1
|
Langhammer F, Gregor A, Ntamati NR, Ekici AB, Winner B, Nevian T, Zweier C. Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy. Hum Mol Genet 2025; 34:639-650. [PMID: 39849855 PMCID: PMC11924187 DOI: 10.1093/hmg/ddae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.
Collapse
Affiliation(s)
- Franziska Langhammer
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| |
Collapse
|
2
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
3
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
4
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
5
|
Karamanavi E, McVey DG, van der Laan SW, Stanczyk PJ, Morris GE, Wang Y, Yang W, Chan K, Poston RN, Luo J, Zhou X, Gong P, Jones PD, Cao J, Kostogrys RB, Webb TR, Pasterkamp G, Yu H, Xiao Q, Greer PA, Stringer EJ, Samani NJ, Ye S. The FES Gene at the 15q26 Coronary-Artery-Disease Locus Inhibits Atherosclerosis. Circ Res 2022; 131:1004-1017. [PMID: 36321446 PMCID: PMC9770135 DOI: 10.1161/circresaha.122.321146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Genome-wide association studies have discovered a link between genetic variants on human chromosome 15q26.1 and increased coronary artery disease (CAD) susceptibility; however, the underlying pathobiological mechanism is unclear. This genetic locus contains the FES (FES proto-oncogene, tyrosine kinase) gene encoding a cytoplasmic protein-tyrosine kinase involved in the regulation of cell behavior. We investigated the effect of the 15q26.1 variants on FES expression and whether FES plays a role in atherosclerosis. METHODS AND RESULTS Analyses of isogenic monocytic cell lines generated by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that monocytes with an engineered 15q26.1 CAD risk genotype had reduced FES expression. Small-interfering-RNA-mediated knockdown of FES promoted migration of monocytes and vascular smooth muscle cells. A phosphoproteomics analysis showed that FES knockdown altered phosphorylation of a number of proteins known to regulate cell migration. Single-cell RNA-sequencing revealed that in human atherosclerotic plaques, cells that expressed FES were predominately monocytes/macrophages, although several other cell types including smooth muscle cells also expressed FES. There was an association between the 15q26.1 CAD risk genotype and greater numbers of monocytes/macrophage in human atherosclerotic plaques. An animal model study demonstrated that Fes knockout increased atherosclerotic plaque size and within-plaque content of monocytes/macrophages and smooth muscle cells, in apolipoprotein E-deficient mice fed a high fat diet. CONCLUSIONS We provide substantial evidence that the CAD risk variants at the 15q26.1 locus reduce FES expression in monocytes and that FES depletion results in larger atherosclerotic plaques with more monocytes/macrophages and smooth muscle cells. This study is the first demonstration that FES plays a protective role against atherosclerosis and suggests that enhancing FES activity could be a potentially novel therapeutic approach for CAD intervention.
Collapse
Affiliation(s)
- Elisavet Karamanavi
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - David G. McVey
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Sander W. van der Laan
- Central Diagnostic Laboratory, University of Utrecht, The Netherlands (S.W.v.d.L., G.P.)
| | - Paulina J. Stanczyk
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Gavin E. Morris
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Yifan Wang
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
| | - Wei Yang
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| | - Kenneth Chan
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Robin N. Poston
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Jun Luo
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Xinmiao Zhou
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Peng Gong
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Peter D. Jones
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Junjun Cao
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| | - Renata B. Kostogrys
- Department of Human Nutrition, University of Agriculture in Kraków, Poland (R.B.K.)
| | - Tom R. Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University of Utrecht, The Netherlands (S.W.v.d.L., G.P.)
| | - Haojie Yu
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
| | - Qingzhong Xiao
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Canada (P.A.G.)
| | - Emma J. Stringer
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| |
Collapse
|
6
|
Akhlaghipour I, Bina AR, Abbaszadegan MR, Moghbeli M. Methylation as a critical epigenetic process during tumor progressions among Iranian population: an overview. Genes Environ 2021; 43:14. [PMID: 33883026 PMCID: PMC8059047 DOI: 10.1186/s41021-021-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
Cancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer incidence and mortality have a growing trend during last decades among Iranian population which are significantly related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression. Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review we have summarized all of the aberrant methylations which have been reported during tumor progression among Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific panel of diagnostic markers for the early detection of cancer among Iranians.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Beljan S, Herak Bosnar M, Ćetković H. Rho Family of Ras-Like GTPases in Early-Branching Animals. Cells 2020; 9:cells9102279. [PMID: 33066017 PMCID: PMC7600811 DOI: 10.3390/cells9102279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which function as key molecular switches that play important roles in converting and amplifying external signals into cellular responses. This review represents a compilation of the current knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to gain a general insight into the evolutionary history of Rho-family GTPases in simple animals.
Collapse
Affiliation(s)
- Silvestar Beljan
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Division of Molecular Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-456-1115
| |
Collapse
|
8
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Belal H, Nakashima M, Matsumoto H, Yokochi K, Taniguchi-Ikeda M, Aoto K, Amin MB, Maruyama A, Nagase H, Mizuguchi T, Miyatake S, Miyake N, Iijima K, Nonoyama S, Matsumoto N, Saitsu H. De novo variants in RHOBTB2, an atypical Rho GTPase gene, cause epileptic encephalopathy. Hum Mutat 2018; 39:1070-1075. [PMID: 29768694 DOI: 10.1002/humu.23550] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
By whole exome sequencing, we identified three de novo RHOBTB2 variants in three patients with epileptic encephalopathies (EEs). Interestingly, all three patients showed acute encephalopathy (febrile status epilepticus), with magnetic resonance imaging revealing hemisphere swelling or reduced diffusion in various brain regions. RHOBTB2 encodes Rho-related BTB domain-containing protein 2, an atypical Rho GTPase that is a substrate-specific adaptor or itself is a substrate for the Cullin-3 (CUL3)-based ubiquitin ligase complex. Transient expression experiments in Neuro-2a cells revealed that mutant RHOBTB2 was more abundant than wild-type RHOBTB2. Coexpression of CUL3 with RHOBTB2 decreased the level of wild-type RHOBTB2 but not the level of any of the three mutants, indicating impaired CUL3 complex-dependent degradation of the three mutants. These data indicate that RHOBTB2 variants are a rare genetic cause of EEs, in which acute encephalopathy might be a characteristic feature, and that precise regulation of RHOBTB2 levels is essential for normal brain function.
Collapse
Affiliation(s)
- Hazrat Belal
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Higashi-ku, Hamamatsu, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Higashi-ku, Hamamatsu, Japan.,Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology, Seirei-Mikatahara General Hospital, Kita-ku, Hamamatsu, Japan.,Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aotake-cho, Toyohashi, Japan
| | - Mariko Taniguchi-Ikeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Department of Clinical Genetics, Fujita Health University Hospital, Dengakugakubo, Toyoake, Aichi, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Higashi-ku, Hamamatsu, Japan
| | - Mohammed Badrul Amin
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Higashi-ku, Hamamatsu, Japan.,Enteric and Food Microbiology Laboratory, ICDDR,B, Dhaka, Bangladesh
| | - Azusa Maruyama
- Department of Neurology, Hyogo Prefectural Kobe Children's Hospital, Chuo-ku, Kobe, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
10
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
11
|
Haga RB, Ridley AJ. Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases 2016; 7:207-221. [PMID: 27628050 PMCID: PMC5129894 DOI: 10.1080/21541248.2016.1232583] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Rho GTPases are well known for their roles in regulating cell migration, and also contribute to a variety of other cellular responses. They are subdivided into 2 groups: typical and atypical. The typical Rho family members, including RhoA, Rac1 and Cdc42, cycle between an active GTP-bound and inactive GDP-bound conformation, and are regulated by GEFs, GAPs and GDIs, whereas atypical Rho family members have amino acid substitutions that alter their ability to interact with GTP/GDP and hence are regulated by different mechanisms. Both typical and atypical Rho GTPases contribute to cancer progression. In a few cancers, RhoA or Rac1 are mutated, but in most cancers expression levels and/or activity of Rho GTPases is altered. Rho GTPase signaling could therefore be therapeutically targeted in cancer treatment.
Collapse
Affiliation(s)
- Raquel B. Haga
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
12
|
Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer. Comput Biol Chem 2015; 59 Pt B:15-31. [DOI: 10.1016/j.compbiolchem.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
|
13
|
Lutz J, Grimm-Günter EMS, Joshi P, Rivero F. Expression analysis of mouse Rhobtb3 using a LacZ reporter and preliminary characterization of a knockout strain. Histochem Cell Biol 2014; 142:511-28. [PMID: 24923387 DOI: 10.1007/s00418-014-1235-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
RhoBTB3 is an atypical member of the Rho family of small GTPases. It localizes at the Golgi apparatus and endosomes and is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. Previous studies using Northern blot analysis showed that Rhobtb3 is ubiquitously expressed in adult mice, but expression is particularly high in brain, heart and uterus. The gene is also expressed between embryonic days 11.5 and 17.5. To investigate the specific cell types that express this gene across tissues, both in the embryo and in the adult organism, we have made use of a gene trap mouse strain that expresses the LacZ gene under the transcriptional control of the endogenous Rhobtb3 promoter. Histochemical detection of β-galactosidase expression revealed a profile characterized by nearly ubiquitous expression of Rhobtb3 in the embryo, but with particularly high levels in bone, cartilage, all types of muscle, testis and restricted areas of the nervous system. In the adult, expression persists at much lower levels in cardiac muscle, the tunica media of blood vessels and cartilage and at high levels in the seminiferous tubules. A general preliminary characterization of this gene trap mouse strain revealed reduced viability, a postnatal growth defect and reduced testis size. Our results should pave the way for future studies aimed at investigating the roles of RhoBTB3 in tissue development and in cardiac, vascular and testicular function.
Collapse
Affiliation(s)
- Julia Lutz
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | | | | | | |
Collapse
|
14
|
Wray CJ, Ko TC, Tan FK. Secondary use of existing public microarray data to predict outcome for hepatocellular carcinoma. J Surg Res 2014; 188:137-42. [DOI: 10.1016/j.jss.2013.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 12/23/2022]
|
15
|
A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol 2014; 24:389-99. [PMID: 24630736 DOI: 10.1016/j.tcb.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Mulitmeric cullin-RING ubiquitin ligases (CRLs) represent the largest class of ubiquitin ligases in eukaryotes. However, most CRL ubiquitylation pathways remain uncharacterized. CRLs control a myriad of functions by catalyzing mono- or poly-ubiquitylation of target proteins. Recently, novel CRLs have been identified along the secretory pathway where they modify substrates involved in diverse cellular processes such as vesicle coat assembly and cell cycle progression. This review discusses our current understanding of CRL ubiquitylation within the secretory pathway, with special emphasis on the emerging role of the Golgi as a ubiquitylation platform. CRLs are also implicated in endosome function, where their specific roles are less well understood.
Collapse
|
16
|
Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex. PLoS One 2014; 9:e90054. [PMID: 24608665 PMCID: PMC3946479 DOI: 10.1371/journal.pone.0090054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022] Open
Abstract
The expression of the wild-type tumor-suppressor gene DBC2 (Deleted-in-Breast Cancer 2, a.k.a RhoBTB2) is suppressed in many cancers, in addition to breast cancer. In a screen for Cdc37-associated proteins, DBC2 was identified to be a potential client protein of the 90 kDa heat shock protein (Hsp90) chaperone machine. Pull down assays of ectopically expressed DBC2 confirmed that DBC2 associated with Hsp90 and its co-chaperone components in reticulocyte lysate and MCF7 cells. Similar to other atypical Rho GTPases, DBC2 was found to have retained the capacity to bind GTP. The ability of DBC2 to bind GTP was modulated by the Hsp90 ATPase cycle, as demonstrated through the use of the Hsp90 chemical inhibitors, geldanamycin and molybdate. The binding of full length DBC2 to GTP was suppressed in the presence of geldanamycin, while it was enhanced in the presence of molybdate. Furthermore, assembly of DBC2-Cullin3-COP9 E3 ligase complexes was Hsp90-dependent. The data suggest a new paradigm for Hsp90-modulated assembly of a Cul3/DBC2 E3 ubiquitin ligase complex that may extend to other E3 ligase complexes.
Collapse
|
17
|
Fu G, Wang H, Wu H, Wang M. The mutation of DBC2 in breast cancer patients from the Han ethnic group in Eastern China. Hematol Oncol Stem Cell Ther 2014; 7:59-62. [PMID: 24485767 DOI: 10.1016/j.hemonc.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To investigate DBC2 mutations in breast cancer patients and evaluate the relationship between gene mutations and breast cancer susceptibility in an Eastern China population. METHODS Mutation analyses of 285bp promoter sequence, coding exon 7 and its exon/intron boundaries of DBC2 were performed in 32 breast cancer specimens by polymerase chain reaction and direct sequencing. Eighteen benign breast tumor specimens were also analyzed as control. RESULTS No mutation in the promoter or exon 7 was found in either group. An intronic alteration (IVS7+53C>G) was detected in 13 specimens. There was no significant difference in the rate of IVS7+53C>G alteration between the study and control groups (8/32 vs 5/18, respectively, P>0.05). The G allele of IVS7+53 was correlated with HER2 and p53 expression (P<0.05), but not with age, tumor size, lymph node metastasis, ER or PR expression (P>0.05). CONCLUSION Mutation in the promoter and exon 7 of DBC2 gene is not common in the Chinese population and may not contribute to the susceptibility for breast cancer in China. The intronic alteration IVS7+53C>G is a common polymorphism in the Chinese Han ethnic group. Further research is warranted to evaluate the relationship between IVS7+53C>G and the susceptibility for breast cancer.
Collapse
Affiliation(s)
- Guoping Fu
- Department of Oncology, Lihuili Hospital, Medical Center of Ningbo, Ningbo 315040, China
| | - Haixin Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hongmei Wu
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Mei Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Lu A, Pfeffer SR. Golgi-associated RhoBTB3 targets cyclin E for ubiquitylation and promotes cell cycle progression. ACTA ACUST UNITED AC 2013; 203:233-50. [PMID: 24145166 PMCID: PMC3812982 DOI: 10.1083/jcb.201305158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Golgi protein RhoBTB3 in complex with CUL3 and RBX1 promotes Cyclin E ubiquitylation to allow its turnover during S phase and progression through the cell cycle. Cyclin E regulates the cell cycle transition from G1 to S phase and is degraded before entry into G2 phase. Here we show that RhoBTB3, a Golgi-associated, Rho-related ATPase, regulates the S/G2 transition of the cell cycle by targeting Cyclin E for ubiquitylation. Depletion of RhoBTB3 arrested cells in S phase, triggered Golgi fragmentation, and elevated Cyclin E levels. On the Golgi, RhoBTB3 bound Cyclin E as part of a Cullin3 (CUL3)-dependent RING–E3 ubiquitin ligase complex comprised of RhoBTB3, CUL3, and RBX1. Golgi association of this complex was required for its ability to catalyze Cyclin E ubiquitylation and allow normal cell cycle progression. These experiments reveal a novel role for a Ras superfamily member in catalyzing Cyclin E turnover during S phase, as well as an unexpected, essential role for the Golgi as a ubiquitylation platform for cell cycle control.
Collapse
Affiliation(s)
- Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | | |
Collapse
|
19
|
Nehru V, Voytyuk O, Lennartsson J, Aspenström P. RhoD Binds the Rab5 Effector Rabankyrin-5 and has a Role in Trafficking of the Platelet-derived Growth Factor Receptor. Traffic 2013; 14:1242-54. [DOI: 10.1111/tra.12121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Vishal Nehru
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Box 280, Nobels väg 16 SE-171 77 Stockholm Sweden
| | - Oleksandr Voytyuk
- Ludwig Institute for Cancer Research, Biomedical Center; Uppsala University; Box 595 SE-751 24 Uppsala Sweden
| | - Johan Lennartsson
- Ludwig Institute for Cancer Research, Biomedical Center; Uppsala University; Box 595 SE-751 24 Uppsala Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Box 280, Nobels väg 16 SE-171 77 Stockholm Sweden
| |
Collapse
|
20
|
Hippocampal protein kinase C family members in spatial memory retrieval in the mouse. Behav Brain Res 2013; 258:202-7. [PMID: 24075976 DOI: 10.1016/j.bbr.2013.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
Abstract
Although a few individual members of the protein kinase C (PKC) family were studied in spatial memory no systematic approach was carried out to concomitantly determine all described PKC family members in spatial memory of the mouse. It was therefore the aim of the current study to link hippocampal PKCs to memory retrieval in the Morris water maze (MWM). CD1 mice were trained (n=9) or untrained (n=9) in the MWM, hippocampi were taken 6h following the test for memory retrieval and PKCs were determined in mouse hippocampi by immunoblotting. The trained animals learned the spatial memory task and kept memory at the probe trial. PKCs alpha and epsilon were comparable between groups while PKCs beta, delta, gamma (two forms, i.e. two bands on Western blotting), zeta (2 forms) were higher in trained mice and theta (2 forms) were lower in trained mice. PKC gamma (1 form) was significantly correlating with the time spent in the target quadrant (r=0.7933; P=0.0188). Changes of hippocampal levels of PKCs beta, delta, gamma, zeta and theta were paralleling memory retrieval of the MWM task but correlations revealed that spatial memory retrieval was only linked to one form of PKC gamma. Results are also in agreement with a recent publication showing that PKM zeta is not required for memory formation. These findings may be relevant for the interpretation of previous work and the design of future work on the protein kinase C family in spatial memory of the mouse.
Collapse
|
21
|
Li L, Sase A, Patil S, Sunyer B, Höger H, Smalla KH, Stork O, Lubec G. Distinct set of kinases induced after retrieval of spatial memory discriminate memory modulation processes in the mouse hippocampus. Hippocampus 2013; 23:672-83. [PMID: 23536525 DOI: 10.1002/hipo.22127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo-like kinase 1. Together with its recently observed genetic association to autism-spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Song Q, Li Y, Zheng X, Fang Y, Chao Y, Yao K, Zhu X. MTA1 contributes to actin cytoskeleton reorganization and metastasis of nasopharyngeal carcinoma by modulating Rho GTPases and Hedgehog signaling. Int J Biochem Cell Biol 2013; 45:1439-46. [PMID: 23618874 DOI: 10.1016/j.biocel.2013.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is prone to appearing regional lymph node and distant metastasis. And its underlying mechanism is unclear. Recent study suggests that overexpression of metastasis-associated gene 1 (MTA1) was independently associated with poorer distant metastasis-free survival in NPC. However, it is still lack of direct evidence that MTA1 is responsible for aggressive phenotypes of NPC. Using stably transfected MTA1 knockdown or overexpression cells, we discovered the function of MTA1 in actin cytoskeleton reorganization and metastasis processing of NPC in this study. For the first time, our data demonstrate two tumor relevant molecular mechanisms, i.e. Rho GTPases and Hedgehog signaling both contribute to the effect of MTA1 on the aggressive phenotypes of NPC cells. In summary, the novel findings in this work provide further insight into the function of MTA1 and the molecular mechanism in the progression of NPC. Our results indicate that MTA1 might serve as a potential therapeutic target for advanced NPC.
Collapse
Affiliation(s)
- Qingcui Song
- Cancer Research Institute, Key Lab for Transcriptomics and Proteomics of Human Fatal Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Jin Z, Han YX, Han XR. Downregulated RhoBTB2 expression contributes to poor outcome in osteosarcoma patients. Cancer Biother Radiopharm 2013; 28:709-16. [PMID: 23777252 DOI: 10.1089/cbr.2012.1386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Osteosarcoma is a malignant bone tumor. RhoBTB2 protein participated in various cellular activities and influenced pathways responsible for cell cycle and apoptosis. To address its potential as a therapeutic target for osteosarcoma, this study investigated the effect of RhoBTB2 expression on osteosarcoma tissue and cell. MATERIALS AND METHODS Real-time PCR and immunohistochemistry analysis were performed to evaluate the level of RhoBTB2 mRNA and protein in 121 osteosarcoma specimens. The relationship of RhoBTB2 expression with clinicopathological parameters of osteosarcoma patients was analyzed using Chi-square test. In addition, a plasmid expressing the RhoBTB2 gene was transfected into human osteosarcoma (HOS) cell using Lipofectamine 2000, and the effects of RhoBTB2 on HOS cell were investigated using 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazoliumbromide assay and flow cytometry. RESULTS This study reports that RhoBTB2 protein is weakly expressed in osteosarcoma specimens, but highly in normal parts of specimens. RhoBTB2 expression is significantly associated with primary location and local recurrence of osteosarcoma. Overexpression of RhoBTB2 results in significant G1 phase arrest and apoptosis in HOS cell. CONCLUSION Taken together, we identified the role RhoBTB2 in osteosarcoma tissue and cell. The results might not only be of relevance for diagnosis and prognosis, but potentially also provide a novel target for osteosarcoma therapies.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University , Shenyang, China
| | | | | |
Collapse
|
24
|
Chen Y, Chen K, Li M, Li C, Ma H, Bai YS, Zhu XD, Fu Q. Genes associated with disc degeneration identified using microarray gene expression profiling and bioinformatics analysis. GENETICS AND MOLECULAR RESEARCH 2013; 12:1431-9. [PMID: 23661466 DOI: 10.4238/2013.april.26.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Disc degeneration is strongly associated with back or neck pain, sciatica, and disc herniation or prolapse. It places an enormous economic burden on society and can greatly affect quality of life. Alternative treatment approaches, such as genetic therapies, are urgently needed to slow or reverse the disc degeneration process. We downloaded gene expression data from Gene Expression Omnibus during various stages of disc degeneration and identified differentially expressed genes (DEGs) as well as dysfunctional pathways through comparisons with controls. We identified 2 significant DEGs between grade II and III discs and 8 significant DEGs between grade II and IV discs. By constructing an interactive network of the DEGs, we found that mitogen-activated protein family genes and Ras homologous (Rho) family genes - in particular, MAP2K6 and RHOBTB2 - may play important roles in the progression of degeneration of grade III and IV discs, respectively. MAP2K6 and RHOBTB2 may be specific therapeutic molecular targets in the treatment of disc degeneration. However, further experiments are needed to confirm this result.
Collapse
Affiliation(s)
- Y Chen
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Han L, Hou L, Song J, Lin D, Wu L, Ge Y, Ma Z. Decreased expression of the DBC2 gene and its clinicopathological significance in breast cancer: correlation with aberrant DNA methylation. Biotechnol Lett 2013; 35:1175-81. [PMID: 23546941 DOI: 10.1007/s10529-013-1190-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 12/22/2022]
Abstract
Loss of DBC2 (deleted in breast cancer 2) gene expression is frequent in breast cancer tissues. This can be explained by homozygous deletions or other mutations in a minority of cases but alternative mechanisms need to be investigated. Here, DBC2 expression was significantly suppressed compared with normal breast tissues in breast cancer tissues when analyzed by RT-PCR. Furthermore, DNA methylation on DBC2 was more prevalent in breast tumors than in normal tissues. DBC2 mRNA levels correlated with the degree of DBC2 methylation in breast cancer tissues and in a breast cancer cell line (T47D). Clinico-pathological correlation analysis showed that DBC2 promoter methylation was associated with tumor-node-metastasis stages II and III/IV, lymph node metastasis, p53 mutation, and HER2-positive status. Thus loss of DBC2 expression is caused by abnormal methylation of DBC2 and might have a role in breast cancer development.
Collapse
Affiliation(s)
- Linlin Han
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, 266021, Shandong, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics 2013; 80:236-49. [PMID: 23376484 DOI: 10.1016/j.jprot.2013.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 01/05/2013] [Indexed: 02/06/2023]
Abstract
Glutaminase is a multifunctional enzyme encoded by gene Gls involved in energy metabolism, ammonia trafficking and regeneration of neurotransmitter glutamate. To address the proteomic basis for the neurophenotypes of glutaminase-deficient mice, brain proteins from late gestation wild type, Gls+/- and Gls-/- male mice were subjected to two-dimensional gel electrophoresis, with subsequent identification by mass spectrometry using nano-LC-ESI-MS/MS. Protein spots that showed differential genotypic variation were quantified by immunoblotting. Differentially expressed proteins unambiguously identified by MS/MS included neurocalcin delta, retinol binding protein-1, reticulocalbin-3, cytoskeleton proteins fascin and tropomyosin alpha-4-chain, dihydropyrimidinase-related protein-5, apolipoprotein IV and proteins from protein metabolism proteasome subunits alpha type 2, type 7, heterogeneous nuclear ribonucleoprotein C1/C2 and H, voltage-gated anion-selective channel proteins 1 and 2, ATP synthase subunit β and transitional endoplasmic reticulum ATPase. An interaction network determined by Ingenuity Pathway Analysis revealed a link between glutaminase and calcium, Akt and retinol signaling, cytoskeletal elements, ATPases, ion channels, protein synthesis and the proteasome system, intermediary, nucleic acid and lipid metabolism, huntingtin, guidance cues, transforming growth factor beta-1 and hepatocyte nuclear factor 4-alpha. The network identified involves (a) cellular assembly and organization and (b) cell signaling and cell cycle, suggesting that Gls is crucial for neuronal maturation.
Collapse
|
27
|
Dong W, Meng L, Shen HC, Du JJ. Loss of DBC2 expression is an early and progressive event in the development of lung adenocarcinoma. Asian Pac J Cancer Prev 2013; 13:2021-3. [PMID: 22901165 DOI: 10.7314/apjcp.2012.13.5.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE DBC2 (Deleted in Breast Cancer 2) has been indicated to be a tumor suppressor gene in many cancers including lung adenocarcinoma recently. In this study, we aimed to explore the expression status of DBC2 in different subtypes of lung adenocarcinoma (from pre-invasive to invasive lesions), and to determine if downregulation becomes more marked with pathological progression. METHODS We collected 172 tissue samples from different subtypes of lung adenocarcinoma and investigated the frequency of DBC2 loss by immunohistochemistry. RESULTS Our results indicated that DBC2 downregulation is a relatively frequent event in lung adenocarcinoma. Moreover, as the adenocarcinoma subtype turns to be more invasive, more downregulation occurred. CONCLUSION We conclude that loss of DBC2 expression is an early and progressive event in the pathogenesis of lung adenocarcinoma. Positive DBC2 immunohistochemistry may become an indicator for early stage disease and better prognosis of lung adenocarcinomas.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Oncology, Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
28
|
Gazzah AC, Camoin L, Abid S, Bacha H, Ladjimi M. iTRAQ: a method to elucidate cellular responses to mycotoxin zearalenone. J Appl Toxicol 2012; 33:566-75. [DOI: 10.1002/jat.1766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Salwa Abid
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry; Rue Avicenne; Monastir; 5000; Tunisia
| | - Hassen Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry; Rue Avicenne; Monastir; 5000; Tunisia
| | - Moncef Ladjimi
- Laboratory of Genetic and Cellular Biology, CNRS, UMR 8159; Versailles St-Quentin University; 45 Avenue des Etats-Unis; Versailles; 78035; France
| |
Collapse
|
29
|
Strain-independent global effect of hippocampal proteins in mice trained in the Morris water maze. Amino Acids 2012; 43:1739-49. [DOI: 10.1007/s00726-012-1258-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
30
|
Mao H, Zhang L, Yang Y, Sun J, Deng B, Feng J, Shao Q, Feng A, Song B, Qu X. RhoBTB2 (DBC2) functions as tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in breast cancer cells. Gene 2011; 486:74-80. [DOI: 10.1016/j.gene.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/10/2011] [Accepted: 07/10/2011] [Indexed: 12/30/2022]
|
31
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
32
|
Mao H, Qu X, Yang Y, Zuo W, Bi Y, Zhou C, Yin H, Deng B, Sun J, Zhang L. A novel tumor suppressor gene RhoBTB2 (DBC2): frequent loss of expression in sporadic breast cancer. Mol Carcinog 2010; 49:283-9. [PMID: 19937980 DOI: 10.1002/mc.20598] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RhoBTB2 was isolated recently as a tumor suppressor gene from human chromosome 8p21.3. Although RhoBTB2 was found to be frequently lost in breast cancer lines, expression status of RhoBTB2 in sporadic breast cancer tissues and its clinical and prognostic value, however, remain unclear. Tissue samples from breast cancer patients and normal controls and cell samples from cell lines were collected and reverse transcription (RT)-PCR was used to monitor the presence of RhoBTB2 mRNA. The protein expression of RhoBTB2 was detected by immunohistochemical staining. Cumulative survival time was assessed by the Kaplan-Meier method and Cox regression model. We discovered that RhoBTB2 expression was lacking in a breast ductal epithelial carcinoma cell line T-47D but was expressed in other types of tumor cell lines and normal tissues we tested. The results from tissue samples showed that RhoBTB2 was absent in 60% of breast cancers on both the mRNA and protein level. The results from RT-PCR were completely uniform with those from immunohistochemistry. We demonstrated that loss of RhoBTB2 more frequently occurred in postmenopausal patients of age >or=50 yr old and in patients with infiltrating ductal carcinoma of the breast. The prognostic value of RhoBTB2 in breast cancers also be assessed by a long-term follow-up investigation and we found that patients with RhoBTB2-negative breast cancer were linked to poor clinical prognosis. Therefore, the loss of RhoBTB2 expression is a common occurrence in breast cancers and it is an important factor in the development and prognosis of sporadic breast cancer.
Collapse
Affiliation(s)
- Haiting Mao
- Institute of Basic Medical Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Espinosa EJ, Calero M, Sridevi K, Pfeffer SR. RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 2009; 137:938-48. [PMID: 19490898 DOI: 10.1016/j.cell.2009.03.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/05/2008] [Accepted: 03/20/2009] [Indexed: 11/24/2022]
Abstract
Rho GTPases are key regulators of the actin-based cytoskeleton; Rab GTPases are key regulators of membrane traffic. We report here that the atypical Rho GTPase family member, RhoBTB3, binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. Gene replacement experiments show that RhoBTB3 function in cultured cells requires both RhoBTB3's N-terminal, Rho-related domain and C-terminal sequences that are important for Rab9 interaction. Biochemical analysis reveals that RhoBTB3 binds and hydrolyzes ATP rather than GTP. Rab9 binding opens the autoinhibited RhoBTB3 protein to permit maximal ATP hydrolysis. Because RhoBTB3 interacts with TIP47 on membranes, we propose that it may function to release this cargo selection protein from vesicles to permit their efficient docking and fusion at the Golgi.
Collapse
Affiliation(s)
- Eric J Espinosa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
34
|
Ma D, Chan MK, Lockstone HE, Pietsch SR, Jones DNC, Cilia J, Hill MD, Robbins MJ, Benzel IM, Umrania Y, Guest PC, Levin Y, Maycox PR, Bahn S. Antipsychotic Treatment Alters Protein Expression Associated with Presynaptic Function and Nervous System Development in Rat Frontal Cortex. J Proteome Res 2009; 8:3284-97. [DOI: 10.1021/pr800983p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Ma
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Man K. Chan
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Helen E. Lockstone
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Sandra R. Pietsch
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Declan N. C. Jones
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Jackie Cilia
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Mark D. Hill
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Melanie J. Robbins
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Isabel M. Benzel
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Yagnesh Umrania
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Paul C. Guest
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Yishai Levin
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Peter R. Maycox
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Sabine Bahn
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| |
Collapse
|
35
|
Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp Cell Res 2008; 314:3453-65. [PMID: 18835386 DOI: 10.1016/j.yexcr.2008.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/14/2008] [Accepted: 09/04/2008] [Indexed: 01/26/2023]
Abstract
RhoBTB proteins are atypical members of the Rho family of small GTPases. Two of the three RhoBTB proteins, RhoBTB1 and RhoBTB2, have been proposed as tumor suppressors and might function as adaptors of Cul3-dependent ubiquitin ligase complexes. Using yeast two-hybrid analysis and co-immunoprecipitation we show that all three RhoBTB proteins interact with Cul3. The interaction requires the N-terminal region of Cul3 and the first BTB domain of RhoBTB. RhoBTB3, the only RhoBTB with a prenylation motif, associates with vesicles that are frequently found in the vicinity of microtubules, suggesting a participation in some aspects of vesicle trafficking. We also show that RhoBTB2 and RhoBTB3 are capable of homo and heterodimerizing through the BTB domain region. The GTPase domain, which does not bind GTP, is able to interact with the BTB domain region, thus preventing proteasomal degradation of RhoBTB. This fits into a model in which an intramolecular interaction maintains RhoBTB in an inactive state, preventing the formation or the functionality of Cul3-dependent complexes. We also report a significantly decreased expression of RHOBTB and CUL3 genes in kidney and breast tumor samples and a very good correlation in the expression changes between RHOBTB and CUL3 that suggests that these genes are subject to a common inactivation mechanism in tumors.
Collapse
|
36
|
McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 2008; 27:6856-65. [DOI: 10.1038/onc.2008.317] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Macartney-Coxson DP, Hood KA, Shi HJ, Ward T, Wiles A, O'Connor R, Hall DA, Lea RA, Royds JA, Stubbs RS, Rooker S. Metastatic susceptibility locus, an 8p hot-spot for tumour progression disrupted in colorectal liver metastases: 13 candidate genes examined at the DNA, mRNA and protein level. BMC Cancer 2008; 8:187. [PMID: 18590575 PMCID: PMC2488356 DOI: 10.1186/1471-2407-8-187] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 07/01/2008] [Indexed: 12/27/2022] Open
Abstract
Background Mortality from colorectal cancer is mainly due to metastatic liver disease. Improved understanding of the molecular events underlying metastasis is crucial for the development of new methods for early detection and treatment of colorectal cancer. Loss of chromosome 8p is frequently seen in colorectal cancer and implicated in later stage disease and metastasis, although a single metastasis suppressor gene has yet to be identified. We therefore examined 8p for genes involved in colorectal cancer progression. Methods Loss of heterozygosity analyses were used to map genetic loss in colorectal liver metastases. Candidate genes in the region of loss were investigated in clinical samples from 44 patients, including 6 with matched colon normal, colon tumour and liver metastasis. We investigated gene disruption at the level of DNA, mRNA and protein using a combination of mutation, semi-quantitative real-time PCR, western blotting and immunohistochemical analyses. Results We mapped a 2 Mb region of 8p21-22 with loss of heterozygosity in 73% of samples; 8/11 liver metastasis samples had loss which was not present in the corresponding matched primary colon tumour. 13 candidate genes were identified for further analysis. Both up and down-regulation of 8p21-22 gene expression was associated with metastasis. ADAMDEC1 mRNA and protein expression decreased during both tumourigenesis and tumour progression. Increased STC1 and LOXL2 mRNA expression occurred during tumourigenesis. Liver metastases with low DcR1/TNFRSF10C mRNA expression were more likely to present with extrahepatic metastases (p = 0.005). A novel germline truncating mutation of DR5/TNFRSF10B was identified, and DR4/TNFRSF10A SNP rs4872077 was associated with the development of liver metastases (p = 0.02). Conclusion Our data confirm that genes on 8p21-22 are dysregulated during colorectal cancer progression. Interestingly, however, instead of harbouring a single candidate colorectal metastasis suppressor 8p21-22 appears to be a hot-spot for tumour progression, encoding at least 13 genes with a putative role in carcinoma development. Thus, we propose that this region of 8p comprises a metastatic susceptibility locus involved in tumour progression whose disruption increases metastatic potential.
Collapse
|
38
|
Abstract
RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases). Their most salient feature is their domain architecture: a GTPase domain (in most cases, non-functional) is followed by a prolinerich region, a tandem of 2 broadcomplex, tramtrack, bric a brac (BTB) domains, and a conserved Cterminal region. In humans, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB arose when RHOBTB2 was identified as the gene homozygously deleted in breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB proteins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases. A model emerges in which RhoBTB proteins are required to maintain constant levels of putative substrates involved in cell cycle regulation or vesicle transport through targeting for degradation in the 26S proteasome. RhoBTB proteins are engrossing the list of Rho GTPases involved in tumorigenesis. Unlike typical Rho GTPases (usually overexpressed or hyperactive), RhoBTB proteins appear to play a part in the carcinogenic process through a mechanism that involves the decreased or abolished expression of the corresponding genes, or more rarely, mutations that result in impaired functioning of the protein, presumably leading to the accumulation of RhoBTB substrates and alterations of the cellular homeostasis.
Collapse
Affiliation(s)
- Jessica Berthold
- Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
39
|
|
40
|
Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Li FQ, Tang MH, Liang SF, Wei YQ. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008; 8:582-603. [DOI: 10.1002/pmic.200700514] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Freeman SN, Ma Y, Cress WD. RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 2007; 283:2353-62. [PMID: 18039672 DOI: 10.1074/jbc.m705986200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified the RhoBTB2 putative tumor suppressor gene as a direct target of the E2F1 transcription factor. Overexpression of E2F1 led to up-regulation of RhoBTB2 at the level of mRNA and protein. This also occurred during the induction of E2F1 activity in the presence of cycloheximide, thus indicating that RhoBTB2 is a direct target. RNAi-mediated knockdown of E2F1 resulted in decreased RhoBTB2 protein expression, demonstrating that RhoBTB2 is a physiological target of E2F1. Because E2F1 primarily serves to transcribe genes involved in cell cycle progression and apoptosis, we explored whether RhoBTB2 played roles in either of these processes. We found RhoBTB2 expression highly up-regulated during mitosis, which was partially dependent on the presence of E2F1. Furthermore, overexpression of RhoBTB2 induced a short term increase in cell cycle progression and proliferation, while long term expression had a negative effect on these processes. We similarly found RhoBTB2 up-regulated during drug-induced apoptosis, with this being primarily dependent on E2F1. Finally, we observed that knockdown of RhoBTB2 levels via siRNA delayed the onset of drug-induced apoptosis. Collectively, we describe RhoBTB2 as a novel direct target of E2F1 with roles in cell cycle and apoptosis.
Collapse
Affiliation(s)
- Scott N Freeman
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
42
|
Cho YG, Choi BJ, Kim CJ, Song JH, Zhang C, Nam SW, Lee JY, Park WS. Genetic analysis of the DBC2 gene in gastric cancer. Acta Oncol 2007; 47:366-371. [PMID: 17906984 DOI: 10.1080/02841860701644094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DBC2 (Deleted in breast cancer, RhoBTB2) has been identified as a tumor suppressor gene that has growth inhibitory function. To investigate whether genetic alterations of the DBC2 gene are involved in the development of gastric cancer, we analyzed mutations and allelic loss in the DBC2 gene in 95 primary gastric cancers by PCR-SSCP, sequencing and LOH analysis. In the mutational analysis, we found one missense somatic mutation (CGG-->TGG, R275W) in the BTB/POZ domain of the gene in a patient with advanced gastric cancer and lymph node metastasis. In addition, we found one known polymorphism and three novel polymorphisms in the coding region of DBC2, which showed an amino acid change, and was detected in both the cancer cells and corresponding normal cells. On LOH analysis, 62 cases were heterozygous for at least one marker and 18 cases (29.0%) showed allelic loss at these markers. In conclusion, the mutations and allelic loss in the DBC2 gene are uncommon in gastric cancers in Korean patients. Further studies to identify the target gene at 8q21 responsible for the development of gastric cancer should be explored.
Collapse
Affiliation(s)
- Yong Gu Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Aspenström P, Ruusala A, Pacholsky D. Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313:3673-9. [PMID: 17850788 DOI: 10.1016/j.yexcr.2007.07.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/20/2007] [Accepted: 07/21/2007] [Indexed: 01/18/2023]
Abstract
The Rho GTPases are influential regulators of signalling pathways that control vital cellular processes such as cytoskeletal dynamics, gene transcription, cell cycle progression and cell transformation. A vast majority of the studies involving Rho GTPases have been focused to the famous triad, Cdc42, Rac1 and RhoA, but this protein family actually harbours 20 members. Recently, the less known Rho GTPases have received increased attention. Many of the less studied Rho GTPases have structural, as well as, functional features which makes it pertinent to classify them as atypical Rho GTPases. This review article will focus on the critical aspects of the atypical Rho GTPases, RhoH, Wrch-1, Chp and RhoBTB. These proteins are involved in a broad spectre of biological processes, such as cytoskeletal dynamics, T-cell signalling and protein ubiquitinylation. We will also discuss the roles of atypical Rho GTPases as oncogenes or tumour suppressors, as well as their potential involvement in human diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
44
|
Li KW, Miller S, Klychnikov O, Loos M, Stahl-Zeng J, Spijker S, Mayford M, Smit AB. Quantitative Proteomics and Protein Network Analysis of Hippocampal Synapses of CaMKIIα Mutant Mice. J Proteome Res 2007; 6:3127-33. [PMID: 17625814 DOI: 10.1021/pr070086w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of synaptic proteomes from specific brain regions is important for our understanding of the molecular basis of neuroplasticity and brain disorders. In the present study we have optimized comparative synaptic proteome analysis to quantitate proteins of the synaptic membrane fraction isolated from the hippocampus of wild type mice and 3'UTR-calcium/calmodulin-dependent kinase II alpha mutant mice. Synaptic proteins were solubilized in 0.85% RapiGest and digested with trypsin without prior dilution of the detergent, and the peptides from two groups of wild type mice and two groups of CaMKIIalpha 3'UTR mutants were tagged with iTRAQ reagents 114, 115, 116, and 117, respectively. The experiment was repeated once with independent biological replicates. Peptides were fractionated with tandem liquid chromatography and collected off-line onto MALDI metal plates. The first iTRAQ experiment was analyzed on an ABI 4700 proteomics analyzer, and the second experiment was analyzed on an ABI 4800 proteomics analyzer. Using the criteria that the proteins should be matched with at least three peptides with the highest CI% of a peptide at least 95%, 623 and 259 proteins were quantified by a 4800 proteomics analyzer and a 4700 proteomics analyzer, respectively, from which 249 proteins overlapped in the two experiments. There was a 3 fold decrease of calcium/calmodulin-dependent kinase II alpha in the synaptic membrane fraction of the 3'UTR mutant mice. No other major changes were observed, suggesting that the synapse protein constituents of the mutant mice were not substantially altered. A first draft of a synaptic protein interaction network has been constructed using commercial available software, and the synaptic proteins were organized into 10 (interconnecting) functional groups belonging to the pre- and postsynaptic compartments, e.g., receptors and ion channels, scaffolding proteins, cytoskeletal proteins, signaling proteins, adhesion molecules, and proteins of synaptic vesicles and those involved in membrane recycling.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Collado D, Yoshihara T, Hamaguchi M. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation. Biochem Biophys Res Commun 2007; 360:600-3. [PMID: 17617377 PMCID: PMC1986727 DOI: 10.1016/j.bbrc.2007.06.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/16/2007] [Indexed: 01/01/2023]
Abstract
Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | | | - Masaaki Hamaguchi
- * Corresponding author: Department of Biological Sciences, Fordham University, 441 E Fordham Road, Larkin Hall, Bronx, NY 10458, Tel: (718) 817-3656, Fax: (718) 817-3645, e-mail:
| |
Collapse
|
46
|
Yoshihara T, Collado D, Hamaguchi M. Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function. Biochem Biophys Res Commun 2007; 358:1076-9. [PMID: 17517369 PMCID: PMC1934618 DOI: 10.1016/j.bbrc.2007.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
The expression of tumor suppressor gene DBC2 causes certain breast cancer cells to stop growing [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. Recently, DBC2 was found to participate in diverse cellular functions such as protein transport, cytoskeleton regulation, apoptosis, and cell cycle control [V. Siripurapu, J.L. Meth, N. Kobayashi, M. Hamaguchi, DBC2 significantly influences cell cycle, apoptosis, cytoskeleton, and membrane trafficking pathways. J. Mol. Biol. 346 (2005) 83-89]. Its tumor suppression mechanism, however, remains unclear. In this paper, we demonstrate that DBC2 suppresses breast cancer proliferation through down-regulation of Cyclin D1 (CCND1). Additionally, the constitutional overexpression of CCND1 prevented the negative impact of DBC2 expression on their growth. Under a CCND1 promoter, the expression of CCNE1 exhibited the same protective effect. Our results indicate that the down-regulation of CCND1 is an essential step for DBC2's growth suppression of cancer cells. We believe that this discovery contributes to a better understanding of DBC2's tumor suppressor function.
Collapse
Affiliation(s)
- Takashi Yoshihara
- Department of Biological Sciences, Fordham University, 441 E Fordham Road, Larkin Hall, Bronx, NY 10458, USA
| | | | | |
Collapse
|
47
|
Steppan S, Kupfer K, Mayer A, Evans M, Yamasaki G, Greve JM, Eckart MR, Cassell DJ. Genome wide expression profiling of human peripheral blood mononuclear cells stimulated with BAY 50-4798, a novel T cell selective interleukin-2 analog. J Immunother 2007; 30:150-68. [PMID: 17471163 DOI: 10.1097/01.cji.0000211320.07654.f1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BAY 50-4798, a novel, engineered form of interleukin (IL)-2, is a selective agonist for the high-affinity IL-2 receptor and induces the proliferation of activated human T cells with potency similar to recombinant IL-2 (rIL-2), but has reduced proliferative activity on natural killer cells and is associated with a diminished secondary cytokine cascade. In the current study, the transcriptional profiles of human peripheral blood mononuclear cells (PBMCs) stimulated in vitro with BAY 50-4798 and rIL-2 were compared using Affymetrix microarray technology in combination with Ingenuity Pathway Analysis (IPA) to determine whether there are quantitative or qualitative differences in the molecular networks activated by these IL-2 analogs. A total of 299 genes were differentially expressed in response to the two IL-2 analogs, with an increase in the number of differences over time. Consistent with the fact that BAY 50-4798 interacts with fewer forms of the IL-2 receptor than rIL-2 to activate fewer cell types, 169 genes were expressed at lower levels in PBMCs cultured with BAY 50-4798 compared with IL-2. These genes were mainly categorized as cytokines and chemokines, and were used to build multiple molecular interaction networks, the most significant of which centered around a subunit of NF-kappaB, which is known to play a pivotal role in inflammation, and was associated with cell death. Of the genes induced in response to BAY 50-4798, only 25% were expressed at lower levels than those induced by rIL-2. Moreover, despite its more selective receptor targeting compared with rIL-2, BAY 50-4798 caused higher levels of expression of 130 genes, which predominantly fell into categories associated with metabolism and transcription. We interpret these results as consistent with the expected transcriptional profile of a mutein engineered and demonstrated to have diminished inflammatory effects yet fully retain selected features of IL-2 activity. In addition to demonstrating that the responses to BAY 50-4798 are characterized by differential expression of genes known to be induced by IL-2, we report for the first time the induction of a significant number of genes not previously reported in the context of IL-2 biology.
Collapse
Affiliation(s)
- Sonja Steppan
- Biotechnology Research Division, Bayer Corporation, Berkeley, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Viquez OM, Valentine HL, Friedman DB, Olson SJ, Valentine WM. Peripheral nerve protein expression and carbonyl content in N,N-diethlydithiocarbamate myelinopathy. Chem Res Toxicol 2007; 20:370-9. [PMID: 17323979 PMCID: PMC2525616 DOI: 10.1021/tx6003453] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human exposure to dithiocarbamates results from their uses as pesticides, in manufacturing, and as pharmaceutical agents. Neurotoxicity is an established hazard of dithiocarbamate exposure and has been observed in both humans and experimental animals. Previous studies have shown that the neurotoxicity of certain dithiocarbamates, including N,N-diethyldithiocarbamate (DEDC), disulfiram, and pyrrolidine dithiocarbamate, can manifest as a primary myelinopathy of peripheral nerves. Because increased levels of copper in peripheral nerves and elevated levels of lipid peroxidation products accompany DEDC-induced lesions, it has been suggested that the disruption of copper homeostasis and increased oxidative stress may contribute to myelin injury. To further assess the biological impact of DEDC-mediated lipid peroxidation in nerves, the changes in protein expression levels resulting from DEDC exposure were determined. In addition, protein carbonyl content in peripheral nerves was also determined as an initial assessment of protein oxidative damage in DEDC neuropathy. Rats were exposed to DEDC by intra-abdominal osmotic pumps for eight weeks and proteins extracted from the sciatic nerves of DEDC-exposed animals and from non-exposed controls. The comparison of protein expression levels using two-dimensional difference gel electrophoresis demonstrated significant changes in 56 spots of which 46 were identified by MALDI-TOF/MS. Among the proteins showing increased expression were three isoforms of glutathione transferase, important for the detoxification of reactive alpha,beta-unsaturated aldehydes generated from lipid peroxidation. The increased expression of one isoform, glutathione transferase pi, was localized to the cytoplasm of Schwann cells using immunohistochemistry. An immunoassay for nerve protein carbonyls demonstrated a significant increase of approximately 2-fold for the proteins isolated from DEDC-exposed rats. These data support the ability of DEDC to promote protein oxidative damage in peripheral nerves and to produce sufficient lipid peroxidation in either myelin or another component of the Schwann cell to elicit a protective cellular response to oxidative stress.
Collapse
Affiliation(s)
- Olga M Viquez
- Department of Pathology, Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2591, USA
| | | | | | | | | |
Collapse
|
49
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|