1
|
Weiss PS, Paz AS, Avalos CE. An investigation of contributors to the spin exchange interactions in organic pentacene-radical dyads using quasi-degenerate perturbation theory. Phys Chem Chem Phys 2025; 27:8052-8076. [PMID: 40181782 DOI: 10.1039/d4cp04908j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Chromophore-radical (C-R) dyads are a promising class of molecules with potential applications in magnetometry, nuclear magnetic resonance and quantum sensing. Given the vast chemical space that is possible in these systems, computational studies are vital to aid in the rational design of C-R molecules with desired electronic and spin properties. Multireference perturbation theory (MRPT) calculations have been shown to be useful for rationalizing spin correlations in C-R dyads. In this work we apply quasi-degenerate perturbation theory, specifically QD-NEVPT2, for the prediction of vertical transition energies (VTEs) as well as spin-correlation parameters in three-spin-center pentacene-radical dyads containing up to 153 atoms. We find that QD-NEVPT2 performs well in the prediction of JTR, the magnetic coupling parameter between the excited-state triplet and the radical, but underestimates VTEs; this underestimation is attributed to variational averaging over different spin states and active space limitations, and we show that addressing these shortcomings reduces error. The calculated magnitudes and signs of JTR are rationalized through molecular symmetry, coupling distance, and π-structure considerations. The predicted signs of JTR are consistent with and explained via mechanisms of kinetic and potential spin-exchange, allowing for future functional design of magnetic organic molecules. The role of active space choice on VTE accuracy and predicted magnetic coupling is additionally explored.
Collapse
Affiliation(s)
- Philip S Weiss
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Amiel S Paz
- Department of Chemistry, New York University, New York, New York 10003, USA.
- NYU Shanghai, 567 West Yangsi Road, Shanghai 20012, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshang Road, Shanghai 200062, China
| | - Claudia E Avalos
- Department of Chemistry, New York University, New York, New York 10003, USA.
| |
Collapse
|
2
|
Quintes T, Weber S, Richert S. Teacups, a Python Package for the Simulation of Time-Resolved EPR Spectra of Spin-Polarized Multi-Spin Systems. J Phys Chem A 2025; 129:3375-3388. [PMID: 40152748 PMCID: PMC11995384 DOI: 10.1021/acs.jpca.5c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Spin-polarized magnetic systems, generated by the interaction of photoactive molecules with light, play a key role in a wide range of scientific applications. Representative examples are OLEDs, organic photovoltaics, and singlet fission. Further, they are important intermediates in certain biological processes including photosynthesis and, possibly, avian magnetoreception. Transient continuous-wave electron paramagnetic resonance (trEPR) spectroscopy is a powerful tool to reveal the temporal evolution of nonequilibrium spin states, which contains valuable information on any photoinduced dynamic processes occurring in these systems. For the analysis of the recorded trEPR data, simulations are essential. While the simulation of static trEPR spectra is supported well by tools like EasySpin, the simulation of time-resolved trEPR data is less developed. Here, we introduce teacups, a new freely available and well-documented Python-based routine for the simulation of the temporal evolution of trEPR spectra. The internal dynamics of different spin-polarized systems can be analyzed, thereby enhancing our mechanistic understanding. In this manuscript, we explain the theoretical background and provide a description of the features and setup of teacups. Further, a step-by-step example for data analysis is provided.
Collapse
Affiliation(s)
- Theresia Quintes
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Tang J, Sukhanov AA, Wei M, Zhang X, Zhao J, Dick B, Voronkova VK, Li MD. Thionated Coumarins: Study of the Intersystem Crossing and the Zero-field Splitting of the Triplet State Using Time-Resolved Transient Optical and Electron Paramagnetic Resonance Spectroscopies. Chemistry 2025; 31:e202404589. [PMID: 40040377 DOI: 10.1002/chem.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/06/2025]
Abstract
To study the effect of thionation of the carbonyl groups in a chromophore, i. e. replacing the O atom with S atom, on the photophysics, we studied two thionated coumarin derivatives (Cou-S and Cou-6-S) with various steady state and transient spectroscopic methods. Both compounds exhibit red-shifted absorption (up to 4900 cm-1) and strong fluorescence quenching as compared to the unthionated analogues. Femtosecond transient absorption spectra show fast ISC (ca. 10 ps) in the thionated coumarin derivatives, while negligible ISC was observed in the unthionated coumarin. Interestingly, triplet excited state lifetimes of the thionated coumarin (0.14 μs) is much shorter than the unthionated analogues (53.4 μs). Time-resolved electron paramagnetic resonance (TREPR) spectra indicate much larger zero field splitting (ZFS) D parameters (up to 0.287 cm-1) for the T1 state of the thionated coumarins than the unthionated analogues (D=0.1001 cm-1). This large D value is attributed to the strong spin orbital coupling effect. These results demonstrate the advantage and the drawback of thionation-enhanced ISC, i. e. the ISC is efficient, but triplet state lifetimes become substantially shorter. This information is useful for the future design of heavy atom-free triplet photosensitizers for photodynamic therapy, photon upconversion, photocatalytic organic synthesis and photopolymerization, etc.
Collapse
Affiliation(s)
- Jieyu Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Min Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-, 93053, Regensburg, Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| |
Collapse
|
4
|
Panariti D, Carella A, Ciuti S, Barbon A, Holzer N, Poddutoori PK, Kandrashkin YE, van der Est A, Di Valentin M. Long-lived light-induced electron spin polarization in porphyrin triplet states and the dynamic Jahn-Teller effect. J Chem Phys 2025; 162:114201. [PMID: 40094235 DOI: 10.1063/5.0252227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
The time dependence of the light-induced spin polarization of a series of porphyrins is reported. The porphyrins contain central elements from three distinct groups in the Periodic Table with different oxidation states, types, and numbers of axial ligands, as well as different peripheral substituents on the porphyrin ring. Shortly after photoexcitation, in all cases, the primary multiplet polarization of the porphyrin triplet state evolves into long-lived net polarization whose lifetime is determined by the lifetime of the triplet state. The zero-field splitting parameters and sign of the multiplet polarization vary significantly among the porphyrins, but the transient EPR spectra taken at later times are remarkably similar. The development of long-lived net polarization is proposed to involve the dynamic Jahn-Teller effect, in which hopping between the two lowest triplet states occurs.
Collapse
Affiliation(s)
- D Panariti
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - A Carella
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - S Ciuti
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - A Barbon
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - N Holzer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - P K Poddutoori
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - Y E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russian Federation
| | - A van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - M Di Valentin
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| |
Collapse
|
5
|
Biktagirov T, Gerstmann U, Schmidt WG. Topological defects in semiconducting carbon nanotubes as triplet exciton traps and single-photon emitters. NANOSCALE 2025; 17:6884-6891. [PMID: 39969240 DOI: 10.1039/d4nr03904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We investigate how topological defects influence the excitonic behavior in (6,5) semiconducting single-walled carbon nanotubes. Our theoretical study demonstrates that topological defects, particularly the widely occurring Stone-Wales defect, can act as efficient traps for triplet excitons, characterized by significant zero-field splitting consistent with experimental data and a small singlet-triplet energy gap. Additionally, the weak electron-phonon coupling positions these defects as promising candidates for single-photon emission at telecom wavelengths (1.6 μm). These findings pave the way for enhancing the performance of carbon nanotube-based quantum light sources and optoelectronic devices.
Collapse
Affiliation(s)
- Timur Biktagirov
- Universität Paderborn, Department Physik, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Uwe Gerstmann
- Universität Paderborn, Department Physik, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Wolf Gero Schmidt
- Universität Paderborn, Department Physik, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
6
|
Song S, Ge F, Panariti D, Zhao A, Yu S, Wang Z, Geng H, Zhao J, Barbon A, Fu H. Declined S 1 but Constant T 1 Energy: Thermally Activated Delayed Fluorescence with Triplet Blocking Effect. Angew Chem Int Ed Engl 2025; 64:e202418097. [PMID: 39540720 DOI: 10.1002/anie.202418097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Thermally activated delayed fluorescence (TADF) molecules have been widely investigated in organic light emitting diodes (OLED), organic lasing, etc. Small singlet-triplet energy gap (ΔEST) and high radiative rate constants (kF) are highly desired to utilize triplet excitons efficiently and are beneficial to reduce efficiency roll-off of devices of OLED devices. The prevalent TADF molecules are via donor-acceptor molecular design, for which the decreasing of the ΔEST is often at the expense of reducing the kF. Herein, we demonstrated a new ΔEST modulation approach to construct TADF with high kF, based on triplet blocking effect, i.e., the extension of π-conjugation of a triplet constrainer (IB) leads to a gradually red-shifted S1 but a constant T1 energy and therefore reduced ΔEST controlled from monomer (IB), monomer-linker (IB-BF2), to dimer of IB-BF2-IB. The natural transition orbital analysis indicates that S1 state is delocalized while T1 state is localized as confirmed by time resolved electron paramagnetic resonance spectroscopy. Therefore, the ΔEST is reduced from 0.60 eV, 0.46 eV to 0.25 eV, while keeping faster radiation rate (around 108 s-1) than that of conventional donor-acceptor molecules (106∼107 s-1). As a result, the emission mechanisms are regulated from fluorescence for IB, phosphorescence/TADF dual emissions for IB-BF2 to TADF for IB-BF2-IB. This paper proposed a new approach of ΔEST modulation and a new type of TADF molecule with high radiation rate, which is crucial for fundamental photophysics as well as material science.
Collapse
Affiliation(s)
- Shihong Song
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Fangqing Ge
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Daniele Panariti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Anping Zhao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Shuhan Yu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Zhijia Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center of Smart Materials, Dalian University of Technology E-208 West Campus, 2 Ling-Gong Road, 116024, Dalian, P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, P. R. China
| |
Collapse
|
7
|
Ye K, Sukhanov AA, Li J, Liu L, Chen X, Zhao J, Voronkova VK, Li MD. Intersystem Crossing, Photo-Induced Charge Separation and Regioisomer-Specific Excited State Dynamics in Fully Rigid Spiro Rhodammine-Naphthalene/Anthraquinone Electron Donor-Acceptor Dyads. Chemistry 2025; 31:e202403758. [PMID: 39567261 DOI: 10.1002/chem.202403758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
We prepared a series fully rigid spiro electron donor-acceptor orthogonal dyads, with closed form of rhodamine (Rho) as electron donor and naphthalene (Np)/anthraquinone (AQ) as electron acceptor, to access the long-lived triplet charge separation (3CS) state, via the electron spin control method. We found strong dependency of the photophysical property of the dyads on the amino substitution positions of the Np chromophores in the dyads 1,8-DaNp-Rho and 2,3-DaNp-Rho. Nanosecond transient absorption (ns-TA) spectra show the population of the 3LE state (lifetime: 47 μs) for 2,3-DaNp-Rho, however, long-lived 3CS state was observed (τCS=0.62 μs) for AQ-Rho, with a CS quantum yield of ΦCS=58 %. Based on femtosecond transient absorption (fs-TA) spectra, spin orbit charge transfer ISC (SOCT-ISC) is proposed to be responsible for the formation of the triplet states. Time-resolved electron paramagnetic resonance (TREPR) spectra of AQ-Rho indicate the presence of two states, a 3LE state with zero field splitting (ZFS) D parameter of 1400 MHz and E parameter of -410 MHz, formed via radical pair ISC (RP-ISC) and SOCT-ISC mechanism; and a 3CS state with the electron spin-spin interaction in the regime of spin-correlated radical pair (SCRP).
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420029, Russia
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Lishan Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420029, Russia
| | - Ming De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| |
Collapse
|
8
|
Pei Y, Sukhanov AA, Chen X, Iagatti A, Doria S, Dong X, Zhao J, Li Y, Chi W, Voronkova VK, Di Donato M, Dick B. The Photophysics of Naphthalimide-Phenoselenazine Electron Donor-Acceptor Dyads: Revisiting the Heavy-Atom Effect in Thermally Activated Delayed Fluorescence. Chemistry 2025; 31:e202403542. [PMID: 39607385 DOI: 10.1002/chem.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 11/29/2024]
Abstract
We prepared thermally activated delayed fluorescence (TADF) emitter dyads, NI-PTZ, NI-PTZ-2Br and NI-PSeZ, with naphthalimide (NI) as electron acceptor and 10H-phenothiazine (PTZ) or 10H-phenoselenazine (PSeZ) as electron donor to study the heavy-atom effect on the intersystem crossing (ISC) and reverse ISC (rISC) in the TADF emitters. The delayed fluorescence lifetimes of the dyads containing heavy atoms (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =5.9 μs for NI-PSeZ andτ D F ${{\tau }_{{\rm D}{\rm F}}}$ =16.5 μs for NI-PTZ-2Br, respectively) are longer than the heavy atom-free counterpart NI-PTZ (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =2.0 μs). Nanosecond transient absorption (ns-TA) spectral study and the time-resolved electron paramagnetic resonance (TREPR) spectra show the presence of both 3LE and 3CS states. These findings represent solid experimental evidences for the spin-vibronic coupling mechanism of TADF. Moreover, the ns-TA spectra show that the heavy atoms don't have a significant effect since the lifetime of the triplet transient species (1.3 μs for NI-PTZ) is not shortened in their presence (4.5 μs for NI-PSeZ and 5.3 μs for NI-PTZ-2Br). These results show that the previously claimed heavy-atom effect on rISC and TADF is not a universal principle. The femtosecond transient absorption (fs-TA) spectra of the compounds indicate the occurrence of fast charge separation within 1-2 ps, and the charge recombination is slow (>4 ns).
Collapse
Affiliation(s)
- Yuying Pei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Alessandro Iagatti
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- INO-CNR Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125, Florence (FI), Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Xin Dong
- Ningbo Sunny Automotive Optech Co. Ltd., No. 27-29 Shunke Road, Ning Bo Shi, Yuyao, 315400, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Yanqin Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, No. 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Ye K, Sukhanov AA, Pang Y, Mambetov A, Li M, Cao L, Zhao J, Voronkova VK, Peng Q, Wan Y. Time-resolved transient optical and electron paramagnetic resonance spectroscopic studies of electron donor-acceptor thermally activated delayed fluorescence emitters based on naphthalimide-phenothiazine dyads. Phys Chem Chem Phys 2025; 27:813-823. [PMID: 39660403 DOI: 10.1039/d4cp03629h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The photophysics of naphthalimide (NI)-phenothiazine (PTZ) dyads were investigated as electron donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) emitters. Femtosecond transient absorption (fs-TA) spectra show that the photophysical processes in non-polar solvents are in singlet localized state (1LE, τ = 0.8 ps) → Franck-Condon singlet charge separation state (1CS, τ = 7.8 ps) → 1CS state (τ = 2.2 ns) → triplet state (3LE, τ = 16 μs). The 3LE state is formed via the spin-orbit charge transfer-intersystem crossing (SOCT-ISC) mechanism rather than the spin-orbit (SO)-ISC mechanism. In a polar solvent, the CS state has a much lower energy than the 3LE state; thus, the 3LE state is absent from the photophysical processes and no TADF was observed. Moreover, we found that the delayed fluorescence lifetime is related to the low-lying triplet state (3LE or 3CS states). When the 3CS state is the low-lying triplet state, the TADF lifetime is shorter than that of the 3LE state as the low-lying triplet state. In the time-resolved electron paramagnetic resonance (TREPR) spectra, both 3LE (zero field splitting parameter D = 2250 MHz, E = -150 MHz) and 3CS (D = 430 MHz, E = 0 MHz) states were observed. It is noteworthy that the electron spin polarization (ESP) phase pattern of the 3CS state was inverted at longer delay times as a consequence of the selective transition between the 3LE and 3CS states and a faster decay of one sublevel of the 3CS state. These results are strong and direct experimental evidence for the spin-vibronic coupling mechanism of TADF.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Yu Pang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Aidar Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Minjie Li
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| | - Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Yan Wan
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
10
|
Choi J, Im H, Heo JM, Kim DW, Jiang H, Stark A, Shao W, Zimmerman PM, Jeon GW, Jang JW, Hwang EH, Kim S, Park DH, Kim J. Microsecond triplet emission from organic chromophore-transition metal dichalcogenide hybrids via through-space spin orbit proximity effect. Nat Commun 2024; 15:10282. [PMID: 39622817 PMCID: PMC11612430 DOI: 10.1038/s41467-024-51501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/07/2024] [Indexed: 12/06/2024] Open
Abstract
Efficient light generation from triplet states of organic molecules has been a hot yet demanding topic in academia and the display industry. Herein, we propose a strategy for developing triplet emitter by creating heterostructures of organic chromophores and transition metal dichalcogenides (TMDs). These heterostructures emit microsecond phosphorescence at room temperature, while their organic chromophores intrinsically exhibit millisecond phosphorescence under vibration dissipation-free conditions. This enhancement in phosphorescence is indicative of significantly enhanced spin-orbit coupling efficiency through coupling with TMDs. Through detailed studies on these hybrids from various perspectives, we elucidate key features of each component essential for generating microsecond triplet emission, including 2H-TMDs with heavy transition metals and aromatic carbonyl with an ortho-hydroxy group. Our intriguing findings open avenues for exploring the universal applicability of fast and stable hybrid triplet emitters.
Collapse
Affiliation(s)
- Jinho Choi
- Department of Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Republic of Korea
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Healin Im
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jung-Moo Heo
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Do Wan Kim
- Division of System Semiconductor, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander Stark
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wenhao Shao
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gi Wan Jeon
- Particle Beam Research Division, Korea Atomic Energy of Research Institute, Gyeongju, 38180, Republic of Korea
| | - Jae-Won Jang
- Division of System Semiconductor, Dongguk University, Seoul, 04620, Republic of Korea
| | - Euy Heon Hwang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440746, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| | - Dong Hyuk Park
- Department of Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jinsang Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Levien M, De Biasi F, Karthikeyan G, Casano G, Visegrádi M, Ouari O, Emsley L. Mechanism of Solid-State 1H Photochemically Induced Dynamic Nuclear Polarization in a Synthetic Donor-Chromophore-Acceptor at 0.3 T. J Phys Chem Lett 2024; 15:11097-11103. [PMID: 39471392 PMCID: PMC11552079 DOI: 10.1021/acs.jpclett.4c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
1H photochemically induced dynamic nuclear polarization (photo-CIDNP) has recently emerged as a tool to enhance bulk 1H nuclear magnetic resonance (NMR) signals in solids at magnetic fields ranging from 0.3 to 21.1 T, using synthetic donor-chromophore-acceptor (D-C-A) molecules as optically active polarizing agents (PAs). However, the mechanisms at play for the generation of spin polarization in these systems have not been determined but are essential for an in-depth understanding and further development of the process. Here, we introduce site-selective deuteration to identify the 1H photo-CIDNP mechanisms at 85 K and 0.3 T in D-C-A molecule PhotoPol. We find that the protons on the acceptor moiety are essential for the generation of polarization, establishing differential relaxation as the main mechanism. These results establish selective deuteration as a tool to identify and suppress polarization transfer mechanisms, which opens up pathways for further optimization of the optical PA at both low and high magnetic fields.
Collapse
Affiliation(s)
- Marcel Levien
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Federico De Biasi
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ganesan Karthikeyan
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gilles Casano
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Máté Visegrádi
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivier Ouari
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Wang R, Sukhanov AA, He Y, Mambetov AE, Zhao J, Escudero D, Voronkova VK, Di Donato M. Electron Spin Dynamics of the Intersystem Crossing in Aminoanthraquinone Derivatives: The Spectral Telltale of Short Triplet Excited States. J Phys Chem B 2024; 128:10189-10199. [PMID: 39364553 DOI: 10.1021/acs.jpcb.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We studied the excited state dynamics of two bis-amino substituted anthraquinone (AQ) derivatives, with absorption in the visible spectral region, which results from the attachment of a electron-donating group to the electron-deficient AQ chromophore. Femtosecond transient absorption spectra show that intersystem crossing (ISC) takes place in 190-320 ps, and nanosecond transient absorption spectra demonstrated an unusually short triplet state lifetime (2.06-5.43 μs) for the two AQ derivatives. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show an inversion of the electron spin polarization (ESP) phase pattern of the triplet state at a longer delay time after laser flash. Spectral simulations show faster decay of the Ty sublevel than the other two sublevels (τx = 15.0 μs, τy = 1.50 μs, τz = 15.0 μs); theoretical computation predicts initial overpopulation of the Ty sublevel, and rationalizes the short T1 state lifetime and the ESP inversion. Theoretical computations taking into account the electron-vibrational coupling, i.e., the Herzberg-Teller effect, successfully rationalize the TREPR experimental observations.
Collapse
Affiliation(s)
- Ruilei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yue He
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Aidar E Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Firenze, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
13
|
Imran M, Kurganskii I, Maity P, Yu F, Zhao J, Gurzadyan GG, Dick B, Mohammed OF, Fedin M. Origin of Intersystem Crossing in Red-Light Absorbing Bodipy Derivatives: Time-Resolved Transient Optical and Electron Paramagnetic Resonance Spectral Studies with Twisted and Planar Compounds. J Phys Chem B 2024; 128:9859-9872. [PMID: 39345198 DOI: 10.1021/acs.jpcb.4c05418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We studied the intersystem crossing (ISC) property of red-light absorbing heavy atom-free dihydronaphtho[b]-fused Bodipy derivatives (with phenyl group attached at the lower rim via ethylene bridge, taking constrained geometry, i.e., BDP-1 and the half-oxidized product BDP-2) and dispiroflourene[b]-fused Bodipy (BDP-3) that have a twisted π-conjugated framework. BDP-1 and BDP-3 show strong and sharp absorption bands (i.e., ε = 2.0 × 105 M-1 cm-1 at 639 nm, fwhm ∼491 cm-1 for BDP-3). BDP-1 is significantly twisted (φ = 21.6°), while upon mono-oxidation, BDP-2 becomes nearly planar on the oxidized side (φ = 3.5°). Interestingly, BDP-2 showed efficient ISC (triplet state quantum yield, ΦT = 40%) due to S1/T2 state energy matching. Long-lived triplet excited state was observed (τT = 212 μs in solution and 2.4 ms in polymer matrix), and ISC takes 4.0 ns. Differently, twisted BDP-1 gives weak ISC only 5%, ISC takes 7.7 ns, and the triplet state is populated only with addition of ethyl iodide. Time-resolved electron paramagnetic resonance spectra of BDP-1 revealed the coexistence of two triplet states, with drastically different zero-field splitting D parameters of -2047 MHz and -1370 MHz, respectively, along with varying sublevel population ratios. We demonstrate that the ISC is not necessarily enhanced by torsion of the π-conjugation framework; instead, S1/Tn state energy matching is more efficient to induce ISC even in compounds that have planar molecular structures.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ivan Kurganskii
- International Tomography Center, SB RAS, and Novosibirsk State University, Novosibirsk 630090, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Regensburg D-93053, Germany
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Matvey Fedin
- International Tomography Center, SB RAS, and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Wang K, Wu H, Zhang B, Yao X, Zhang J, Oxborrow M, Zhao Q. Tailoring Coherent Microwave Emission from a Solid-State Hybrid System for Room-Temperature Microwave Quantum Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401904. [PMID: 39007198 PMCID: PMC11425272 DOI: 10.1002/advs.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Quantum electronics operating in the microwave domain are burgeoning and becoming essential building blocks of quantum computers, sensors, and communication devices. However, the field of microwave quantum electronics has long been dominated by the need for cryogenic conditions to maintain delicate quantum characteristics. Here, a solid-state hybrid system, constituted by a photo-excited pentacene triplet spin ensemble coupled to a dielectric resonator, is reported for the first time capable of both coherent microwave quantum amplification and oscillation at X band via the masing process at room temperature. By incorporating external driving and active dissipation control into the hybrid system, efficient tuning of the maser emission characteristics at ≈9.4 GHz is achieved, which is key to optimizing the performance of the maser device. The work not only pushes the boundaries of the operating frequency and functionality of the existing pentacene masers but also demonstrates a universal route for controlling the masing process at room temperature, highlighting opportunities for optimizing emerging solid-state masers for quantum information processing and communication.
Collapse
Affiliation(s)
- Kaipu Wang
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Wu
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Zhang
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuri Yao
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiakai Zhang
- Xi'an Electronic Engineering Research Institute, Xi'an, 710100, China
| | - Mark Oxborrow
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Qing Zhao
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
15
|
Kopp SM, Redman AJ, Rončević I, Schröder L, Bogani L, Anderson HL, Timmel CR. Charge and Spin Transfer Dynamics in a Weakly Coupled Porphyrin Dimer. J Am Chem Soc 2024; 146:21476-21489. [PMID: 39042706 PMCID: PMC11311228 DOI: 10.1021/jacs.4c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The dynamics of electron and spin transfer in the radical cation and photogenerated triplet states of a tetramethylbiphenyl-linked zinc-porphyrin dimer were investigated, so as to test the relevant parameters for the design of a single-molecule spin valve and the creation of a novel platform for the photogeneration of high-multiplicity spin states. We used a combination of multiple techniques, including variable-temperature continuous wave EPR, pulsed proton electron-nuclear double resonance (ENDOR), transient EPR, and optical spectroscopy. The conclusions are further supported by density functional theory (DFT) calculations and comparison to reference compounds. The low-temperature cw-EPR and room-temperature near-IR spectra of the dimer monocation demonstrate that the radical cation is spatially localized on one side of the dimer at any point in time, not coherently delocalized over both porphyrin units. The EPR spectra at 298 K reveal rapid hopping of the radical spin density between both sites of the dimer via reversible intramolecular electron transfer. The hyperfine interactions are modulated by electron transfer and can be quantified using ENDOR spectroscopy. This allowed simulation of the variable-temperature cw-EPR spectra with a two-site exchange model and provided information on the temperature-dependence of the electron transfer rate. The electron transfer rates range from about 10.0 MHz at 200 K to about 53.9 MHz at 298 K. The activation enthalpies Δ‡H of the electron transfer were determined as Δ‡H = 9.55 kJ mol-1 and Δ‡H = 5.67 kJ mol-1 in a 1:1:1 solvent mixture of CD2Cl2/toluene-d8/THF-d8 and in 2-methyltetrahydrofuran, respectively, consistent with a Robin-Day class II mixed valence compound. These results indicate that the interporphyrin electronic coupling in a tetramethylbiphenyl-linked porphyrin dimer is suitable for the backbone of a single-molecule spin valve. Investigation of the spin density distribution of the photogenerated triplet state of the Zn-porphyrin dimer reveals localization of the triplet spin density on a nanosecond time scale on one-half of the dimer at 20 K in 2-methyltetrahydrofuran and at 250 K in a polyvinylcarbazole film. This establishes the porphyrin dimer as a molecular platform for the formation of a localized, photogenerated triplet state on one porphyrin unit that is coupled to a second redox-active, ground-state porphyrin unit, which can be explored for the formation of high-multiplicity spin states.
Collapse
Affiliation(s)
- Sebastian M Kopp
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, U.K
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Ashley J Redman
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, U.K
| | - Igor Rončević
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Lisa Schröder
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, OX1 3PH, U.K
| | - Harry L Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, U.K
| |
Collapse
|
16
|
Ye K, Carbonera D, Liao S, Zhang X, Chen X, Xiao X, Zhao J, Shanmugam M, Li M, Barbon A. Multiple Pathways in the Triplet States Population for a Naphthalenediimide-C 60 Dyad. Chemistry 2024; 30:e202401084. [PMID: 38819870 DOI: 10.1002/chem.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of μs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| |
Collapse
|
17
|
Lv L, Zhang Y, Ning Z. Deciphering the doublet luminescence mechanism in neutral organic radicals: spin-exchange coupling, reversed-quartet mechanism, excited-state dynamics. RSC Adv 2024; 14:23987-23999. [PMID: 39086516 PMCID: PMC11289762 DOI: 10.1039/d4ra03566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Neutral organic radical molecules have recently attracted considerable attention as promising luminescent and quantum-information materials. However, the presence of a radical often shortens their excited-state lifetime and results in fluorescence quenching due to enhanced intersystem crossing (EISC). Recently, an experimental report introduced an efficient luminescent radical molecule, tris(2,4,6-trichlorophenyl)methyl-carbazole-anthracene (TTM-1Cz-An). In this study, we systematically performed quantum theoretical calculations combined with the path integral approach to quantitatively calculate the excited-state dynamics processes and spectral characteristics. Our theoretical findings suggest that the sing-doublet D1 state, originating from the anthracene excited singlet state, is quickly converted to the doublet (trip-doublet) state via EISC, facilitated by a significant nonequivalence exchange interaction, with ΔJ ST = 0.174 cm-1. The formation of the quartet state (Q1, trip-quartet) was predominantly dependent on the exchange coupling 3/2J TR = 0.086 cm-1 between the triplet spin electrons of anthracene and the TTM-1Cz radical. Direct spin-orbit coupling ISC to the Q1 state was minimal due to the nearly identical spatial wavefunctions of the and Q1 levels. The effective occurrence of reverse intersystem crossing (RISC) from the Q1 to D1 state is a critical step in controlling the luminescence of TTM-1Cz-An. The calculated RISC rate k RISC, including the Herzberg-Teller effect, was 3.64 × 105 s-1 at 298 K, significantly exceeding the phosphorescence and nonradiative rates of the Q1 state, thus enabling the D1 repopulation. Subsequently, a strong electronic coupling of 37.4 meV was observed between the D1 and D2 states, along with a dense manifold of doublet states near the D1 state energy, resulting in a larger reverse internal conversion rate k RIC of 9.26 × 1010 s-1. Distributed to the D2 state, the obtained emission rate of k f = 2.98-3.18 × 107 s-1 was in quite good agreement with the experimental value of 1.28 × 107 s-1, and its temperature effect was not remarkable. Our study not only provides strong support for the experimental findings but also offers valuable insights for the molecular design of high-efficiency radical emitters.
Collapse
Affiliation(s)
- LingLing Lv
- School of Chemical Engineering and Technology, Tianshui Normal University Tianshui Gansu 741001 China /
- Key Laboratory of Advanced Optoelectronic Functional Materials of Gansu Province, Tianshui Normal University Tianshui Gansu 741001 China
| | - YanYing Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University Tianshui Gansu 741001 China /
| | - ZiYe Ning
- School of Chemical Engineering and Technology, Tianshui Normal University Tianshui Gansu 741001 China /
| |
Collapse
|
18
|
Chen X, Sun L, Sukhanov AA, Doria S, Bussotti L, Zhao J, Xu H, Dick B, Voronkova VK, Di Donato M. Photophysics and photochemistry of thermally activated delayed fluorescence emitters based on the multiple resonance effect: transient optical and electron paramagnetic resonance studies. Chem Sci 2024; 15:10867-10881. [PMID: 39027280 PMCID: PMC11253189 DOI: 10.1039/d4sc02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 μs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Lei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg Regensburg 93053 Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
19
|
Zhang X, Chen X, Sun Y, Zhao J. Radical enhanced intersystem crossing mechanism, electron spin dynamics of high spin states and their applications in the design of heavy atom-free triplet photosensitizers. Org Biomol Chem 2024; 22:5257-5283. [PMID: 38884590 DOI: 10.1039/d4ob00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Heavy atom-free triplet photosensitizers (PSs) can overcome the high cost and biological toxicity of traditional molecular systems containing heavy atoms (such as Pt(II), Ir(III), Ru(II), Pd(II), Lu(III), I, or Br atoms) and, therefore, are developing rapidly. Connecting a stable free radical to the chromophore can promote the intersystem crossing (ISC) process through electron spin exchange interaction to produce the triplet state of the chromophore or the doublet (D) and quartet (Q) states when taking the whole spin system into account. These molecular systems based on the radical enhanced ISC (REISC) mechanism are important in the field of heavy atom-free triplet PSs. The REISC system has a simple molecular structure and good biocompatibility, and it is especially helpful for building high-spin quantum states (D and Q states) that have the potential to be developed as qubits in quantum information science. This review introduces the molecular structure design for the purpose of high-spin states. Time-resolved electron paramagnetic resonance (TREPR) is the most important characterization method to reveal the properties of these molecular systems, generation mechanism and electron spin polarization (ESP) of the high spin states. The spin polarization manipulation of high spin states and potential application in the field of quantum information engineering are also summarized. Moreover, molecular design principles of the REISC system to obtain long absorption wavelength, high triplet state quantum yield and long triplet state lifetime are introduced, as well as applications of the compounds in triplet-triplet annihilation upconversion, photodynamic therapy and bioimaging. This review is useful for the design of heavy atom-free triplet PSs based on the radical-chromophore molecular structure motif and the study of the photophysics of the compounds, as well as the electron spin dynamics of the multi electron system upon photoexcitation.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
20
|
Wu Y, Cao H, Bakirov MM, Sukhanov AA, Li J, Liao S, Xiao X, Zhao J, Li MD, Kandrashkin YE. A Rational Way to Control the Triplet State Wave Function Confinement of Organic Chromophores: Effect of the Connection Sites and Spin Density Distribution-Guided Molecular Structure Design Principles in Bodipy Dimers. J Phys Chem Lett 2024; 15:959-968. [PMID: 38252167 DOI: 10.1021/acs.jpclett.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 μs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.
Collapse
Affiliation(s)
- Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaiman Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Marcel M Bakirov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
21
|
Medagedara H, Teferi MY, Wanasinghe ST, Burson W, Kizi S, Zaslona B, Mardis KL, Niklas J, Poluektov OG, Rury AS. Decorrelated singlet and triplet exciton delocalization in acetylene-bridged Zn-porphyrin dimers. Chem Sci 2024; 15:1736-1751. [PMID: 38303928 PMCID: PMC10829018 DOI: 10.1039/d3sc03327a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.
Collapse
Affiliation(s)
- Hasini Medagedara
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Mandefro Y Teferi
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | | | - Wade Burson
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Shahad Kizi
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Bradly Zaslona
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Kristy L Mardis
- Department of Chemistry, Physics, and Engineering Sciences, Chicago State University Chicago IL 60628 USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Aaron S Rury
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| |
Collapse
|
22
|
Palmer JR, Williams ML, Young RM, Peinkofer KR, Phelan BT, Krzyaniak MD, Wasielewski MR. Oriented Triplet Excitons as Long-Lived Electron Spin Qutrits in a Molecular Donor-Acceptor Single Cocrystal. J Am Chem Soc 2024; 146:1089-1099. [PMID: 38156609 DOI: 10.1021/jacs.3c12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 μs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.
Collapse
Affiliation(s)
- Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kathryn R Peinkofer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
23
|
Actis A, Melchionna M, Filippini G, Fornasiero P, Prato M, Chiesa M, Salvadori E. Singlet-Triplet Energy Inversion in Carbon Nitride Photocatalysts. Angew Chem Int Ed Engl 2023; 62:e202313540. [PMID: 37801043 DOI: 10.1002/anie.202313540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.
Collapse
Affiliation(s)
- Arianna Actis
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- ICCOM-CNR URT, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
24
|
Chen X, Rehmat N, Kurganskii IV, Maity P, Elmali A, Zhao J, Karatay A, Mohammed OF, Fedin MV. Efficient Spin-Orbit Charge-Transfer Intersystem Crossing and Slow Intramolecular Triplet-Triplet Energy Transfer in Bodipy-Perylenebisimide Compact Dyads and Triads. Chemistry 2023; 29:e202302137. [PMID: 37553294 DOI: 10.1002/chem.202302137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 μs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 μs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ivan V Kurganskii
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matvey V Fedin
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
25
|
Sakamoto K, Hamachi T, Miyokawa K, Tateishi K, Uesaka T, Kurashige Y, Yanai N. Polarizing agents beyond pentacene for efficient triplet dynamic nuclear polarization in glass matrices. Proc Natl Acad Sci U S A 2023; 120:e2307926120. [PMID: 37871226 PMCID: PMC10622900 DOI: 10.1073/pnas.2307926120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/08/2023] [Indexed: 10/25/2023] Open
Abstract
Triplet dynamic nuclear polarization (triplet-DNP) is a technique that can obtain high nuclear polarization under moderate conditions. However, in order to obtain practically useful polarization, large single crystals doped with a polarizing agent must be strictly oriented with respect to the magnetic field to sharpen the electron spin resonance (ESR) spectra, which is a fatal problem that prevents its application to truly useful biomolecular targets. Instead of this conventional physical approach of controlling crystal orientation, here, we propose a chemical approach, i.e., molecular design of polarizing agents; pentacene molecules, the most typical triplet-DNP polarizing agent, are modified so as to make the triplet electron distribution wider and more isotropic without loss of the triplet polarization. The thiophene-modified pentacene exhibits a sharper and stronger ESR spectrum than the parent pentacene, and state-of-the-art quantum chemical calculations revealed that the direction of the spin polarization is altered by the modification with thiophene moieties and the size of D and E parameters are reduced from parent pentacene due to the partial delocalization of spin densities on the thiophene moieties. The triplet-DNP with the new polarizing agent successfully exceeds the previous highest 1H polarization of glassy materials by a factor of 5. This demonstrates the feasibility of a polarizing agent that can surpass pentacene, the best polarizing agent for more than 30 y since triplet-DNP was first reported, in the unoriented state. This work provides a pathway toward practically useful high nuclear polarization of various biomolecules by triplet-DNP.
Collapse
Affiliation(s)
- Keita Sakamoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Tomoyuki Hamachi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Katsuki Miyokawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama351-0198, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
- Japan Science and Technology Agency-Fusion Oriented REsearch for disruptive Science and Technology, Kawaguchi, Saitama332-0012, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
- Japan Science and Technology Agency-Fusion Oriented REsearch for disruptive Science and Technology, Kawaguchi, Saitama332-0012, Japan
| |
Collapse
|
26
|
Bertran A, Morbiato L, Sawyer J, Dalla Torre C, Heyes DJ, Hay S, Timmel CR, Di Valentin M, De Zotti M, Bowen AM. Direct Comparison between Förster Resonance Energy Transfer and Light-Induced Triplet-Triplet Electron Resonance Spectroscopy. J Am Chem Soc 2023; 145:22859-22865. [PMID: 37839071 PMCID: PMC10603778 DOI: 10.1021/jacs.3c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/17/2023]
Abstract
To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Laura Morbiato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Jack Sawyer
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chiara Dalla Torre
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Derren J. Heyes
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Marta De Zotti
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Alice M. Bowen
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
27
|
Moise G, Redman AJ, Richert S, Myers WK, Bulut I, Bolls PS, Rickhaus M, Sun J, Anderson HL, Timmel CR. The impact of spin-orbit coupling on fine-structure and spin polarisation in photoexcited porphyrin triplet states. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107546. [PMID: 37797559 DOI: 10.1016/j.jmr.2023.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
The photoexcited triplet states of porphyrins show great promise for applications in the fields of opto-electronics, photonics, molecular wires, and spintronics. The magnetic properties of porphyrin triplet states are most conveniently studied by time-resolved continuous wave and pulse electron spin resonance (ESR). This family of techniques is singularly able to probe small yet essential details of triplet states: zero-field splittings, g-anisotropy, spin polarisation, and hyperfine interactions. These characteristics are linked to spin-orbit coupling (SOC) which is known to have a strong influence on photophysical properties such as intersystem crossing rates. The present study explores SOC effects induced by the presence of Pd2+ in various porphyrin architectures. In particular, the impact of this relativistic interaction on triplet state fine-structure and spin polarisation is investigated. These properties are probed using time-resolved ESR complemented by electron-nuclear double resonance. The findings of this study could influence the future design of molecular spintronic devices. The Pd2+ ion may be incorporated into porphyrin molecular wires as a way of controlling spin polarisation.
Collapse
Affiliation(s)
- Gabriel Moise
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.
| | - Ashley J Redman
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom; Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, Freiburg, 79104, Germany
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Ibrahim Bulut
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Pernille S Bolls
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Michel Rickhaus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Jibin Sun
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Harry L Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.
| |
Collapse
|
28
|
Long L, Medina Rivero S, Sun F, Wang D, Chekulaev D, Tonnelé C, Casanova D, Casado J, Zheng Y. A Single-Crystal Monomer to Single-Crystal Polymer Reaction Activated by a Triplet Excimer in a Zipper Mechanism. Angew Chem Int Ed Engl 2023; 62:e202308780. [PMID: 37533303 DOI: 10.1002/anie.202308780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
A combined experimental and theoretical study focused on the elucidation of the polymerization mechanism of the crystal monomer to crystal polymer reaction of a bisindenedione compound in the solid state. The experimental description and characterization of the polymer product have been reported elsewhere and, in this article, we address the first detailed description of the polymerization process. This reaction pathway consists of the initial formation of a triplet excimer state that relaxes to an intermolecularly bonded triplet state that is the starting point of the propagation step of the polymerization. The overall process can be visualized in the monomer starting state as an open zipper in which a cursor or slider is formed by light absorption and the whole zipper is then closed by propagation of the cursor. To this end, variable-temperature electron spin resonance (ESR), femtosecond transient absorption spectroscopy, and vibrational Raman spectroscopic data have been implemented in combination with quantum chemical calculations. The presented mechanistic insight is of great value to understand the intricacies of such an important reaction and to envisage and diversify the products produced thereof.
Collapse
Affiliation(s)
- Lanxin Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Samara Medina Rivero
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
- Department of Physics & Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Fanxi Sun
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Dongsheng Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Dimitri Chekulaev
- Department of Physics & Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- Ikerbasque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Yonghao Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| |
Collapse
|
29
|
Sannikova NE, Kolokolov MI, Khlynova TA, Chubarov AS, Polienko YF, Fedin MV, Krumkacheva OA. Revealing light-induced structural shifts in G-quadruplex-porphyrin complexes: a pulsed dipolar EPR study. Phys Chem Chem Phys 2023; 25:22455-22466. [PMID: 37581249 DOI: 10.1039/d3cp01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.
Collapse
Affiliation(s)
- Natalya E Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mikhail I Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Tamara A Khlynova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
30
|
Xiao X, Yan Y, Sukhanov AA, Doria S, Iagatti A, Bussotti L, Zhao J, Di Donato M, Voronkova VK. Long-Lived Charge-Separated State in Naphthalimide-Phenothiazine Compact Electron Donor-Acceptor Dyads: Effect of Molecular Conformation Restriction and Solvent Polarity. J Phys Chem B 2023; 127:6982-6998. [PMID: 37527418 DOI: 10.1021/acs.jpcb.3c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
To study the charge separation (CS) and long-lived CS state, we prepared a series of dyads based on naphthalimide (NI, electron acceptor) and phenothiazine (PTZ, electron donor), with an intervening phenyl linker attached on the N-position of both moieties. The purpose is to exploit the electron spin control effect to prolong the CS-state lifetime by formation of the 3CS state, instead of the ordinary 1CS state, the spin-correlated radical pair (SCRP), or the free ion pairs. The electronic coupling magnitude is tuned by conformational restriction exerted by the methyl groups on the phenyl linker. Differently from the previously reported NI-PTZ analogues containing long and flexible linkers, we observed a significant CS emission band centered at ca. 600 nm and thermally activated delayed fluorescence (TADF) with a lifetime of 13.8 ns (population ratio: 42%)/321.6 μs (56%). Nanosecond transient absorption spectroscopy indicates that in cyclohexane (CHX), only the 3NI* state was observed (lifetime τ = 274.7 μs), in acetonitrile (ACN), only the CS state was observed (τ = 1.4 μs), whereas in a solvent with intermediate polarity, such as toluene (TOL), both the 3NI* (shorter-lived) and the CS states were observed. Observation of the long-lived CS state in ACN, yet lack of TADF, confirms the spin-vibronic coupling theoretical model of TADF. Femtosecond transient absorption spectroscopy indicates that charge separation occurs in both nonpolar and polar solvents, with time constants ranging from less than 1 ps in ACN to ca. 60 ps in CHX. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of the 3NI* and CS states for the dyads upon photoexcitation. The electron spin-spin dipole interaction magnitude of the radical anion and cation of the CS state is intermediate between that of a typical SCRP and a 3CS state, suggesting that the long CS-state lifetime is partially due to the electron spin control effect.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Iagatti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy
- INO-CNR, Largo Enrico Fermi 6, 50125 Firenze (FI), Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Firenze, Italy
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| |
Collapse
|
31
|
Carella A, Ciuti S, Wiedemann HTA, Kay CWM, van der Est A, Carbonera D, Barbon A, Poddutoori PK, Di Valentin M. The electronic structure and dynamics of the excited triplet state of octaethylaluminum(III)-porphyrin investigated with advanced EPR methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107515. [PMID: 37364432 DOI: 10.1016/j.jmr.2023.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The photoexcited triplet state of octaethylaluminum(III)-porphyrin (AlOEP) was investigated by time-resolved Electron Paramagnetic Resonance, Electron Nuclear Double Resonance and Electron Spin Echo Envelope Modulation in an organic glass at 10 and 80 K. This main group element porphyrin is unusual because the metal has a small ionic radius and is six-coordinate with axial covalent and coordination bonds. It is not known whether triplet state dynamics influence its magnetic resonance properties as has been observed for some transition metal porphyrins. Together with density functional theory modelling, the magnetic resonance data of AlOEP allow the temperature dependence of the zero-field splitting (ZFS) parameters, D and E, and the proton AZZ hyperfine coupling (hfc) tensor components of the methine protons, in the zero-field splitting frame to be determined. The results provide evidence that the ZFS, hfc and spin-lattice relaxation are indeed influenced by the presence of a dynamic process that is discussed in terms of Jahn-Teller dynamic effects. Thus, these effects should be taken into account when interpreting EPR data from larger complexes containing AlOEP.
Collapse
Affiliation(s)
- Angelo Carella
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Susanna Ciuti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Haakon T A Wiedemann
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Arthur van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, MN 55812, USA
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
32
|
Zhu W, Wu Y, Zhang Y, Sukhanov AA, Chu Y, Zhang X, Zhao J, Voronkova VK. Preparation of Xanthene-TEMPO Dyads: Synthesis and Study of the Radical Enhanced Intersystem Crossing. Int J Mol Sci 2023; 24:11220. [PMID: 37446398 DOI: 10.3390/ijms241311220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C-N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin-spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 μs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation.
Collapse
Affiliation(s)
- Wenhui Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yiyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yuqi Chu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
33
|
Zhang X, Sukhanov AA, Liu X, Taddei M, Zhao J, Harriman A, Voronkova VK, Wan Y, Dick B, Di Donato M. Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing N, N, O, O-boron-chelated Bodipys. Chem Sci 2023; 14:5014-5027. [PMID: 37206394 PMCID: PMC10189861 DOI: 10.1039/d3sc00854a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Xi Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg D-93053 Regensburg Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM, Istituto di Chimica dei Complessi OrganoMetallici Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
34
|
Parsons SW, Hucek DG, Mishra P, Plusquellic DF, Zwier TS, Drucker S. Jet-Cooled Phosphorescence Excitation Spectrum of the T 1(n,π*) ← S 0 Transition of 4 H-Pyran-4-one. J Phys Chem A 2023; 127:3636-3647. [PMID: 37067071 PMCID: PMC10150392 DOI: 10.1021/acs.jpca.3c01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Indexed: 04/18/2023]
Abstract
The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 000 band, obtaining experimental values for spin-spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20-30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.
Collapse
Affiliation(s)
- Sean W. Parsons
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, United States
| | - Devon G. Hucek
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, United States
| | - Piyush Mishra
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - David F. Plusquellic
- Applied
Physics Division, National Institute of
Standards and Technology, 325 Broadway Avenue, Boulder, Colorado 80305, United
States
| | - Timothy S. Zwier
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Stephen Drucker
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, United States
| |
Collapse
|
35
|
Tait CE, Krzyaniak MD, Stoll S. Computational tools for the simulation and analysis of spin-polarized EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107410. [PMID: 36870248 DOI: 10.1016/j.jmr.2023.107410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.
Collapse
Affiliation(s)
- Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston 60208, IL, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, 98195, WA, United States
| |
Collapse
|
36
|
Heavy Atom-Free Triplet Photosensitizers: Molecular Structure Design, Photophysical Properties and Application in Photodynamic Therapy. Molecules 2023; 28:molecules28052170. [PMID: 36903415 PMCID: PMC10004235 DOI: 10.3390/molecules28052170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.
Collapse
|
37
|
Properties and applications of photoexcited chromophore–radical systems. Nat Rev Chem 2023; 7:75-90. [PMID: 37117913 DOI: 10.1038/s41570-022-00453-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 02/11/2023]
Abstract
Photoexcited organic chromophore-radical systems hold great promise for a range of technological applications in molecular spintronics, including quantum information technology and artificial photosynthesis. However, further development of such systems will depend on the ability to control the magnetic properties of these materials, which requires a profound understanding of the underlying excited-state dynamics. In this Review, we discuss photogenerated triplet-doublet systems and their potential to be used for applications in molecular spintronics. We outline the theoretical description of the spin system in the different coupling regimes and the invoked excited-state mechanisms governing the generation and transfer of spin polarization. The main characterization techniques used to evaluate the optical and magnetic properties of chromophore-radical systems are discussed. We conclude by giving an overview of previously investigated covalently linked triplet-radical systems, and highlight the need for further systematic investigations to improve our understanding of the magnetic interactions in such systems.
Collapse
|
38
|
Zhang X, Ivanov M, Wang Z, Bousquet MHE, Liu X, Wan Y, Zhao J, Barbon A, Escudero D, Jacquemin D, Fedin M. Confinement of the Triplet States in π‐Conjugated BODIPY Dimers Linked with Ethynylene or Butadiynylene Bridges: A Different View on the Effect of Symmetry. Angew Chem Int Ed Engl 2022; 61:e202210419. [PMID: 36216789 PMCID: PMC10092165 DOI: 10.1002/anie.202210419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/07/2022]
Abstract
Understanding the impact of the excited state wavefunction confinement is crucial for the engineering of the photophysical properties and applications of organic chromophores. In the present contribution, the localization of the triplet state wavefunctions of some symmetric ethyne/butadiyne bridged BODIPY dimers and asymmetric BODIPY derivatives presenting extended π-conjugation frameworks is studied with time-resolved electron paramagnetic resonance spectroscopy and time-dependent density functional theory computations. Based on the Zero Field Splitting D parameters, we conclude that the triplet state wavefunctions are highly localized on one BODIPY unit in the symmetric dimers, which is consistent with the ab initio modelling that finds delocalized triplet state destabilized by 12-14 kcal mol-1 as compared to its localized counterpart. The result provides a new insight into the study of triplet excited state confinement and the design of molecular wires or photosensitizers for photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Mikhail Ivanov
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | | | - Xi Liu
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Daniel Escudero
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Denis Jacquemin
- Nantes Université CNRS CEISAM UMR 6230 44300 Nantes France
- Institut Universitaire de France 75005 Paris France
| | - Matvey Fedin
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| |
Collapse
|
39
|
Ennist NM, Stayrook SE, Dutton PL, Moser CC. Rational design of photosynthetic reaction center protein maquettes. Front Mol Biosci 2022; 9:997295. [PMID: 36213121 PMCID: PMC9532970 DOI: 10.3389/fmolb.2022.997295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.
Collapse
Affiliation(s)
- Nathan M. Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- *Correspondence: Nathan M. Ennist,
| | - Steven E. Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, United States
| | - P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher C. Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022; 61:e202203758. [PMID: 35384206 PMCID: PMC9543469 DOI: 10.1002/anie.202203758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
41
|
Zhang X, Liu X, Taddei M, Bussotti L, Kurganskii I, Li M, Jiang X, Xing L, Ji S, Huo Y, Zhao J, Di Donato M, Wan Y, Zhao Z, Fedin MV. Red Light‐Emitting Thermally‐Activated Delayed Fluorescence of Naphthalimide‐Phenoxazine Electron Donor‐Acceptor Dyad: Time‐Resolved Optical and Magnetic Spectroscopic Studies. Chemistry 2022; 28:e202200510. [DOI: 10.1002/chem.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Xiao Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Ivan Kurganskii
- International Tomography Center, SB RAS, and Novosibirsk State University 630090 Novosibirsk Russia
| | - Minjie Li
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiao Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) School of Environmental Science and Technology Dalian University of Technology Dalian 116024 P. R. China
| | - Longjiang Xing
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yanping Huo
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR via Madonna del Piano 10–12 50019 Sesto Fiorentino (FI) Italy
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Matvey V. Fedin
- International Tomography Center, SB RAS, and Novosibirsk State University 630090 Novosibirsk Russia
| |
Collapse
|
42
|
Al Said T, Weber S, Schleicher E. OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-Correlated Radical Pairs in Biomolecules. Front Mol Biosci 2022; 9:890826. [PMID: 35813811 PMCID: PMC9262093 DOI: 10.3389/fmolb.2022.890826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
In addition to the commonly used electron-electron double resonance (ELDOR) technique, there are several other electron paramagnetic resonance (EPR) methods by which structure information can be obtained by exploiting the dipolar coupling between two radicals based on its characteristic r -3 dependence. In this contribution, we explore the potential of out-of-phase-electron-spin echo envelope modulation (OOP-ESEEM) spectroscopy to collect accurate distance information in photo-sensitive (bio) molecules. Although the method has already been applied to spin-correlated radical pairs in several classes of light-active proteins, the accuracy of the information obtained has not yet been extensively evaluated. To do this in a system-independent fashion, OOP-ESEEM time traces simulated with different values of the dipolar and exchange couplings were generated and analyzed in a best-possible way. Excellent agreement between calculated and numerically fitted values over a wide range of distances (between 15 and 45 Å) was obtained. Furthermore, the limitations of the method and the dependence on various experimental parameters could be evaluated.
Collapse
Affiliation(s)
| | | | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Ciuti S, Agostini A, Barbon A, Bortolus M, Paulsen H, Di Valentin M, Carbonera D. Magnetophotoselection in the Investigation of Excitonically Coupled Chromophores: The Case of the Water-Soluble Chlorophyll Protein. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123654. [PMID: 35744779 PMCID: PMC9227413 DOI: 10.3390/molecules27123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
A magnetophotoselection (MPS) investigation of the photoexcited triplet state of chlorophyll a both in a frozen organic solvent and in a protein environment, provided by the water-soluble chlorophyll protein (WSCP) of Lepidium virginicum, is reported. The MPS experiment combines the photoselection achieved by exciting with linearly polarized light with the magnetic selection of electron paramagnetic resonance (EPR) spectroscopy, allowing the determination of the relative orientation of the optical transition dipole moment and the zero-field splitting tensor axes in both environments. We demonstrate the robustness of the proposed methodology for a quantitative description of the excitonic interactions among pigments. The orientation of the optical transition dipole moments determined by the EPR analysis in WSCP, identified as an appropriate model system, are in excellent agreement with those calculated in the point-dipole approximation. In addition, MPS provides information on the electronic properties of the triplet state, localized on a single chlorophyll a pigment of the protein cluster, in terms of orientation of the zero-field splitting tensor axes in the molecular frame.
Collapse
Affiliation(s)
- Susanna Ciuti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim Becher-Weg 7, 55128 Mainz, Germany;
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Correspondence: (M.D.V.); (D.C.); Tel.: +39-0498275139 (M.D.V.); +39-0498275144 (D.C.)
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Correspondence: (M.D.V.); (D.C.); Tel.: +39-0498275139 (M.D.V.); +39-0498275144 (D.C.)
| |
Collapse
|
44
|
Mayländer M, Nolden O, Franz M, Chen S, Bancroft L, Qiu Y, Wasielewski MR, Gilch P, Richert S. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem Sci 2022; 13:6732-6743. [PMID: 35756510 PMCID: PMC9172295 DOI: 10.1039/d2sc01899c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S1 state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. The triplet state of PDI can be sensitized efficiently by radical-enhanced intersystem crossing. A detailed study of several related structures allows us to propose new strategies to optimize triplet formation in materials for optoelectronic devices.![]()
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Michael Franz
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Su Chen
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Laura Bancroft
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
45
|
Tian W, Sukhanov AA, Bussotti L, Pang J, Zhao J, Voronkova VK, Di Donato M, Li MD. Charge Separation and Intersystem Crossing in Homo- and Hetero-Compact Naphthalimide Dimers. J Phys Chem B 2022; 126:4364-4378. [PMID: 35649261 DOI: 10.1021/acs.jpcb.2c02276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naphthalimide (NI) homo- and hetero-dimers adopting orthogonal geometry were prepared to study photo-induced symmetry-breaking charge transfer (SBCT) and charge recombination (CR)-induced intersystem crossing (ISC). The two moieties in the dimer are connected either at the 3-C or 4-C position of the NI unit. The photophysical properties of the dimers were studied with steady-state and transient absorption spectroscopic methods. Significant CT only occurs for the hetero-dimer, in which one NI unit has a 4-amino substituent and the other NI unit is without it. The CR-induced ISC is most efficient for this dimer (singlet oxygen quantum yield ΦΔ = 50.3%). For the homo-dimer, in which both NI units did not present amino substitution, SBCT was not observed. Based on the electrochemical studies, we propose that the absence of SBCT for the homo-dimer is attributed to its high oxidation potential and low reduction potential. Femtosecond transient absorption (fs TA) spectra show that there is no charge separation (CS) for the homo-dimer. Nanosecond transient absorption spectroscopy indicate the formation of a triplet state with electron delocalization for the homo dimer, with a lifetime of 72.0 μs, while for the hetero dimer a triplet state with an intrinsic lifetime of 206.4 μs is observed. CS (11.6 ps) and slow CR-induced ISC (>1.5 ns) were observed for the hetero-dimer. Time-resolved electron paramagnetic resonance spectra give the zero-field splitting parameters (|D| = 1894 MHz and |E| = 111 MHz) and electron spin polarization patterns (e, e, e, a, a, a) for the triplet state of the hetero-dimer, inferring that the triplet state of the hetero-dimer is confined on the amino-substituted NI moiety.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| |
Collapse
|
46
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
47
|
Bertran A, Barbon A, Bowen AM, Di Valentin M. Light-induced pulsed dipolar EPR spectroscopy for distance and orientation analysis. Methods Enzymol 2022; 666:171-231. [PMID: 35465920 DOI: 10.1016/bs.mie.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alice M Bowen
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
48
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
49
|
Kutin Y, Reitz J, Antoni PW, Savitsky A, Pantazis DA, Kasanmascheff M, Hansmann MM. Characterization of a Triplet Vinylidene. J Am Chem Soc 2021; 143:21410-21415. [PMID: 34898204 PMCID: PMC8704171 DOI: 10.1021/jacs.1c11062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Singlet vinylidenes
(R2C=C:) are proposed as
intermediates in a series of organic reactions, and very few have
been studied by matrix isolation or gas-phase spectroscopy. Triplet
vinylidenes, however, featuring two unpaired electrons at a monosubstituted
carbon atom are thus far only predicted as electronically excited-state
species and represent an unexplored class of carbon-centered diradicals.
We report the photochemical generation and low-temperature EPR/ENDOR
characterization of the first ground-state high-spin (triplet) vinylidene.
The zero-field splitting parameters (D = 0.377 cm–1 and |E|/D = 0.028)
were determined, and the 13C hyperfine coupling tensor
was obtained by 13C-ENDOR measurements. Most strikingly,
the isotropic 13C hyperfine coupling constant (50 MHz)
is far smaller than the characteristic values of triplet carbenes,
demonstrating a unique electronic structure which is supported by
quantum chemical calculations.
Collapse
Affiliation(s)
- Yury Kutin
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Justus Reitz
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Patrick W Antoni
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Anton Savitsky
- Department of Physics, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Max M Hansmann
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
50
|
Cao H, Kurganskii I, Pang J, Duan R, Zhao J, Fedin M, Li MD, Li C. Charge Transfer, Intersystem Crossing, and Electron Spin Dynamics in a Compact Perylenemonoimide-Phenoxazine Electron Donor-Acceptor Dyad. J Phys Chem B 2021; 125:12859-12875. [PMID: 34767365 DOI: 10.1021/acs.jpcb.1c08471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With phenoxazine (PXZ) as the electron donor and perylene-3,4-dicarboximide (PMI) as the electron acceptor, we prepared a compact, orthogonal electron donor-acceptor dyad (PMI-PXZ) to study the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC). A weak charge transfer (CT) absorption band, due to S0 → 1CT transition, was observed (ε = 2840 M-1 cm-1 at 554 nm, FWHM: 2850 cm-1), which is different from that of the previously reported analogue dyad with phenothiazine as the electron donor (PMI-PTZ), for which no CT absorption band was observed. A long-lived triplet state was observed (lifetime τT = 182 μs) with nanosecond transient absorption spectroscopy, and the singlet oxygen quantum yield (ΦΔ = 76%) is higher than that of the previously reported analogue dyad PMI-PTZ (ΦΔ = 57%). Ultrafast charge separation (ca. 0.14 ps) and slow charge recombination (1.4 ns) were observed with femtosecond transient absorption spectroscopy. With time-resolved electron paramagnetic resonance spectroscopy (TREPR), we confirmed the SOCT-ISC mechanism, and the electron spin polarization phase pattern of the triplet-state TREPR spectrum is (e, e, a, e, a, a), which is dramatically different from that of PMI-PTZ (a, e, a, e, a, e), indicating that the triplet-state TREPR spectrum of a specific chromophore in the electron donor-acceptor dyads is not only dependent on the geometry of the dyads but also dependent on the structure of the electron donor (or acceptor). Even one-atom variation in the donor structure may cause significant influence on the electron spin selectivity of the ISC of the electron donor-acceptor dyads.
Collapse
Affiliation(s)
- Huaiman Cao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ivan Kurganskii
- International Tomography Center, SB RAS Institutskaya Str., 3A, Novosibirsk 630090, Russia
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Ruomeng Duan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Matvey Fedin
- International Tomography Center, SB RAS Institutskaya Str., 3A, Novosibirsk 630090, Russia
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Chen Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| |
Collapse
|