1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Henry LP, Fernandez M, Wolf S, Abhyankar V, Ayroles JF. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol Evol 2024; 14:e70004. [PMID: 39041013 PMCID: PMC11262851 DOI: 10.1002/ece3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Lucas P. Henry
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Michael Fernandez
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Scott Wolf
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Varada Abhyankar
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Julien F. Ayroles
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
4
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
5
|
Tafesh-Edwards G, Kyza Karavioti M, Markollari K, Bunnell D, Chtarbanova S, Eleftherianos I. Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner. Front Microbiol 2024; 15:1380647. [PMID: 38903791 PMCID: PMC11188429 DOI: 10.3389/fmicb.2024.1380647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Margarita Kyza Karavioti
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Klea Markollari
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Dean Bunnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Stanislava Chtarbanova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Yang K, Zhang HY, Wang P, Jin GX, Chu D. Both symbionts and environmental factors contribute to shape the microbiota in a pest insect, Sogatella furcifera. Front Microbiol 2024; 14:1336345. [PMID: 38348307 PMCID: PMC10860895 DOI: 10.3389/fmicb.2023.1336345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Bacterial symbionts are prevalent in arthropods globally and play a vital role in the fitness and resistance of hosts. While several symbiont infections have been identified in the white-backed planthopper Sogatella furcifera, the impact of environmental factors on the microbiota within S. furcifera remains elusive. Methods In this study, a total of 142 S. furcifera individuals from 18 populations were collected from 14 locations across six countries (China, Thailand, Myanmar, Cambodia, Vietnam, and Laos) analyzed with 2bRAD-M sequencing, to examine the effects of symbionts on the microbiota in the S. furcifera population, as well as the vital effects of environmental factors on the bacterial communities. Results and discussion Based on the results, in S. furcifera, the presence of symbionts Wolbachia and Cardinium negatively influenced the abundance of other bacteria, including Enterobacter, Acinetobacter, and Lysinibacillus, while Wolbachia infection significantly decreased the diversity of the microbial community. Moreover, several environmental factors, including longitude, latitude, temperature, and precipitation, affected the abundance of symbionts and microbiota diversity in S. furcifera. These results collectively highlight the vital role of Wolbachia in S. furcifera microbiota, as well as the intricate effects of environmental factors on the bacterial communities of S. furcifera.
Collapse
Affiliation(s)
- Kun Yang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Hua-Yue Zhang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Peng Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Gui-Xiu Jin
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| |
Collapse
|
7
|
Brinker P, Chen F, Chehida YB, Beukeboom LW, Fontaine MC, Salles JF. Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia. Mol Ecol 2023; 32:6644-6658. [PMID: 36125236 DOI: 10.1111/mec.16699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fangying Chen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- Department of Biology, University of York, York, UK
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Pascar J, Middleton H, Dorus S. Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. MICROBIOME 2023; 11:255. [PMID: 37978413 PMCID: PMC10655336 DOI: 10.1186/s40168-023-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome. RESULTS Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population. CONCLUSION Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.
Collapse
Affiliation(s)
- Jane Pascar
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Henry Middleton
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
9
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
10
|
Dai X, Zhang Q, Zhang G, Ma C, Zhang R. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr Polym 2023; 313:120878. [PMID: 37182968 DOI: 10.1016/j.carbpol.2023.120878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Agar oligosaccharide (AOS) is a new kind of marine functional oligosaccharide with generous biological activities. To investigate the antioxidative effects of AOS in vivo, 3 % aqueous hydrogen peroxide (H2O2) was used to induce oxidative stress in male Drosophila melanogaster (D. melanogaster) fed 5 % sucrose (SUC). AOS (0.125 %) in the medium extended the lifespan of D. melanogaster suffering from oxidative stress by improving antioxidant capacity and intestinal function. Electron microscopic observation of epithelial cells showed that AOS alleviated the damage caused by H2O2 challenge in the intestine of D. melanogaster, including a reduction of gut leakage and maintenance of intestinal length and cell ultrastructure. The Keap1-Nrf2 (analogues of CncC gene in D. melanogaster) signaling pathway was significantly activated based on gene expression levels and a reduction in ROS content in the intestine of D. melanogaster suffering from oxidative stress. The improvement of antioxidant capacity may be related to the regulation of intestinal microflora with AOS supplementation for D. melanogaster. Nrf2-RNAi, sterile and gnotobiotic D. melanogaster were used to validate the hypothesis that AOS activated the Keap1-Nrf2 signaling pathway to achieve antioxidant effects by regulating intestinal microflora. The above results contribute to our understanding of the antioxidative mechanism of AOS and promote its application in the food industry.
Collapse
|
11
|
Detcharoen M, Jiggins FM, Schlick-Steiner BC, Steiner FM. Wolbachia endosymbiotic bacteria alter the gut microbiome in the fly Drosophila nigrosparsa. J Invertebr Pathol 2023; 198:107915. [PMID: 36958642 DOI: 10.1016/j.jip.2023.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
Wolbachia are known to cause reproductive manipulations and in some arthropod species, Wolbachia were reported to cause changes in gut microbiome. However, the effects of Wolbachia bacteria on the microbiomes of their hosts, including Drosophila flies, have not been fully accessed. Here, we checked the bacterial microbiome in guts of Wolbachia-uninfected and of Wolbachia-infected Drosophila nigrosparsa, both separated into a bleach-only (embryos bleached) and a gnotobiotic (embryos bleached and inoculated with bacteria) treatment. We observed a clear separation between the Wolbachia-infected and the Wolbachia-uninfected samples, and the infected samples had higher variation in alpha diversity than the uninfected ones. There were reductions in the abundances of Proteobacteria (Pseudomonadota), especially Acetobacter, in the infected samples of both treatments. These findings highlight that Wolbachia change the gut microbiome in D. nigrosparsa as well as that the interactions between Wolbachia and bacteria like Acetobacter need to be investigated.
Collapse
Affiliation(s)
- Matsapume Detcharoen
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Innsbruck, Austria; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
| | | | | | - Florian M Steiner
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Dou W, Sun B, Miao Y, Huang D, Xiao J. Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis. Proc Biol Sci 2023; 290:20221963. [PMID: 36629101 PMCID: PMC9832550 DOI: 10.1098/rspb.2022.1963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.
Collapse
Affiliation(s)
- Weihao Dou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Baofa Sun
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yunheng Miao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
13
|
Guts Bacterial Communities of Porcellio dilatatus: Symbionts Predominance, Functional Significance and Putative Biotechnological Potential. Microorganisms 2022; 10:microorganisms10112230. [PMID: 36422301 PMCID: PMC9692603 DOI: 10.3390/microorganisms10112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Terrestrial isopods are effective herbivorous scavengers with an important ecological role in organic matter cycling. Their guts are considered to be a natural enrichment environment for lignocellulosic biomass (LCB)-degrading bacteria. The main goal of this work was to assess the structural diversity of Porcellio dilatatus gut bacterial communities using NGS technologies, and to predict their functional potential using PICRUSt2 software. Pseudomonadota, Actinomycetota, Bacillota, Cyanobacteria, Mycoplasmatota, Bacteroidota, Candidatus Patescibacteria and Chloroflexota were the most abundant phyla found in P. dilatatus gut bacterial communities. At a family level, we identified the presence of eleven common bacterial families. Functionally, the P. dilatatus gut bacterial communities exhibited enrichment in KEGG pathways related to the functional module of metabolism. With the predicted functional profile of P. dilatatus metagenomes, it was possible to envision putative symbiotic relationships between P. dilatatus gut bacterial communities and their hosts. It was also possible to foresee the presence of a well-adapted bacterial community responsible for nutrient uptake for the host and for maintaining host homeostasis. Genes encoding LCB-degrading enzymes were also predicted in all samples. Therefore, the P. dilatatus digestive tract may be considered a potential source of LCB-degrading enzymes that is not to be neglected.
Collapse
|
14
|
Arellano AA, Sommer AJ, Coon KL. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evol Ecol 2022; 37:165-188. [PMID: 37153630 PMCID: PMC10162596 DOI: 10.1007/s10682-022-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Endosymbionts Reduce Microbiome Diversity and Modify Host Metabolism and Fecundity in the Planthopper Sogatella furcifera. mSystems 2022; 7:e0151621. [PMID: 35353007 PMCID: PMC9040572 DOI: 10.1128/msystems.01516-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endosymbionts can strongly affect bacterial microbiota in pests. The white-backed planthopper Sogatella furcifera, a notorious pest in rice, is usually co-infected with Cardinium and Wolbachia, but the effects of these endosymbionts together or individually on the host microbiome and fecundity are unclear. Here, we established three S. furcifera lines (Cardinium and Wolbachia double-infected, Cardinium single-infected, and both-uninfected lines) backcrossed to a common nuclear background and found that single and double infections reduced bacterial diversity and changed bacterial community structure across nymph and adult stages and across adult tissues. The endosymbionts differed in densities between adults and nymphs as well as across adult tissues, with the distribution of Cardinium affected by Wolbachia. Both the single infection and particularly the double infection reduced host fecundity. Lines also differed in levels of metabolites, some of which may influence fecundity (e.g., arginine biosynthesis and nicotinamide metabolism). Cardinium in the single-infected line upregulated metabolic levels, while Wolbachia in the double-infected line appeared to mainly downregulate them. Association analysis pointed to possible connections between various bacteria and differential metabolites. These results reveal that Cardinium by itself and in combination with Wolbachia affect bacterial microbiota and levels of metabolites, with likely effects on host fecundity. Many of the effects of these metabolically limited endosymbionts that are dependent on the hosts may be exerted through manipulation of the microbiome. IMPORTANCE Endosymbionts can profoundly affect the nutrition, immunity, development, and reproduction of insect hosts, but the effects of multiple endosymbiont infections on microbiota and the interaction of these effects with insect host fitness are not well known. By establishing S. furcifera lines with different endosymbiont infection status, we found that Cardinium and the combined Cardinium + Wolbachia infections differentially reduced bacterial diversity as well as changing bacterial community structure and affecting metabolism, which may connect to negative fitness effects of the endosymbionts on their host. These results established the connections between reduced bacterial diversity, decreased fecundity and metabolic responses in S. furcifera.
Collapse
|
16
|
Beribaka M, Jelić M, Tanasković M, Lazić C, Stamenković-Radak M. Life History Traits in Two Drosophila Species Differently Affected by Microbiota Diversity under Lead Exposure. INSECTS 2021; 12:insects12121122. [PMID: 34940211 PMCID: PMC8708062 DOI: 10.3390/insects12121122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Microbiota have a significant functional role in the life of the host, including immunity, lifespan and reproduction. Drosophila species are attractive model organisms for investigating microbiota diversity from different aspects due to their simple gut microbiota, short generation time and high fertility. Considering such an important role of the microbiota in the life of Drosophila, we investigated the extent to which lead (Pb), as one of the most abundant heavy metals in the environment, affects the microbiota and the fitness of this insect host. The results indicate that different factors, such as population origin and sex, may affect individual traits differently and this could be species-specific. In addition, there are members of microbiota that help the host to overcome environmental stress and they could play a key role in reducing the fitness cost in such situations. Studying the influence of microbiota on the adaptive response to heavy metals and the potential implications on overall host fitness is of great pertinence. Abstract Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.
Collapse
Affiliation(s)
- Mirjana Beribaka
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
- Correspondence:
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Cvijeta Lazić
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| |
Collapse
|
17
|
Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. THE ISME JOURNAL 2021; 15:3693-3703. [PMID: 34188180 PMCID: PMC8630103 DOI: 10.1038/s41396-021-01046-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.
Collapse
|
18
|
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 2021; 97:6358523. [PMID: 34448854 DOI: 10.1093/femsec/fiab123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL 60612, USA
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, LL57 2 UW, UK.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| |
Collapse
|
19
|
Ourry M, Crosland A, Lopez V, Derocles SAP, Mougel C, Cortesero AM, Poinsot D. Influential Insider: Wolbachia, an Intracellular Symbiont, Manipulates Bacterial Diversity in Its Insect Host. Microorganisms 2021; 9:1313. [PMID: 34208681 PMCID: PMC8234596 DOI: 10.3390/microorganisms9061313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Facultative intracellular symbionts like the α-proteobacteria Wolbachia influence their insect host phenotype but little is known about how much they affect their host microbiota. Here, we quantified the impact of Wolbachia infection on the bacterial community of the cabbage root fly Delia radicum by comparing the microbiota of Wolbachia-free and infected adult flies of both sexes. We used high-throughput DNA sequencing (Illumina MiSeq, 16S rRNA, V5-V7 region) and performed a community and a network analysis. In both sexes, Wolbachia infection significantly decreased the diversity of D. radicum bacterial communities and modified their structure and composition by reducing abundance in some taxa but increasing it in others. Infection by Wolbachia was negatively correlated to 8 bacteria genera (Erwinia was the most impacted), and positively correlated to Providencia and Serratia. We suggest that Wolbachia might antagonize Erwinia for being entomopathogenic (and potentially intracellular), but would favor Providencia and Serratia because they might protect the host against chemical plant defenses. Although they might seem prisoners in a cell, endocellular symbionts can impact the whole microbiota of their host, hence its extended phenotype, which provides them with a way to interact with the outside world.
Collapse
Affiliation(s)
- Morgane Ourry
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35650 Le Rheu, France;
| | - Agathe Crosland
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Valérie Lopez
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Stéphane A. P. Derocles
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Christophe Mougel
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35650 Le Rheu, France;
| | - Anne-Marie Cortesero
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Denis Poinsot
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| |
Collapse
|
20
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
21
|
Li TP, Zha SS, Zhou CY, Gong JT, Zhu YX, Zhang X, Xi Z, Hong XY. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol Ecol 2021; 96:5911095. [PMID: 32970802 DOI: 10.1093/femsec/fiaa194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Symbiotic microorganisms in invertebrates play vital roles in host ecology and evolution. Cardinium, a common intracellular symbiont, is transinfected into the important agricultural pest Nilaparvata lugens (rice brown planthopper) to regulate its reproduction, but how this impacts its microbial community is unknown. Here, we characterized the bacterial microbiota from N. lugens, with or without Cardinium, at different developmental stages and in various adult tissues using 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing. Upon infection with Cardinium, we found that microbial diversity in the different developmental stages of N. lugens (especially females), and in female midguts and male testes, was lower than that in the uninfected control. There was a negative correlation between Cardinium and most related genera and between Bacteroidetes and Proteobacteria. Although the microbial structure varied during Cardinium infection, Acinetobacter spp. were a core microbiome genus. The Cardinium infection enhanced the relative density of midgut-associated Acinetobacter spp., with both bacteria exhibiting tissue-specific tropism. In addition, this infection caused the changes of main microbial functions in N. lugens. These results offer insights into the effects of alien (i.e. newly introduced from other organism) Cardinium infection on N. lugens-associated microbiotas, aiding in the development of transinfected endosymbionts for pest control.
Collapse
Affiliation(s)
- Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Si-Si Zha
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chun-Ying Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xu Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
22
|
Henry LP, Ayroles JF. Meta-analysis suggests the microbiome responds to Evolve and Resequence experiments in Drosophila melanogaster. BMC Microbiol 2021; 21:108. [PMID: 33836662 PMCID: PMC8034159 DOI: 10.1186/s12866-021-02168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Experimental evolution has a long history of uncovering fundamental insights into evolutionary processes, but has largely neglected one underappreciated component--the microbiome. As eukaryotic hosts evolve, the microbiome may also respond to selection. However, the microbial contribution to host evolution remains poorly understood. Here, we re-analyzed genomic data to characterize the metagenomes from ten Evolve and Resequence (E&R) experiments in Drosophila melanogaster to determine how the microbiome changed in response to host selection. RESULTS Bacterial diversity was significantly different in 5/10 studies, primarily in traits associated with metabolism or immunity. Duration of selection did not significantly influence bacterial diversity, highlighting the importance of associations with specific host traits. CONCLUSIONS Our genomic re-analysis suggests the microbiome often responds to host selection; thus, the microbiome may contribute to the response of Drosophila in E&R experiments. We outline important considerations for incorporating the microbiome into E&R experiments. The E&R approach may provide critical insights into host-microbiome interactions and fundamental insight into the genomic basis of adaptation.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Julien F Ayroles
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
23
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Leung K, Ras E, Ferguson KB, Ariëns S, Babendreier D, Bijma P, Bourtzis K, Brodeur J, Bruins MA, Centurión A, Chattington SR, Chinchilla‐Ramírez M, Dicke M, Fatouros NE, González‐Cabrera J, Groot TVM, Haye T, Knapp M, Koskinioti P, Le Hesran S, Lyrakis M, Paspati A, Pérez‐Hedo M, Plouvier WN, Schlötterer C, Stahl JM, Thiel A, Urbaneja A, van de Zande L, Verhulst EC, Vet LEM, Visser S, Werren JH, Xia S, Zwaan BJ, Magalhães S, Beukeboom LW, Pannebakker BA. Next-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc 2020; 95:1838-1854. [PMID: 32794644 PMCID: PMC7689903 DOI: 10.1111/brv.12641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Erica Ras
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Kim B. Ferguson
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Simone Ariëns
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | | | - Piter Bijma
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Jacques Brodeur
- Institut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuebecCanadaH1X 2B2
| | - Margreet A. Bruins
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Alejandra Centurión
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Sophie R. Chattington
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Milena Chinchilla‐Ramírez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Joel González‐Cabrera
- Department of Genetics, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI‐BIOTECMED)Unidad Mixta Gestión Biotecnológica de Plagas UV‐IVIA, Universitat de ValènciaDr Moliner 5046100BurjassotValenciaSpain
| | - Thomas V. M. Groot
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Tim Haye
- CABIRue des Grillons 12800DelémontSwitzerland
| | - Markus Knapp
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
- Department of Biochemistry and BiotechnologyUniversity of ThessalyBiopolis41500LarissaGreece
| | - Sophie Le Hesran
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Manolis Lyrakis
- Institut für PopulationsgenetikVetmeduni ViennaVeterinärplatz 11210ViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaVeterinärplatz 11210ViennaAustria
| | - Angeliki Paspati
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Meritxell Pérez‐Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Wouter N. Plouvier
- INRA, CNRS, UMR 1355‐7254400 Route des ChappesBP 167 06903Sophia Antipolis CedexFrance
| | | | - Judith M. Stahl
- CABIRue des Grillons 12800DelémontSwitzerland
- Kearney Agricultural Research and Extension CenterUniversity of California Berkeley9240 South Riverbend AvenueParlierCA93648USA
| | - Andra Thiel
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Louise E. M. Vet
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 106708 PBWageningenThe Netherlands
| | - Sander Visser
- Institute of EntomologyBiology Centre CASBranišovská 31370 05České BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1760370 05České BudějoviceCzech Republic
| | - John H. Werren
- Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Shuwen Xia
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental ChangesFaculdade de Ciências da Universidade de LisboaEdifício C2, Campo Grande1749‐016LisbonPortugal
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| |
Collapse
|
25
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
26
|
Carneiro Dutra HL, Deehan MA, Frydman H. Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer. PLoS Pathog 2020; 16:e1008996. [PMID: 33048997 PMCID: PMC7584242 DOI: 10.1371/journal.ppat.1008996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Wolbachia is an intracellular bacterial symbiont of arthropods notorious for inducing many reproductive manipulations that foster its dissemination. Wolbachia affects many aspects of host biology, including metabolism, longevity and physiology, being described as a nutrient provisioning or metabolic parasite, depending on the host-microbe association. Sirtuins (SIRTs) are a family of NAD+-dependent post-translational regulatory enzymes known to affect many of the same processes altered by Wolbachia, including aging and metabolism, among others. Despite a clear overlap in control of host-derived pathways and physiology, no work has demonstrated a link between these two regulators. We used genetically tractable Drosophila melanogaster to explore the role of sirtuins in shaping signaling pathways in the context of a host-symbiont model. By using transcriptional profiling and metabolic assays in the context of genetic knockouts/over-expressions, we examined the effect of several Wolbachia strains on host sirtuin expression across distinct tissues and timepoints. We also quantified the downstream effects of the sirtuin x Wolbachia interaction on host glucose metabolism, and in turn, how it impacted Wolbachia titer. Our results indicate that the presence of Wolbachia is associated with (1) reduced sirt-4 expression in a strain-specific manner, and (2) alterations in host glutamate dehydrogenase expression and ATP levels, key components of glucose metabolism. We detected high glucose levels in Wolbachia-infected flies, which further increased when sirt-4 was over-expressed. However, under sirt-4 knockout, flies displayed a hypoglycemic state not rescued to normal levels in the presence of Wolbachia. Finally, whole body sirt-4 over-expression resulted in reduced Wolbachia ovarian titer. Our results expand knowledge of Wolbachia-host associations in the context of a yet unexplored class of host post-translational regulatory enzymes with implications for conserved host signaling pathways and bacterial titer, factors known to impact host biology and the symbiont's ability to spread through populations.
Collapse
Affiliation(s)
| | - Mark Anthony Deehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Horacio Frydman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
28
|
Stable Establishment of Cardinium spp. in the Brown Planthopper Nilaparvata lugens despite Decreased Host Fitness. Appl Environ Microbiol 2020; 86:AEM.02509-19. [PMID: 31811033 DOI: 10.1128/aem.02509-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
The brown planthopper Nilaparvata lugens (Hemiptera) is a major pest of rice crops in Asia. Artificial transinfections of Wolbachia have recently been used for reducing host impacts, but transinfections have not yet been undertaken with another important endosymbiont, Cardinium This endosymbiont can manipulate the reproduction of hosts through phenotypes such as cytoplasmic incompatibility (CI), which is strong in the related white-backed planthopper, Sogatella furcifera (Hemiptera). Here, we stably infected N. lugens with Cardinium from S. furcifera and showed that it exhibits perfect maternal transmission in N. lugens The density of Cardinium varied across developmental stages and tissues of the transinfected host. Cardinium did not induce strong CI in N. lugens, likely due to its low density in testicles. The infection did decrease fecundity and hatching rate in the transinfected host, but a decrease in fecundity was not apparent when transinfected females mated with Wolbachia-infected males. The experiments show the feasibility of transferring Cardinium endosymbionts across hosts, but the deleterious effects of Cardinium on N. lugens limit its potential to spread in wild populations of N. lugens in the absence of strong CI.IMPORTANCE In this study we established a Cardinium-infected N. lugens line that possessed complete maternal transmission. Cardinium had a widespread distribution in tissues of N. lugens, and this infection decreased the fecundity and hatching rate of the host. Our findings emphasize the feasibility of transinfection of Cardinium in insects, which expands the range of endosymbionts that could be manipulated for pest control.
Collapse
|
29
|
Kolasa M, Ścibior R, Mazur MA, Kubisz D, Dudek K, Kajtoch Ł. How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles. MICROBIAL ECOLOGY 2019; 78:995-1013. [PMID: 30915518 PMCID: PMC6842344 DOI: 10.1007/s00248-019-01358-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 05/12/2023]
Abstract
Bacterial communities play a crucial role in the biology, ecology, and evolution of multicellular organisms. In this research, the microbiome of 24 selected beetle species representing five families (Carabidae, Staphylinidae, Curculionidae, Chrysomelidae, Scarabaeidae) and three trophic guilds (carnivorous, herbivorous, detrivorous) was examined using 16S rDNA sequencing on the Illumina platform. The aim of the study was to compare diversity within and among species on various levels of organization, including evaluation of the impact of endosymbiotic bacteria. Collected data showed that beetles possess various bacterial communities and that microbiota of individuals of particular species hosts are intermixed. The most diverse microbiota were found in Carabidae and Scarabaeidae; the least diverse, in Staphylinidae. On higher organization levels, the diversity of bacteria was more dissimilar between families, while the most distinct with respect to their microbiomes were trophic guilds. Moreover, eight taxa of endosymbiotic bacteria were detected including common genera such as Wolbachia, Rickettsia, and Spiroplasma, as well as the rarely detected Cardinium, Arsenophonus, Buchnera, Sulcia, Regiella, and Serratia. There were no correlations among the abundance of the most common Wolbachia and Rickettsia; a finding that does not support the hypothesis that these bacteria occur interchangeably. The abundance of endosymbionts only weakly and negatively correlates with diversity of the whole microbiome in beetles. Overall, microbiome diversity was found to be more dependent on host phylogeny than on the abundance of endosymbionts. This is the first study in which bacteria diversity is compared between numerous species of beetles in a standardized manner.
Collapse
Affiliation(s)
- Michał Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland.
| | - Radosław Ścibior
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Lublin, Poland
| | - Miłosz A Mazur
- Institute of Biology, University of Opole, Opole, Poland
| | - Daniel Kubisz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Dudek
- Molecular and Behavioral Ecology Group, Jagiellonian University, Krakow, Poland
| | - Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
30
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
31
|
Fisher ML, Levine JF, Guy JS, Mochizuki H, Breen M, Schal C, Watson DW. Lack of influence by endosymbiont Wolbachia on virus titer in the common bed bug, Cimex lectularius. Parasit Vectors 2019; 12:436. [PMID: 31500667 PMCID: PMC6734260 DOI: 10.1186/s13071-019-3694-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius. METHODS We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia. RESULTS There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups. CONCLUSIONS These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.
Collapse
Affiliation(s)
- Michael L. Fisher
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
- United States Navy Medical Service Corps, Raleigh, NC USA
| | - Jay F. Levine
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC USA
| | - James S. Guy
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607 USA
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - David W. Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
32
|
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett 2019; 365:4904115. [PMID: 29579215 DOI: 10.1093/femsle/fny046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
There are multiple forms of interactions between termites and bacteria. In addition to their gut microbiota, which has been intensively studied, termites host intracellular symbionts such as Wolbachia. These distinct symbioses have been so far approached independently and mostly in adult termites. We addressed the dynamics of Wolbachia and the microbiota of the eggs and gut for various life stages and castes of the wood-feeding termite, Nasutitermes arborum, using deep-sequencing of the 16S rRNA gene. Wolbachia was dominant in eggs as expected. Unexpectedly, it persisted in the gut of nearly all stages and castes, indicating a wide somatic distribution in termites. Wolbachia-related sequences clustered into few operational taxonomic units, but these were within the same genotype, acquired maternally. Wolbachia was largely dominant in DNA extracts from the guts of larvae and pre-soldiers (59.1%-99.1% of reads) where gut-resident lineages were less represented and less diverse. The reverse was true for the adult castes. This is the first study reporting the age-dependency of the relative abundance of Wolbachia in the termite gut and its negative correlation with the diversity of the microbiota. The possible mechanisms underlying this negative interaction are discussed.
Collapse
Affiliation(s)
- Michel Diouf
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Edouard Miambi
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Philippe Mora
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Sophie Frechault
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Alain Robert
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Corinne Rouland-Lefèvre
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
33
|
Fromont C, Adair KL, Douglas AE. Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies. Mol Ecol 2019; 28:1826-1841. [PMID: 30714238 DOI: 10.1111/mec.15041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.
Collapse
Affiliation(s)
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, New York
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
34
|
Brinker P, Fontaine MC, Beukeboom LW, Falcao Salles J. Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends Microbiol 2019; 27:480-488. [PMID: 30857919 DOI: 10.1016/j.tim.2019.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023]
Abstract
Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands; MIVEGEC, UMR IRD, CNRS, University of Montpellier, Montpellier, France
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| |
Collapse
|
35
|
Bi J, Zheng Y, Wang RF, Ai H, Haynes PR, Brownlie JC, Yu XQ, Wang YF. Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:47-54. [PMID: 30468769 DOI: 10.1016/j.ibmb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the most. Knockdown of crebA in Wolbachia-infected flies significantly decreased LMC, while overexpression of crebA in Wolbachia-free flies significantly enhanced the LMC of flies. More importantly, a microRNA (miRNA), dme-miR-92b, was identified to be complementary to the 3'UTR of crebA. Wolbachia infection was correlated with reduced expression of dme-miR-92b in D. melanogaster, and dme-miR-92b negatively regulated crebA through binding to its 3'UTR region. Overexpression of dme-miR-92b in Wolbachia-infected flies by microinjection of agomirs caused a significant decrease in crebA expression and LMC, while inhibition of dme-miR-92b in Wolbachia-free flies by microinjection of antagomirs resulted in a significant increase in crebA expression and LMC. These results suggest that Wolbachia may improve LMC in Drosophila by altering host gene expression through a miRNA-target pathway. Our findings help better understand the host-endosymbiont interactions and, in particular, the impact of Wolbachia on cognitive processes in invertebrate hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Paula R Haynes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy C Brownlie
- School of Natural Science, Griffith University, Nathan, QLD 4111, Australia
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
36
|
Schneider DI, Ehrman L, Engl T, Kaltenpoth M, Hua-Van A, Le Rouzic A, Miller WJ. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behav Genet 2019; 49:83-98. [PMID: 30456532 PMCID: PMC6327003 DOI: 10.1007/s10519-018-9937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Lee Ehrman
- Natural Sciences, State University of New York, Purchase College, Purchase, NY, USA
| | - Tobias Engl
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Dittmer J, Bouchon D. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci Rep 2018; 8:6998. [PMID: 29725059 PMCID: PMC5934373 DOI: 10.1038/s41598-018-25450-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.
Collapse
Affiliation(s)
- Jessica Dittmer
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France.
| |
Collapse
|
38
|
Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:81-88. [PMID: 29499213 DOI: 10.1016/j.jinsphys.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of insects. Although their dramatic effects on host reproductive biology have been well studied, the effects of Wolbachia on sleep behavior of insect hosts are not well documented. In this study, we report that Wolbachia infection caused an increase of total sleep time in both male and female Drosophila melanogaster. The increase in sleep was associated with an increase in the number of nighttime sleep bouts or episodes, but not in sleep bout duration. Correspondingly, Wolbachia infection also reduced the arousal threshold of their fly hosts. However, neither circadian rhythm nor sleep rebound following deprivation was influenced by Wolbachia infection. Transcriptional analysis of the dopamine biosynthesis pathway revealed that two essential genes, Pale and Ddc, were significantly upregulated in Wolbachia-infected flies. Together, these results indicate that Wolbachia mediates the expression of dopamine related genes, and decreases the sleep quality of their insect hosts. Our findings help better understand the host-endosymbiont interactions and in particular the Wolbachia's impact on behaviors, and thus on ecology and evolution in insect hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
39
|
Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H, Nielsen JL. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly (Austin) 2017; 12:1-12. [PMID: 29095113 DOI: 10.1080/19336934.2017.1394558] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.
Collapse
Affiliation(s)
- Neda N Moghadam
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Pia Mai Thorshauge
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Torsten N Kristensen
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark.,b Department of Bioscience , Aarhus University , C.F. Møllers Allé, Aarhus C, Denmark
| | - Nadieh de Jonge
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Simon Bahrndorff
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Henrik Kjeldal
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Jeppe Lund Nielsen
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| |
Collapse
|
40
|
Mondotte JA, Saleh MC. Antiviral Immune Response and the Route of Infection in Drosophila melanogaster. Adv Virus Res 2017; 100:247-278. [PMID: 29551139 DOI: 10.1016/bs.aivir.2017.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of Drosophila as a model organism has made an important contribution to our understanding of the function and regulation of innate immunity in insects. Indeed, insects can discriminate between different types of pathogens and mount specific and effective responses. Strikingly, the same pathogen can trigger a different immune response in the same organism, depending solely on the route of infection by which the pathogen is delivered. In this review, we recapitulate what is known about antiviral responses in Drosophila, and how they are triggered depending on the route and the mode used for the virus to infect its host.
Collapse
Affiliation(s)
- Juan A Mondotte
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche 3569, Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche 3569, Paris, France.
| |
Collapse
|
41
|
The Gut Commensal Microbiome of Drosophila melanogaster Is Modified by the Endosymbiont Wolbachia. mSphere 2017; 2:mSphere00287-17. [PMID: 28932814 PMCID: PMC5597968 DOI: 10.1128/msphere.00287-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies. Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria—Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia-induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCEWolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies.
Collapse
|
42
|
Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses. G3-GENES GENOMES GENETICS 2017; 7:1887-1898. [PMID: 28455417 PMCID: PMC5473766 DOI: 10.1534/g3.117.042184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The requirement of vitamins for core metabolic processes creates a unique set of pressures for arthropods subsisting on nutrient-limited diets. While endosymbiotic bacteria carried by arthropods have been widely implicated in vitamin provisioning, the underlying molecular mechanisms are not well understood. To address this issue, standardized predictive assessment of vitamin metabolism was performed in 50 endosymbionts of insects and arachnids. The results predicted that arthropod endosymbionts overall have little capacity for complete de novo biosynthesis of conventional or active vitamin forms. Partial biosynthesis pathways were commonly predicted, suggesting a substantial role in vitamin provisioning. Neither taxonomic relationships between host and symbiont, nor the mode of host-symbiont interaction were clear predictors of endosymbiont vitamin pathway capacity. Endosymbiont genome size and the synthetic capacity of nonsymbiont taxonomic relatives were more reliable predictors. We developed a new software application that also predicted that last-step conversion of intermediates into active vitamin forms may contribute further to vitamin biosynthesis by endosymbionts. Most instances of predicted vitamin conversion were paralleled by predictions of vitamin use. This is consistent with achievement of provisioning in some cases through upregulation of pathways that were retained for endosymbiont benefit. The predicted absence of other enzyme classes further suggests a baseline of vitamin requirement by the majority of endosymbionts, as well as some instances of putative mutualism. Adaptation of this workflow to analysis of other organisms and metabolic pathways will provide new routes for considering the molecular basis for symbiosis on a comprehensive scale.
Collapse
|
43
|
Audsley MD, Ye YH, McGraw EA. The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus. PLoS Negl Trop Dis 2017; 11:e0005426. [PMID: 28267749 PMCID: PMC5357062 DOI: 10.1371/journal.pntd.0005426] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated to cause 390 million human infections annually. A novel method for DENV control involves stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the susceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the potential of resident microbiota, which can play important roles in insect physiology and immune responses, to affect Wolbachia-mediated DENV blocking. Methodology/Findings The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that although Wolbachia affected the relative abundance of several genera, the microbiome of both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection with DENV by blood-meal. In spite of a significant shift in the microbiome composition in response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection rates, or on the DENV load of infected mosquitoes. Conclusions/Significance Our findings indicate that stable infection with Wolbachia strain wMel produces few effects on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the microbiome can be significantly altered without affecting the fundamental DENV blocking phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota in the field, this is a particularly important result in the context of using Wolbachia as a method for DENV control. Dengue virus is transmitted by the mosquito Aedes aegypti and can cause dengue fever and dengue haemorrhagic fever in humans. The World Health Organization currently considers it as the most important mosquito-borne virus globally. One method to control dengue infection of Ae. aegypti is to infect the mosquito with a common bacterium, Wolbachia, which increases the mosquito’s resistance to dengue virus. The mechanism by which resistance to dengue virus occurs is not well understood. Here, we considered whether other bacteria that reside in the mosquito might affect the ability of Wolbachia to limit dengue virus infection. First, we assessed whether Wolbachia had an impact on the abundance of bacterial species present in Ae. aegypti, finding that it had minimal effects. Second, we altered the composition of the bacterial species present by treating Ae. aegypti with antibiotics, then examined whether this affected Wolbachia’s antiviral effect. We found that there was no difference in the susceptibility of the mosquitoes to dengue virus, regardless of antibiotic treatment. We therefore conclude that it is unlikely that there are specific resident bacteria required for the principal mechanism(s) by which Wolbachia reduces susceptibility of Ae. aegypti to dengue virus.
Collapse
Affiliation(s)
- Michelle D. Audsley
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
| | - Yixin H. Ye
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
- * E-mail:
| |
Collapse
|