1
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer’s and Parkinson’s disease are fatal neurological diseases that can be of idiopathic, genetic, or even infectious origin, as in the case of transmissible spongiform encephalopathies. The etiological factors that lead to neurodegeneration remain unknown but likely involve a combination of aging, genetic risk factors, and environmental stressors. Accumulating evidence hints at an association of viruses with neurodegenerative disorders and suggests that virus-induced neuroinflammation and perturbation of neuronal protein quality control can be involved in the early steps of disease development. In this review, we focus on emerging evidence for a correlation between NDs and viral infection and discuss how viral manipulations of cellular processes can affect the formation and dissemination of disease-associated protein aggregates.
Collapse
Affiliation(s)
- Pascal Leblanc
- Institut NeuroMyoGène INMG-PGNM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, Université Claude Bernard UCBL-Lyon1, Faculté de Médecine Rockefeller, Lyon, France
- * E-mail: (PL); (IMV)
| | - Ina Maja Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE), Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- * E-mail: (PL); (IMV)
| |
Collapse
|
3
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
5
|
Qin Q, Li Y. Herpesviral infections and antimicrobial protection for Alzheimer's disease: Implications for prevention and treatment. J Med Virol 2019; 91:1368-1377. [PMID: 30997676 DOI: 10.1002/jmv.25481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.
Collapse
Affiliation(s)
- Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
8
|
Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells. PLoS One 2016; 11:e0167293. [PMID: 27936017 PMCID: PMC5147886 DOI: 10.1371/journal.pone.0167293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are infectious and fatal neurodegenerative diseases which require the cellular prion protein, PrPC, for development of diseases. The current study shows that the PrPC augments infectivity and plaque formation of a mouse endogenous retrovirus, MuLV. We have established four neuronal cell lines expressing mouse PrPC, PrP+/+; two express wild type PrPC (MoPrPwild) and the other two express mutant PrPC (MoPrPmut). Infection of neuronal cells from various PrP+/+ and PrP-/- (MoPrPKO) lines with MuLV yielded at least three times as many plaques in PrP+/+ than in PrP-/-. Furthermore, among the four PrP+/+ lines, one mutant line, P101L, had at least 2.5 times as many plaques as the other three PrP+/+ lines. Plaques in P101L were four times larger than those in other PrP+/+ lines. Colocalization of PrP and CAgag was seen in MuLV-infected PrP+/+ cells. In the PrP-MuLV interaction, the involvement of galectin-3 and -6 was observed by immunoprecipitation with antibody to PrPC. These results suggest that PrPC combined with galectin-3 and -6 can act as a receptor for MuLV. P101L, the disease form of mutant PrPC results suggest the genetic mutant form of PrPC may be more susceptible to viral infection.
Collapse
|
9
|
Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 2015; 72:4409-27. [PMID: 26047659 PMCID: PMC11113226 DOI: 10.1007/s00018-015-1945-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.
Collapse
Affiliation(s)
- Didier Vilette
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France.
| | - Karine Laulagnier
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
- Inserm, U836, Neurodégénérescence et Plasticité, Institute of Neuroscience, Grenoble, France
| | - Alvina Huor
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, UCBL, ENS Lyon, Lyon, France
| | - Sabrina Simoes
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Romao Maryse
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | | | - Laurent Schaeffer
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
| | - Graça Raposo
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pascal Leblanc
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France.
| |
Collapse
|
10
|
Manghera M, Ferguson J, Douville R. Endogenous Retrovirus-K and Nervous System Diseases. Curr Neurol Neurosci Rep 2014; 14:488. [DOI: 10.1007/s11910-014-0488-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
A proautophagic antiviral role for the cellular prion protein identified by infection with a herpes simplex virus 1 ICP34.5 mutant. J Virol 2013; 87:5882-94. [PMID: 23487467 DOI: 10.1128/jvi.02559-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein (PrP) often plays a cytoprotective role by regulating autophagy in response to cell stress. The stress of infection with intracellular pathogens can stimulate autophagy, and autophagic degradation of pathogens can reduce their replication and thus help protect the infected cells. PrP also restricts replication of several viruses, but whether this activity is related to an effect on autophagy is not known. Herpes simplex virus 1 (HSV-1) effectively counteracts autophagy through binding of its ICP34.5 protein to the cellular proautophagy protein beclin-1. Autophagy can reduce replication of an HSV-1 mutant, Δ68H, which is incapable of binding beclin-1. We found that deletion of PrP in mice complements the attenuation of Δ68H, restoring its capacity to replicate in the central nervous system (CNS) to wild-type virus levels after intracranial or corneal infection. Cultured primary astrocytes but not neurons derived from PrP(-/-) mice also complemented the attenuation of Δ68H, enabling Δ68H to replicate at levels equivalent to wild-type virus. Ultrastructural analysis showed that normal astrocytes exhibited an increase in the number of autophagosomes after infection with Δ68H compared with wild-type virus, but PrP(-/-) astrocytes failed to induce autophagy in response to Δ68H infection. Redistribution of EGFP-LC3 into punctae occurred more frequently in normal astrocytes infected with Δ68H than with wild-type virus, but not in PrP(-/-) astrocytes, corroborating the ultrastructural analysis results. Our results demonstrate that PrP is critical for inducing autophagy in astrocytes in response to HSV-1 infection and suggest that PrP positively regulates autophagy in the mouse CNS.
Collapse
|
12
|
Krasemann S, Neumann M, Luepke JP, Grashorn J, Wurr S, Stocking C, Glatzel M. Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease. Acta Neuropathol 2012; 124:111-26. [PMID: 22271154 DOI: 10.1007/s00401-012-0944-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 12/26/2022]
Abstract
A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrP(C)) into a misfolded isoform (PrP(Sc)) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrP(Sc) from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrP(Sc) in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrP(Sc) spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.
Collapse
Affiliation(s)
- Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, Darlix JL, Cimarelli A, Raposo G, Ohlmann T, Leblanc P. Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci 2012; 69:1331-52. [PMID: 22076653 PMCID: PMC11114771 DOI: 10.1007/s00018-011-0879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/15/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.
Collapse
Affiliation(s)
- Sandrine Alais
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ricardo Soto-Rifo
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Balter
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- CNRS UMR 5276 “Laboratoire de Géologie de Lyon”, Lyon, France
| | - Henri Gruffat
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Evelyne Manet
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Laurent Schaeffer
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Jean Luc Darlix
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Andrea Cimarelli
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Graça Raposo
- Structure and Membrane Compartments and PICT-IBiSA, Institut Curie, CNRS-UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Théophile Ohlmann
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Pascal Leblanc
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| |
Collapse
|
14
|
Guichard C, Ivanyi-Nagy R, Sharma KK, Gabus C, Marc D, Mély Y, Darlix JL. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides. Nucleic Acids Res 2011; 39:8544-58. [PMID: 21737432 PMCID: PMC3201874 DOI: 10.1093/nar/gkr554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.
Collapse
Affiliation(s)
- Cécile Guichard
- Unité de Virologie Humaine INSERM, ENS, IFR 128, 46 allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Greenwood AD, Vincendeau M, Schmädicke AC, Montag J, Seifarth W, Motzkus D. Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol Neurodegener 2011; 6:44. [PMID: 21699683 PMCID: PMC3152937 DOI: 10.1186/1750-1326-6-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/23/2011] [Indexed: 01/10/2023] Open
Abstract
Background Prion diseases such as bovine spongiform encephalopathies (BSE) are transmissible neurodegenerative diseases which are presumably caused by an infectious conformational isoform of the cellular prion protein. Previous work has provided evidence that in murine prion disease the endogenous retrovirus (ERV) expression is altered in the brain. To determine if prion-induced changes in ERV expression are a general phenomenon we used a non-human primate model for prion disease. Results Cynomolgus macaques (Macaca fasicularis) were infected intracerebrally with BSE-positive brain stem material from cattle and allowed to develop prion disease. Brain tissue from the basis pontis and vermis cerebelli of the six animals and the same regions from four healthy controls were subjected to ERV expression profiling using a retrovirus-specific microarray and quantitative real-time PCR. We could show that Class I gammaretroviruses HERV-E4-1, ERV-9, and MacERV-4 increase expression in BSE-infected macaques. In a second approach, we analysed ERV-K-(HML-2) RNA and protein expression in extracts from the same cynomolgus macaques. Here we found a significant downregulation of both, the macaque ERV-K-(HML-2) Gag protein and RNA in the frontal/parietal cortex of BSE-infected macaques. Conclusions We provide evidence that dysregulation of ERVs in response to BSE-infection can be detected on both, the RNA and the protein level. To our knowledge, this is the first report on the differential expression of ERV-derived structural proteins in prion disorders. Our findings suggest that endogenous retroviruses may induce or exacerbate the pathological consequences of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Alex D Greenwood
- German Primate Center, Leibniz-Institute for Primate Research, Unit of Infection Models, D-37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Muriaux D, Darlix JL. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 2010; 7:744-53. [PMID: 21157181 DOI: 10.4161/rna.7.6.14065] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a small basic protein generated by the cleavage of the Gag structural polyprotein precusor by the viral protease during virus assembly in the infected cell. HIV-1 NC possesses two copies of a highly conserved CCHC zinc finger (ZnF), flanked by basic residues. HIV-1 NC and more generally retroviral NC proteins are nucleic acid binding proteins possessing potent nucleic acid condensing and chaperoning activities. As such NC protein drives critical structural rearrangements of the genomic RNA, notably RNA dimerization in the course of virus assembly and viral nucleic acid annealing required for genomic RNA replication by the viral reverse transcriptase (RT). Here we review the relationships between the 3D structure of HIV-1 NC, notably the central globular domain encompassing the two zinc fingers and the basic linker and NC functions in the early and late phases of virus replication. One of the salient feature of the NC central globular domain is an hydrophobic plateau which appears to orchestrate the NC functions, such as chaperoning the conversion of the genomic RNA into viral DNA by RT during the early phase, and driving the selection and dimerization of the genomic RNA at the initial stage of viral particle assembly. This ensures a bona fide trafficking of early GagNC-genomic RNA complexes to the plasma membrane of the infected cell and ultimately virion formation and budding.
Collapse
|
17
|
Lathe R, Harris A. Differential display detects host nucleic acid motifs altered in scrapie-infected brain. J Mol Biol 2009; 392:813-22. [PMID: 19631225 DOI: 10.1016/j.jmb.2009.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) including scrapie have been attributed to an infectious protein or prion. Infectivity is allied to conversion of the endogenous nucleic-acid-binding protein PrP to an infectious modified form known as PrP(sc). The protein-only theory does not easily explain the enigmatic properties of the agent including strain variation. It was previously suggested that a short nucleic acid, perhaps host-encoded, might contribute to the pathoetiology of the TSEs. No candidate host molecules that might explain transmission of strain differences have yet been put forward. Differential display is a robust technique for detecting nucleic acid differences between two populations. We applied this technique to total nucleic acid preparations from scrapie-infected and control brain. Independent RNA preparations from eight normal and eight scrapie-infected (strain 263K) hamster brains were randomly amplified and visualized in parallel. Though the nucleic acid patterns were generally identical in scrapie-infected versus control brain, some rare bands were differentially displayed. Molecular species consistently overrepresented (or underrepresented) in all eight infected brain samples versus all eight controls were excised from the display, sequenced, and assembled into contigs. Only seven ros contigs (RNAs over- or underrepresented in scrapie) emerged, representing <4 kb from the transcriptome. All contained highly stable regions of secondary structure. The most abundant scrapie-only ros sequence was homologous to a repetitive transposable element (LINE; long interspersed nuclear element). Other ros sequences identified cellular RNA 7SL, clathrin heavy chain, visinin-like protein-1, and three highly specific subregions of ribosomal RNA (ros1-3). The ribosomal ros sequences accurately corresponded to LINE; retrotransposon insertion sites in ribosomal DNA (p<0.01). These differential motifs implicate specific host RNAs in the pathoetiology of the TSEs.
Collapse
|
18
|
Harrington RD, Herrmann-Hoesing LM, White SN, O'Rourke KI, Knowles DP. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock. Genet Sel Evol 2009; 41:17. [PMID: 19284685 PMCID: PMC3225825 DOI: 10.1186/1297-9686-41-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022] Open
Abstract
Selective breeding of sheep for arginine (R) at prion gene (PRNP) codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV) may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1) associated with the presence of OPPV provirus and 2) associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05). Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05). These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.
Collapse
Affiliation(s)
- Robert D Harrington
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA.
| | | | | | | | | |
Collapse
|
19
|
Gordon PMK, Schütz E, Beck J, Urnovitz HB, Graham C, Clark R, Dudas S, Czub S, Sensen M, Brenig B, Groschup MH, Church RB, Sensen CW. Disease-specific motifs can be identified in circulating nucleic acids from live elk and cattle infected with transmissible spongiform encephalopathies. Nucleic Acids Res 2008; 37:550-6. [PMID: 19059996 PMCID: PMC2632913 DOI: 10.1093/nar/gkn963] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To gain insight into the disease progression of transmissible spongiform encephalopathies (TSE), we searched for disease-specific patterns in circulating nucleic acids (CNA) in elk and cattle. In a 25-month time-course experiment, CNAs were isolated from blood samples of 24 elk (Cervus elaphus) orally challenged with chronic wasting disease (CWD) infectious material. In a separate experiment, blood-sample CNAs from 29 experimental cattle (Bos taurus) 40 months post-inoculation with clinical bovine spongiform encephalopathy (BSE) were analyzed according to the same protocol. Next-generation sequencing provided broad elucidation of sample CNAs: we detected infection-specific sequences as early as 11 months in elk (i.e. at least 3 months before the appearance of the first clinical signs) and we established CNA patterns related to BSE in cattle at least 4 months prior to clinical signs. In elk, a progression of CNA sequence patterns was found to precede and correlate with macro-observable disease progression, including delayed CWD progression in elk with PrP genotype LM. Some of the patterns identified contain transcription-factor-binding sites linked to endogenous retroviral integration. These patterns suggest that retroviruses may be connected to the manifestation of TSEs. Our results may become useful for the early diagnosis of TSE in live elk and cattle.
Collapse
Affiliation(s)
- Paul M K Gordon
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sun Center of Excellence for Visual Genomics, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gomes MPB, Cordeiro Y, Silva JL. The peculiar interaction between mammalian prion protein and RNA. Prion 2008; 2:64-6. [PMID: 19098437 DOI: 10.4161/pri.2.2.6988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past decade, the interaction between prions and nucleic acids has garnered significant attention from the scientific community. for many years, the participation of RNA and/or DNA in prion pathology has been largely ruled out by the "protein-only" hypothesis, but this is now being reconsidered. Experimental data now indicate that nucleic acids (particularly RNA), besides being carriers of genetic information, function as important key components during development, physiological responsiveness and cellular signaling. This revelation has brought a new perspective to prion pathology. Here we discuss the role of RNA molecules in prion protein aggregation and the resulting cellular toxicity. We combine our most recent findings with existing literature to shed new light on this exciting field of research.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
21
|
Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci 2008; 33:132-40. [DOI: 10.1016/j.tibs.2007.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/14/2007] [Accepted: 11/26/2007] [Indexed: 11/19/2022]
|
22
|
Sakudo A, Onodera T, Ikuta K. PrPSc level and incubation time in a transgenic mouse model expressing Borna disease virus phosphoprotein after intracerebral prion infection. Neurosci Lett 2007; 431:81-5. [PMID: 18155836 DOI: 10.1016/j.neulet.2007.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/12/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Our previous studies have shown that the persistent expression of Borna disease virus phosphoprotein (BDV P) in mice leads to behavioral abnormalities resembling those in BDV-infected animals. In this study, we investigated whether the neurobehavioral abnormalities genetically induced by BDV P influence experimental prion disease. The effect of the phosphoprotein on prion diseases was evaluated based on the incubation time and survival curve, as well as the abnormal isoform of prion protein (PrP(Sc)) levels in brains of BDV P Tg mice treated with proteinase K (PK) treatment and subjected to western blotting. Increased expression of the BDV P transgene had no effect on the PrP(Sc) level, incubation time, or survival curve. The abnormalities induced by BDV P are different from those induced by prion diseases, indicating that the signaling cascades induced by the phosphoprotein differ from those induced by prion diseases.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
23
|
Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2007; 2:e1158. [PMID: 17987132 PMCID: PMC2063463 DOI: 10.1371/journal.pone.0001158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/16/2007] [Indexed: 01/18/2023] Open
Abstract
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.
Collapse
|
24
|
Geoghegan JC, Valdes PA, Orem NR, Deleault NR, Williamson RA, Harris BT, Supattapone S. Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem 2007; 282:36341-53. [PMID: 17940287 DOI: 10.1074/jbc.m704447200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central pathogenic event of prion disease is the conformational conversion of a host protein, PrPC, into a pathogenic isoform, PrPSc. We previously showed that the protein misfolding cyclic amplification (PMCA) technique can be used to form infectious prion molecules de novo from purified native PrPC molecules in an autocatalytic process requiring accessory polyanions (Deleault, N. R., Harris, B. T., Rees, J. R., and Supattapone, S. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 9741-9746). Here we investigated the molecular mechanism by which polyanionic molecules facilitate infectious prion formation in vitro. Ina PMCA reaction lacking PrPSc template seed, synthetic polyA RNA molecules induce hamster HaPrPC to adopt a protease-sensitive, detergent-insoluble conformation reactive against antibodies specific for PrPSc. During PMCA, labeled nucleic acids form nuclease-resistant complexes with HaPrP molecules. Strikingly, purified HaPrPC molecules subjected to PMCA selectively incorporate an approximately 1-2.5-kb subset of [32P]polyA RNA molecules from a heterogeneous mixture ranging in size from approximately 0.1 to >6 kb. Neuropathological analysis of scrapie-infected hamsters using the fluorescent dye acridine orange revealed that RNA molecules co-localize with large extracellular HaPrP aggregates. These findings suggest that polyanionic molecules such as RNA may become selectively incorporated into stable complexes with PrP molecules during the formation of native hamster prions.
Collapse
Affiliation(s)
- James C Geoghegan
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Darlix JL, Garrido JL, Morellet N, Mély Y, de Rocquigny H. Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:299-346. [PMID: 17586319 DOI: 10.1016/s1054-3589(07)55009-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jean-Luc Darlix
- LaboRetro, Unité INSERM de Virologie Humaine, IFR128, ENS Sciences de Lyon 46 allée d'Italie, Lyon, France
| | | | | | | | | |
Collapse
|
26
|
Biswas S, Langeveld JPM, Tipper D, Lu S. Intracellular accumulation of a 46 kDa species of mouse prion protein as a result of loss of glycosylation in cultured mammalian cells. Biochem Biophys Res Commun 2006; 349:153-61. [PMID: 16935263 DOI: 10.1016/j.bbrc.2006.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/18/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of an abnormal isoform (PrPSc) of the normal cellular prion protein (PrPC) in the brain. Reportedly, abnormal N-linked glycosylation patterns in PrPC are associated with disease susceptibility; thus, we compared the glycosylation status of normal and several mutant forms of the murine prion protein (MuPrP) in cultured mammalian cells. Substitution of the N-terminal signal sequence of normal MuPrP with a heterologous signal peptide did not alter glycosylation. When expressed without the C-terminal glycophosphatidylinositol anchor signal, the majority of MuPrP remained intracellular and unglycosylated, and a 46 kDa species (p46) of the unglycosylated PrPC was detected on reducing gels. p46 was also observed when wild-type MuPrP was expressed in the presence of tunicamycin or enzymatically deglycosylated in vitro. A rabbit polyclonal anti-serum raised against dimeric MuPrP cross-reacted with p46 and localized the signal within the Golgi apparatus. We propose that the 46 kDa signal is a dimeric form of MuPrP and in the light of recent studies, it can be argued that a relatively stable, non-glycosylated, cytoplasmic PrPC dimer, produced as a result of compromised glycosylation is an intermediate in initiating conversion of PrPC to PrPSc in sporadic transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Subhabrata Biswas
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
27
|
Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 2006; 25:2674-85. [PMID: 16724107 PMCID: PMC1500854 DOI: 10.1038/sj.emboj.7601162] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/02/2006] [Indexed: 01/15/2023] Open
Abstract
Prion diseases are neurodegenerative disorders associated in most cases with the accumulation in the central nervous system of PrPSc (conformationally altered isoform of cellular prion protein (PrPC); Sc for scrapie), a partially protease-resistant isoform of the PrPC. PrPSc is thought to be the causative agent of transmissible spongiform encephalopathies. The mechanisms involved in the intercellular transfer of PrPSc are still enigmatic. Recently, small cellular vesicles of endosomal origin called exosomes have been proposed to contribute to the spread of prions in cell culture models. Retroviruses such as murine leukemia virus (MuLV) or human immunodeficiency virus type 1 (HIV-1) have been shown to assemble and bud into detergent-resistant microdomains and into intracellular compartments such as late endosomes/multivesicular bodies. Here we report that moloney murine leukemia virus (MoMuLV) infection strongly enhances the release of scrapie infectivity in the supernatant of coinfected cells. Under these conditions, we found that PrPC, PrPSc and scrapie infectivity are recruited by both MuLV virions and exosomes. We propose that retroviruses can be important cofactors involved in the spread of the pathological prion agent.
Collapse
Affiliation(s)
- Pascal Leblanc
- LaboRétro unité de virologie humaine INSERM U758, Ecole Normale Supérieure de Lyon, Lyon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liang J, Pan YL, Ning XX, Sun LJ, Lan M, Hong L, Du JP, Liu N, Liu CJ, Qiao TD, Fan DM. Overexpression of PrPC and its antiapoptosis function in gastric cancer. Tumour Biol 2006; 27:84-91. [PMID: 16582585 DOI: 10.1159/000092488] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/24/2005] [Indexed: 12/30/2022] Open
Abstract
Cellular prion protein (PrP(C)), a glycosylphosphatidylinositol-anchored membrane protein, was found in our lab to be widely expressed in gastric cancer cell lines. In order to evaluate its biological significance in human gastric cancer, we investigated its expression in a large series of gastric tissue samples (n = 124) by immuno histochemical staining with the monoclonal antibody 3F4. Compared with normal tissues, gastric adenocarcinoma showed increased PrP(C) expression, correlated with the histopathological differentiation (according to the WHO and Lauren classifications) and tumor progression (as documented by pTNM staging). To better understand the underlying mechanism, we introduced the PrP(C) and two pairs of RNAi into the poorly differentiated gastric cancer cell line AGS and found that PrP(C) suppressed ROS and slowed down apoptosis in transfected cells. Further study proved that the apoptosis-related protein Bcl-2 was upregulated whereas p53 and Bax were downregulated in the PrP(C)-transfected cells. A reverse effect was observed in PrP(C) siRNA-transfected cells. These results strongly suggested that PrP(C) might play a role as an effective antiapoptotic protein through Bcl-2-dependent apoptotic pathways in gastric cancer cells. Further study into the mechanism of these relationships might enrich the knowledge of PrP, better our understanding of the nature of gastric carcinoma, and further develop possible strategies to block or reverse the development of gastric carcinoma.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McBride SM. Prion protein: a pattern recognition receptor for viral components and uric acid responsible for the induction of innate and adaptive immunity. Med Hypotheses 2005; 65:570-7. [PMID: 15913900 DOI: 10.1016/j.mehy.2005.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
Prion protein, known as Prp(c), is a GPI-anchored membrane bound glycoprotein ubiquitously expressed in the body. To date, the precise nature of its physiological role remains a mystery. The prion protein's presence on neurons and immune effector cells suggests a dual neurological and immunological function. Some consensus exists regarding the proposed involvement of Prp(c) in neurodevelopment, where it would serve to mediate interactions between the extra-cellular matrix (ECM) and the neuron. There is also evidence that Prp plays a part in immunity, although the exact nature of the role remains unclear. Interestingly, a role in both immunity and development is a functional division seen in other types of receptors, most notably the Toll Receptor. In mammals, toll-like receptors (TLRs) are partly responsible for both innate and adaptive immune activity. However, recently several TLR independent pathways have been identified that initiate such responses. Unfortunately, receptors for such pathways remain unidentified. But based upon its functional homology to Toll Receptors, its known interactions with several viruses, and its possible downstream effector proteins, it is proposed that Prp(c) represents a new type of pattern recognition receptor responsible for TLR-independent induction of myeloid dendritic cell and macrophage maturation and later T-cell activation. From what is known of the ligands for the prion protein, it is proposed that this response would be initiated via the binding of uric acid, viral RNA, or viral structural proteins to Prp(c). It will further be proposed that Prp(c)'s ability to interact with viral components stems from its evolutionary origin as a horizontally transferred gene from an early RNA virus. Finally, Prp(c)'s functional role in immunity will be related to the pathophysiology of TSEs, with observations made concerning immune response to infection and agent composition.
Collapse
Affiliation(s)
- Sean M McBride
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
30
|
Wolkowicz R, Nolan GP. Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Ther 2005; 12:467-76. [PMID: 15703764 DOI: 10.1038/sj.gt.3302488] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), kills millions worldwide every year. Vaccines against HIV still seem a distant promise. Pharmaceutical treatments exist, but these are not always effective, and there is increasing prevalence of viral strains with multidrug resistance. Highly active antiretroviral therapy (HAART) consists of inhibitors of viral enzymes (reverse transcriptase (RT) and protease). Gene therapy, first introduced as intracellular immunization, may offer hopes for new treatments to be used alone, or in conjunction with, conventional small molecule drugs. Gene therapy approaches against HIV-1, including suicide genes, RNA-based technology, dominant negative viral proteins, intracellular antibodies, intrakines, and peptides, are the subject of this review.
Collapse
Affiliation(s)
- R Wolkowicz
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
31
|
Somerville RA, Hamilton S, Fernie K. Transmissible spongiform encephalopathy strain, PrP genotype and brain region all affect the degree of glycosylation of PrPSc. J Gen Virol 2005; 86:241-246. [PMID: 15604453 DOI: 10.1099/vir.0.80251-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), sometimes known as prion diseases, are caused by an infectious agent whose molecular properties have not been determined. Traditionally, different strains of TSE diseases are characterized by a series of phenotypic properties after passage in experimental animals. More recently it has been recognized that diversity in the degree to which an abnormal form of the host protein PrP, denoted PrPSc, is glycosylated and the migration of aglycosyl forms of PrPSc on immunoblots may have some differential diagnostic potential. It has been recognized that these factors are affected by the strain of TSE agent but also by other factors, e.g. location within the brain. This study shows in some cases, but not others, that host PrP genotype has a major influence on the degree of PrPSc glycosylation and migration on gels and provides further evidence of the effect of brain location. Accordingly both the degree of glycosylation and the apparent molecular mass of PrPSc may be of some value for differential diagnosis between TSE strains, but only when host effects are taken into account. Furthermore, the data inform the debate about how these differences arise, and favour hypotheses proposing that TSE agents affect glycosylation of PrP during its biosynthesis.
Collapse
Affiliation(s)
- Robert A Somerville
- Neuropathogenesis Unit, Institute for Animal Health, West Mains Road, Edinburgh EH9 3JF, UK
| | - Scott Hamilton
- Neuropathogenesis Unit, Institute for Animal Health, West Mains Road, Edinburgh EH9 3JF, UK
| | - Karen Fernie
- Neuropathogenesis Unit, Institute for Animal Health, West Mains Road, Edinburgh EH9 3JF, UK
| |
Collapse
|
32
|
Ledoux JM. Effects on the serotoninergic system in sub-acute transmissible spongiform encephalopathies: current data, hypotheses, suggestions for experimentation. Med Hypotheses 2005; 64:910-8. [PMID: 15780484 DOI: 10.1016/j.mehy.2004.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/19/2022]
Abstract
Sub-acute transmissible spongiform encephalopathies (TSEs), or prion diseases, are affections in which little is known of their etiology. The predominant theory stipulates that an abnormal protease-resistant prion protein (PrPres) would be infectious by directly inducing its defective conformation to the normal native protein (PrPC). The function of PrPC remains unknown. The preferred localization of PrPC at the level of the synapses supposes a function in neuronal transmission. Several neurotransmitter systems (acetylcholine, GABA, dopamine, etc.) are damaged in TSEs, mainly the serotonin (5-HT) system. At a hypothetical level, PrPC would play a trophic and functional role by regulating the capture of amino acid precursors of neurotransmitters and the functions of neuroreceptors, in particular regarding tryptophan and 5-HT receptors. By comparison with the modes of action of Ras proteins and of the envelope glycoprotein of jaagsiekte sheep retrovirus, the adaptation of an oncogenic model is suggested for the mode of action of PrPres. The sequence of events could be the following: capture of PrPres and forming of an abnormal receptor, chronic disturbance of transduction pathways, more particularly of the phosphatidylinositol-3 kinase (PI-3K)/protein kinase B (Akt)/glycogen synthetase kinase 3 (GSK 3)/Wnt-beta catenin pathway, deregulation of the PrP gene and infrequent and transitory forming of abnormal RNA messengers and, finally, the forming of abnormal proteins and the deterioration of the serotoninergic system. The involvement of endogenous nucleic acids is supposed. The infectious agent of TSEs could be an ancestral form of retrovirus, such as a retrotransposon using the prion protein as an envelope glycoprotein. Pharmacological tests, by comparison with a rare disease of unknown etiology in cattle, bovine spastic paresis, are suggested with the amino acid precursors of neuromediators (tryptophan, tyrosine, glutamic acid, etc.) and with lithium, neuroprotector and regulator of the serotonergic system.
Collapse
|
33
|
Grigorov B, Muriaux D, Argirova R, Darlix JL. New Insights into Human Immunodeficiency Virus—Type 1 Replication. BIOTECHNOL BIOTEC EQ 2005. [DOI: 10.1080/13102818.2005.10817147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
34
|
Roucou X, LeBlanc AC. Cellular prion protein neuroprotective function: implications in prion diseases. J Mol Med (Berl) 2004; 83:3-11. [PMID: 15645198 DOI: 10.1007/s00109-004-0605-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Prion protein can display two conformations: a normal cellular conformation (PrP) and a pathological conformation associated with prion diseases (PrP(Sc)). Three complementary strategies are used by researchers investigating how PrP is involved in the pathogenesis of prion diseases: elucidation of the normal function of PrP, determination of how PrP(Sc) is toxic to neurons, and unraveling the mechanism for the conversion of PrP to PrP(Sc). We review the normal function of PrP as an antioxidant and an antiapoptotic protein in vivo and in vitro. This review also addresses contrasting evidence that PrP is cytotoxic. Finally, we discuss the implication of the neuroprotective role of PrP in prion diseases.
Collapse
Affiliation(s)
- Xavier Roucou
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, 3755 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
| | | |
Collapse
|