivers, and, in addition, incorporates the mechanism of diapause and a simple breeding site model. The model demonstrates high predictive skill over the reference region and beyond, confirming most of the current reports of vector presence in Europe. One of the main hypotheses derived from the model is the survival of Ae. albopictus populations through harsh winter conditions. The model, constrained by the environmental datasets, requires that either diapausing eggs or adult vectors have increased cold resistance. The model also suggests that temperature and photoperiod control diapause initiation and termination differentially. We demonstrate that it is possible to account for unobserved properties and constraints, such as differences between laboratory and field conditions, to derive reliable inferences on the environmental dependence of Ae. albopictus populations.
Collapse
Affiliation(s)
- Kamil Erguler
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
- * E-mail: (KE); (PEP)
| | - Stephanie E. Smith-Unna
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, United Kingdom
| | - Joanna Waldock
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Yiannis Proestos
- Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - George K. Christophides
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Jos Lelieveld
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| | - Paul E. Parham
- Department of Public Health and Policy, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GL, United Kingdom
- Grantham Institute for Climate Change, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St. Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
- * E-mail: (KE); (PEP)
| |
Collapse
|
23
|
Lacour G, Chanaud L, L’Ambert G, Hance T. Seasonal Synchronization of Diapause Phases in Aedes albopictus (Diptera: Culicidae). PLoS One 2015; 10:e0145311. [PMID: 26683460 PMCID: PMC4686165 DOI: 10.1371/journal.pone.0145311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
In temperate areas, population dynamics of the invasive Asian tiger mosquito Aedes albopictus are strongly affected by winter. The work we present here analyzes the adaptive synchronization of the diapause process in the wintry generation of A. albopictus, where the egg stage is exposed to adverse winter conditions. The seasonal pattern of egg laying activity of a French Mediterranean population of the Asian tiger mosquito was monitored weekly for 2 years with ovitraps. The field diapause incidence and the critical photoperiod (CPP, i.e. the maternal day length inducing diapause in 50% of the eggs), were determined by hatching experiments on the collected eggs. The period of diapause termination was estimated by a field survey of the first hatchings for both years. The CPP is equal to 13.5 hours of light and occurs in the field on the 25th of August. Thus, it is on September 11th, 17 days after the CPP, that 50% of the eggs are in a prediapause stage in the field. The egg diapause rate increases rapidly during September, whereas the mean number of eggs laid decreases sharply after mid-September. Surprisingly, after having reached a peak of 95% at the end of September, from mid-October the diapause incidence declined and stayed below 50%. Indeed, both years the diapause initiates before the rapid decrease of the environmental temperature. This leaves a sufficient period of time to the complete development of one generation of A. albopictus with effective induction of diapause in the laid eggs. The very first larvae hatched were sampled both years in the first half of March. With 20 to 26 weeks in the egg stage and about 7 weeks in the larval stages, the first annual generation spends a long time in immature stages. On a practical point of view, this long development time represents a wide window for eggs and larvae control in early spring.
Collapse
Affiliation(s)
- Guillaume Lacour
- EID Méditerranée, Montpellier, France
- Centre de Recherche sur la Biodiversité, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgique
| | | | | | - Thierry Hance
- Centre de Recherche sur la Biodiversité, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgique
| |
Collapse
|
24
|
Farnesi LC, Menna-Barreto RFS, Martins AJ, Valle D, Rezende GL. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:43-52. [PMID: 26514070 DOI: 10.1016/j.jinsphys.2015.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/03/2015] [Accepted: 10/24/2015] [Indexed: 05/21/2023]
Abstract
Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil.
| | | | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Denise Valle
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Gustavo Lazzaro Rezende
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|