1
|
Wang L, Pei H, Xing T, Chen D, Chen Y, Hao Z, Tian Y, Ding J. Gut bacteria and host metabolism: The keys to sea cucumber (Apostichopus japonicus) quality traits. Food Chem 2025; 482:144178. [PMID: 40209373 DOI: 10.1016/j.foodchem.2025.144178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Gut bacteria have a significant impact on modern genetics and contribute to the improvement of aquatic germplasm, which is a key focus for breeders. However, the effects of complex interactions between gut bacteria community and phenotypic trait of aquatic products remain largely unknown. Here, we unravel the association between phenotypic trait, gut microbiota and host metabolic variables of 216 sea cucumbers (Apostichopus japonicus) by Metagenome-wide association studies (MWAS) and Weighted correlation network analysis (WGCNA) methods. Our findings reveal that a total of 14 microbial biomarkers and 201 metabolic markers considered being associated with polysaccharide and collagen content. Among them, Desulfobacterota has the capacity to facilitate the synthesis of octopamine within the neuroactive ligand-receptor metabolic pathway, subsequently influencing polysaccharide content. Additionally, the Lachnospiraceae_NK4A136_group was shown to enhance collagen content through the facilitation of glycine synthesis. In conclusion, this research indicating that precision microbiome management could be a strategy for develop strategies for cultivating high-quality aquatic germplasm.
Collapse
Affiliation(s)
- Luo Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China.
| | - Honglin Pei
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Tengyu Xing
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Dongsheng Chen
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Yuchen Chen
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Zhenlin Hao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Ying Tian
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
LeSueur J, Koser J, Dzwierzynski W, Stemper BD, Hampton CE, Kleinberger M, Pintar FA. The Histological and Mechanical Behavior of Skin During Puncture for Different Impactor Sizes and Loading Rates. Ann Biomed Eng 2025; 53:1209-1225. [PMID: 40053222 DOI: 10.1007/s10439-025-03699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/22/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE The hierarchical structure of skin dictates its protective function against mechanical loading, which has been extensively studied through numerous experiments. Viscoelasticity and anisotropy have been defined for skin in tensile loading, but most puncture studies utilized skin simulants, which lacked natural tension and varying skin thicknesses. The purpose of this study was to define the mechanical behavior and failure thresholds of skin during puncture with various blunt impactor sizes and loading rates. METHODS After determining natural tension of porcine skin, 232 isolated skin samples were loaded in puncture. Pre-conditioning, sub-failure, and failure trials were conducted with an electrohydraulic piston actuator loading pre-strained skin samples with a 3-, 5-, or 8-mm spherical impactor at rates of 5 to 1000 mm/s. Generalized linear mixed models were used to determine significant factors and predict probability of puncture. RESULTS Increased skin thickness significantly increased RIII stiffness (p = 0.002), failure force (p < 0.001), and strain energy at failure (p = 0.002) and significantly decreased displacement at failure (p = 0.002). Significantly greater force, displacement, strain energy, and stiffness (p < 0.05) at failure were observed with the 8-mm impactor. Loading at 1000 mm/s resulted in significantly greater force (p = 0.026) and stiffness (p < 0.001) at failure compared to 5 mm/s and significantly decreased displacement at failure (p < 0.001). 3D-DIC strain maps displayed anisotropic behavior, and larger elliptical wounds resulted from puncture with an 8 mm impactor (p < 0.001). Quantitative histological analyses revealed collagen re-alignment near the impactor from pre-conditioning and minimal structural damage during sub-failure trials. Initial structural failure occurred in the reticular dermis followed by the papillary dermis and epidermis. CONCLUSION The presented failure metrics, with support from histological findings, may be utilized in development of protective clothing, improvement of computational models, and advancement in forensic sciences.
Collapse
Affiliation(s)
- Joseph LeSueur
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Labs, Zablocki Veterans Affairs Medical Center, Milwaukee, USA
| | - Jared Koser
- Neuroscience Research Labs, Zablocki Veterans Affairs Medical Center, Milwaukee, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| | - William Dzwierzynski
- Division of Plastic Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, USA
| | - Brian D Stemper
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Labs, Zablocki Veterans Affairs Medical Center, Milwaukee, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| | | | | | - Frank A Pintar
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, USA.
- Neuroscience Research Labs, Zablocki Veterans Affairs Medical Center, Milwaukee, USA.
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
4
|
Andonegi M, Diez AG, Costa CM, Romanyuk KN, Kholkin AL, de la Caba K, Guerrero P, Lanceros-Mendez S. Piezoelectric properties of collagen films: Insights into their potential for electroactive biomedical applications. Int J Biol Macromol 2025; 309:142799. [PMID: 40188926 DOI: 10.1016/j.ijbiomac.2025.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Electroactive biomaterials and, in particular, piezoelectric ones are gaining insight into tissue engineering and biomedical applications. Collagen is one of the most available biomaterials found in nature, and the present study focus on the evaluation of its piezoelectric response. Collagen extracted from bovine skin was used and the piezoelectric response was correlated to the physicochemical, thermal, morphological and mechanical properties. A dense fibrillar microstructure was observed and the mechanical properties, which depend on the specific amino acids composition, showed tensile strength and maximum strain values of 34 MPa and 18 %, respectively. Collagen films exhibited approximately 25 % weight loss after 1 day in PBS solution, increasing to about 30 % and 100 % at day 2 and 4, respectively. A piezoelectric response of 0.44 pm/V was obtained, demonstrating the collagen film suitability for electroactive materials in biomedical applications.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
| | - Ander G Diez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Konstantin N Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Rai R, Xavier D, Pathak S, Fernandez FB, Komath M, Sureshan KM. A Malleable Collagen-Mimic that Undergoes Moisture-Induced Hardening for Gluing Hydrophilic Surfaces. Angew Chem Int Ed Engl 2025; 64:e202422593. [PMID: 39791355 DOI: 10.1002/anie.202422593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement. On heating, the monomer crystals undergo regiospecific single-crystal-to-single-crystal azide-alkyne cycloaddition polymerization, yielding triazolyl- polypeptide. Polymerization softens the crystals, making the polymer malleable and mouldable. The polymer grains absorb moisture and form agglomerates through water-bridged adhesion, which hardens over time. The weight-bearing capacity of a mould made from this polymer increased by 50-fold due to moisture-induced hardening. We have demonstrated that this collagen-mimic can glue both biological specimens such as wood and bone and synthetic materials such as glass and paper. In vitro studies established the biocompatibility, making it an attractive bioinspired material for potential application as a bioadhesive.
Collapse
Affiliation(s)
- Rishika Rai
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Divina Xavier
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Sourav Pathak
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Francis B Fernandez
- Bioceramics Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, 695011, India
| | - Manoj Komath
- Bioceramics Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, 695011, India
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
6
|
Ahmad K, Ahmad R, Nadia B, Khan S, Khan MJ, Yasin MT, Khan TU, Ahmed I. Marine collagen bio-composites materials: Interactions with small active molecules and their application in food industry. Int J Biol Macromol 2025; 307:142237. [PMID: 40112964 DOI: 10.1016/j.ijbiomac.2025.142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Collagen, the primary fibrillar protein found in marine organisms has gained significant attention due to its nutritional and functional properties. It plays a crucial role in food quality and textural attributes, making it a valuable ingredient in various food applications. This study focuses on the interactions of marine-derived collagen and its gelatin derivatives with small bioactive molecules, including phenolic compounds, polysaccharides, and others, which are briefly discussed. These interactions are governed by mechanisms such as hydrogen bonding, electrostatic forces, hydrophobic interactions, and van der Waals contacts, resulting in the formation of bio-composites with enhanced stability, bioavailability, and functionality. This article also highlights recent advancements in extraction methods, physicochemical characterization, and the role of collagen-based composites in food applications, such as emulsification, stabilization, and microencapsulation. Furthermore, this review also summarizes the challenges related to the lower thermal stability of marine collagen compared to mammalian sources, along with potential solutions through innovative processing techniques. Finally, the article briefly discusses how marine collagen-based bio-composites offer promising prospects for developing functional and sustainable food products.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Rasheed Ahmad
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bibi Nadia
- Department of Botany, Government Girls Degree College KDA, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Sajad Khan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Muhammad Junaid Khan
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Tehsin Ullah Khan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
7
|
Zhang J, Xie L, She Y, Luo H, Zhu S, Jiang N. Microstructural and Micromechanical Properties of Decellularized Fibrocartilaginous Scaffold. ACS Biomater Sci Eng 2025; 11:1562-1570. [PMID: 39988764 DOI: 10.1021/acsbiomaterials.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Fibrocartilage decellularized extracellular matrix (dECM) is a promising alternative material for damaged fibrocartilage repair and replacement due to its biomimetic gross morphology and internal microstructure. However, the alterations in the microstructure and micromechanical properties of fibrocartilage after decellularization interfere with the macroscopic functional application of the scaffold. Therefore, this study aims to present an analytical atlas of the microstructure and micromechanics of the fibrocartilaginous dECM scaffold to elucidate the effect of decellularization treatment on the macroscopic function of the scaffold. The fibrocartilage dECM was prepared using the temporomandibular joint (TMJ) disc as the model, and its durability was evaluated under three functional states (physiological, physiological limit, and beyond the limit). The macroscopic function of different fibrocartilage dECM exhibits notable differences, which are attributed to the destruction of the multilevel collagen structure. This process involves unwinding triple-helix tropocollagen molecules, destroying collagen fibril D-periodicity, expanding collagen fiber bundle curling, and loosening of the collagen fiber network. The impairment of multiscale collagen structures degrades the cross-scale mechanical modulus and energy dissipation of dECM from the triple helix molecules to the fibril level to the fiber bundle that extends to the fiber network. This study provides important data for further optimizing decellularized fibrocartilage scaffolds and evaluating their translational potential.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Yilin She
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Han Luo
- School of Software Engineering, Chengdu University of Information Technology, Chengdu , Sichuan 610225, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| |
Collapse
|
8
|
Matange K, Marland E, Frenkel-Pinter M, Williams LD. Biological Polymers: Evolution, Function, and Significance. Acc Chem Res 2025; 58:659-672. [PMID: 39905926 PMCID: PMC11883738 DOI: 10.1021/acs.accounts.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
A holistic description of biopolymers and their evolutionary origins will contribute to our understanding of biochemistry, biology, the origins of life, and signatures of life outside our planet. While biopolymer sequences evolve through known Darwinian processes, the origins of the backbones of polypeptides, polynucleotides, and polyglycans are less certain. We frame this topic through two questions: (i) Do the characteristics of biopolymer backbones indicate evolutionary origins? (ii) Are there reasonable mechanistic models of such pre-Darwinian evolutionary processes? To address these questions, we have established criteria to distinguish chemical species produced by evolutionary mechanisms from those formed by nonevolutionary physical, chemical, or geological processes. We compile and evaluate properties shared by all biopolymer backbones rather than isolating a single type. Polypeptide, polynucleotide, and polyglycan backbones are kinetically trapped and thermodynamically unstable in aqueous media. Each biopolymer forms a variety of elaborate assemblies with diverse functions, a phenomenon we call polyfunction. Each backbone changes structure and function upon subtle chemical changes such as the reduction of ribose or a change in the linkage site or stereochemistry of polymerized glucose, a phenomenon we call function-switching. Biopolymers display homo- and heterocomplementarity, enabling atomic-level control of structure and function. Biopolymer backbones access recalcitrant states, where assembly modulates kinetics and thermodynamics of hydrolysis. Biopolymers are emergent; the properties of biological building blocks change significantly upon polymerization. In cells, biopolymers compose mutualistic networks; a cell is an Amazon Jungle of molecules. We conclude that biopolymer backbones exhibit hallmarks of evolution. Neither chemical, physical, nor geological processes can produce molecules consistent with observations. We are faced with the paradox that Darwinian evolution relies on evolved backbones but cannot alter biopolymer backbones. This Darwinian constraint is underlined by the observation that across the tree of life, ribosomes are everywhere and always have been composed of RNA and protein. Our data suggest that chemical species on the Hadean Earth underwent non-Darwinian coevolution driven in part by hydrolytic stress, ultimately leading to biopolymer backbones. We argue that highly evolved biopolymer backbones facilitated a seamless transition from chemical to Darwinian evolution. This model challenges convention, where backbones are products of direct prebiotic synthesis. In conventional models, biopolymer backbones retain vestiges of prebiotic chemistry. Our findings, however, align with models where chemical species underwent iterative and recursive sculpting, selection, and exaptation. This model supports Orgel's "gloomy" prediction that modern biochemistry has discarded vestiges of prebiotic chemistry. But there is hope. We believe an understanding of biopolymer origins will progress during the challenging and exciting integration of chemical sciences and evolutionary theory. These efforts can provide new perspectives on pre-Darwinian mechanisms and can deepen our understanding of evolution and of chemical sciences. Our working definition of chemical evolution is continuous chemical change with exploration of new chemical spaces and avoidance of equilibrium. In alignment with our model, we observe chemical evolution in complex mixtures undergoing wet-dry cycling, which does appear to undergo continuous chemical change and exploration of new chemical spaces while avoiding equilibrium.
Collapse
Affiliation(s)
- Kavita Matange
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
| | - Eliav Marland
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Moran Frenkel-Pinter
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Loren Dean Williams
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
| |
Collapse
|
9
|
Lambri FD, Bonifacich FG, Lambri ML, Lambri MA, Mocellini RR, Zelada GI, Lambri OA. The mobility of polypeptide chains in cow femur bones controlled by an electric field. Phys Chem Chem Phys 2025; 27:3032-3044. [PMID: 39820299 DOI: 10.1039/d4cp03754e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The influence on the mobility of polypeptide chains caused by strain misfit due to molecular electric dipole distortions under applied electric fields up to 769 kV m-1, in cow cortical femur samples annealed at 373 K, 423 K, and 530 K, is determined. The behaviour of strain misfit as a function of the electric field strength is determined from a mean-field model based on the Eshelby theory. In addition, Friedel's model for describing the mobility of dislocations in continuum media has been modified to determine the interaction energy between electrically generated obstacles and the polypeptide chains. Depending on the denaturation states from the bones due to the annealing treatments, the different locations of the activated dipoles and their effects on the mobility of the polypeptide chains were determined. Furthermore, it was also determined that dahllite does not affect the degree of chain mobility under an applied electric field. Dynamic mechanical analysis measurements conducted under a high electric field, differential thermal analysis and thermogravimetry are used in the present work. To our knowledge, this is the first time dynamic mechanical analysis studies have been carried out on bones subjected to high electric fields.
Collapse
Affiliation(s)
- Fernando Daniel Lambri
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Federico Guillermo Bonifacich
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Melania Lucila Lambri
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Mariel Antonella Lambri
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Ricardo Raúl Mocellini
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Griselda Irene Zelada
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| | - Osvaldo Agustín Lambri
- CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
| |
Collapse
|
10
|
Li Q, Tintut Y, Demer LL, Vazquez-Padron RI, Bendeck MP, Hsu JJ. Collagen VIII in vascular diseases. Matrix Biol 2024; 133:64-76. [PMID: 39154854 PMCID: PMC11473120 DOI: 10.1016/j.matbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.
Collapse
Affiliation(s)
- Qian Li
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Yin Tintut
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Orthopedic Surgery, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Linda L Demer
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; Bruce W. Carter Veteran Affairs Medical Center, Miami, Florida, USA
| | - Michelle P Bendeck
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ted Rogers Heart Research Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey J Hsu
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California, USA.
| |
Collapse
|
11
|
Fu YS, Tsai SW, Tong ZJ, Yeh CC, Chen TH, Chen CF. Wharton's jelly of the umbilical cord serves as a natural biomaterial to promote osteogenesis. Biomater Sci 2024. [PMID: 39415619 DOI: 10.1039/d3bm02137h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Various factors can contribute to bone damage or loss, presenting challenges for bone regeneration. Our study explores the potential clinical applications of two processed forms of Wharton's jelly of the human umbilical cord for treating bone loss. Wharton's jelly from fresh umbilical cords underwent two distinct processes: (1) frozen Wharton's jelly (WJF), preserved with cryoprotective agents, and (2) decellularized Wharton's jelly matrix (WJD), prepared only via lyophilization without cryoprotectants. Both WJD and WJF are rich in collagen, hyaluronan, and polysaccharide proteins. Notably, WJD exhibited a porous structure lacking nuclei from human umbilical cord mesenchymal stem cells, unlike WJF. In direct contact experiments, WJD stimulated osteoblast migration, enhanced osteoblast maturation, and promoted calcium deposition for bone formation when administered to cultured rat osteoblasts. Furthermore, in transwell co-culture experiments, both WJD and WJF increased the rat osteoblast expression of RUNX2 and OPN genes, elevated alkaline phosphatase levels, and enhanced extracellular calcium precipitation, indicating their role in osteoblast maturation and new bone formation. Hyaluronic acid, one of the ingredients from WJD and WJF, was identified as a key component triggering osteogenesis. In vivo experiments involved creating circular bone defects in the calvarias of rats, where WJD and WJF were separately implanted and monitored over five months using micro-computerized tomography. Our results demonstrated that both WJD and WJF enhanced angiogenesis, collagen formation, osteoblast maturation, and bone growth within the bone defects. In summary, WJD and WJF, natural biomaterials with biocompatibility and nontoxicity, act not only as effective scaffolds but also promote osteoblast adhesion and differentiation, and accelerate osteogenesis.
Collapse
Affiliation(s)
- Yu-Show Fu
- Department of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Shang-Wen Tsai
- Division of Joint Reconstruction, Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
- Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Zhen-Jie Tong
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tien-Hua Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Trauma Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Cheng-Fong Chen
- Division of Joint Reconstruction, Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
- Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| |
Collapse
|
12
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
13
|
Aharonov A, Sofer S, Bruck H, Sarig U, Sharabi M. Unveiling the mechanical role of radial fibers in meniscal tissue: Toward structural biomimetics. Acta Biomater 2024; 187:199-211. [PMID: 39181178 DOI: 10.1016/j.actbio.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The meniscus tissue is crucial for knee joint biomechanics and is frequently susceptible to injuries resulting in early-onset osteoarthritis. Consequently, the need for meniscal substitutes spurs ongoing development. The meniscus is a composite tissue reinforced with circumferential and radial collagenous fibers; the mechanical role of the latter has yet to be fully unveiled. Here, we investigated the role of radial fibers using a synergistic methodology combining meniscal tissue structure imaging, a computational knee joint model, and the fabrication of simple biomimetic composite laminates. These laminates mimic the basic structural units of the meniscus, utilizing longitudinal and transverse fibers equivalent to the circumferential and radial fibers in meniscal tissue. In the computational model, the absence of radial fibers resulted in stress concentration within the meniscus matrix and up to 800 % greater area at the same stress level. Furthermore, the contact pressure on the tibial cartilage increased drastically, affecting up to 322 % larger areas. Conversely, in models with radial fibers, we observed up to 25 % lower peak contact pressures and width changes of less than 0.1 %. Correspondingly, biomimetic composite laminates containing transverse fibers exhibited minor transverse deformations and smaller Poisson's ratios. They demonstrated structural shielding ability, maintaining their mechanical performance with the reduced amount of fibers in the loading direction, similar to the ability of the torn meniscus to carry and transfer loads to some extent. These results indicate that radial fibers are essential to distribute contact pressure and tensile stresses and prevent excessive deformations, suggesting the importance of incorporating them in novel designs of meniscal substitutes. STATEMENT OF SIGNIFICANCE: The organization of the collagen fibers in the meniscus tissue is crucial to its biomechanical function. Radially oriented fibers are an important structural element of the meniscus and greatly affect its mechanical behavior. However, despite their importance to the meniscus mechanical function, radially oriented fibers receive minor attention in meniscal substitute designs. Here, we used a synergistic methodology that combines imaging of the meniscal tissue structure, a structural computational model of the knee joint, and the fabrication of simplistic biomimetic composite laminates that mimic the basic structural units of the meniscus. Our findings highlight the importance of the radially oriented fibers, their mechanical role in the meniscus tissue, and their importance as a crucial element in engineering novel meniscal substitutes.
Collapse
Affiliation(s)
- Adi Aharonov
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Shachar Sofer
- Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 407000, Israel
| | - Hod Bruck
- Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 407000, Israel
| | - Udi Sarig
- Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 407000, Israel; Department of Chemical Engineering, School of Engineering, Ariel University, Ariel 407000, Israel
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel.
| |
Collapse
|
14
|
Li H, Yang C, Chen G, Wang B, Li J, Xu L. Effect of radiation cross-linked collagen scaffold in alveolar ridge preservation of extraction socket. J Biomed Mater Res A 2024; 112:1699-1711. [PMID: 38606694 DOI: 10.1002/jbm.a.37723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
This study aimed to evaluate the properties of radiation cross-linked collagen scaffold (RCS) and its efficacy for alveolar ridge preservation (ARP). RCS was prepared from collagen dispersion by electron beam irradiation and freeze-drying. The microstructure, swelling ratio, area alteration and mechanical properties of RCS were characterized. Fifty-four New Zealand rabbits performing incisor extraction on maxilla and mandible were randomly assigned into positive, sham operation or treatment groups. Micro-computed tomography (micro-CT) scans, performed after 1, 4, and 12 weeks of surgery, were to assess changes in ridge height at buccal and palatal side, in ridge width and in micromorphological parameters. Histological analysis accessed socket microarchitecture. The results showed that RCS had stable mechanical properties and morphologic features that provided a reliable physical support for ARP. Dimensional changes in treatment group revealed significantly greater vertical height at buccal (5.32 [3.37, 7.26] mm, p < .0001) and palatal (4.37 [2.66, 6.09] mm, p < .0001) side, and horizontal width at the maxilla (0.16 [0.04, 0.28] mm, p < .01) and mandible (0.33 [0.11, 0.54] mm, p < .01) than those in sham operation group after 12 weeks. The treatment group had advantage than positive group in vertical height preservation, quantitatively. The order and density of bone trabeculae were improved in treatment group. These findings indicated that RCS had the potential to serve as an effective scaffold for ARP.
Collapse
Affiliation(s)
- Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Chen Yang
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Gong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Bozhao Wang
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jian Li
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
16
|
Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: expanding possibilities with nanoparticles. NANOTECHNOLOGY 2024; 35:392002. [PMID: 38941981 DOI: 10.1088/1361-6528/ad5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Tissue engineering is a multidisciplinary field that merges engineering, material science, and medical biology in order to develop biological alternatives for repairing, replacing, maintaining, or boosting the functionality of tissues and organs. The ultimate goal of tissue engineering is to create biological alternatives for repairing, replacing, maintaining, or enhancing the functionality of tissues and organs. However, the current landscape of tissue engineering techniques presents several challenges, including a lack of suitable biomaterials, inadequate cell proliferation, limited methodologies for replicating desired physiological structures, and the unstable and insufficient production of growth factors, which are essential for facilitating cell communication and the appropriate cellular responses. Despite these challenges, there has been significant progress made in tissue engineering techniques in recent years. Nanoparticles hold a major role within the realm of nanotechnology due to their unique qualities that change with size. These particles, which provide potential solutions to the issues that are met in tissue engineering, have helped propel nanotechnology to its current state of prominence. Despite substantial breakthroughs in the utilization of nanoparticles over the past two decades, the full range of their potential in addressing the difficulties within tissue engineering remains largely untapped. This is due to the fact that these advancements have occurred in relatively isolated pockets. In the realm of tissue engineering, the purpose of this research is to conduct an in-depth investigation of the several ways in which various types of nanoparticles might be put to use. In addition to this, it sheds light on the challenges that need to be conquered in order to unlock the maximum potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Sohrab Sardari
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research branch, Tehran, Iran
| | - Maryam Ghodousi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Amid Rahi
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
17
|
LeBourdais R, Grifno GN, Banerji R, Regan K, Suki B, Nia HT. Mapping the strain-stiffening behavior of the lung and lung cancer at microscale resolution using the crystal ribcage. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1396593. [PMID: 39050550 PMCID: PMC11266057 DOI: 10.3389/fnetp.2024.1396593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct impact on the development, progression, diagnosis, and treatment response of diseases. Despite significant interest in the lung's material properties, measuring the stiffness of intact lungs at sub-alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image functioning lungs at optical resolution while controlling physiological parameters such as air pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung at different distending pressures, acquired via the crystal ribcage, and produces corresponding absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning lung at microscale resolution in health and disease. For representative images of a healthy lung and a lung with primary cancer, we find that while the lung exhibits significant stiffness heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the lung's microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-stiffening of ∼1.75 times, the tumor's stiffness increases by a factor of six across the range of measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a transpulmonary pressure of three cmH2O, the tumor's mean stiffness is nearly five times greater than that of the surrounding tissue at a transpulmonary pressure of 18 cmH2O. Finally, we report that the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness changes in the alveoli with implications for mechanotransduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
18
|
Yan L, Zhang Y, Zhang Y, Chen Q, Zhang L, Han X, Yang Y, Zhang C, Liu Y, Yu R. Preparation and characterization of a novel humanized collagen III with repeated fragments of Gly300-Asp329. Protein Expr Purif 2024; 219:106473. [PMID: 38508543 DOI: 10.1016/j.pep.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Recombinant human collagens have attracted intensive interest in the past two decades, demonstrating considerable potential in medicine, tissue engineering, and cosmetics. Several humanized recombinant collagens have been produced, exhibiting similar characteristics as the native species. To get insight into the structural and bioactive properties of different parts of collagen, in this study, the segment of Gly300-Asp329 of type III collagen was first adopted and repeated 18 times to prepare a novel recombinant collagen (named rhCLA). RhCLA was successfully expressed in E. coli, and a convenient separation procedure was established through reasonably combining alkaline precipitation and acid precipitation, yielding crude rhCLA with a purity exceeding 90%. Additionally, a polishing purification step utilizing cation exchange chromatography was developed, achieving rhCLA purity surpassing 98% and an overall recovery of approximately 120 mg/L culture. Simultaneously, the contents of endotoxin, nucleic acids, and host proteins were reduced to extremely low levels. This fragmented type III collagen displayed a triple-helical structure and gel-forming capability at low temperatures. Distinct fibrous morphology was also observed through TEM analysis. In cell experiments, rhCLA exhibited excellent biocompatibility and cell adhesion properties. These results provide valuable insights for functional studies of type III collagen and a reference approach for the large-scale production of recombinant collagens.
Collapse
Affiliation(s)
- Lingying Yan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxiang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiexin Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luyao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Han
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yumo Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rong Yu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Kuroda J, Hino H, Kondo S. Dynamics of actinotrichia, fibrous collagen structures in zebrafish fin tissues, unveiled by novel fluorescent probes. PNAS NEXUS 2024; 3:pgae266. [PMID: 39296332 PMCID: PMC11409509 DOI: 10.1093/pnasnexus/pgae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/09/2024] [Indexed: 09/21/2024]
Abstract
Collagen fibers provide physical support to animal tissues by orienting in the correct position and at optimal density. Actinotrichia are thick collagen fibers that are present at the tips of fish fins and serve as scaffolds for bone formation. The arrangement and density of actinotrichia must be constantly maintained with a high degree of regularity to form spatial patterns in the fin bones, but the mechanisms of this process are largely unknown. To address this issue, we first identified two fluorescent probes that can stain actinotrichia clearly in vivo. Using these probes and time-lapse observation of actinotrichia synthesized at different growth stages, we revealed the following previously unknown dynamics of actinotrichia. (i) Actinotrichia do not stay stationary at the place where they are produced; instead, they move towards the dorsal area during the notochord bending and (ii) move towards the distal tip during the fin growth. (iii) Actinotrichia elongate asymmetrically as new collagen is added at the proximal side. (iv) Density is maintained by the insertion of new actinotrichia. (v) Actinotrichia are selectively degraded by osteoclasts. These findings suggest that the regular arrangement of actinotrichia is the outcome of multiple dynamic processes.
Collapse
Affiliation(s)
- Junpei Kuroda
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiromu Hino
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeru Kondo
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
21
|
Jiang N, Tan P, Sun Y, Zhou J, Ren R, Li Z, Zhu S. Microstructural, Micromechanical Atlas of the Temporomandibular Joint Disc. J Dent Res 2024; 103:555-564. [PMID: 38594786 DOI: 10.1177/00220345241227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc. First, the naive microstructure and mechanical properties were investigated in porcine TMJ discs (resting and functional conditions). Subsequently, the perforation and tear models (pathological conditions) were compared. Following this, a rabbit model of anterior disc displacement (abnormal stress) was studied. Results show diverse microstructures and mechanical properties at the nanometer to micrometer scale. In the functional state, gradual unfolding of the crimping cycle in secondary and tertiary structures leads to D-cycle prolongation in the primary structure, causing tissue failure. Pathological conditions lead to stress concentration near the injury site due to collagen interfibrillar traffic patterns, resulting in earlier damage manifestation. Additionally, the abnormal stress model shows collagen damage initiating at the primary structure and extending to the superstructure over time. These findings highlight collagen's various roles in different pathophysiological states. Our study offers valuable insights into TMJ disc function and dysfunction, aiding the development of diagnostic and therapeutic strategies for TMJ disorders, as well as providing guidance for the design of structural biomimetic materials.
Collapse
Affiliation(s)
- N Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - P Tan
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Sun
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Zhou
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Ren
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Li
- Ao Research Institute Davos, Davos, Graubünden, Switzerland
| | - S Zhu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Nunes A, Azevedo P, Carreira LM. The phenomenon of skin contraction in CO 2 LASER surgical incisions using superpulse and continuous emission mode - preliminary study. Lasers Med Sci 2024; 39:117. [PMID: 38678503 DOI: 10.1007/s10103-024-04065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The skin contraction phenomenon occurs due to the energy emitted by the surgical CO2 LASER affecting the collagen architecture and intracellular water content in tissues. The study aimed to assess how gender, age, breed, body-weight, CO2 LASER emission mode, and potency influence skin contraction following the incision. The study involved 80 dogs (N = 80) of both genders, multiple breeds, undergoing major surgery with CO2 LASER. Subjects were grouped based on LASER potency (12 or 15 Watts) and emission mode (Superpulse-SP or Continuous-CT): GSP12, GSP15, GCT12, and GCT15. A 10 mm incision was performed using the surgical CO2 LASER beam, consistently employing a focal point of 0.4 mm, positioned at a distance of 1 mm from the skin surface, and always maintained perpendicular to it, and resulting lengths measured with a digital caliper. Results were considered significant for p-value < 0.05. GSP12 showed minimal contraction, while GCT15 exhibited the most significant. Male subjects in GCT12, GCT15, and GSP12 experienced less contraction than females. Purebred dogs had greater contraction than mixed breeds. GSP12 individuals showed age-related contraction decrease (p < 0.01), with skin contracting by 0.09 mm per year. Weight and skin contraction trended towards significance (p = 0.06), with a 0.02 mm increase per unit weight. For a constant power of 12 W, the analysis of the relationship between the emission mode of the LASER beam and the final skin contraction (GSP12 vs. GCT12) revealed statistically significant differences (p < 0.01). This study suggests that the use of the Continuous mode of LASER emission, regardless of the power used, is associated with a higher level of final skin contraction. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION FOR PROSPECTIVELY REGISTERED TRIALS: Project approval registration number by the Research and Teaching Ethics Committee (CEIE),Faculty of Veterinary Medicine-University of Lisbon (FMV_ULisboa), Lisboa-Portugal, N/Refª 015/2022.
Collapse
Affiliation(s)
- A Nunes
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| | - P Azevedo
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - L Miguel Carreira
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal.
- Department of Clinics, Surgery Faculty of Veterinary Medicine, University of Lisbon (FMV_ULisboa), 1300, Lisbon, Portugal.
- Centre for Interdisciplinary Research in Animal Health, FMV-ULisboa, Lisbon, Portugal.
- Laboratório Associado Para a Ciência Animal E Veterinária (AL4AnimalS), Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
23
|
Deymier AC, Deymier PA. Open-system force-elongation relationship of collagen in chemo-mechanical equilibrium with water. J Mech Behav Biomed Mater 2024; 152:106464. [PMID: 38367533 DOI: 10.1016/j.jmbbm.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
A significant deformation mechanism of collagen at low loads is molecular uncoiling and rearrangement. Although the effect of hydration and cross-linking has been investigated at larger loads when collagen undergoes molecular sliding, their effects on collagen molecular reorganization remain unclear. Here we develop two thermodynamic models that use the notion of open-system elasticity to elucidate the effect of swelling due to water uptake during deformation of collagen networks under low and high cross-linking conditions. With low crosslinking, entropic contributions dominate resulting in rejection of solvent from the polymer network leading to reduced collagen stiffness with increased loads. Contrarily, high cross-linking inhibits initial coiling and structural kinking and the mechanical behavior is dominated by elastic energy. In this configuration, the solvent content depends on the sign of the applied load resulting in a non-linear open-system stress-strain relationship. The models provide insight on the parameters that impact the stress-strain relationships of hydrated collagen and can inform the way collagenous matrices are treated both in medical and laboratory settings.
Collapse
Affiliation(s)
- A C Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, CT, USA.
| | - P A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
24
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
25
|
Mukherjee S, Sundarapandian A, Ayyadurai N, Shanmugam G. Collagen Mimicry with a Short Collagen Model Peptide. Macromol Rapid Commun 2024; 45:e2300573. [PMID: 37924252 DOI: 10.1002/marc.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a β-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashokraj Sundarapandian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
26
|
Islam MR, Ji F, Bansal M, Hua Y, Sigal IA. Fibrous finite element modeling of the optic nerve head region. Acta Biomater 2024; 175:123-137. [PMID: 38147935 PMCID: PMC12040294 DOI: 10.1016/j.actbio.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The optic nerve head (ONH) region at the posterior pole of the eye is supported by a fibrous structure of collagen fiber bundles. Discerning how the fibrous structure determines the region biomechanics is crucial to understand normal physiology, and the roles of biomechanics on vision loss. The fiber bundles within the ONH structure exhibit complex three-dimensional (3D) organization and continuity across the various tissue components. Computational models of the ONH, however, usually represent collagen fibers in a homogenized fashion without accounting for their continuity across tissues, fibers interacting with each other and other fiber-specific effects in a fibrous structure. We present a fibrous finite element (FFE) model of the ONH that incorporates discrete collagen fiber bundles and their histology-based 3D organization to study ONH biomechanics as a fibrous structure. The FFE model was constructed using polarized light microscopy data of porcine ONH cryosections, representing individual fiber bundles in the sclera, dura and pia maters with beam elements and canal tissues as continuum structures. The FFE model mimics the histological in-plane orientation and width distributions of collagen bundles as well as their continuity across different tissues. Modeling the fiber bundles as linear materials, the FFE model predicts the nonlinear ONH response observed in an inflation experiment from the literature. The model also captures important microstructural mechanisms including fiber interactions and long-range strain transmission among bundles that have not been considered before. The FFE model presented here advances our understanding of the role of fibrous collagen structure in the ONH biomechanics. STATEMENT OF SIGNIFICANCE: The microstructure and mechanics of the optic nerve head (ONH) are central to ocular physiology. Histologically, the ONH region exhibits a complex continuous fibrous structure of collagen bundles. Understanding the role of the fibrous collagen structure on ONH biomechanics requires high-fidelity computational models previously unavailable. We present a computational model of the ONH that incorporates histology-based fibrous collagen structure derived from polarized light microscopy images. The model predictions agree with experiments in the literature, and provide insight into important microstructural mechanisms of fibrous tissue biomechanics, such as long-range strain transmission along fiber bundles. Our model can be used to study the microstructural basis of biomechanical damage and the effects of collagen remodeling in glaucoma.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, USA
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Biomedical Engineering, University of Mississippi, MS, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA.
| |
Collapse
|
27
|
Yan H, Jin S, Sun X, Han Z, Wang H, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Wei L, Zhao Y, Zhao H. Mn 2+ recycling in hypersaline wastewater: unnoticed intracellular biomineralization and pre-cultivation of immobilized bacteria. World J Microbiol Biotechnol 2024; 40:57. [PMID: 38165509 DOI: 10.1007/s11274-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolei Sun
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Lirong Wei
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
28
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
29
|
Kriener K, Lala R, Homes RAP, Finley H, Sinclair K, Williams MK, Midwinter MJ. Mechanical Characterization of the Human Abdominal Wall Using Uniaxial Tensile Testing. Bioengineering (Basel) 2023; 10:1213. [PMID: 37892943 PMCID: PMC10604332 DOI: 10.3390/bioengineering10101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
It is generally accepted that the human abdominal wall comprises skin, subcutaneous tissues, muscles and their aponeuroses, and the parietal peritoneum. Understanding these layers and their mechanical properties provides valuable information to those designing procedural skills trainers, supporting surgical procedures (hernia repair), and engineering-based work (in silico simulation). However, there is little literature available on the mechanical properties of the abdominal wall in layers or as a composite in the context of designing a procedural skills trainer. This work characterizes the tensile properties of the human abdominal wall by layer and as a partial composite. Tissues were collected from fresh-never-frozen and fresh-frozen cadavers and tested in uniaxial tension at a rate of 5 mm/min until failure. Stress-strain curves were created for each sample, and the values for elastic moduli, ultimate tensile strength, and strain at failure were obtained. The experimental outcomes from this study demonstrated variations in tensile properties within and between tissues. The data also suggest that the tensile properties of composite abdominal walls are not additive. Ultimately, this body of work contributes to a deeper comprehension of these mechanical properties and will serve to enhance patient care, refine surgical interventions, and assist with more sophisticated engineering solutions.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; (R.L.); (R.A.P.H.); (M.J.M.)
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Lin F, Zhang Y, Yang H, Lin D, He J, Liao C, Weng X, Liu L, Wang Y, Yu B, Qu J. Super-Resolution Second-Harmonic Generation Imaging with Multifocal Structured Illumination Microscopy. NANO LETTERS 2023; 23:7975-7982. [PMID: 37642385 DOI: 10.1021/acs.nanolett.3c01903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Second-harmonic generation (SHG) is a noninvasive imaging technique that enables the exploration of physiological structures without the use of an exogenous label. However, traditional SHG imaging is limited by optical diffraction, which restricts the spatial resolution. To break this limitation, we developed a novel approach called multifocal structured illumination microscopy-SHG (MSIM-SHG). By combination of SHG with MSIM, SHG-based super-resolution imaging of material molecules can be achieved, and this SHG super-resolution imaging has a wide range of applications for biological tissues and cells. MSIM-SHG achieved a lateral full width at half-maximum (fwhm) of 147 ± 13 nm and an axial fwhm of 493 ± 47 nm by imaging zinc oxide (ZnO) particles. Furthermore, MSIM-SHG was utilized to quantify collagen fiber alignment in various tissues such as the ovary, muscle, heart, kidney, and cartilage, demonstrating its feasibility for identifying collagen characteristics. MSIM-SHG has potential as a powerful tool for clinical diagnosis and biological research.
Collapse
Affiliation(s)
- Chenshuang Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Fangrui Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Haozhi Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jun He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiaoyu Weng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
31
|
Handelshauser M, Chiang YR, Marchetti-Deschmann M, Thurner PJ, Andriotis OG. Collagen fibril tensile response described by a nonlinear Maxwell model. J Mech Behav Biomed Mater 2023; 145:105991. [PMID: 37480709 DOI: 10.1016/j.jmbbm.2023.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Collagen fibrils are the basic structural building blocks that provide mechanical properties such as stiffness, toughness, and strength to tissues from the nano- to the macroscale. Collagen fibrils are highly hydrated and transient deformation mechanisms contribute to their mechanical behavior. One approach to describe and quantify the apparent viscoelastic behavior of collagen fibrils is to find rheological models and fit the resulting empirical equations to experimental data. In this study, we consider a nonlinear rheological Maxwell model for this purpose. The model was fitted to tensile stress-time data from experiments conducted in a previous study on hydrated and partially dehydrated individual collagen fibrils via AFM. The derivative tensile modulus, estimated from the empirical equation, increased for decreasing hydration of the collagen fibril. The viscosity is only marginally affected by hydration but shows a dependency with strain rate, suggesting thixotropic behavior for low strain rates.
Collapse
Affiliation(s)
- Martin Handelshauser
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien, 1060, Vienna, Austria
| | - You-Rong Chiang
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | | | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria.
| |
Collapse
|
32
|
Sree VD, Toaquiza-Tubon JD, Payne J, Solorio L, Tepole AB. Damage and Fracture Mechanics of Porcine Subcutaneous Tissue Under Tensile Loading. Ann Biomed Eng 2023; 51:2056-2069. [PMID: 37233856 DOI: 10.1007/s10439-023-03233-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Subcutaneous injection, which is a preferred delivery method for many drugs, causes deformation, damage, and fracture of the subcutaneous tissue. Yet, experimental data and constitutive modeling of these dissipation mechanisms in subcutaneous tissue remain limited. Here we show that subcutaneous tissue from the belly and breast anatomical regions in the swine show nonlinear stress-strain response with the characteristic J-shaped behavior of collagenous tissue. Additionally, subcutaneous tissue experiences damage, defined as a decrease in the strain energy capacity, as a function of the previously experienced maximum deformation. The elastic and damage response of the tissue are accurately described by a microstructure-driven constitutive model that relies on the convolution of a neo-Hookean material of individual fibers with a fiber orientation distribution and a fiber recruitment distribution. The model fit revealed that subcutaneous tissue can be treated as initially isotropic, and that changes in the fiber recruitment distribution with loading are enough to explain the dissipation of energy due to damage. When tested until failure, subcutaneous tissue that has undergone damage fails at the same peak stress as virgin samples, but at a much larger stretch, overall increasing the tissue toughness. Together with a finite element implementation, these data and constitutive model may enable improved drug delivery strategies and other applications for which subcutaneous tissue biomechanics are relevant.
Collapse
Affiliation(s)
- Vivek D Sree
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | | | - Jordanna Payne
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | - Luis Solorio
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
| | | |
Collapse
|
33
|
Keever JM, Banzon PD, Hales MK, Sargent AL, Allen WE. Association between N-Terminal Pyrenes Stabilizes the Collagen Triple Helix. J Org Chem 2023; 88:11885-11894. [PMID: 37531574 DOI: 10.1021/acs.joc.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Collagen model peptides featuring the fluorophore pyrene at their N-termini have been synthesized, and their thermal denaturation has been examined using circular dichroism (CD) and fluorescence spectroscopies. Flanking the (Pro-Hyp-Gly)7 core of the peptide monomers at positions 1 and/or 23 in the primary sequence, Lys residues were introduced to ensure water solubility. Triple helices derived from such peptides show a broad excimer emission at ∼480 nm, indicative of interaction between the pyrene units. CD experiments show that the fluorophores enhance helix stability primarily through entropic effects. Unfolding temperatures (Tm) increase by up to 7 °C for systems with N-terminal lysine residues and by up to 21 °C for systems in which the first-position Lys is replaced by Ala. Tm values derived from fluorescence measurements (at 50 μM) typically lie within ∼1 °C of those obtained using CD (at 200 μM). Computational modeling in a water continuum using B3LYP-GD3 and M06-2X functionals predicts that face-to-face association of fluorophores can occur while H-bonding within the [(POG)n]3 assembly is retained. Such parallel stacking is consistent with hydrophobically driven stabilization. Labeling collagen peptides with pyrene is a synthetically simple way to promote triple helicity while providing a means to obtain Tm data on relatively dilute samples.
Collapse
Affiliation(s)
- Jared M Keever
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Patrick D Banzon
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Megan K Hales
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Andrew L Sargent
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - William E Allen
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| |
Collapse
|
34
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
35
|
Merson J, Parvez N, Picu RC. Probing soft fibrous materials by indentation. Acta Biomater 2023; 163:25-34. [PMID: 35381401 PMCID: PMC9526757 DOI: 10.1016/j.actbio.2022.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Indentation is often used to measure the stiffness of soft materials whose main structural component is a network of filaments, such as the cellular cytoskeleton, connective tissue, gels, and the extracellular matrix. For elastic materials, the typical procedure requires fitting the experimental force-displacement curve with the Hertz model, which predicts that f=kδ1.5 and k is proportional to the reduced modulus of the indented material, E/(1-ν2). Here we show using explicit models of fiber networks that the Hertz model applies to indentation in network materials provided the indenter radius is larger than approximately 12lc, where lc is the mean segment length of the network. Using smaller indenters leads to a relation between force and indentation displacement of the form f=kδq, where q is observed to increase with decreasing indenter radius. Using the Hertz model to interpret results of indentations in network materials using small indenters leads to an inferred modulus smaller than the real modulus of the material. The origin of this departure from the classical Hertz model is investigated. A compacted, stiff network region develops under the indenter, effectively increasing the indenter size and modifying its shape. This modification is marginal when large indenters are used. However, when the indenter radius is small, the effect of the compacted layer is pronounced as it changes the indenter profile from spherical towards conical. This entails an increase of exponent q above the value of 1.5 corresponding to spherical indenters. STATEMENT OF SIGNIFICANCE: The article presents a study of indentation in network biomaterials and demonstrates a size effect which precludes the use of the Hertz model to infer the elastic constants of the material. The size effect occurs once the indenter radius is smaller than approximately 12 times the mean segment length of the network. This result provides guidelines for the selection of indentation conditions that guarantee the applicability of the Hertz model. At the same time, the finding may be used to infer the mean segment length of the network based on indentations with indenters of various sizes. Hence, the method can be used to evaluate this structural parameter which is not easily accessible in experiments.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
36
|
Kashimoto R, Kamei Y, Nonaka S, Kondo Y, Yamamoto S, Furukawa S, Ohashi A, Satoh A. FGF signaling induces the regeneration of collagen fiber structure during skin wound healing in axolotls. Dev Biol 2023; 498:14-25. [PMID: 36963624 DOI: 10.1016/j.ydbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Axolotls have been considered to be able to regenerate their skin completely. Our recent study updated this theory with the finding that the lattice structure of dermal collagen fibers was not fully regenerated after skin injury. We also discovered that nerves induce the regeneration of collagen fibers. The mechanism of collagen fiber regeneration remains unknown, however. In this study, we focused on the structure of collagen fibers with collagen braiding cells, and cell origin in axolotl skin regeneration. In the wounded dermis, cells involved in skin repair/regeneration were derived from both the surrounding dermis and the subcutaneous tissue. Regardless of cell origin, cells acquired the proper cell morphology to braid collagen fiber with nerve presence. We also found that FGF signaling could substitute for the nerve roles in the conversion of subcutaneous fibroblasts to lattice-shaped dermal fibroblasts. Our findings contribute to the elucidation of the fundamental mechanisms of true skin regeneration and provide useful insights for pioneering new skin treatments.
Collapse
Affiliation(s)
- Rena Kashimoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigenori Nonaka
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yohei Kondo
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Sakiya Yamamoto
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Saya Furukawa
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayaka Ohashi
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
37
|
Zeng L, Liu F, Yu Q, Jin C, Yang J, Suo Z, Tang J. Flaw-insensitive fatigue resistance of chemically fixed collagenous soft tissues. SCIENCE ADVANCES 2023; 9:eade7375. [PMID: 36867693 PMCID: PMC9984180 DOI: 10.1126/sciadv.ade7375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bovine pericardium (BP) has been used as leaflets of prosthetic heart valves. The leaflets are sutured on metallic stents and can survive 400 million flaps (~10-year life span), unaffected by the suture holes. This flaw-insensitive fatigue resistance is unmatched by synthetic leaflets. We show that the endurance strength of BP under cyclic stretch is insensitive to cuts as long as 1 centimeter, about two orders of magnitude longer than that of a thermoplastic polyurethane (TPU). The flaw-insensitive fatigue resistance of BP results from the high strength of collagen fibers and soft matrix between them. When BP is stretched, the soft matrix enables a collagen fiber to transmit tension over a long length. The energy in the long length dissipates when the fiber breaks. We demonstrate that a BP leaflet greatly outperforms a TPU leaflet. It is hoped that these findings will aid the development of soft materials for flaw-insensitive fatigue resistance.
Collapse
Affiliation(s)
- Liangsong Zeng
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Fengkai Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Qifeng Yu
- Shanghai NewMed Medical Corporation, Shanghai, China
| | - Chenyu Jin
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
38
|
Picu R, Jin S. Toughness of Network Materials: Structural Parameters Controlling Damage Accumulation. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 172:105176. [PMID: 36582492 PMCID: PMC9794194 DOI: 10.1016/j.jmps.2022.105176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many materials have a network of fibers as their main structural component and are referred to as network materials. Their strength and toughness are important in both engineering and biology. In this work we consider stochastic model fiber networks without pre-existing cracks and study their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post peak regime. We observe that ductile failure takes place at constant energy release rate defined in the absence of pre-existing cracks as the strain derivative of the specific energy released. The network parameters controlling the energy release rate are identified and discussed in relation to the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to brittle failure transition as the network becomes more affine and relate the embrittlement to the reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that the network strength scales linearly with the bond strength and with the crosslink density. The present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail by the gradual accumulation of distributed damage and contribute to the development of a physical picture of failure in stochastic network materials.
Collapse
Affiliation(s)
- R.C. Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - S. Jin
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
39
|
Zhao K, Tian X, Huang N, Zhang K, Wang Y, Zhang Y, Wang W. Tunable mechanical performances of collagen-based film: Effect of collagens in different hierarchies and cellulose nanofiber. PROGRESS IN ORGANIC COATINGS 2023; 176:107404. [DOI: 10.1016/j.porgcoat.2022.107404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
40
|
Munisso MC, Saito S, Tsuge I, Morimoto N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J Mech Behav Biomed Mater 2023; 138:105585. [PMID: 36435035 DOI: 10.1016/j.jmbbm.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The availability of quantitative structural data on the orientation of collagen fibers is of crucial importance for understanding the behavior of connective tissues. These fibers can be visualized using a variety of imaging techniques, including second harmonic generation (SHG) microscopy. However, characterization of the collagen network requires the accurate extraction of parameters from imaging data. To this end, several automated processes have been developed to identify the preferred orientation of collagen fibers. Common methods include fast Fourier transforms and curvelet transforms, but these tools are mostly used to infer a single preferred orientation. The purpose of this pilot study was to develop an easy procedure for comprehensively comparing multiple human skin samples with the goal of analyzing load-dependent changes via SHG microscopy. We created a 3D model based upon 2D image stacks that provide fiber orientation data perpendicular and parallel to the plane of the epidermis. The SHG images were analyzed by CurveAlign to obtain angle histogram plots containing information about the multiple fiber orientations in each single image. Subsequently, contour plots of the angle histogram intensities were created to provide a useful visual plotting method to clearly show the anomalies in the angle histograms in all samples. Our results provided additional details on how the collagen network carries a load. In fact, analysis of SHG images indicated that increased stretch was accompanied by an increase in the alignment of fibers in the loading direction. Moreover, these images demonstrated that more than one type of preferred orientation is present. In particular, the 3D network of fibers appears to have two preferred orientations in the planes both perpendicular and parallel to the plane of the epidermis.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
42
|
Yamanaka JS, Oliveira AC, Bastos AR, Fernandes EM, Reis RL, Correlo VM, Shimano AC. Collagen membrane from bovine pericardium for treatment of long bone defect. J Biomed Mater Res B Appl Biomater 2023; 111:261-270. [PMID: 36507698 DOI: 10.1002/jbm.b.35148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The treatment of bone regeneration failures has been constantly improved with the study of new biomaterials. Techgraft® is a collagen membrane derived from bovine pericardium, which has been shown to have biocompatibility and effectiveness in tissue repair. However, its use in orthopedics has not yet been evaluated. Therefore, the purpose of this study was to characterize a bovine pericardium collagen membrane and evaluate the effects of its use in the regeneration of a bone defect in rat tibia. Scanning electron microscopy, atomic force microscopy, weight lost and water uptake tests, and mechanical test were performed. Afterwards, the membrane was tested in an experimental study, using 12 male Sprague Dawley rats. A bone defect was surgically made in tibiae of animals, which were assigned to two groups (n = 6): bone defect treated with collagen membrane (TG) and bone defect without treatment (CONT). Then, tibiae were submitted to micro-CT. The membranes preserved their natural collagen characteristics, presenting great strength, high water absorption, hydrophilicity, and almost complete dissolution in 30 days. In the experimental study, the membrane enhanced the growth of bone tissue in contact with its surface. A higher bone volume and trabeculae number and less trabecular space was observed in bone defects of the membrane group compared to the control group at 21 days. In conclusion, the Techgraft membrane seems to have favorable characteristics for treatment of long bone repair.
Collapse
Affiliation(s)
- Jéssica S Yamanaka
- Departamento de Ortopedia e Anestesiologia. Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Clara Oliveira
- Departamento de Ortopedia e Anestesiologia. Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Raquel Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Antônio Carlos Shimano
- Departamento de Ortopedia e Anestesiologia. Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
de Alcântara ACS, Felix LC, Galvão DS, Sollero P, Skaf MS. The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils. ACS Biomater Sci Eng 2023; 9:230-245. [PMID: 36484626 DOI: 10.1021/acsbiomaterials.2c00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
Collapse
Affiliation(s)
- Amadeus C S de Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Levi C Felix
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Douglas S Galvão
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Munir S Skaf
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Institute of Chemistry, University of Campinas, Campinas13083-970, SPBrazil
| |
Collapse
|
44
|
Banerjee S, Banerjee S, Mondal A. Nanomaterials regenerative medicine and tissue engineering. NANOSTRUCTURED MATERIALS FOR TISSUE ENGINEERING 2023:3-53. [DOI: 10.1016/b978-0-323-95134-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Petitjean N, Canadas P, Royer P, Noël D, Le Floc'h S. Cartilage biomechanics: From the basic facts to the challenges of tissue engineering. J Biomed Mater Res A 2022; 111:1067-1089. [PMID: 36583681 DOI: 10.1002/jbm.a.37478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022]
Abstract
Articular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies. In this review, we first describe the major mechanical behaviors of AC for the non-specialists. Then, we show how researchers have progressively identified specific mechanical parameters using mathematical models. There are still gaps in our understanding of some of the observations concerning AC biomechanical properties, particularly the differences in extracellular matrix stiffness measured at the microscale and at the millimetric scale. Nevertheless, for bioengineering applications, AC repair strategies must take into account what are commonly considered the main mechanical features of cartilage: its ability to withstand high stresses through three main behaviors (elasticity, poroelasticity and swelling). Finally, we emphasize that future studies need to investigate AC mechanical properties at different scales, particularly the gradient of mechanical properties around cells and across the cartilage depth, and the differences in mechanical properties at different scales. This multi-scale approach could greatly enhance the success of AC restorative approaches.
Collapse
Affiliation(s)
| | | | - Pascale Royer
- LMGC, University of Montpellier, CNRS, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France
| | | |
Collapse
|
46
|
Khamplod T, Winterburn JB, Cartmell SH. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds - a step towards ligament repair applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:895-910. [PMID: 36570876 PMCID: PMC9769142 DOI: 10.1080/14686996.2022.2149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Henry Royce Institute, The University of Manchester, Manchester, UK
| | - James B. Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H. Cartmell
- Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Materials Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Yue C, Ding C, Yang N, Luo Y, Su J, Cao L, Cheng B. Strong and tough collagen/cellulose nanofibril composite films via the synergistic effect of hydrogen and metal–ligand bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Ginevičienė V, Urnikytė A. Association of COL12A1 rs970547 Polymorphism with Elite Athlete Status. Biomedicines 2022; 10:2495. [PMID: 36289757 PMCID: PMC9599715 DOI: 10.3390/biomedicines10102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The role of genetics, as an intrinsic factor, in research of sports performance increases with every passing year. The polymorphism rs970547 of the COL12A1 gene is one of the most promising genetic markers linked to soft-tissue injuries. This study aimed to investigate whether COL12A1 rs970547 genotypes are associated with elite Lithuanian athletes from high-risk various sports, such as running, throwing, jumping, and football. The study involved 293 Lithuanian elite athletes and 287 healthy untrained individuals from the Lithuanian population. The results of this study suggest that the rs970547 T allele and TT genotype were significantly over-represented in the total athlete group compared to controls (p < 0.05). There was a significantly lower C allele frequency in the sprint/power group (16.9%) as well as in footballers (19.4%) compared to controls (33.3%, p < 0.05). Positive selection analysis results showed that the derived allele experiences selection pressure within the general population of Lithuanians. Taken together, the findings of this study suggested that COL12A1 rs970547 (T allele and TT genotype) is associated with elite athlete status, especially with sprint/power athlete and footballer`s performance. However, larger-scale studies within different ethnic backgrounds are still warranted to confirm the findings of our study.
Collapse
Affiliation(s)
- Valentina Ginevičienė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Universiteto Street 3, LT-01513 Vilnius, Lithuania
| | - Alina Urnikytė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Universiteto Street 3, LT-01513 Vilnius, Lithuania
| |
Collapse
|
49
|
Liu F, Hu K, Al-Qudsy LH, Wu LQ, Wang Z, Xu HY, Yang H, Yang PF. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse. Acta Biomater 2022; 152:345-354. [PMID: 36087867 DOI: 10.1016/j.actbio.2022.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Mineralized collagen fibrils (MCFs) are the fundamental building blocks of bone tissue and contribute significantly to the mechanical behavior of bone. However, it is still largely unknown how the collagen network in bone responds to aging and the disuse normally accompanying it. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, age-related alterations in the microstructure and mechanical properties of murine cortical tibia at multiple scales were investigated in this study. The potential difference in the responses of bone to disuse at different ages was studied. The results indicated that the age- and disuse-related alterations in bone initiate from MCFs in the bone matrix. The D-periodic spacing, radial elastic modulus of a single MCF and the mineral-to-matrix ratio on the cortical bone surface were larger in aged mice than in adult mice. Disuse, on the other hand, mainly has a major influence on aged mice, particularly on the morphology and mechanical properties of MCFs, but it only has modest effects on adult bone. These findings revealed insights into the morphological and mechanical adaptation of mineralized collagen fibrils in murine cortical bone to aging and disuse. STATEMENT OF SIGNIFICANCE: Bone is a complex structured composite material consisting of an interwoven framework of collagen fibrils reinforced by mineral particles and embedded in an extrafibrillar mineralized matrix. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, this study suggests that the effects of aging, as well as the accompanying disuse, on the morphology and mechanical properties of bone initiate from the mineralized collagen fibril level. More interestingly, the MCF in the bone of aged mice seems to be more sensitive to disuse than that in adult mice. These findings significantly further the current understanding of the adaptation process of bone to aging at the mineralized collagen fibril level and provide direct insights into the physiological response of bone to aging and the abnormal mechanical environment.
Collapse
Affiliation(s)
- Fa Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Luban H Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lan-Qin Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui-Yun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
50
|
Zhai C, Sullivan PA, Martin CL, Shi H, Deravi LF, Yeo J. Probing the alignment-dependent mechanical behaviors and time-evolutional aligning process of collagen scaffolds. J Mater Chem B 2022; 10:7052-7061. [PMID: 36047129 DOI: 10.1039/d2tb01360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficiently manipulating and reproducing collagen (COL) alignment in vitro remains challenging because many of the fundamental mechanisms underlying and guiding the alignment process are not known. We reconcile experiments and coarse-grained molecular dynamics simulations to investigate the mechanical behaviors of a growing COL scaffold and assay how changes in fiber alignment and various cross-linking densities impact their alignment dynamics under shear flow. We find higher cross-link densities and alignment levels significantly enhance the apparent tensile/shear moduli and strength of a bulk COL system, suggesting potential measures to facilitate the design of stronger COL based materials. Since fibril alignment plays a key factor in scaffold mechanics, we next investigate the molecular mechanism behind fibril alignment with Couette flow by computationally investigating the effects of COL's structural properties such as chain lengths, number of chains, tethering conditions, and initial COL conformations on the COL's final alignment level. Our computations suggest that longer chain lengths, more chains, greater amounts of tethering, and initial anisotropic COL conformations benefit the final alignment, but the effect of chain lengths may be more dominant over other factors. These results provide important parameters for consideration in manufacturing COL-based scaffolds where alignment and cross-linking are necessary for regulating performance.
Collapse
Affiliation(s)
- Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Patrick A Sullivan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Cassandra L Martin
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|