1
|
Frizzera D, Zanni V, Seffin E, de Miranda JR, Marroni F, Annoscia D, Nazzi F. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174892. [PMID: 39034005 DOI: 10.1016/j.scitotenv.2024.174892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.
Collapse
Affiliation(s)
- Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Elisa Seffin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | | | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
2
|
Zufriategui C, Porrini MP, Eguaras MJ, Garrido PM. Detrimental effects of amitraz exposure in honey bees (Apis mellifera) infected with Nosema ceranae. Parasitol Res 2024; 123:204. [PMID: 38709330 DOI: 10.1007/s00436-024-08225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.
Collapse
Affiliation(s)
- Camila Zufriategui
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Martín Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Martín Javier Eguaras
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina.
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Liu L, Shi M, Wu Y, Xie X, Li S, Dai P, Gao J. Interactive effects of dinotefuran and Nosema ceranae on the survival status and gut microbial community of honey bees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105808. [PMID: 38582580 DOI: 10.1016/j.pestbp.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 04/08/2024]
Abstract
Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang 330031, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Shi M, Guo Y, Wu YY, Dai PL, Dai SJ, Diao QY, Gao J. Acute and chronic effects of sublethal neonicotinoid thiacloprid to Asian honey bee (Apis cerana cerana). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105483. [PMID: 37532314 DOI: 10.1016/j.pestbp.2023.105483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023]
Abstract
Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shao-Jun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
5
|
De la Mora A, Morfin N, Tapia-Rivera JC, Macías-Macías JO, Tapia-González JM, Contreras-Escareño F, Petukhova T, Guzman-Novoa E. The Fungus Nosema ceranae and a Sublethal Dose of the Neonicotinoid Insecticide Thiamethoxam Differentially Affected the Health and Immunity of Africanized Honey Bees. Microorganisms 2023; 11:1258. [PMID: 37317233 DOI: 10.3390/microorganisms11051258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Honey bees (Apis mellifera L.) are affected by different biotic and abiotic stressors, such as the fungus Nosema ceranae and neonicotinoid insecticides, that negatively impact their health. However, most studies so far conducted have focused on the effect of these stressors separately and in European honey bees. Therefore, this study was conducted to analyze the impact of both stressors, singly and in combination, on honey bees of African descent that have demonstrated resistance to parasites and pesticides. Africanized honey bees (AHBs, Apis mellifera scutellata Lepeletier) were inoculated with N. ceranae (1 × 105 spores/bee) and/or chronically exposed for 18 days to a sublethal dose of thiamethoxam (0.025 ng/bee) to evaluate their single and combined effects on food consumption, survivorship, N. ceranae infection, and immunity at the cellular and humoral levels. No significant effects by any of the stressors were found for food consumption. However, thiamethoxam was the main stressor associated to a significant decrease in AHB survivorship, whereas N. ceranae was the main stressor affecting their humoral immune response by upregulating the expression of the gene AmHym-1. Additionally, both stressors, separately and combined, significantly decreased the concentration of haemocytes in the haemolymph of the bees. These findings indicate that N. ceranae and thiamethoxam differentially affect the lifespan and immunity of AHBs and do not seem to have synergistic effects when AHBs are simultaneously exposed to both stressors.
Collapse
Affiliation(s)
- Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - José C Tapia-Rivera
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - José O Macías-Macías
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - José M Tapia-González
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - Francisca Contreras-Escareño
- Departamento de Producción Agricola, CUCSUR, Universidad de Guadalajara, Independencia Nal. 161, Autlan 48900, Jalisco, Mexico
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
6
|
El-Seedi HR, Ahmed HR, El-Wahed AAA, Saeed A, Algethami AF, Attia NF, Guo Z, Musharraf SG, Khatib A, Alsharif SM, Naggar YA, Khalifa SAM, Wang K. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet Sci 2022; 9:vetsci9050199. [PMID: 35622727 PMCID: PMC9146872 DOI: 10.3390/vetsci9050199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat, and improper beekeeping practices that are claimed to cause these declines, the deep understanding of the observed losses of these important insects is still missing. Honeybees have an innate immune system, which includes physical barriers and cellular and humeral responses to defend against pathogens and parasites. Exposure to various stressors may affect this system and the health of individual bees and colonies. This review summarizes and discusses the composition of the honeybee immune system and the consequences of exposure to stressors, individually or in combinations, on honeybee immune competence. In addition, we discuss the relationship between bee nutrition and immunity. Nutrition and phytochemicals were highlighted as the factors with a high impact on honeybee immunity.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| | - Hanan R. Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ahmed F. Algethami
- Al nahal al jwal Foundation Saudi Arabia, P.O. Box 617, Al Jumum, Makkah 21926, Saudi Arabia;
| | - Nour F. Attia
- Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic Univetsity Malaysia, Kuantan 25200, Malaysia;
- Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia;
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| |
Collapse
|
7
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
8
|
Polyphenols as Food Supplement Improved Food Consumption and Longevity of Honey Bees ( Apis mellifera) Intoxicated by Pesticide Thiacloprid. INSECTS 2021; 12:insects12070572. [PMID: 34201457 PMCID: PMC8304825 DOI: 10.3390/insects12070572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Worldwide, mass losses of honey bee colonies are being observed more frequently. Poor nutrition may cause honey bees to be more susceptible to pesticides and more vulnerable to diseases, and as a direct result of this, honey bee colonies can collapse. Another cause of mass bee colony collapse that is no less important is the use of pesticides. The level of toxicity of most pesticides is greatly affected by nutrient uptake. In addition, the honey bee genome is known to be specific for a significantly lower number of genes associated with detoxification compared with other insect species. Intake of phenolic and flavonoid substances in food can lead to increased expression of genes encoding detoxification enzymes in bees. Therefore, in this study, we evaluated in vitro the effect of phenolic and flavonoid substances on bee mortality and food consumption in the case of intoxication by pesticide thiacloprid. The results of this study showed a significant positive effect on honey bee survival rate as well as increased food intake. In addition, the expression level of genes encoding detoxification enzymes was determined. Abstract Malnutrition is one of the main problems related to the global mass collapse of honey bee colonies, because in honey bees, malnutrition is associated with deterioration of the immune system and increased pesticide susceptibility. Another important cause of mass bee colonies losses is the use of pesticides. Therefore, the goal of this study was to verify the influence of polyphenols on longevity, food consumption, and cytochrome P450 gene expression in worker bees intoxicated by thiacloprid. The tests were carried out in vitro under artificial conditions (caged bees). A conclusively lower mortality rate and, in parallel, a higher average food intake, were observed in intoxicated bees treated using a mixture of phenolic acids and flavonoids compared to untreated intoxicated bees. This was probably caused by increased detoxification capacity caused by increased expression level of genes encoding the cytochrome P450 enzyme in the bees. Therefore, the addition of polyphenols into bee nutrition is probably able to positively affect the detoxification capacity of bees, which is often reduced by the impact of malnutrition resulting from degradation of the environment and common beekeeping management.
Collapse
|
9
|
Application of the Natural Products NOZEMAT HERB and NOZEMAT HERB PLUS Can Decrease Honey Bee Colonies Losses during the Winter. DIVERSITY 2021. [DOI: 10.3390/d13060228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Honey bees (Apis mellifera L.) are crucial pollinators for many crops and natural ecosystems. However, honey bee colonies have been experiencing heavy overwinter mortality in almost all parts of the world. In the present study we have investigatеd, for the first time, the effects from the application of the herbal supplements NOZEMAT HERB® (NH) and NOZEMAT HERB PLUS® (NHP) on overwintering honey bee colony survival and on total protein and lysozyme content. To achieve this, in early autumn 2019, 45 colonies were selected and treated with these herbal supplements. The total protein and lysozyme content were evaluated after administration of NH and NHP twice the following year (June and September 2020). The obtained results have shown that both supplements have a positive effect on overwintering colony survival. Considerable enhancement in longevity of “winter bees” has been observed after the application of NHP, possibly due to the increased functionality of the immune system and antioxidant detoxification capacity. Although the mechanisms of action of NH and NHP are yet to be completely elucidated, our results suggest a new holistic approach on overwintering honey bee colony survival and welfare.
Collapse
|
10
|
Bird G, Wilson AE, Williams GR, Hardy NB. Parasites and pesticides act antagonistically on honey bee health. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gwendolyn Bird
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Alan E. Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences Auburn University Auburn AL USA
| | | | - Nate B. Hardy
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| |
Collapse
|
11
|
Pinilla-Gallego MS, Williams EE, Davis A, Fitzgerald JL, McArt SH, Irwin RE. Within-Colony Transmission of Microsporidian and Trypanosomatid Parasites in Honey Bee and Bumble Bee Colonies. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1393-1401. [PMID: 32960211 PMCID: PMC7734961 DOI: 10.1093/ee/nvaa112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.
Collapse
Affiliation(s)
| | | | - Abby Davis
- Entomology Department, Cornell University, Ithaca, NY
| | | | - Scott H McArt
- Entomology Department, Cornell University, Ithaca, NY
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC
| |
Collapse
|
12
|
Bell HC, Montgomery CN, Benavides JE, Nieh JC. Effects of Nosema ceranae (Dissociodihaplophasida: Nosematidae) and Flupyradifurone on Olfactory Learning in Honey Bees, Apis mellifera (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6000118. [PMID: 33232488 PMCID: PMC7685397 DOI: 10.1093/jisesa/ieaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The health of insect pollinators, particularly the honey bee, Apis mellifera (Linnaeus, 1758), is a major concern for agriculture and ecosystem health. In response to mounting evidence supporting the detrimental effects of neonicotinoid pesticides on pollinators, a novel 'bee safe' butenolide compound, flupyradifurone (FPF) has been registered for use in agricultural use. Although FPF is not a neonicotinoid, like neonicotinoids, it is an excitotoxic nicotinic acetylcholine receptor agonist. In addition, A. mellifera faces threats from pathogens, such as the microsporidian endoparasite, Nosema ceranae (Fries et al. 1996). We therefore sought 1) to increase our understanding of the potential effects of FPF on honey bees by focusing on a crucial behavior, the ability to learn and remember an odor associated with a food reward, and 2) to test for a potential synergistic effect on such learning by exposure to FPF and infection with N. ceranae. We found little evidence that FPF significantly alters learning and memory at short-term field-realistic doses. However, at high doses and at chronic, field-realistic exposure, FPF did reduce learning and memory in an olfactory conditioning task. Infection with N. ceranae also reduced learning, but there was no synergy (no significant interaction) between N. ceranae and exposure to FPF. These results suggest the importance of continued studies on the chronic effects of FPF.
Collapse
Affiliation(s)
- Heather Christine Bell
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - Corina N Montgomery
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - Jaime E Benavides
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| |
Collapse
|
13
|
Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet Sci 2020; 7:vetsci7040166. [PMID: 33143134 PMCID: PMC7712510 DOI: 10.3390/vetsci7040166] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance. In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee colonies. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause. It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, various factors have been considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem. Thus, it is obvious that there are many factors affecting honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses. The present review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.
Collapse
|
14
|
Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci Rep 2020; 10:17021. [PMID: 33046792 PMCID: PMC7550335 DOI: 10.1038/s41598-020-74209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
The microsporidian parasite Nosema ceranae and neonicotinoid insecticides affect the health of honey bees (Apis mellifera). However, there is limited information about the effect of these stressors on other pollinators such as stingless bees (Hymenoptera: Meliponini). We examined the separate and combined effects of N. ceranae and the neonicotinoid thiamethoxam at field-exposure levels on the survivorship and cellular immunity (hemocyte concentration) of the stingless bee Melipona colimana. Newly-emerged bees were subjected to four treatments provided in sucrose syrup: N. ceranae spores, thiamethoxam, thiamethoxam and N. ceranae, and control (bees receiving only syrup). N. ceranae developed infections of > 467,000 spores/bee in the group treated with spores only. However, in the bees subjected to both stressors, infections were < 143,000 spores/bee, likely due to an inhibitory effect of thiamethoxam on the microsporidium. N. ceranae infections did not affect bee survivorship, but thiamethoxam plus N. ceranae significantly increased mortality. Hemocyte counts were significantly lower in N. ceranae infected-bees than in the other treatments. These results suggest that N. ceranae may infect, proliferate and cause cellular immunosuppression in stingless bees, that exposure to sublethal thiamethoxam concentrations is toxic to M. colimana when infected with N. ceranae, and that thiamethoxam restrains N. ceranae proliferation. These findings have implications on pollinators' conservation.
Collapse
|
15
|
Jousse C, Dalle C, Abila A, Traikia M, Diogon M, Lyan B, El Alaoui H, Vidau C, Delbac F. A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. J Invertebr Pathol 2020; 176:107478. [PMID: 33027624 DOI: 10.1016/j.jip.2020.107478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Nosema ceranae is an emerging and invasive gut pathogen in Apis mellifera and is considered as a factor contributing to the decline of honeybee populations. Here, we used a combined LC-MS and NMR approach to reveal the metabolomics changes in the hemolymph of honeybees infected by this obligate intracellular parasite. For metabolic profiling, hemolymph samples were collected from both uninfected and N. ceranae-infected bees at two time points, 2 days and 10 days after the experimental infection of emergent bees. Hemolymph samples were individually analyzed by LC-MS, whereas each NMR spectrum was obtained from a pool of three hemolymphs. Multivariate statistical PLS-DA models clearly showed that the age of bees was the parameter with the strongest effect on the metabolite profiles. Interestingly, a total of 15 biomarkers were accurately identified and were assigned as candidate biomarkers representative of infection alone or combined effect of age and infection. These biomarkers included carbohydrates (α/β glucose, α/β fructose and hexosamine), amino acids (histidine and proline), dipeptides (Glu-Thr, Cys-Cys and γ-Glu-Leu/Ile), metabolites involved in lipid metabolism (choline, glycerophosphocholine and O-phosphorylethanolamine) and a polyamine compound (spermidine). Our study demonstrated that this untargeted metabolomics-based approach may be useful for a better understanding of pathophysiological mechanisms of the honeybee infection by N. ceranae.
Collapse
Affiliation(s)
- Cyril Jousse
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France.
| | - Céline Dalle
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Angélique Abila
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Mounir Traikia
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - Cyril Vidau
- ITSAP, UMT PrADE, Inra - Acta, 228 route de l'aérodrome, F-84000 Avignon, France(1)
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| |
Collapse
|
16
|
Morfin N, Goodwin PH, Guzman-Novoa E. Interaction of Varroa destructor and Sublethal Clothianidin Doses during the Larval Stage on Subsequent Adult Honey Bee ( Apis mellifera L.) Health, Cellular Immunity, Deformed Wing Virus Levels and Differential Gene Expression. Microorganisms 2020; 8:microorganisms8060858. [PMID: 32517245 PMCID: PMC7356300 DOI: 10.3390/microorganisms8060858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Honeybees (Apis mellifera L.) are exposed to many parasites, but little is known about interactions with abiotic stressors on their health, particularly when affected as larvae. Larvae were exposed singly and in combination to the parasitic mite Varroa destructor and three sublethal doses of the neonicotinoid insecticide clothianidin to evaluate their effects on survivorship, weight, haemocyte counts, deformed wing virus (DWV) levels and gene expression of the adult bees that subsequently developed. Clothianidin significantly reduced bee weight at the highest dose and was associated with an increase in haemocyte counts at the lowest dose, whereas V. destructor parasitism increased DWV levels, reduced bee emergence, lowered weight and reduced haemocyte counts. An interaction between the two stressors was observed for weight at emergence. Among the differentially expressed genes (DEGs), V. destructor infestation resulted in broader down-regulatory effects related to immunity that was often shared with the combined stressors, while clothianidin resulted in a broader up-regulatory effect more related to central metabolic pathways that was often shared with the combined stressors. Parasites and abiotic stressors can have complex interactions, including additive effects on reduced weight, number of up-regulated DEGs and biological pathways associated with metabolism.
Collapse
|
17
|
Harwood GP, Dolezal AG. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020; 12:E566. [PMID: 32455815 PMCID: PMC7291294 DOI: 10.3390/v12050566] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | | |
Collapse
|
18
|
Brandt A, Hohnheiser B, Sgolastra F, Bosch J, Meixner MD, Büchler R. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci Rep 2020; 10:4670. [PMID: 32170171 PMCID: PMC7070012 DOI: 10.1038/s41598-020-61445-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Solitary bees are frequently exposed to pesticides, which are considered as one of the main stress factors that may lead to population declines. A strong immune defence is vital for the fitness of bees. However, the immune system can be weakened by environmental factors that may render bees more vulnerable to parasites and pathogens. Here we demonstrate for the first time that field-realistic concentrations of the commonly used neonicotinoid insecticide thiacloprid can severely affect the immunocompetence of Osmia bicornis. In detail, males exposed to thiacloprid solutions of 200 and 555 µg/kg showed a reduction in hemocyte density. Moreover, functional aspects of the immune defence - the antimicrobial activity of the hemolymph - were impaired in males. In females, however, only a concentration of 555 µg/kg elicited similar immunosuppressive effects. Although males are smaller than females, they consumed more food solution. This leads to a 2.77 times higher exposure in males, probably explaining the different concentration thresholds observed between the sexes. In contrast to honeybees, dietary exposure to thiacloprid did not affect melanisation or wound healing in O. bicornis. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of O. bicornis, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.
| | | | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | | | | | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
19
|
Straub L, Minnameyer A, Strobl V, Kolari E, Friedli A, Kalbermatten I, Merkelbach AJWM, Victor Yañez O, Neumann P. From antagonism to synergism: Extreme differences in stressor interactions in one species. Sci Rep 2020; 10:4667. [PMID: 32170145 PMCID: PMC7069998 DOI: 10.1038/s41598-020-61371-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022] Open
Abstract
Interactions between stressors are involved in the decline of wild species and losses of managed ones. Those interactions are often assumed to be synergistic, and per se of the same nature, even though susceptibility can vary within a single species. However, empirical measures of interaction effects across levels of susceptibility remain scarce. Here, we show clear evidence for extreme differences in stressor interactions ranging from antagonism to synergism within honeybees, Apis mellifera. While female honeybee workers exposed to both malnutrition and the pathogen Nosema ceranae showed synergistic interactions and increased stress, male drones showed antagonistic interactions and decreased stress. Most likely sex and division of labour in the social insects underlie these findings. It appears inevitable to empirically test the actual nature of stressor interactions across a range of susceptibility factors within a single species, before drawing general conclusions.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eleonora Kolari
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrea Friedli
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Orlando Victor Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
20
|
Al Naggar Y, Baer B. Consequences of a short time exposure to a sublethal dose of Flupyradifurone (Sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Sci Rep 2019; 9:19753. [PMID: 31874994 PMCID: PMC6930273 DOI: 10.1038/s41598-019-56224-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Dramatic losses of pollinating insects have become of global concern, as they threaten not only key ecosystem services but also human food production. Recent research provided evidence that interactions between ecological stressors are drivers of declining pollinator health and responsible for observed population collapses. We used the honeybee Apis mellifera and conducted a series of experiments to test for long-term effects of a single short exposure to the agricultural pesticide flupyradifurone to a second environmental stressor later in life. To do this, we exposed individuals during their larval development or early adulthood to sublethal dosages of flupyradifurone (0.025 μg for larvae and 0.645 μg for imagos), either pure or as part of an agricultural formulation (Sivanto). We afterwards exposed bees to a second ecological stressor infecting individuals with 10,000 spores of the fungal gut parasite Nosema ceranae. We found that pesticide exposures significantly reduced survival of bees and altered the expression of several immune and detoxification genes. The ability of bees to respond to these latter effects differed significantly between colonies, offering opportunities to breed bees with elevated levels of pesticide tolerance in the future. We conclude that short episodes of sublethal pesticide exposures during development are sufficient to trigger effects later in life and could therefore contribute to the widespread declines in bee health.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA. .,Zoology Department, Faculty of Science, Tanta University31527, Tanta, Egypt. .,General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120, Halle (Saale), Germany.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
21
|
Abstract
Abstract
Colony losses, including those induced by the colony collapse disorder, are an urgent problem of contemporary apiculture which has been capturing the attention of both apiculturists and the research community. CCD is characterized by the absence of adult dead bees in the hive in which few workers and a queen remain, the ratio between the brood quantity and the number of workers is heavily disturbed in favor of the former, and more than enough food is present. Robbing behavior and pests usually attacking the weakened colony do not occur. In the present paper, the causes of the emergence of this problem are discussed, as well as the measures of its prevention.
The following factors, which lead to colony losses, are analyzed: shortage of high-quality food (pollen and honey); infestation with parasites, primarily with Varroa destructor, and mixed virus infections; bacterial infections (American and European foulbrood), fungal infections (nosemosis and ascosphaerosis) and trypanosomal infections (lotmariosis); and, finally, general management of the apiary.
Certain preventive measures are proposed: (1) providing ample high-quality forage and clean water, (2) avoiding sugarisation, i.e. superfluous use of sugar syrup, (3) meeting the nutritional needs of the colony, (4) when feeding bees, taking care of the timing and the composition of diet, avoiding pure sugar syrup which in excessive quantities may induce energetic and oxidative stress, (5) when there is a shortage of natural feed – honey in the brood chamber – use sugar syrup with natural/artificial supplements to avoid protein starvation, (6) organized control of V. destructor in the colonies is obligatory due to its vector role, and (7) compliance with hygienic and sanitary measures and principles of good apiculture practice and management in apiaries. To conclude, all preventive measures are feasible in compliance with rules and regulations concerning regular spring and autumn bee health monitoring by licensed veterinarians, who can propose adequate treatments if necessary.
Collapse
|
22
|
Osterman J, Wintermantel D, Locke B, Jonsson O, Semberg E, Onorati P, Forsgren E, Rosenkranz P, Rahbek-Pedersen T, Bommarco R, Smith HG, Rundlöf M, de Miranda JR. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nat Commun 2019; 10:692. [PMID: 30741934 PMCID: PMC6370849 DOI: 10.1038/s41467-019-08523-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Interactions between multiple stressors have been implicated in elevated honeybee colony losses. Here, we extend our landscape-scale study on the effects of placement at clothianidin seed-treated oilseed rape fields on honeybees with an additional year and new data on honeybee colony development, swarming, mortality, pathogens and immune gene expression. Clothianidin residues in pollen, nectar and honeybees were consistently higher at clothianidin-treated fields, with large differences between fields and years. We found large variations in colony development and microbial composition and no observable negative impact of placement at clothianidin-treated fields. Clothianidin treatment was associated with an increase in brood, adult bees and Gilliamella apicola (beneficial gut symbiont) and a decrease in Aphid lethal paralysis virus and Black queen cell virus - particularly in the second year. The results suggest that at colony level, honeybees are relatively robust to the effects of clothianidin in real-world agricultural landscapes, with moderate, natural disease pressure.
Collapse
Affiliation(s)
- Julia Osterman
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, ESCALATE, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Dimitry Wintermantel
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- INRA, UE 1255 APIS, Le Magneraud, 17700, Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Ove Jonsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Centre for Chemical Pesticides, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Peter Rosenkranz
- Apicultural State Institute, University of Hohenheim, August-von-Hartmannstrasse 13, 70599, Stuttgart, Germany
| | | | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Henrik G Smith
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, 223 62, Lund, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
23
|
Schlüter-Vorberg L, Coors A. Impact of an immunosuppressive human pharmaceutical on the interaction of a bacterial parasite and its invertebrate host. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:91-101. [PMID: 30468978 DOI: 10.1016/j.aquatox.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The interaction of pollutants and pathogens may result in altered and often enhanced effects of the chemical, the biotic stressor or both. These interaction effects cannot be reliably predicted from the toxicity of the chemical or the virulence of the pathogen alone. While standardized detection methods for immunotoxic effects of chemicals exist with regard to human health, employing host-resistance assays with vertebrates, such standardized test systems are completely lacking for invertebrate species and no guidance is available on how immunotoxic effects of a chemical in invertebrates could be definitively identified. In the present study, we investigated the impact of the immunosuppressive pharmaceutical cyclosporine A (CsA) on the invertebrate host-pathogen system Daphnia magna - Pasteuria ramosa. CsA is a calcineurin-inhibitor in vertebrates and also known to have antibiotic as well as antifungal properties. Juvenile D. magna were exposed to CsA for 21 days with or without additional pathogen challenge during the first 72 h of exposure. Long-term survival of the host D. magna was synergistically impacted by co-exposure to the chemical and the pathogen, expressed e.g. in significantly enhanced hazard ratios. Additionally, enhanced virulence of the pathogen upon chemical co-exposure was expressed in an increased proportion of infected hosts and an increased speed of Pasteuria-induced host sterilization. In contrast, effects on reproduction were additive in Pasteuria-challenged, but finally non-infected D. magna. The enhancing effects of CsA occurred at and below 3 μg/L, which was in the absence of the pathogen the lowest concentration significantly impacting the standard toxicity endpoint 'reproduction' in D. magna. Hence, the present study provides evidence that a pharmaceutical intended to suppress the human immune system can also suppress disease resistance of an aquatic invertebrate organism at otherwise non-toxic concentrations. Plausible ways of direct interactions of CsA with the host's immune system are discussed, e.g. interference with phagocytosis or Toll-like receptors. Experimental verification of such a direct interference would be warranted to support the strong evidence for immunotoxic activity of CsA in invertebrates. While it remains open whether CsA concentrations in the environment are high enough to trigger adverse effects in environmental organisms, our findings highlight the need to consider immunotoxicity in an environmental risk assessment, and to develop suitable standardized methods for this purpose.
Collapse
Affiliation(s)
- Lisa Schlüter-Vorberg
- ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany; Goethe-University Frankfurt am Main, Department Aquatic Ecotoxicology, Frankfurt am Main, Germany.
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany
| |
Collapse
|
24
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
25
|
Grassl J, Holt S, Cremen N, Peso M, Hahne D, Baer B. Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. J Invertebr Pathol 2018; 159:78-86. [DOI: 10.1016/j.jip.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023]
|
26
|
Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. J Invertebr Pathol 2018; 159:121-128. [PMID: 30268675 DOI: 10.1016/j.jip.2018.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection- by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage.
Collapse
|
27
|
Lopes MP, Fernandes KM, Tomé HVV, Gonçalves WG, Miranda FR, Serrão JE, Martins GF. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers. PEST MANAGEMENT SCIENCE 2018; 74:1311-1318. [PMID: 29194936 DOI: 10.1002/ps.4815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/26/2017] [Accepted: 11/24/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The global decline in Apis mellifera colonies is attributed to multiple factors, including pesticides. The bioinsecticide spinosad was initially recognized as safe for non-target organisms; however, its toxicity has been changing this view. Here, we investigated the survival, behavioral changes, and structural changes in the midgut and Malpighian tubules of A. mellifera treated orally with a spinosad formulation. RESULTS The field-recommended concentration of spinosad killed 100% of the bees. The 5% and 50% lethal concentrations (LC5 and LC50 , respectively) of spinosad altered the behavioral activity, reducing the walking distance and velocity, and increased the resting time in comparison to the control. The LC50 caused disorganization of the epithelia of tested organs and induced oxidative stress and cell death. CONCLUSIONS The present work provides new insights into the debate about the role of bioinsecticides in the mortality of Africanized honey bees. Even at very low concentrations, the spinosad formulation was toxic to the vital organs midgut and Malpighian tubules and adversely affected walking behavior. This detailed evaluation of the impact of the bioinsecticide on A. mellifera will contribute to the clarification of disturbances probably caused by spinosad formulations, which can be used to develop more sustainable protocols in agriculture. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
28
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
29
|
Traver BE, Feazel-Orr HK, Catalfamo KM, Brewster CC, Fell RD. Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:517-527. [PMID: 29471479 DOI: 10.1093/jee/toy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Honey bee, Apis mellifera (L.; Hymenoptera: Apidae), populations are in decline and their losses pose a serious threat for crop pollination and food production. The specific causes of these losses are believed to be multifactorial. Pesticides, parasites and pathogens, and nutritional deficiencies have been implicated in the losses due to their ability to exert energetic stress on bees. While our understanding of the role of these factors in honey bee colony losses has improved, there is still a lack of knowledge of how they impact the immune system of the honey bee. In this study, honey bee colonies were exposed to Fumagilin-B, Apistan (tau-fluvalinate), and chlorothalonil at field realistic levels. No significant effects of the antibiotic and two pesticides were observed on the levels of varroa mite, Nosema ceranae (Fries; Microsporidia: Nosematidae), black queen cell virus, deformed wing virus, or immunity as measured by phenoloxidase and glucose oxidase activity. Any effects on the parasites, pathogens, and immunity we observed appear to be due mainly to seasonal changes within the honey bee colonies. The results suggest that Fumagilin-B, Apistan, and chlorothalonil do not significantly impact the health of honey bee colonies, based on the factors analyzed and the concentration of chemicals tested.
Collapse
Affiliation(s)
- Brenna E Traver
- Department of Biology, Penn State Schuylkill, Schuylkill Haven, PA
| | | | | | | | | |
Collapse
|
30
|
Paris L, El Alaoui H, Delbac F, Diogon M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. CURRENT OPINION IN INSECT SCIENCE 2018; 26:149-154. [PMID: 29764655 DOI: 10.1016/j.cois.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N. ceranae infection impairs midgut integrity and alters the energy demand in honey bees. The infection can also significantly suppress the bee immune response and modify pheromone production in worker and queen honey bees leading to precocious foraging. However, the presence of N. ceranae is not systematically associated with colony weakening and honey bee mortality. This variability depends upon parasite or host genetics, nutrition, climate or interactions with other stressors such as environmental contaminants or other parasites.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
31
|
Wu-Smart J, Spivak M. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. ENVIRONMENTAL ENTOMOLOGY 2018; 47:55-62. [PMID: 29244130 DOI: 10.1093/ee/nvx175] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Neonicotinoids are highly toxic to insects and may systemically translocate to nectar and pollen of plants where foraging bees may become exposed. Exposure to neonicotinoids can induce detrimental sublethal effects on individual and colonies of bees and may have long-term impacts, such as impaired foraging, reduced longevity, and reduced brood care or production. Less well-studied are the potential effects on queen bumble bees that may become exposed while foraging in the spring during colony initiation. This study assessed queen survival and nest founding in caged bumble bees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)] after chronic (18-d) dietary exposure of imidacloprid in syrup (1, 5, 10, and 25 ppb) and pollen (0.3, 1.7, 3.3, and 8.3 ppb), paired respectively. Here we show some mortality in queens exposed at all doses even as low as 1 ppb, and, compared with untreated queens, significantly reduced survival of treated queens at the two highest doses. Queens that survived initial imidacloprid exposure commenced nest initiation; however, they exhibited dose-dependent delay in egg-laying and emergence of worker brood. Furthermore, imidacloprid treatment affected other parameters such as nest and queen weight. This study is the first to show direct impacts of imidacloprid at field-relevant levels on individual B. impatiens queen survival and nest founding, indicating that bumble bee queens are particularly sensitive to neonicotinoids when directly exposed. This study also helps focus pesticide risk mitigation efforts and highlights the importance of reducing exposure rates in the early spring when bumble bee queens, and other wild bees are foraging and initiating nests.
Collapse
Affiliation(s)
- Judy Wu-Smart
- University of Nebraska-Lincoln, Entomology, Lincoln, NE
| | - Marla Spivak
- University of Minnesota, Entomology, Saint Paul, MN
| |
Collapse
|
32
|
Akram S, Sultana B, Asi MR, Mushtaq M. Salting-out-assisted liquid–liquid extraction and reverse-phase high-performance liquid chromatographic monitoring of thiacloprid in fruits and vegetables. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1417317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sumia Akram
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Chemistry, Minhaj University, Lahore, Pakistan
| | - Bushra Sultana
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Rafique Asi
- Food Toxicology Laboratory, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Mushtaq
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Chemistry, GC University, Lahore, Pakistan
| |
Collapse
|
33
|
Tritschler M, Vollmann JJ, Yañez O, Chejanovsky N, Crailsheim K, Neumann P. Protein nutrition governs within-host race of honey bee pathogens. Sci Rep 2017; 7:14988. [PMID: 29118416 PMCID: PMC5678143 DOI: 10.1038/s41598-017-15358-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Multiple infections are common in honey bees, Apis mellifera, but the possible role of nutrition in this regard is poorly understood. Microsporidian infections, which are promoted by protein-fed, can negatively correlate with virus infections, but the role of protein nutrition for the microsporidian-virus interface is unknown. Here, we challenged naturally deformed wing virus - B (DWV-B) infected adult honey bee workers fed with or without pollen ( = protein) in hoarding cages, with the microsporidian Nosema ceranae. Bee mortality was recorded for 14 days and N. ceranae spore loads and DWV-B titers were quantified. Amongst the groups inoculated with N. ceranae, more spores were counted in protein-fed bees. However, N. ceranae infected bees without protein-diet had reduced longevity compared to all other groups. N. ceranae infection had no effect on protein-fed bee's longevity, whereas bees supplied only with sugar-water showed reduced survival. Our data also support that protein-feeding can have a significant negative impact on virus infections in insects. The negative correlation between N. ceranae spore loads and DWV-B titers was stronger expressed in protein-fed hosts. Proteins not only enhance survival of infected hosts, but also significantly shape the microsporidian-virus interface, probably due to increased spore production and enhanced host immunity.
Collapse
Affiliation(s)
- Manuel Tritschler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Chemisches und Veterinäruntersuchungsamt Freiburg (CVUA), Bienengesundheit, 79108, Freiburg i. Br., Germany
| | | | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Plant Protection, The Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland.
| |
Collapse
|
34
|
Kairo G, Biron DG, Ben Abdelkader F, Bonnet M, Tchamitchian S, Cousin M, Dussaubat C, Benoit B, Kretzschmar A, Belzunces LP, Brunet JL. Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Sci Rep 2017; 7:8556. [PMID: 28819220 PMCID: PMC5561069 DOI: 10.1038/s41598-017-08380-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
The honey bee is threatened by biological agents and pesticides that can act in combination to induce synergistic effects on its physiology and lifespan. The synergistic effects of a parasite/pesticide combination have been demonstrated on workers and queens, but no studies have been performed on drones despite their essential contribution to colony sustainability by providing semen diversity and quality. The effects of the Nosema ceranae/fipronil combination on the life traits and physiology of mature drones were examined following exposure under semi-field conditions. The results showed that the microsporidia alone induced moderate and localized effects in the midgut, whereas fipronil alone induced moderate and generalized effects. The parasite/insecticide combination drastically affected both physiology and survival, exhibiting an important and significant generalized action that could jeopardize mating success. In terms of fertility, semen was strongly impacted regardless of stressor, suggesting that drone reproductive functions are very sensitive to stress factors. These findings suggest that drone health and fertility impairment might contribute to poorly mated queens, leading to the storage of poor quality semen and poor spermathecae diversity. Thus, the queens failures observed in recent years might result from the continuous exposure of drones to multiple environmental stressors.
Collapse
Affiliation(s)
- Guillaume Kairo
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - David G Biron
- CNRS, UMR CNRS 6023 Laboratoire Microorganismes: Génome et Environnement, 63177, Aubière Cedex, France
| | - Faten Ben Abdelkader
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.,INAT, Laboratoire de Zoologie et d'Apiculture, 1082, Tunis, Tunisia
| | - Marc Bonnet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Sylvie Tchamitchian
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Marianne Cousin
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Claudia Dussaubat
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Boris Benoit
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - André Kretzschmar
- INRA, UR 546 Biostatistiques & Processus Spatiaux, CS 40509, 84914, Avignon Cedex 9, France
| | - Luc P Belzunces
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Jean-Luc Brunet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.
| |
Collapse
|
35
|
Czerwinski MA, Sadd BM. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:273-283. [DOI: 10.1002/jez.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - Ben Michael Sadd
- School of Biological Sciences; Illinois State University; Normal Illinois
| |
Collapse
|
36
|
Benuszak J, Laurent M, Chauzat MP. The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: Room for improvement in research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:423-438. [PMID: 28256316 DOI: 10.1016/j.scitotenv.2017.02.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 05/23/2023]
Abstract
Losses of honey bees have been repeatedly reported from many places worldwide. The widespread use of synthetic pesticides has led to concerns regarding their environmental fate and their effects on pollinators. Based on a standardised review, we report the use of a wide variety of honey bee matrices and sampling methods in the scientific papers studying pesticide exposure. Matrices such as beeswax and beebread were very little analysed despite their capacities for long-term pesticide storage. Moreover, bioavailability and transfer between in-hive matrices were poorly understood and explored. Many pesticides were studied but interactions between molecules or with other stressors were lacking. Sampling methods, targeted matrices and units of measure should have been, to some extent, standardised between publications to ease comparison and cross checking. Data on honey bee exposure to pesticides would have also benefit from the use of commercial formulations in experiments instead of active ingredients, with a special assessment of co-formulants (quantitative exposure and effects). Finally, the air matrix within the colony must be explored in order to complete current knowledge on honey bee pesticide exposure.
Collapse
Affiliation(s)
- Johanna Benuszak
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | - Marion Laurent
- Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France; Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France.
| |
Collapse
|
37
|
Tritschler M, Retschnig G, Yañez O, Williams GR, Neumann P. Host sharing by the honey bee parasites Lotmaria passim and Nosema ceranae. Ecol Evol 2017; 7:1850-1857. [PMID: 28331592 PMCID: PMC5355176 DOI: 10.1002/ece3.2796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 12/28/2022] Open
Abstract
The trypanosome Lotmaria passim and the microsporidian Nosema ceranae are common parasites of the honey bee, Apis mellifera, intestine, but the nature of interactions between them is unknown. Here, we took advantage of naturally occurring infections and quantified infection loads of individual workers (N = 408) originating from three apiaries (four colonies per apiary) using PCR to test for interactions between these two parasites. For that purpose, we measured the frequency of single and double infections, estimated the parasite loads of single and double infections, and determined the type of correlation between both parasites in double infections. If interactions between both parasites are strong and antagonistic, single infections should be more frequent than double infections, double infections will have lower parasite loads than single infections, and double infections will present a negative correlation. Overall, a total of 88 workers were infected with N. ceranae, 53 with L. passim, and eight with both parasites. Although both parasites were found in all three apiaries, there were significant differences among apiaries in the proportions of infected bees. The data show no significant differences between the expected and observed frequencies of single‐ and double‐infected bees. While the infection loads of individual bees were significantly higher for L. passim compared to N. ceranae, there were no significant differences in infection loads between single‐ and double‐infected hosts for both parasites. These results suggest no strong interactions between the two parasites in honey bees, possibly due to spatial separation in the host. The significant positive correlation between L. passim and N. ceranae infection loads in double‐infected hosts therefore most likely results from differences among individual hosts rather than cooperation between parasites. Even if hosts are infected by multiple parasites, this does not necessarily imply that there are any significant interactions between them.
Collapse
Affiliation(s)
- Manuel Tritschler
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Gina Retschnig
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Orlando Yañez
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Geoffrey R Williams
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland; Agroscope Swiss Bee Research Centre Bern Switzerland; Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Peter Neumann
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland; Agroscope Swiss Bee Research Centre Bern Switzerland
| |
Collapse
|
38
|
Ellis C, Park KJ, Whitehorn P, David A, Goulson D. The Neonicotinoid Insecticide Thiacloprid Impacts upon Bumblebee Colony Development under Field Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1727-1732. [PMID: 28079366 DOI: 10.1021/acs.est.6b04791] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impacts of pesticides, and in particular of neonicotinoids, on bee health remain much debated. Many studies describing negative effects have been criticized as the experimental protocol did not perfectly simulate real-life field scenarios. Here, we placed free-flying bumblebee colonies next to raspberry crops that were either untreated or treated with the neonicotinoid thiacloprid as part of normal farming practice. Colonies were exposed to the raspberry crops for a two week period before being relocated to either a flower-rich or flower-poor site. Overall, exposed colonies were more likely to die prematurely, and those that survived reached a lower final weight and produced 46% fewer reproductives than colonies placed at control farms. The impact was more marked at the flower-rich site (all colonies performed poorly at the flower poor site). Analysis of nectar and pollen stores from bumblebee colonies placed at the same raspberry farms revealed thiacloprid residues of up to 771 ppb in pollen and up to 561 ppb in nectar. The image of thiacloprid as a relatively benign neonicotinoid should now be questioned.
Collapse
Affiliation(s)
- Ciaran Ellis
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Kirsty J Park
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Penelope Whitehorn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Arthur David
- School of Life Sciences, University of Sussex , Brighton, BN1 9QG, U.K
| | - Dave Goulson
- School of Life Sciences, University of Sussex , Brighton, BN1 9QG, U.K
| |
Collapse
|
39
|
Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler A, Vidondo B, Neumann P, Williams GR. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc Biol Sci 2016; 283:20160506. [PMID: 27466446 PMCID: PMC4971197 DOI: 10.1098/rspb.2016.0506] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Environmental Science Department, University of Koblenz-Landau, Landau, Germany
| | - Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Panuwan Chantawannakul
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kitiphong Khongphinitbunjong
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Aline Troxler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beatriz Vidondo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
40
|
Tison L, Hahn ML, Holtz S, Rößner A, Greggers U, Bischoff G, Menzel R. Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7218-7227. [PMID: 27268938 DOI: 10.1021/acs.est.6b02658] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The decline of pollinators worldwide is of growing concern and has been related to the use of plant-protecting chemicals. Most studies have focused on three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) currently subject to a moratorium in the EU. Here, we focus on thiacloprid, a widely used cyano-substituted neonicotinoid thought to be less toxic to honey bees and of which use has increased in the last years. Honey bees (Apis mellifera carnica) were exposed chronically to thiacloprid in the field for several weeks at a sublethal concentration. Foraging behavior, homing success, navigation performance, and social communication were impaired, and thiacloprid residue levels increased both in the foragers and the nest mates over time. The effects observed in the field were not due to a repellent taste of the substance. For the first time, we present the necessary data for the risk evaluation of thiacloprid taken up chronically by honey bees in field conditions.
Collapse
Affiliation(s)
- Léa Tison
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Marie-Luise Hahn
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Sophie Holtz
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Alexander Rößner
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Uwe Greggers
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Gabriela Bischoff
- Julius Kühn-Institut , Institute for Bee Protection, D-14195 Berlin, Germany
| | - Randolf Menzel
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| |
Collapse
|
41
|
Khongphinitbunjong K, Neumann P, Chantawannakul P, Williams GR. The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apismellifera, longevity and emergence weight, and promotes Deformed wing virus infections. J Invertebr Pathol 2016; 137:38-42. [PMID: 27126517 DOI: 10.1016/j.jip.2016.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/15/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
Historically an ectoparasite of the native Giant honey bee Apis dorsata, the mite Tropilaelaps mercedesae has switched hosts to the introduced western honey bee Apis mellifera throughout much of Asia. Few data regarding lethal and sub-lethal effects of T. mercedesae on A. mellifera exist, despite its similarity to the devastating mite Varroa destructor. Here we artificially infested worker brood of A. mellifera with T. mercedesae to investigate lethal (longevity) and sub-lethal (emergence weight, Deformed wing virus (DWV) levels and clinical symptoms of DWV) effects of the mite on its new host. The data show that T. mercedesae infestation significantly reduced host longevity and emergence weight, and promoted both DWV levels and associated clinical symptoms. Our results suggest that T. mercedesae is a potentially important parasite to the economically important A. mellifera honey bee.
Collapse
Affiliation(s)
- Kitiphong Khongphinitbunjong
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peter Neumann
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Agroscope, Swiss Bee Research Centre, 3003 Bern, Switzerland
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Geoffrey R Williams
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Agroscope, Swiss Bee Research Centre, 3003 Bern, Switzerland
| |
Collapse
|
42
|
Gregorc A, Silva-Zacarin ECM, Carvalho SM, Kramberger D, Teixeira EW, Malaspina O. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees. CHEMOSPHERE 2016; 147:328-336. [PMID: 26774296 DOI: 10.1016/j.chemosphere.2015.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees.
Collapse
Affiliation(s)
- Ales Gregorc
- Agricultural Institute of Slovenia, Ljubljana, Slovenia.
| | | | | | - Doris Kramberger
- University of Maribor, Faculty of Agriculture and Life Sciences, Slovenia
| | - Erica W Teixeira
- Laboratório de Sanidade Apícola (LASA), Agência Paulista de Tecnologia dos Agronegócios (APTA), Pindamonhangaba, São Paulo, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, UNESP, Campus de Rio Claro, São Paulo, Brazil
| |
Collapse
|
43
|
Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS One 2015; 10:e0136928. [PMID: 26313444 PMCID: PMC4552548 DOI: 10.1371/journal.pone.0136928] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/11/2015] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.
Collapse
Affiliation(s)
- Ola Lundin
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
- University of California, Department of Entomology and Nematology, Davis, California 95616, United States of America
- * E-mail:
| | - Maj Rundlöf
- Lund University, Department of Biology, SE-223 62 Lund, Sweden
| | - Henrik G. Smith
- Lund University, Department of Biology, SE-223 62 Lund, Sweden
- Lund University, Centre for Environmental and Climate Research, SE-223 62 Lund, Sweden
| | - Ingemar Fries
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
| | - Riccardo Bommarco
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
| |
Collapse
|
44
|
Oliver CJ, Softley S, Williamson SM, Stevenson PC, Wright GA. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera). PLoS One 2015; 10:e0133733. [PMID: 26280999 PMCID: PMC4539190 DOI: 10.1371/journal.pone.0133733] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/01/2015] [Indexed: 01/27/2023] Open
Abstract
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.
Collapse
Affiliation(s)
- Caitlin J. Oliver
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Samantha Softley
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sally M. Williamson
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip C. Stevenson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Geraldine A. Wright
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Collison E, Hird H, Cresswell J, Tyler C. Interactive effects of pesticide exposure and pathogen infection on bee health - a critical analysis. Biol Rev Camb Philos Soc 2015; 91:1006-1019. [PMID: 26150129 DOI: 10.1111/brv.12206] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
Bees are fundamentally important for pollination services and declines in populations could have significant economic and environmental implications. Pesticide exposure and pathogen infection are recognised as potential stressors impacting upon bee populations and recently there has been a surge in research on pesticide-disease interactions to reflect environmentally realistic scenarios better. We critically analyse the findings on pesticide-disease interactions, including effects on the survival, pathogen loads and immunity of bees, and assess the suitability of various endpoints to inform our mechanistic understanding of these interactions. We show that pesticide exposure and pathogen infection have not yet been found to interact to affect worker survival under field-realistic scenarios. Colony-level implications of pesticide effects on Nosema infections, viral loads and honey bee immunity remain unclear as these effects have been observed in a laboratory setting only using a small range of pesticide exposures, generally exceeding those likely to occur in the natural environment, and assessing a highly selected series of immune-related endpoints. Future research priorities include the need for a better understanding of pesticide effects on the antimicrobial peptide (AMP) component of an individual's immune response and on social defence behaviours. Interactions between pesticide exposure and bacterial and fungal infections have yet to be addressed. The paucity of studies in non-Apis bee species is a further major knowledge gap.
Collapse
Affiliation(s)
- Elizabeth Collison
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K.. .,Fera Science Ltd. (Fera), Sand Hutton, York, YO41 1LZ, U.K..
| | - Heather Hird
- Fera Science Ltd. (Fera), Sand Hutton, York, YO41 1LZ, U.K
| | - James Cresswell
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K
| | - Charles Tyler
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K
| |
Collapse
|
46
|
Retschnig G, Williams GR, Odemer R, Boltin J, Di Poto C, Mehmann MM, Retschnig P, Winiger P, Rosenkranz P, Neumann P. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ Microbiol 2015; 17:4322-31. [PMID: 25728008 DOI: 10.1111/1462-2920.12825] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/12/2015] [Accepted: 02/22/2015] [Indexed: 11/27/2022]
Abstract
Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.
Collapse
Affiliation(s)
- Gina Retschnig
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R Williams
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Richard Odemer
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Janina Boltin
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Cornelia Di Poto
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Marion M Mehmann
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Retschnig
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pius Winiger
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Rosenkranz
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland.,Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
47
|
Vidau C, Panek J, Texier C, Biron DG, Belzunces LP, Le Gall M, Broussard C, Delbac F, El Alaoui H. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. J Invertebr Pathol 2014; 121:89-96. [DOI: 10.1016/j.jip.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
|