1
|
Mathis K, Gaddam S, Koneru R, Sunkavalli N, Wang C, Patel M, Kohon AI, Meckes B. Multifunctional hydrogels with spatially controlled light activation with photocaged oligonucleotides. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101922. [PMID: 38911357 PMCID: PMC11192495 DOI: 10.1016/j.xcrp.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Recreating tissue environments with precise control over mechanical, biochemical, and cellular organization is essential for next-generation tissue models for drug discovery, development studies, and the replication of disease environments. However, controlling these properties at cell-scale lengths remains challenging. Here, we report the development of printing approaches that leverage polyethylene glycol diacrylate (PEGDA) hydrogels containing photocaged oligonucleotides to spatially program material characteristics with non-destructive, non-ultraviolet light. We further integrate this system with a perfusion chamber to allow us to alter the composition of PEGDA hydrogels while retaining common light-activatable photocaged DNAs. We demonstrate that the hydrogels can capture DNA functionalized materials, including cells coated with complementary oligonucleotides with spatial control using biocompatible wavelengths. Overall, these materials open pathways to orthogonal capture of any DNA functionalized materials while not changing the sequences of the DNA.
Collapse
Affiliation(s)
- Katelyn Mathis
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Saanvi Gaddam
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- Texas Academy of Mathematics and Science, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Rishi Koneru
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- Texas Academy of Mathematics and Science, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Nikhil Sunkavalli
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- Texas Academy of Mathematics and Science, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Catherine Wang
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- Texas Academy of Mathematics and Science, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Manan Patel
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- Texas Academy of Mathematics and Science, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Afia Ibnat Kohon
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Brian Meckes
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
- Lead contact
| |
Collapse
|
2
|
Wolfel A, Jin M, Paez JI. Current strategies for ligand bioconjugation to poly(acrylamide) gels for 2D cell culture: Balancing chemo-selectivity, biofunctionality, and user-friendliness. Front Chem 2022; 10:1012443. [PMID: 36204147 PMCID: PMC9530631 DOI: 10.3389/fchem.2022.1012443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogel biomaterials in combination with living cells are applied in cell biology, tissue engineering and regenerative medicine. In particular, poly(acrylamide) (PAM) hydrogels are frequently used in cell biology laboratories as soft substrates for 2D cell culture. These biomaterials present advantages such as the straightforward synthesis, regulable mechanical properties within physiological range of native soft tissues, the possibility to be biofunctionalized with ligands to support the culture of living cells, and their optical transparency that makes them compatible with microscopy methods. Due to the chemical inertness and protein repellant properties of PAM hydrogels, these materials alone do not support the adhesion of cells. Therefore, biofunctionalization of PAM gels is necessary to confer them bioactivity and to promote cell-material interactions. Herein, the current chemical strategies for the bioconjugation of ligands to PAM gels are reviewed. Different aspects of the existing bioconjugation methods such as chemo-selectivity and site-specificity of attachment, preservation of ligand’s functionality after binding, user-friendliness and cost are presented and compared. This work aims at guiding users in the choice of a strategy to biofunctionalize PAM gels with desired biochemical properties.
Collapse
|
3
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
4
|
Berent ZT, Wagoner Johnson AJ. Morphological switch is associated with increase in cell-cell contacts, ALP, and confluence above a minimum island area to perimeter ratio. J Biomed Mater Res A 2021; 110:164-180. [PMID: 34331408 DOI: 10.1002/jbm.a.37274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022]
Abstract
During osteogenic differentiation in vitro, stem-like cells seeded at a low-density spread and are isolated. As the cells proliferate and mature, they become more cuboidal in shape with more cell-cell contacts. However, the coordination of this switch in cell morphology from elongated to cuboidal, cell-cell contacts, and differentiation is not known. In this work, we present results from experiments and a simulation of cell proliferation on protein-micropatterned islands that, independent of island size (25-1,000 μm) or shape (circles, squares, and hollow squares), shows a distinct morphological switch that is better described as a function of island confluence than time in culture, the standard measure in cell culture experiments. The simulation and experiments show cell morphology and island cell density versus confluence collapse to a single curve for all islands if the island area to perimeter ratio is ≥25 μm. Cell-cell contacts in the simulation and alkaline phosphatase (ALP) expression in experiments, a common marker for osteogenic differentiation, show exponential growth with confluence, rapidly increasing after the switch at ≈0.5 confluence. Furthermore, cell morphology, density, contacts, and ALP are better predicted by confluence than time in culture. The variability with time in culture leads to challenges in not only interpreting data but also in comparing data across research laboratories. This simulation can be used to predict cell behavior on different size and shape islands and to plan and optimize experiments that explore cell behavior as a function of a wide range of island geometries.
Collapse
Affiliation(s)
- Zachary T Berent
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
5
|
Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:229-251. [PMID: 34250454 PMCID: PMC8267604 DOI: 10.1021/acsabm.0c01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymeric biomaterials have been used in a variety of applications, like cargo delivery and tissue scaffolding, because they are easily synthesized and can be adapted to many systems. However, there is still a need to further enhance and improve their functions to progress their use in the biomedical field. A promising solution is to modify the polymer surfaces with peptides that can increase biocompatibility, cellular interactions, and receptor targeting. In recent years, peptide modifications have been used to overcome many challenges to polymer biomaterial development. This review discusses recent progress in developing peptide-modified polymers for therapeutic applications including cell-specific targeting and tissue engineering. Furthermore, we will explore some of the most frequently studied base components of these biomaterials.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - José Manuel Condor Capcha
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
6
|
Tenje M, Cantoni F, Porras Hernández AM, Searle SS, Johansson S, Barbe L, Antfolk M, Pohlit H. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ooc.2020.100003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Berent ZT, Wagoner Johnson AJ. Cell seeding simulation on micropatterned islands shows cell density depends on area to perimeter ratio, not on island size or shape. Acta Biomater 2020; 107:152-163. [PMID: 32112979 DOI: 10.1016/j.actbio.2020.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Protein micropatterned substrates have been used to control cell size, shape, and cell-cell contacts, characteristics that influence a range of cell behaviors from early cell differentiation to late stages of maturation. Knowing the initial island cell seeding density is important to interpreting results and understanding downstream cell behavior. While studies routinely report the intended or target cell seeding density, they do not report the actual cell seeding density on the islands. As cells proliferate, differences in initial cell seeding density could compound and may lead to misinterpretation of results. In this work, we present a cell seeding simulation and apply it to 100s of islands with a range of geometries (sizes and shapes) to explore how island cell seeding density relates to the target or unpatterned cell seeding density. We first experimentally validate the simulation and then show that normalized island cell seeding density depends on island size, shape, and spacing, but can be predicted solely from island area to perimeter ratio, A2P, via a power law relationship for a wide range of island geometries. Interestingly, normalized island cell seeding density is the same as the normalized unpatterned cell seeding density for A2P ≥ 17 µm. This simulation will help to design micropatterned substrates and to have more accurate representation of the island cell seeding density at the start of experiments. By knowing the island cell seeding density, we can more easily reproduce results across research groups to understand the roles of cell-cell contact and cell size and shape on cell behavior. STATEMENT OF SIGNIFICANCE: We present a cell seeding simulation on protein-micropatterned substrates and use it to simulate seeding across 100s of island geometries (size, shape, and spacing) covering two orders of magnitude in size. The simulation shows that island cell density varies significantly with island geometry compared to the target seeding density. However, island cell density can be predicted from one geometric parameter - the island's area to perimeter ratio. Results will help direct researchers on how to achieve uniform cell density across all island geometries. Since cell density and island shape both influence cell behaviors, such as differentiation, this simulation may help to isolate these factors, facilitate micropatterned substrate design, and provide a mechanism for more reproduceable results across studies.
Collapse
|
8
|
Saraswat R, Ratnayake I, Perez EC, Schutz WM, Zhu Z, Ahrenkiel SP, Wood ST. Micropatterned Biphasic Nanocomposite Platform for Maintaining Chondrocyte Morphology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14814-14824. [PMID: 32202764 DOI: 10.1021/acsami.9b22596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major limitation hindering the translation of in vitro osteoarthritis research into clinical disease-modifying therapies is that chondrocytes rapidly spread and dedifferentiate under standard monolayer conditions. Current strategies to maintain rounded morphologies of chondrocytes in culture either unnaturally restrict adhesion and place chondrocytes in an excessively stiff mechanical environment or are impractical for use in many applications. To address the limitations of current techniques, we have developed a unique composite thin-film cell culture platform, the CellWell, to model articular cartilage that utilizes micropatterned hemispheroidal wells, precisely sized to fit individual cells (12-18 μm diameters), to promote physiologically spheroidal chondrocyte morphologies while maintaining compatibility with standard cell culture and analytical techniques. CellWells were constructed of 15-μm-thick 5% agarose films embedded with electrospun poly(vinyl alcohol) (PVA) nanofibers. Transmission electron microscope (TEM) images of PVA nanofibers revealed a mean diameter of 60.9 ± 24 nm, closely matching the observed 53.8 ± 29 nm mean diameter of human ankle collagen II fibers. Using AFM nanoindentation, CellWells were found to have compressive moduli of 158 ± 0.60 kPa at 15 μm/s indentation, closely matching published stiffness values of the native pericellular matrix. Primary human articular chondrocytes taken from ankle cartilage were seeded in CellWells and assessed at 24 h. Chondrocytes maintained their rounded morphology in CellWells (mean aspect ratio of 0.87 ± 0.1 vs three-dimensional (3D) control [0.86 ± 0.1]) more effectively than those seeded under standard conditions (0.65 ± 0.3), with average viability of >85%. The CellWell's design, with open, hemispheroidal wells in a thin film substrate of physiological stiffness, combines the practical advantages of two-dimensional (2D) culture systems with the physiological advantages of 3D systems. Through its ease of use and ability to maintain the physiological morphology of chondrocytes, we expect that the CellWell will enhance the clinical translatability of future studies conducted using this culture platform.
Collapse
Affiliation(s)
- Ram Saraswat
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Ishara Ratnayake
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - E Celeste Perez
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - William M Schutz
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Zhengtao Zhu
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
- Chemistry and Applied Biological Sciences, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - S Phillip Ahrenkiel
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Scott T Wood
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| |
Collapse
|
9
|
Luong TD, Zoughaib M, Garifullin R, Kuznetsova S, Guler MO, Abdullin TI. In Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β-Cyclodextrin–Adamantane Complexation for Studying Cell-Instructive Peptide Environment. ACS APPLIED BIO MATERIALS 2019; 3:1116-1128. [DOI: 10.1021/acsabm.9b01059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thai Duong Luong
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Svetlana Kuznetsova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Mustafa O. Guler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
10
|
Zhang Y, Naguro I, Herr AE. In Situ Single-Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019; 58:13929-13934. [PMID: 31390130 PMCID: PMC6759404 DOI: 10.1002/anie.201906920] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Integrating 2D culture of adherent mammalian cells with single-cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single-cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin-functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one-step copolymerization process that creates protein-decorated microwells. After single-cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell-based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab-gel western blot, while revealing cell-to-cell heterogeneity in stress responses.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Zhang Y, Naguro I, Herr AE. In Situ Single‐Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yizhe Zhang
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| | - Isao Naguro
- Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
| | - Amy E. Herr
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
12
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
13
|
Martin AD, Chua SW, Au CG, Stefen H, Przybyla M, Lin Y, Bertz J, Thordarson P, Fath T, Ke YD, Ittner LM. Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25127-25134. [PMID: 29979564 DOI: 10.1021/acsami.8b07560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience.
Collapse
Affiliation(s)
- Adam D Martin
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology , University of New South Wales , Sydney , NSW , 2052 , Australia
| | - Sook Wern Chua
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Carol G Au
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Holly Stefen
- Neurodegeneration and Repair Unit, School of Medical Sciences and Neuronal Culture Core Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Magdalena Przybyla
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Yijun Lin
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology , University of New South Wales , Sydney , NSW , 2052 , Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences and Neuronal Culture Core Facility , University of New South Wales , Sydney , NSW 2052 , Australia
- Dementia Research Centre, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Yazi D Ke
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine , University of New South Wales , Sydney , NSW 2052 , Australia
- Dementia Research Centre, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , NSW 2109 , Australia
- Neuroscience Research Australia , Sydney , NSW 2031 , Australia
| |
Collapse
|
14
|
Smithmyer ME, Spohn JB, Kloxin AM. Probing fibroblast activation in response to extracellular cues with whole protein- or peptide-functionalized step-growth hydrogels. ACS Biomater Sci Eng 2018; 4:3304-3316. [PMID: 32494587 DOI: 10.1021/acsbiomaterials.8b00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic hydrogels with well-defined mechanical properties have become invaluable tools for probing cell response to extracellular cues including matrix stiffness and integrin binding. These synthetic matrices are often decorated with either proteins or integrin-binding peptides to promote cell adhesion and to direct or probe cell behavior. For example, both collagen I-functionalized polyacrylamide and peptide-functionalized poly(ethylene glycol) hydrogels have been instrumental in elucidating the role of the elasticity or 'stiffness' of the matrix in promoting fibroblast activation in wound healing and fibrosis. However, the two methods of promoting integrin binding are not often directly compared in the same system, partly owing to differences in material designs, despite the potential differences in the way cells interact with whole proteins and protein mimetic peptides. We hypothesized that such a comparison could provide insight into the ways integrin binding affects fibroblast activation within commonly utilized in vitro cell culture models, and more broadly, to inform the design of materials to modulate fibroblast activation in studies of wound healing and disease. To enable this comparison, we developed a method to conjugate whole proteins to step-growth poly(ethylene glycol) (PEG) hydrogels and investigated fibroblast response to protein-peptide pairs: fibronectin and PHSRN(G)10RGDS or collagen I and (POG)3POGFOGER(POG)4, which are important in matrix remodeling and relevant to fibroblast activation. With this approach, we observed that human pulmonary fibroblasts adopted a similar morphology on fibronectin and PHSRN(G)10RGDS, although with a slight increase in the percentage of alpha smooth muscle actin (αSMA) expressing cells on PHSRN(G)10RGDS. Interestingly, we observed that fibroblasts formed activated clusters on the collagen mimic (POG)3POGFOGER(POG)4 while exhibiting less activation on collagen I. This cell activation and clustering is reminiscent of fibroblast foci that are observed in lung fibrosis, suggesting the relevance of these well-defined polymer-peptide hydrogels for investigating fibrosis and decoupling biochemical and biophysical cues.
Collapse
Affiliation(s)
- Megan E Smithmyer
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph B Spohn
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Soscia D, Belle A, Fischer N, Enright H, Sales A, Osburn J, Benett W, Mukerjee E, Kulp K, Pannu S, Wheeler E. Controlled placement of multiple CNS cell populations to create complex neuronal cultures. PLoS One 2017; 12:e0188146. [PMID: 29161298 PMCID: PMC5697820 DOI: 10.1371/journal.pone.0188146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
In vitro brain-on-a-chip platforms hold promise in many areas including: drug discovery, evaluating effects of toxicants and pathogens, and disease modelling. A more accurate recapitulation of the intricate organization of the brain in vivo may require a complex in vitro system including organization of multiple neuronal cell types in an anatomically-relevant manner. Most approaches for compartmentalizing or segregating multiple cell types on microfabricated substrates use either permanent physical surface features or chemical surface functionalization. This study describes a removable insert that successfully deposits neurons from different brain areas onto discrete regions of a microelectrode array (MEA) surface, achieving a separation distance of 100 μm. The regional seeding area on the substrate is significantly smaller than current platforms using comparable placement methods. The non-permanent barrier between cell populations allows the cells to remain localized and attach to the substrate while the insert is in place and interact with neighboring regions after removal. The insert was used to simultaneously seed primary rodent hippocampal and cortical neurons onto MEAs. These cells retained their morphology, viability, and function after seeding through the cell insert through 28 days in vitro (DIV). Co-cultures of the two neuron types developed processes and formed integrated networks between the different MEA regions. Electrophysiological data demonstrated characteristic bursting features and waveform shapes that were consistent for each neuron type in both mono- and co-culture. Additionally, hippocampal cells co-cultured with cortical neurons showed an increase in within-burst firing rate (p = 0.013) and percent spikes in bursts (p = 0.002), changes that imply communication exists between the two cell types in co-culture. The cell seeding insert described in this work is a simple but effective method of separating distinct neuronal populations on microfabricated devices, and offers a unique approach to developing the types of complex in vitro cellular environments required for anatomically-relevant brain-on-a-chip devices.
Collapse
Affiliation(s)
- D. Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - N. Fischer
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - H. Enright
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Sales
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - J. Osburn
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - W. Benett
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Mukerjee
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - K. Kulp
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - S. Pannu
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
16
|
Müller E, Pompe T, Freudenberg U, Werner C. Solvent-Assisted Micromolding of Biohybrid Hydrogels to Maintain Human Hematopoietic Stem and Progenitor Cells Ex Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703489. [PMID: 28960524 DOI: 10.1002/adma.201703489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Array-format cell-culture carriers providing tunable matrix cues are instrumental in current cell biology and bioengineering. A new solvent-assisted demolding approach for the fabrication of microcavity arrays with very small feature sizes down to single-cell level (3 µm) of very soft biohybrid glycosaminoglycan-poly(ethylene glycol) hydrogels (down to a shear modulus of 1 kPa) is reported. It is further shown that independent additional options of localized conjugation of adhesion ligand peptides, presentation of growth factors through complexation to gel-based glycosaminoglycans, and secondary gel deposition for 3D cell embedding enable a versatile customization of the hydrogel microcavity arrays for cell culture studies. As a proof of concept, cell-instructive hydrogel compartment arrays are used to analyze the response of human hematopoietic stem and progenitor cells to defined biomolecular and spatial cues.
Collapse
Affiliation(s)
- Eike Müller
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | - Tilo Pompe
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
- Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
|
18
|
Haring AP, Sontheimer H, Johnson BN. Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine. Stem Cell Rev Rep 2017; 13:381-406. [PMID: 28488234 PMCID: PMC5534264 DOI: 10.1007/s12015-017-9738-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Translational challenges associated with reductionist modeling approaches, as well as ethical concerns and economic implications of small animal testing, drive the need for developing microphysiological neural systems for modeling human neurological diseases, disorders, and injuries. Here, we provide a comprehensive review of microphysiological brain and neural systems-on-a-chip (NSCs) for modeling higher order trajectories in the human nervous system. Societal, economic, and national security impacts of neurological diseases, disorders, and injuries are highlighted to identify critical NSC application spaces. Hierarchical design and manufacturing of NSCs are discussed with distinction for surface- and bulk-based systems. Three broad NSC classes are identified and reviewed: microfluidic NSCs, compartmentalized NSCs, and hydrogel NSCs. Emerging areas and future directions are highlighted, including the application of 3D printing to design and manufacturing of next-generation NSCs, the use of stem cells for constructing patient-specific NSCs, and the application of human NSCs to 'personalized neurology'. Technical hurdles and remaining challenges are discussed. This review identifies the state-of-the-art design methodologies, manufacturing approaches, and performance capabilities of NSCs. This work suggests NSCs appear poised to revolutionize the modeling of human neurological diseases, disorders, and injuries.
Collapse
Affiliation(s)
- Alexander P Haring
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
19
|
Kascholke C, Loth T, Kohn-Polster C, Möller S, Bellstedt P, Schulz-Siegmund M, Schnabelrauch M, Hacker MC. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks. Biomacromolecules 2017; 18:683-694. [PMID: 28125209 DOI: 10.1021/acs.biomac.6b01355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (Mn < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.
Collapse
Affiliation(s)
- Christian Kascholke
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Tina Loth
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 b, 07745 Jena, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Peter Bellstedt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University Jena , Humboldtstraße 10, 07743 Jena, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 b, 07745 Jena, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| |
Collapse
|
20
|
Lee JP, Kassianidou E, MacDonald JI, Francis MB, Kumar S. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. Biomaterials 2016; 102:268-76. [PMID: 27348850 PMCID: PMC4939314 DOI: 10.1016/j.biomaterials.2016.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Polyacrylamide hydrogels have been used extensively to study cell responses to the mechanical and biochemical properties of extracellular matrix substrates. A key step in fabricating these substrates is the conjugation of cell adhesion proteins to the polyacrylamide surfaces, which typically involves nonspecifically anchoring these proteins via side-chain functional groups. This can result in a loss of presentation control and altered bioactivity. Here, we describe a new functionalization strategy in which we anchor full-length extracellular matrix proteins to polyacrylamide substrates using 2-pyridinecarboxaldehyde, which can be co-polymerized into polyacrylamide gels and used to immobilize proteins by their N-termini. This one-step reaction proceeds under mild aqueous conditions and does not require additional reagents. We demonstrate that these substrates can readily conjugate to various extracellular matrix proteins, as well as promote cell adhesion and spreading. Notably, this chemistry supports the assembly and cellular remodeling of large collagen fibers, which is not observed using conventional side-chain amine-conjugation chemistry.
Collapse
Affiliation(s)
- Jessica P Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - James I MacDonald
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
21
|
ZnO Nanostructure Templates as a Cost-Efficient Mass-Producible Route for the Development of Cellular Networks. MATERIALS 2016; 9:ma9040256. [PMID: 28773382 PMCID: PMC5502920 DOI: 10.3390/ma9040256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/18/2023]
Abstract
The development of artificial surfaces which can regulate or trigger specific functions of living cells, and which are capable of inducing in vivo-like cell behaviors under in vitro conditions has been a long-sought goal over the past twenty years. In this work, an alternative, facile and cost-efficient method for mass-producible cellular templates is presented. The proposed methodology consists of a cost-efficient, two-step, all-wet technique capable of producing ZnO-based nanostructures on predefined patterns on a variety of substrates. ZnO—apart from the fact that it is a biocompatible material—was chosen because of its multifunctional nature which has rendered it a versatile material employed in a wide range of applications. Si, Si3N4, emulated microelectrode arrays and conventional glass cover slips were patterned at the micrometer scale and the patterns were filled with ZnO nanostructures. Using HeLa cells, we demonstrated that the fabricated nanotopographical features could promote guided cellular adhesion on the pre-defined micron-scale patterns only through nanomechanical cues without the need for further surface activation or modification. The basic steps of the micro/nanofabrication are presented and the results from the cell adhesion experiments are discussed, showing the potential of the suggested methodology for creating low-cost templates for engineered cellular networks.
Collapse
|
22
|
Hodde D, Gerardo-Nava J, Wöhlk V, Weinandy S, Jockenhövel S, Kriebel A, Altinova H, Steinbusch HWM, Möller M, Weis J, Mey J, Brook GA. Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dorothee Hodde
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
| | - José Gerardo-Nava
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
| | - Vanessa Wöhlk
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
| | - Stefan Weinandy
- Department of Tissue Engineering and Textile Implants; AME - Helmholtz Institute for Biomedical Engineering and Uniklinik RWTH Aachen University; Aachen Germany
| | - Stefan Jockenhövel
- Department of Tissue Engineering and Textile Implants; AME - Helmholtz Institute for Biomedical Engineering and Uniklinik RWTH Aachen University; Aachen Germany
| | - Andreas Kriebel
- Institute of Biology II; RWTH Aachen University; Aachen Germany
| | - Haktan Altinova
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- Department of Neurosurgery; Evangelic Hospital Bethel; Bielefeld Germany
| | - Harry W. M. Steinbusch
- Department of Psychiatry and Neuropsychology; Division of Neuroscience; Faculty of Health, Medicine and Life Sciences; Maastricht University; Maastricht The Netherlands
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Aachen Germany
| | - Joachim Weis
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
| | - Jörg Mey
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
- Institute of Biology II; RWTH Aachen University; Aachen Germany
- Department of Psychiatry and Neuropsychology; Division of Neuroscience; Faculty of Health, Medicine and Life Sciences; Maastricht University; Maastricht The Netherlands
- Laboratorio de Regeneración Nerviosa; Hospital Nacional de Parapléjicos; Toledo Spain
| | - Gary A. Brook
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
| |
Collapse
|
23
|
Cambria E, Renggli K, Ahrens CC, Cook C, Kroll C, Krueger A, Imperiali B, Griffith LG. Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules 2015; 16:2316-26. [PMID: 26098148 PMCID: PMC4613866 DOI: 10.1021/acs.biomac.5b00549] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Indexed: 02/01/2023]
Abstract
Synthetic extracellular matrices are widely used in regenerative medicine and as tools in building in vitro physiological culture models. Synthetic hydrogels display advantageous physical properties, but are challenging to modify with large peptides or proteins. Here, a facile, mild enzymatic postgrafting approach is presented. Sortase-mediated ligation was used to conjugate human epidermal growth factor fused to a GGG ligation motif (GGG-EGF) to poly(ethylene glycol) (PEG) hydrogels containing the sortase LPRTG substrate. The reversibility of the sortase reaction was then exploited to cleave tethered EGF from the hydrogels for analysis. Analyses of the reaction supernatant and the postligation hydrogels showed that the amount of tethered EGF increases with increasing LPRTG in the hydrogel or GGG-EGF in the supernatant. Sortase-tethered EGF was biologically active, as demonstrated by stimulation of DNA synthesis in primary human hepatocytes and endometrial epithelial cells. The simplicity, specificity, and reversibility of sortase-mediated ligation and cleavage reactions make it an attractive approach for modification of hydrogels.
Collapse
Affiliation(s)
- Elena Cambria
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Kasper Renggli
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Caroline C. Ahrens
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Christi
D. Cook
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Carsten Kroll
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Andrew
T. Krueger
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Barbara Imperiali
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Linda G. Griffith
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| |
Collapse
|
24
|
Nagamine K, Hirata T, Okamoto K, Abe Y, Kaji H, Nishizawa M. Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films. ACS Biomater Sci Eng 2015; 1:329-334. [PMID: 33429573 DOI: 10.1021/acsbiomaterials.5b00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takuya Hirata
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kohei Okamoto
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yuina Abe
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
25
|
Li CC, Kharaziha M, Min C, Maas R, Nikkhah M. Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:15-31. [DOI: 10.1007/978-3-319-22345-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Mirazul Islam M, Cėpla V, He C, Edin J, Rakickas T, Kobuch K, Ruželė Ž, Bruce Jackson W, Rafat M, Lohmann CP, Valiokas R, Griffith M. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater 2015; 12:70-80. [PMID: 25448347 DOI: 10.1016/j.actbio.2014.10.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes for the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500μm thick RHCIII-MPC constructs comprising over 85% water are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, unlike the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30μm wide fibronectin stripes enhanced cell attachment and showed the highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas.
Collapse
|
27
|
Grevesse T, Versaevel M, Gabriele S. Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues. J Vis Exp 2014. [PMID: 25225964 DOI: 10.3791/51010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions. Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.
Collapse
Affiliation(s)
- Thomas Grevesse
- Laboratoire Interfaces et Fluides Complexes, Université de Mons
| | - Marie Versaevel
- Laboratoire Interfaces et Fluides Complexes, Université de Mons
| | - Sylvain Gabriele
- Laboratoire Interfaces et Fluides Complexes, Université de Mons;
| |
Collapse
|
28
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Dautriche CN, Xie Y, Sharfstein ST. Walking through trabecular meshwork biology: Toward engineering design of outflow physiology. Biotechnol Adv 2014; 32:971-83. [PMID: 24806891 DOI: 10.1016/j.biotechadv.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 01/23/2023]
Abstract
According to the World Health Organization, glaucoma remains the second leading cause of blindness in the world. Glaucoma belongs to a group of optic neuropathies that is characterized by chronic degeneration of the optic nerve along with its supporting glia and vasculature. Despite significant advances in the field, there is no available cure for glaucoma. The trabecular meshwork has been implicated as the primary site for regulation of intraocular pressure, the only known modifiable factor in glaucoma development. In this review, we describe the current models for glaucoma studies, primary culture, anterior eye segments, and animal studies and their limitations. These models, especially anterior eye segments and animal tissues, often require careful interpretation given the inter-species variation and are cumbersome and expensive. The lack of an available in vitro 3D model to study trabecular meshwork cells and detailed mechanisms of their regulation of intraocular pressure has limited progress in the field of glaucoma research. In this paper, we review the current status of knowledge of the trabecular meshwork and how the current advances in tissue engineering techniques might be applied in an effort to engineer a synthetic trabecular meshwork as a 3D in vitro model to further advance glaucoma research. In addition, we describe strategies for selection and design of biomaterials for scaffold fabrication as well as extracellular matrix components to mimic and support the trabecular architecture. We also discuss possible uses for a bioengineered trabecular meshwork for both developing a fundamental understanding of trabecular meshwork biology as well as high-throughput screening of glaucoma drugs.
Collapse
Affiliation(s)
- Cula N Dautriche
- SUNY College of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | - Yubing Xie
- SUNY College of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T Sharfstein
- SUNY College of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
30
|
Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014; 2:634-650. [PMID: 25379176 PMCID: PMC4217222 DOI: 10.1039/c3bm60319a] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment.
Collapse
Affiliation(s)
- Megan E. Smithmyer
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Lisa A. Sawicki
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
- Materials Science & Engineering , University of Delaware , Newark , DE 19716 , USA .
| |
Collapse
|
31
|
Lee J, Abdeen AA, Zhang D, Kilian KA. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 2013; 34:8140-8. [DOI: 10.1016/j.biomaterials.2013.07.074] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/21/2013] [Indexed: 12/27/2022]
|
32
|
Goubko CA, Basak A, Majumdar S, Cao X. Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels. J Biomed Mater Res A 2013; 102:381-91. [PMID: 23520029 DOI: 10.1002/jbm.a.34712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 01/15/2023]
Abstract
Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near-UV light to create cell-adhesive regions within an otherwise non-adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations-either in contact with one another or held apart-on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks in vitro.
Collapse
Affiliation(s)
- Catherine A Goubko
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | | | | | |
Collapse
|
33
|
Photopatterning of self-assembled poly (ethylene) glycol monolayer for neuronal network fabrication. J Neurosci Methods 2013; 213:196-203. [DOI: 10.1016/j.jneumeth.2012.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/23/2022]
|
34
|
Park JW, Kim HJ, Kang MW, Jeon NL. Advances in microfluidics-based experimental methods for neuroscience research. LAB ON A CHIP 2013; 13:509-521. [PMID: 23306275 DOI: 10.1039/c2lc41081h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.
Collapse
Affiliation(s)
- Jae Woo Park
- Division of WCU (World Class University) Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
35
|
Li Z, Ruan W, Shen S, Wang H, Guo Z, Xue X, Mao Z, Ji W, Wang X, Song W, Zhao B. Tunable two dimensional protein patterns through self-assembly nanosphere template. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:395-400. [PMID: 22722073 DOI: 10.1016/j.saa.2012.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
By the aim of constructing surfaces for multi-component and multifunctional bioassay, a microsphere lithography technique was employed to control the surface morphology. Two kinds of protein molecules (antibodies) were used as building blocks. As a result, dual-component biocompatible surfaces with alternate immunoglobulin micropatterns were fabricated. The employed antibodies included human Immunoglobulin G (IgG) and rabbit IgG, which composed nanometer scale surface arrays on the surfaces. The antibodies were identified specially by immunoreactions with labeled antigens of fluorescein isothiocyanate (FITC)-antihuman IgG and tetramethylrhodamine-5-(and 6)-isothiocyanate (TRITC)-antirabbit IgG. The immune responses were confirmed by confocal fluorescence (FL) microscopy. A study on the sensitivity and quantification was done by using surface-enhanced resonance Raman scattering (SERRS) spectroscopy. The obtained SERRS spectra showed satisfactory resolution in the multi-component detection objects. No interference was observed from inner- or interactions of detecting molecules. The detection limits for both of the antigens reached to as low as 1 ng/mL, which was comparable to FL method. Meanwhile, a good linear relationship between SERRS peak intensity and the logarithm of antigens' concentrations (from 1 ng/mL to 1 mg/mL) were observed. The results demonstrated that SERRS is a very promising detection technique for multi-component immunoassay, and has great potential applications in biotechnology and biochemistry.
Collapse
Affiliation(s)
- Zhishi Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li X, Katsanevakis E, Liu X, Zhang N, Wen X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proc Natl Acad Sci U S A 2012; 109:9881-6. [PMID: 22675119 DOI: 10.1073/pnas.1203007109] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adhesion between cardiac myocytes is essential for the heart to function as an electromechanical syncytium. Although cell-matrix and cell-cell adhesions reorganize during development and disease, the hierarchical cooperation between these subcellular structures is poorly understood. We reasoned that, during cardiac development, focal adhesions mechanically stabilize cells and tissues during myofibrillogenesis and intercalated disc assembly. As the intercalated disc matures, we postulated that focal adhesions disassemble as systolic stresses are transmitted intercellularly. Finally, we hypothesized that pathological remodeling of cardiac microenvironments induces excessive mechanical loading of intercalated discs, leading to assembly of stabilizing focal adhesions adjacent to the junction. To test our model, we engineered μtissues composed of two ventricular myocytes on deformable substrates of tunable elasticity to measure the dynamic organization and functional remodeling of myofibrils, focal adhesions, and intercalated discs as cooperative ensembles. Maturing μtissues increased systolic force while simultaneously developing into an electromechanical syncytium by disassembling focal adhesions at the cell-cell interface and forming mature intercalated discs that transmitted the systolic load. We found that engineering the microenvironment to mimic fibrosis resulted in focal adhesion formation adjacent to the cell-cell interface, suggesting that the intercalated disc required mechanical reinforcement. In these pathological microenvironments, μtissues exhibited further evidence of maladaptive remodeling, including lower work efficiency, longer contraction cycle duration, and weakened relationships between cytoskeletal organization and force generation. These results suggest that the cooperative balance between cell-matrix and cell-cell adhesions in the heart is guided by an architectural and functional hierarchy established during development and disrupted during disease.
Collapse
|
38
|
Wang TY, Forsythe JS, Parish CL, Nisbet DR. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl 2012; 27:369-90. [DOI: 10.1177/0885328212443297] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients who experience injury to the central or peripheral nervous systems invariably suffer from a range of dysfunctions due to the limited ability for repair and reconstruction of damaged neural tissue. Whilst some treatment strategies can provide symptomatic improvement of motor and cognitive function, they fail to repair the injured circuits and rarely offer long-term disease modification. To this end, the biological molecules, used in combination with neural tissue engineering scaffolds, may provide feasible means to repair damaged neural pathways. This review will focus on three promising classes of neural tissue engineering scaffolds, namely hydrogels, electrospun nanofibres and self-assembling peptides. Additionally, the importance and methods for presenting biologically relevant molecules such as, neurotrophins, extracellular matrix proteins and protein-derived sequences that promote neuronal survival, proliferation and neurite outgrowth into the lesion will be discussed.
Collapse
Affiliation(s)
- TY Wang
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - JS Forsythe
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - CL Parish
- Florey Neuroscience Institute and Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | - DR Nisbet
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| |
Collapse
|
39
|
Hynd MR, Turner JN, Shain W. Applications of hydrogels for neural cell engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1223-44. [DOI: 10.1163/156856207782177909] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matthew R. Hynd
- a Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - James N. Turner
- b Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - William Shain
- c Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| |
Collapse
|
40
|
Hickman GJ, Rai A, Boocock DJ, Rees RC, Perry CC. Fabrication, characterisation and performance of hydrophilic and super-hydrophilic silica as cell culture surfaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31161e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Turunen S, Haaparanta AM, Äänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidancein vitro. J Tissue Eng Regen Med 2011; 7:253-70. [DOI: 10.1002/term.520] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Sanna Turunen
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| | | | - Riikka Äänismaa
- NeuroGroup, Institute for Biomedical Technology; University of Tampere; Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| |
Collapse
|
42
|
Abstract
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
43
|
Rakickas T, Ericsson EM, Ruželė Z, Liedberg B, Valiokas R. Functional hydrogel density patterns fabricated by dip-pen nanolithography and photografting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2153-2157. [PMID: 21626682 DOI: 10.1002/smll.201002278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/24/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Tomas Rakickas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
44
|
Lewitus DY, Landers J, Branch J, Smith KL, Callegari G, Kohn J, Neimark AV. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2011; 21:2624-2632. [PMID: 21887125 PMCID: PMC3163387 DOI: 10.1002/adfm.201002429] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report a novel approach for producing carbon nanotube fibers (CNF) composed with the polysaccharide agarose. Current attempts to make CNF's require the use of a polymer or precipitating agent in the coagulating bath that may have negative effects in biomedical applications. We show that by taking advantage of the gelation properties of agarose one can substitute the bath with distilled water or ethanol and hence reduce the complexity associated with alternating the bath components or the use of organic solvents. We also demonstrate that these CNF can be chemically functionalized to express biological moieties through available free hydroxyl groups in agarose. We corroborate that agarose CNF are not only conductive and nontoxic, but their functionalization can facilitate cell attachment and response both in vitro and in vivo. Our findings suggest that agarose/CNT hybrid materials are excellent candidates for applications involving neural tissue engineering and biointerfacing with the nervous system.
Collapse
Affiliation(s)
- Dan Y. Lewitus
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - John Landers
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jonathan Branch
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - Karen L. Smith
- Wadsworth Center, New York State Department of Health, 1 Government Center, Albany NY, 12201 (USA)
| | - Gerardo Callegari
- The Center for Modeling and Characterization of Nanoporous Materials, TRI/Princeton, Princeton, NJ 08542 USA
| | - Joachim Kohn
- The New Jersey Center for Biomaterials, and Department of Biomedical Engineering Rutgers, the State University of New Jersey, 145 Bevier rd. Piscataway, NJ, 08854 (USA)
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
45
|
Delgado-Rivera R, Griffin J, Ricupero CL, Grumet M, Meiners S, Uhrich KE. Microscale plasma-initiated patterning of electrospun polymer scaffolds. Colloids Surf B Biointerfaces 2011; 84:591-6. [PMID: 21345656 PMCID: PMC3062666 DOI: 10.1016/j.colsurfb.2011.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/08/2011] [Accepted: 01/13/2011] [Indexed: 11/24/2022]
Abstract
Microscale plasma-initiated patterning (μPIP) is a novel micropatterning technique used to create biomolecular micropatterns on polymer surfaces. The patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. Preferential adsorption of the biomolecules onto either the plasma-exposed (hydrophilic) or plasma-protected (hydrophobic) regions leads to the biomolecular micropatterns. In the current work, laminin-1 was applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. Radial glial clones (neural precursors) selectively adhered to these patterned matrices following the contours of proteins on the surface. This work demonstrates that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization.
Collapse
Affiliation(s)
- Roberto Delgado-Rivera
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Jeremy Griffin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854
| | - Christopher L. Ricupero
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, 08854
| | - Martin Grumet
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, 08854
| | - Sally Meiners
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
46
|
Altomare L, Riehle M, Gadegaard N, Tanzi MC, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 2011; 33:535-43. [PMID: 20872348 DOI: 10.1177/039139881003300804] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Micropatterning and microfabrication techniques have been widely used to control cell adhesion and proliferation along a preferential direction according to contact guidance theory. One of these techniques is microcontact printing, a soft lithographic technique based on the transfer of a "molecular ink" from an elastomeric stamp to a surface. This method allows the useful attachment of biomolecules in a few seconds on a variety of surfaces with sub-micrometer resolution and control, without modifying the biomolecule properties. The aim of this study is to develop an easy and versatile technique for in vitro production of arrays of skeletal muscle myofibers using microcontact printing technique on biodegradable substrata. METHODS Microcontact printing of fibronectin stripes (10, 25, 50 μm in width) was performed onto biodegradable L-lactide/trimethylene carbonate copolymer (PLLA-TMC) films. C2C12, a murine myoblast cell line, was used for the production of parallel myofibers. RESULTS This approach proved to be simple, reliable and effective in obtaining a stable pattern of fibronectin on the PLLA-TMC surface as observed by fluorescence microscopy. C2C12 cells were well aligned along the pattern 24 hours after seeding, especially on fibronectin stripes 10 and 25 μm in width. Seven days after confluence cells fused and formed aligned multinucleated cells expressing a-actinin. CONCLUSIONS Fibronectin patterning seems to be a useful method to induce cell alignment and to improve myotube formation. Further studies will be focused on the possibility of applying external stimuli to these structures to obtain healthy myotubes and to induce myofiber development.
Collapse
Affiliation(s)
- Lina Altomare
- BioMatLab, Bioengineering Department, Politecnico di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
47
|
Frampton JP, Hynd MR, Shuler ML, Shain W. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater 2011; 6:015002. [PMID: 21205998 DOI: 10.1088/1748-6041/6/1/015002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.
Collapse
Affiliation(s)
- J P Frampton
- Department of Biomedical Sciences, State University of New York at Albany, 12210, USA.
| | | | | | | |
Collapse
|
48
|
Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration. INT J POLYM SCI 2011. [DOI: 10.1155/2011/161749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biodegradable and biocompatible poly(amidoamine)-(PAA-) based hydrogels have been considered for different tissue engineering applications. First-generation AGMA1 hydrogels, amphoteric but prevailing cationic hydrogels containing carboxylic and guanidine groups as side substituents, show satisfactory results in terms of adhesion and proliferation properties towards different cell lines. Unfortunately, these hydrogels are very swellable materials, breakable on handling, and have been found inadequate for other applications. To overcome this problem, second-generation AGMA1 hydrogels have been prepared adopting a new synthetic method. These new hydrogels exhibit good biological propertiesin vitrowith satisfactory mechanical characteristics. They are obtained in different forms and shapes and successfully testedin vivofor the regeneration of peripheral nerves. This paper reports on our recent efforts in the use of first-and second-generation PAA hydrogels as substrates for cell culturing and tubular scaffold for peripheral nerve regeneration.
Collapse
|
49
|
Wang X, Kaplan DL. Functionalization of Silk Fibroin with NeutrAvidin and Biotin. Macromol Biosci 2010; 11:100-10. [DOI: 10.1002/mabi.201000173] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 04/09/2010] [Indexed: 01/03/2023]
|
50
|
Jang MJ, Namgung S, Hong S, Nam Y. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue. NANOTECHNOLOGY 2010; 21:235102. [PMID: 20463384 DOI: 10.1088/0957-4484/21/23/235102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Researchers have made extensive efforts to mimic or reverse-engineer in vivo neural circuits using micropatterning technology. Various surface chemical cues or topographical structures have been proposed to design neuronal networks in vitro. In this paper, we propose a carbon nanotube (CNT)-based network engineering method which naturally mimics the structure of extracellular matrix (ECM). On CNT patterned substrates, poly-L-lysine (PLL) was coated, and E18 rat hippocampal neurons were cultured. In the early developmental stage, soma adhesion and neurite extension occurred in disregard of the surface CNT patterns. However, later the majority of neurites selectively grew along CNT patterns and extended further than other neurites that originally did not follow the patterns. Long-term cultured neuronal networks had a strong resemblance to the in vivo neural circuit structures. The selective guidance is possibly attributed to higher PLL adsorption on CNT patterns and the nanomesh structure of the CNT patterns. The results showed that CNT patterned substrates can be used as novel neuronal patterning substrates for in vitro neural engineering.
Collapse
Affiliation(s)
- Min Jee Jang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | | | | | | |
Collapse
|