1
|
Bonsack F, Dasari R, Thomas A, Xu H, Sukumari-Ramesh S. TSPO deficiency exacerbates acute brain damage after intracerebral hemorrhage in male mice. J Cereb Blood Flow Metab 2025:271678X251340509. [PMID: 40370317 DOI: 10.1177/0271678x251340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with no effective treatment despite high morbidity and mortality rates. The delineation of the mechanisms of brain damage after ICH is critical to identifying novel molecular targets for therapeutic intervention. Apart from the augmented expression of 18 kDa translocator protein (TSPO) in microglia/macrophages post-ICH and its potential to track neuroinflammation, the precise function of TSPO after brain damage remains largely enigmatic. In the present study, we employed transgenic animal models, such as global and myeloid-specific conditional knockouts, to elucidate the functional role of TSPO in ICH-induced acute brain damage. Neurological deficits, neurodegeneration, and neuroinflammation were assessed at 3-days post-ICH in male and female mice. Male TSPO global knockout and conditional knockout exhibited enhanced neurobehavioral deficits with a concomitant increase in neurodegeneration and neuroinflammation compared to their respective controls. Interestingly, their female counterparts did not exhibit augmented brain damage compared to the respective controls. Mechanistically, studies employing RNA-Seq and subsequent functional validation demonstrate that TSPO could regulate brain cholesterol efflux, which could partly be responsible for enhanced brain damage in TSPO KO male mice after ICH, warranting further investigation.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Rajaneekar Dasari
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Ashwin Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Laskowitz DT, Van Wyck DW. ApoE Mimetic Peptides as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1496-1507. [PMID: 37592168 PMCID: PMC10684461 DOI: 10.1007/s13311-023-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The lack of targeted therapies for traumatic brain injury (TBI) remains a compelling clinical unmet need. Although knowledge of the pathophysiologic cascades involved in TBI has expanded rapidly, the development of novel pharmacological therapies has remained largely stagnant. Difficulties in creating animal models that recapitulate the different facets of clinical TBI pathology and flaws in the design of clinical trials have contributed to the ongoing failures in neuroprotective drug development. Furthermore, multiple pathophysiological mechanisms initiated early after TBI that progress in the subacute and chronic setting may limit the potential of traditional approaches that target a specific cellular pathway for acute therapeutic intervention. We describe a reverse translational approach that focuses on translating endogenous mechanisms known to influence outcomes after TBI to develop druggable targets. In particular, numerous clinical observations have demonstrated an association between apolipoprotein E (apoE) polymorphism and functional recovery after brain injury. ApoE has been shown to mitigate the response to acute brain injury by exerting immunomodulatory properties that reduce secondary tissue injury as well as protecting neurons from excitotoxicity. CN-105 represents an apoE mimetic peptide that can effectively penetrate the CNS compartment and retains the neuroprotective properties of the intact protein.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- AegisCN LLC, 701 W Main Street, Durham, NC, 27701, USA
| | - David W Van Wyck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Soler Y, Rodriguez M, Austin D, Gineste C, Gelber C, El-Hage N. SERPIN-Derived Small Peptide (SP16) as a Potential Therapeutic Agent against HIV-Induced Inflammatory Molecules and Viral Replication in Cells of the Central Nervous System. Cells 2023; 12:cells12040632. [PMID: 36831299 PMCID: PMC9954444 DOI: 10.3390/cells12040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the success of combined antiretroviral therapy (cART) increasing the survival rate in human immunodeficiency virus (HIV) patients, low levels of viremia persist in the brain of patients leading to glia (microglia and astrocytes)-induced neuroinflammation and consequently, the reactivation of HIV and neuronal injury. Here, we tested the therapeutic efficacy of a Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) agonistic small peptide drug (SP16) in attenuating HIV replication and the secretion of inflammatory molecules in brain reservoirs. SP16 was developed by Serpin Pharma and is derived from the pentapeptide sequence of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The SP16 peptide sequence was subsequently modified to improve the stability, bioavailability, efficacy, and binding to LRP-1; a scavenger regulatory receptor that internalizes ligands to induce anti-viral, anti-inflammatory, and pro-survival signals. Using glial cells infected with HIV, we showed that: (i) SP16 attenuated viral-induced secretion of pro-inflammatory molecules; and (ii) SP16 attenuated viral replication. Using an artificial 3D blood-brain barrier (BBB) system, we showed that: (i) SP16 was transported across the BBB; and (ii) restored the permeability of the BBB compromised by HIV. Mechanistically, we showed that SP16 interaction with LRP-1 and binding lead to: (i) down-regulation in the expression levels of nuclear factor-kappa beta (NF-κB); and (ii) up-regulation in the expression levels of Akt. Using an in vivo mouse model, we showed that SP16 was transported across the BBB after intranasal delivery, while animals infected with EcoHIV undergo a reduction in (i) viral replication and (ii) viral secreted inflammatory molecules, after exposure to SP16 and antiretrovirals. Overall, these studies confirm a therapeutic response of SP16 against HIV-associated inflammatory effects in the brain.
Collapse
Affiliation(s)
- Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Dana Austin
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cyrille Gineste
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cohava Gelber
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
5
|
Gao S, Jiang Y, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Sun H, Wang J, Chen W. Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Curr Neuropharmacol 2023; 21:1992-2005. [PMID: 36529923 PMCID: PMC10514522 DOI: 10.2174/1570159x21666221216162606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Hao Sun
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
6
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
7
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Neuroprotective Pentapeptide, CN-105, Improves Outcomes in Translational Models of Intracerebral Hemorrhage. Neurocrit Care 2021; 35:441-450. [PMID: 33474632 DOI: 10.1007/s12028-020-01184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating form of cerebrovascular disease for which there are no approved pharmacological interventions that improve outcomes. Apolipoprotein E (apoE) has emerged as a promising therapeutic target given its isoform-specific neuroprotective properties and ability to modify neuroinflammatory responses. We developed a 5-amino acid peptide, CN-105, that mimics the polar face of the apoE helical domain involved in receptor interactions, readily crosses the blood-brain barrier, and improves outcomes in well-established preclinical ICH models. In the current study, we investigated the therapeutic potential of CN-105 in translational ICH models that account for hypertensive comorbidity, sex, species, and age. METHODS In three separate experiments, we delivered three intravenous doses of CN-105 (up to 0.20 mg/kg) or vehicle to hypertensive male BPH/2 J mice, spontaneously hypertensive female rats, or 11-month-old male mice within 24-h of ICH. Neuropathological and neurobehavioral outcomes were determined over 3, 7, and 9 days, respectively. RESULTS In spontaneously hypertensive male mice, there was a significant dose-dependent effect of CN-105 on vestibulomotor function at 0.05 and 0.20 mg/kg doses (p < 0.05; 95% CI: 0.91-153.70 and p < 0.001; 95% CI: 49.54-205.62), while 0.20 mg/kg also improved neuroseverity scores (p < 0.05; 95% CI: 0.27-11.00) and reduced ipsilateral brain edema (p < 0.05; 95% CI: - 0.037 to - 0.001). In spontaneously hypertensive female rats, CN-105 (0.05 mg/kg) had a significant effect on vestibulomotor function (p < 0.01; η2 = 0.093) and neuroseverity scores (p < 0.05; η2 = 0.083), and reduced contralateral edema expansion (p < 0.01; 95% CI: - 1.41 to - 0.39). In 11-month-old male mice, CN-105 had a significant effect on vestibulomotor function (p < 0.001; η2 = 0.111) but not neuroseverity scores (p > 0.05; η2 = 0.034). CONCLUSIONS Acute treatment with CN-105 improves outcomes in translational ICH models independent of sex, species, age, or hypertensive comorbidity.
Collapse
|
9
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
11
|
James ML, Komisarow JM, Wang H, Laskowitz DT. Therapeutic Development of Apolipoprotein E Mimetics for Acute Brain Injury: Augmenting Endogenous Responses to Reduce Secondary Injury. Neurotherapeutics 2020; 17:475-483. [PMID: 32318912 PMCID: PMC7283431 DOI: 10.1007/s13311-020-00858-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last few decades, increasing evidence demonstrates that the neuroinflammatory response is a double-edged sword. Although overly robust inflammatory responses may exacerbate secondary tissue injury, inflammatory processes are ultimately necessary for recovery. Traditional drug discovery often relies on reductionist approaches to isolate and modulate specific intracellular pathways believed to be involved in disease pathology. However, endogenous brain proteins are often pleiotropic in order to regulate neuroinflammation and recovery mechanisms. Thus, a process of "backward translation" aims to harness the adaptive properties of endogenous proteins to promote earlier and greater recovery after acute brain injury. One such endogenous protein is apolipoprotein E (apoE), the primary apolipoprotein produced in the brain. Robust preclinical and clinical evidence demonstrates that endogenous apoE produced within the brain modulates the neuroinflammatory response of the acutely injured brain. Thus, one innovative approach to improve outcomes following acute brain injury is administration of exogenous apoE-mimetic drugs optimized to cross the blood-brain barrier. In particular, one promising apoE mimetic peptide, CN-105, has demonstrated efficacy across a wide variety of preclinical models of brain injury and safety and feasibility in early-phase clinical trials. Preclinical and clinical evidence for apoE's neuroprotective effects and downregulation of neuroinflammatory and the resulting translational therapeutic development strategy for an apoE-based therapeutic are reviewed.
Collapse
Affiliation(s)
- Michael L James
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jordan M Komisarow
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel T Laskowitz
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Apolipoprotein E Deficiency Aggravates Neuronal Injury by Enhancing Neuroinflammation via the JNK/c-Jun Pathway in the Early Phase of Experimental Subarachnoid Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3832648. [PMID: 31949876 PMCID: PMC6944964 DOI: 10.1155/2019/3832648] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/06/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
Neuronal injury is the primary cause of poor outcome after subarachnoid hemorrhage (SAH). The apolipoprotein E (APOE) gene has been suggested to be involved in the prognosis of SAH patients. However, the role of APOE in neuronal injury after SAH has not been well studied. In this study, SAH was induced in APOE-knockout (APOE−/−) and wild-type (WT) mice to investigate the impact of APOE deficiency on neuronal injury in the early phase of SAH. The experiments of this study were performed in murine SAH models in vivo and primary cultured microglia and neurons in vitro. The SAH model was induced by endovascular perforation in APOE−/− and APOE WT mice. The mortality rate, weight loss, and neurological deficits were recorded within 72 h after SAH. The neuronal injury was assessed by detecting the neuronal apoptosis and axonal injury. The activation of microglia was assessed by immunofluorescent staining of Iba-1, and clodronate liposomes were used for inhibiting microglial activation. The expression of JNK/c-Jun was evaluated by immunofluorescent staining or western blotting. The expression of TNF-α, IL-1β, and IL-6 was evaluated by ELISA. Primary cultured microglia were treated with hemoglobin (Hb) in vitro for simulating the pathological process of SAH. SP600125, a JNK inhibitor, was used for evaluating the role of JNK in neuroinflammation. Nitrite production was detected for microglial activation, and flow cytometry was performed to detect apoptosis in vitro. The results suggested that SAH induced early neuronal injury and neurological deficits in mice. APOE deficiency resulted in more severe neurological deficits after SAH in mice. The neurological deficits were associated with exacerbation of neuronal injury, including neuronal apoptosis and axonal injury. Moreover, APOE deficiency enhanced microglial activation and related inflammatory injury on neurons. Inhibition of microglia attenuated neuronal injury in mice, whereas inhibition of JNK inhibited microglia-mediated inflammatory response in vitro. Taken together, JNK/c-Jun was involved in the enhancement of microglia-mediated inflammatory injury in APOE−/− mice. APOE deficiency aggravates neuronal injury which may account for the poor neurological outcomes of APOE−/− mice. The possible protective role of APOE against EBI via the modulation of inflammatory response indicates its potential treatment for SAH.
Collapse
|
13
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 2019; 50:43-57. [PMID: 30639340 DOI: 10.1016/j.arr.2019.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs), is a physiologic, multifaceted and dynamic process and a fundamental mechanism for the preservation of tissue homeostasis by avoiding unwanted inflammation and autoimmune responses through special phagocytic receptors. Defective efferocytosis is associated with several disease states, including cardiovascular disease and impaired immune surveillance, as occurs in cancer and autoimmune disease. A major cause of defective efferocytosis is non-functionality of surface receptors on either the phagocytic cells or the ACs, such as TAM family tyrosine kinase, which turns to a soluble form by cleavage/shedding or alternative splicing. Recently, soluble forms have featured prominently as potential biomarkers, indicative of prognosis and enabling targeted therapy using several commonly employed drugs and inhibitors, such as bleomycin, dexamethasone, statins and some matrix metalloproteinase inhibitors such as TAPI-1 and BB3103. Importantly, to design drug carriers with enhanced circulatory durability, the adaptation of soluble forms of physiological receptors/ligands has been purported. Research has shown that soluble forms are more effective than antibody forms in enabling targeted treatment of certain conditions, such as autoimmune diseases. In this review, we sought to summarize the current knowledge of these soluble products, how they are generated, their interactions, roles, and their potential use as biomarkers in prognosis and treatment related to inflammatory, cardiovascular, and autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Brifault C, Kwon H, Campana WM, Gonias SL. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. Glia 2019; 67:1210-1224. [PMID: 30746765 DOI: 10.1002/glia.23599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Following injury to the peripheral nervous system (PNS), microglia in the spinal dorsal horn (SDH) become activated and contribute to the development of local neuro-inflammation, which may regulate neuropathic pain processing. The molecular mechanisms that control microglial activation and its effects on neuropathic pain remain incompletely understood. We deleted the gene encoding the plasma membrane receptor, LDL Receptor-related Protein-1 (LRP1), conditionally in microglia using two distinct promoter-Cre recombinase systems in mice. LRP1 deletion in microglia blocked development of tactile allodynia, a neuropathic pain-related behavior, after partial sciatic nerve ligation (PNL). LRP1 deletion also substantially attenuated microglial activation and pro-inflammatory cytokine expression in the SDH following PNL. Because LRP1 shedding from microglial plasma membranes generates a highly pro-inflammatory soluble product, we demonstrated that factors which activate spinal cord microglia, including lipopolysaccharide (LPS) and colony-stimulating factor-1, promote LRP1 shedding. Proteinases known to mediate LRP1 shedding, including ADAM10 and ADAM17, were expressed at increased levels in the SDH after PNL. Furthermore, LRP1-deficient microglia in cell culture expressed significantly decreased levels of interleukin-1β and interleukin-6 when treated with LPS. We conclude that in the SDH, microglial LRP1 plays an important role in establishing and/or amplifying local neuro-inflammation and neuropathic pain following PNS injury. The responsible mechanism most likely involves proteolytic release of LRP1 from the plasma membrane to generate a soluble product that functions similarly to pro-inflammatory cytokines in mediating crosstalk between cells in the SDH and in regulating neuropathic pain.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Pathology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, Veterans Administration San Diego HealthCare System, San Diego, California
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Menta BW, Swerdlow RH. An Integrative Overview of Non-Amyloid and Non-Tau Pathologies in Alzheimer's Disease. Neurochem Res 2019; 44:12-21. [PMID: 30084096 PMCID: PMC6347553 DOI: 10.1007/s11064-018-2603-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that devastates the lives of its victims, and challenges the family members and health care infrastructures that care for them. Clinically, attempts to understand AD have focused on trying to predict the presence of, and more recently demonstrate the presence of, its characteristic amyloid plaque and neurofibrillary tangle pathologies. Fundamental research has also traditionally focused on understanding the generation, content, and pathogenicity of plaques and tangles, but in addition to this there is now an emerging independent interest in other molecular phenomena including apolipoprotein E, lipid metabolism, neuroinflammation, and mitochondrial function. While studies emphasizing the role of these phenomena have provided valuable AD insights, it is interesting that at the molecular level these entities extensively intertwine and interact. In this review, we provide a brief overview of why apolipoprotein E, lipid metabolism, neuroinflammation, and mitochondrial research have become increasingly ascendant in the AD research field, and present the case for studying these phenomena from an integrated perspective.
Collapse
Affiliation(s)
- Blaise W Menta
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA
- Neuroscience Graduate Program, University of Kansas Medical Center, Lawrence, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Lawrence, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.
- Neuroscience Graduate Program, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Neurology, University of Kansas Medical Center, Lawrence, KS, USA.
- Landon Center on Aging, MS 2012, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
17
|
Liu J, Zhou G, Kolls BJ, Tan Y, Fang C, Wang H, Laskowitz DT. Apolipoprotein E mimetic peptide CN-105 improves outcome in a murine model of SAH. Stroke Vasc Neurol 2018; 3:222-230. [PMID: 30637128 PMCID: PMC6312076 DOI: 10.1136/svn-2018-000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/04/2022] Open
Abstract
Objective Subarachnoid haemorrhage (SAH) accounts for 3% of all strokes, and is associated with significant morbidity and mortality. There is growing evidence implicating apolipoprotein E (apoE) in mediating adaptive anti-inflammatory and neuroprotective responses following ischaemic and traumatic brain injury. In the current study, we test the efficacy of a small apoE mimetic peptide, CN-105 in a murine model of SAH. Methods Mice subjected to SAH received repeated intravenous injections of CN-105 every 12 hours for 3 days, with the first dose given 2 hours after injury. Daily functional outcomes were assessed by rotarod and neurological severity score. Haemorrhage grade and cerebral vascular diameters were measured at 5 days post-SAH. Cerebral microgliosis, neuronal degeneration and survival were analysed at 5 and 35 days post-SAH, respectively. Results CN-105 reduces histological evidence of inflammation, reduces vasospasm and neuronal injury and is associated with improved long-term behavioural outcomes in a murine model of SAH. Conclusions Given its favourable pharmacokinetic profile, central nervous system penetration and demonstration of clinical safety, CN-105 represents an attractive therapeutic candidate for treatment of brain injury associated with SAH.
Collapse
Affiliation(s)
- Ji Liu
- Department of Neurology, Huanhu Hospital, Tianjin, China
| | - Guanen Zhou
- Department of Neurology, Huanhu Hospital, Tianjin, China
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yanli Tan
- Department of Pathology, Basic Medical College of HeBei University, Baoding, China
| | - Chuan Fang
- Department of Neurosurgery, The Affiliated Hospital of HeBei University, Baoding, China
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
18
|
The impact of metallothionein-II on microglial response to tumor necrosis factor-alpha (TNFα) and downstream effects on neuronal regeneration. J Neuroinflammation 2018; 15:56. [PMID: 29471847 PMCID: PMC5822550 DOI: 10.1186/s12974-018-1070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
Background The extracellular environment plays an important role in supporting the regeneration of axons after injury. Metallothionein-II (MTII) is a metal-binding protein known for its neuroprotective effect by directly stimulating the growth of axons after injury. Previous studies have shown that MTII also modulates the response of astrocytes and microglia after injury. However, a detailed analysis describing how MTII modulates the interaction between microglia and neurons is lacking. Methods We introduced fluorescently labelled MTII into the cortex at the time of needlestick injury to investigate the cellular uptake of MTII using immunohistochemistry with antibodies against cell-type-specific markers. The role of MTII in modulating the effect of microglia on axon outgrowth following an inflammatory response is further investigated using a co-culture model involving primary rodent microglia pre-treated with TNFα and primary rodent cortical neurons. The axon lengths were assessed 24 h after the plating of the neurons onto treated microglia. We also utilised siRNA to knockdown the expression of LRP1, which allows us to investigate the role of LRP1 receptors in the MTII-mediated effect of microglia on axon outgrowth. Results Fluorescently labelled MTII was found to be associated with neurons, astrocytes and microglia following injury in vivo. Microglia-neuron co-culture experiments demonstrated that exogenous MTII altered the response of microglia to TNFα. The neurons plated onto the TNFα-stimulated microglia pre-treated with MTII have shown a significantly longer axonal length compare to the TNFα-stimulated microglia without the MTII treatment. This suggested that MTII reduce cytokine-stimulated activation of microglia, which would ordinarily impair neurite outgrowth. This inhibitory effect of MTII on activated microglia was blocked by siRNA-mediated downregulation of LRP1 receptor expression in microglia, suggesting that MTII acts via the LRP1 receptor on microglia. Conclusions This study demonstrates that exogenous MTII acts via the LRP1 receptor to alter the inflammatory response of microglia following TNFα stimulation, providing a more supportive environment for axon growth.
Collapse
|
19
|
Brifault C, Gilder AS, Laudati E, Banki M, Gonias SL. Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation. J Biol Chem 2017; 292:18699-18712. [PMID: 28972143 DOI: 10.1074/jbc.m117.798413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
In the CNS, microglia are activated in response to injury or infection and in neurodegenerative diseases. The endocytic and cell signaling receptor, LDL receptor-related protein-1 (LRP1), is reported to suppress innate immunity in macrophages and oppose microglial activation. The goal of this study was to identify novel mechanisms by which LRP1 may regulate microglial activation. Using primary cultures of microglia isolated from mouse brains, we demonstrated that LRP1 gene silencing increases expression of proinflammatory mediators; however, the observed response was modest. By contrast, the LRP1 ligand, receptor-associated protein (RAP), robustly activated microglia, and its activity was attenuated in LRP1-deficient cells. An important element of the mechanism by which RAP activated microglia was its ability to cause LRP1 shedding from the plasma membrane. This process eliminated cellular LRP1, which is anti-inflammatory, and generated a soluble product, shed LRP1 (sLRP1), which is potently proinflammatory. Purified sLRP1 induced expression of multiple proinflammatory cytokines and the mRNA encoding inducible nitric-oxide synthase in both LRP1-expressing and -deficient microglia. LPS also stimulated LRP1 shedding, as did the heat-shock protein and LRP1 ligand, calreticulin. Other LRP1 ligands, including α2-macroglobulin and tissue-type plasminogen activator, failed to cause LRP1 shedding. Treatment of microglia with a metalloproteinase inhibitor inhibited LRP1 shedding and significantly attenuated RAP-induced cytokine expression. RAP and sLRP1 both caused neuroinflammation in vivo when administered by stereotaxic injection into mouse spinal cords. Collectively, these results suggest that LRP1 shedding from microglia may amplify and sustain neuroinflammation in response to proinflammatory stimuli.
Collapse
Affiliation(s)
- Coralie Brifault
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Andrew S Gilder
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Emilia Laudati
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Michael Banki
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Steven L Gonias
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
20
|
Astaxanthin acts via LRP-1 to inhibit inflammation and reverse lipopolysaccharide-induced M1/M2 polarization of microglial cells. Oncotarget 2017; 8:69370-69385. [PMID: 29050210 PMCID: PMC5642485 DOI: 10.18632/oncotarget.20628] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia become activated during neuroinflammation and produce neurotoxic and neurotrophic factors, depending on whether they acquire M1 proinflammatory or M2 anti-inflammatory phenotypes. Astaxanthin (ATX), a natural carotenoid, has anti-inflammatory and neuroprotective effects. We investigated whether ATX could reverse M1/M2 polarization and suppress neuroinflammation via low-density lipoprotein receptor-related protein-1 (LRP-1). We observed increased expression of M1 (TNF-α, IL-1β, and CD86) and decreased expression of M2 (Arg-1, IL-10, and CD206) markers in BV2 microglial cells stimulated with lipopolysaccharide (LPS). These alterations were reversed by pretreating the cells with ATX. Activation of the NF-κB and JNK pathways was observed upon LPS stimulation, which was reversed by ATX. ATX-induced M2 polarization was attenuated by inhibition of NF-κB and JNK. Pretreatment of LPS-stimulated BV2 cells with ATX resulted in increased LRP-1 expression. The addition of receptor-associated protein, an LRP-1 antagonist, ameliorated ATX-induced inactivation of NF-κB and JNK signaling, and M2 polarization. ATX promotes M2 polarization to suppress neuroinflammation via LRP-1 by inhibiting NF-κB and JNK signaling. This novel mechanism may suppress neuroinflammation in diseases such as Alzheimer’s disease.
Collapse
|
21
|
Laskowitz DT, Wang H, Chen T, Lubkin DT, Cantillana V, Tu TM, Kernagis D, Zhou G, Macy G, Kolls BJ, Dawson HN. Neuroprotective pentapeptide CN-105 is associated with reduced sterile inflammation and improved functional outcomes in a traumatic brain injury murine model. Sci Rep 2017; 7:46461. [PMID: 28429734 PMCID: PMC5399447 DOI: 10.1038/srep46461] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
At present, there are no proven pharmacological treatments demonstrated to improve long term functional outcomes following traumatic brain injury(TBI). In the setting of non-penetrating TBI, sterile brain inflammatory responses are associated with the development of cerebral edema, intracranial hypertension, and secondary neuronal injury. There is increasing evidence that endogenous apolipoprotein E(apoE) modifies the neuroinflammatory response through its role in downregulating glial activation, however, the intact apoE holoprotein does not cross the blood-brain barrier due to its size. To address this limitation, we developed a small 5 amino acid apoE mimetic peptide(CN-105) that mimics the polar face of the apoE helical domain involved in receptor interactions. The goal of this study was to investigate the therapeutic potential of CN-105 in a murine model of closed head injury. Treatment with CN-105 was associated with a durable improvement in functional outcomes as assessed by Rotarod and Morris Water Maze and a reduction in positive Fluoro-Jade B stained injured neurons and microglial activation. Administration of CN-105 was also associated with reduction in mRNA expression of a subset of inflammatory and immune-related genes.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.,Aegis-CN LLC., Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Chen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David T Lubkin
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Viviana Cantillana
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tian Ming Tu
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Dawn Kernagis
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guanen Zhou
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gary Macy
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hana N Dawson
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
22
|
Rebeck GW. The role of APOE on lipid homeostasis and inflammation in normal brains. J Lipid Res 2017; 58:1493-1499. [PMID: 28258087 DOI: 10.1194/jlr.r075408] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Indexed: 12/24/2022] Open
Abstract
The role of APOE in the risk of Alzheimer's disease (AD) has largely focused on its effects on AD pathological processes. However, there are increasing data that APOE genotype affects processes in normal brains. Studies of young cognitively normal humans show effects of APOE genotype on brain structure and activity. Studies of normal APOE knock-in mice show effects of APOE genotype on brain structure, neuronal markers, and behavior. APOE interactions with molecules important for lipid efflux and lipid endocytosis underlie effects of APOE genotype on neuroinflammation and lipoprotein composition. These effects provide important targets for new therapies for reduction of the risk of AD before any signs of pathogenesis.
Collapse
Affiliation(s)
- G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
23
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Qin X, You H, Cao F, Wu Y, Peng J, Pang J, Xu H, Chen Y, Chen L, Vitek MP, Li F, Sun X, Jiang Y. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study. J Neurotrauma 2016; 34:943-951. [PMID: 27411737 DOI: 10.1089/neu.2016.4485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.
Collapse
Affiliation(s)
- Xinghu Qin
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China .,2 Department of Neurosurgery, People's Hospital of Deyang City , Deyang, China
| | - Hong You
- 3 Department of Oncology, People's Hospital of Deyang City , Deyang, China
| | - Fang Cao
- 4 Department of Cerebrovascular Disease, the Affiliated Hospital of Zunyi Medical College , Zunyi, China
| | - Yue Wu
- 5 Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jianhua Peng
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Jinwei Pang
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Hong Xu
- 2 Department of Neurosurgery, People's Hospital of Deyang City , Deyang, China
| | - Yue Chen
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Ligang Chen
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Michael P Vitek
- 6 Department of Medicine (Neurology), Duke University Medical Center , Medicine, Durham, North Carolina
| | - Fengqiao Li
- 7 Cognosci, Inc., Research Triangle Park , North Carolina
| | - Xiaochuan Sun
- 5 Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yong Jiang
- 1 Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University , Luzhou, China
| |
Collapse
|
25
|
Neuronal low-density lipoprotein receptor-related protein 1 (LRP1) enhances the anti-apoptotic effect of intravenous immunoglobulin (IVIg) in ischemic stroke. Brain Res 2016; 1644:192-202. [DOI: 10.1016/j.brainres.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 05/12/2016] [Indexed: 11/21/2022]
|
26
|
Zhou Y, Zhao W, Al-Muhtasib N, Rebeck GW. APOE Genotype Alters Immunoglobulin Subtypes in Knock-In Mice. J Alzheimers Dis 2016; 46:365-74. [PMID: 25737044 DOI: 10.3233/jad-142184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (APOE) alleles are strongly related to the risk of Alzheimer's disease (AD). APOE genotype also affects inflammatory processes in response to damage. We tested whether APOE genotype affected the levels of specific immunoglobulins in healthy, uninfected APOE knock-in mice. We measured specific immunoglobulins in brain, spleen, and plasma. Levels of total IgG in brain and spleen were highest in APOE-ɛ3 mice, significantly higher than in APOE-ɛ2 and APOE-ɛ4 mice; no differences were observed for levels of total IgG in plasma. We also measured specific subtypes of IgG. IgG1 was only detectable in plasma and did not differ by APOE genotype. IgG3 was detectable in plasma and spleen, and also did not differ by APOE genotype. IgG2b showed the same pattern as levels of total IgG by APOE genotype, with the highest levels of IgG2b in brain, spleen, and plasma of APOE-ɛ3 mice. IgG2a showed an entirely different pattern, with significantly higher levels in spleen and plasma of APOE-ɛ4 mice compared to APOE-ɛ2 and APOE-ɛ3 mice. We also measured IgM and IgA in spleens and plasma of these mice. In spleen, APOE-ɛ4 mice had the lowest IgA levels and the highest levels of IgM; both being significantly different from APOE-ɛ2 mice. In total, murine IgG2a and IgM were highest in APOE-ɛ4 mice, while total IgG and Ig2b were highest in APOE-ɛ3 mice. These dramatically different distributions of immunoglobulins could allow for human AD risk biomarkers based on specific immunoglobulin subtypes.
Collapse
Affiliation(s)
- Ye Zhou
- University of Florida, Gainesville, FL, USA
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Nour Al-Muhtasib
- Department of Pharmacology, Georgetown University, Washington, DC, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
27
|
Abstract
Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that they are monocytic-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a resting phenotype characterized by the presence of dense branching processes, called ramifications. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, such as molecular factors associated to brain damage or infection, they get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Here, we review the origin of microglia and we summarize the main molecular signals involved in controlling their function under physiological conditions. In addition, their implication in the pathogenesis of multiple sclerosis and stress is discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University Quebec, CA, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University Quebec, CA, Canada
| |
Collapse
|
28
|
Auderset L, Cullen CL, Young KM. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS One 2016; 11:e0155878. [PMID: 27280679 PMCID: PMC4900551 DOI: 10.1371/journal.pone.0155878] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022] Open
Abstract
The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation-where expression levels are much higher.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Carlie L. Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Kaylene M. Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
29
|
Wu Y, Pang J, Peng J, Cao F, Vitek MP, Li F, Jiang Y, Sun X. An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage. Neurosci Lett 2016; 627:92-9. [PMID: 27241720 DOI: 10.1016/j.neulet.2016.05.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 01/02/2023]
Abstract
This study investigated the neuroprotective effects of COG1410, an apoliporotein E (apoE)-derived mimic peptide, against early brain injury (EBI) after subarachnoid hemorrhage (SAH). SAH was induced in C57BL/6J mice (n=68) by endovascular perforation. Mice received intravenous injection of COG1410 (2mg/kg) or equal volume of vehicle (saline). The mortality rate, neurological score, rotarod latencies, cell apoptosis, microglial activation, pro-inflammatory cytokines production and protein levels of apoptotic and inflammatory markers were assessed at 24h after sham operation or SAH. Results showed that COG1410 alleviated the neurological deficits associated with SAH. Compared with vehicle treatment group, the number of apoptotic cells and activated microglia decreased significantly in the COG1410 treated group. COG1410 enhanced Akt activation and suppressed caspase-3 cleavage. The imbalance of Bax and Bcl-2 induced by SAH was regulated by COG1410. Additionally, COG1410 attenuated cytokines production of IL-1β, IL-6 and TNF-α and suppressed the activation of JNK/c-Jun and NF-κB. Taken together, COG1410 protected against EBI via reducing apoptosis and neuroinflammation, through mechanisms that involve the regulation of apoptotic signaling and microglial activation. COG1410 is a potential neuroprotective agent for SAH treatment.
Collapse
Affiliation(s)
- Yue Wu
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 400016, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fang Cao
- Department of Cerebrovascular Disease, The Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China
| | - Michael P Vitek
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Fengqiao Li
- Cognosci, Inc., Research Triangle Park, NC 27710, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Xiaochuan Sun
- Departement of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
30
|
Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G, LaDu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener 2015; 10:52. [PMID: 26438529 PMCID: PMC4595327 DOI: 10.1186/s13024-015-0048-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD.
Collapse
Affiliation(s)
- Manasi Malik
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Ishita Parikh
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Jared B Vasquez
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Conor Smith
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| |
Collapse
|
31
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
32
|
Hemopexin-dependent heme uptake via endocytosis regulates the Bach1 transcription repressor and heme oxygenase gene activation. Biochim Biophys Acta Gen Subj 2014; 1840:2351-60. [DOI: 10.1016/j.bbagen.2014.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
|
33
|
Wang CQ, Yang CS, Yang Y, Pan F, He LY, Wang AM. An apolipoprotein E mimetic peptide with activities against multidrug-resistant bacteria and immunomodulatory effects. J Pept Sci 2014; 19:745-50. [PMID: 24243597 DOI: 10.1002/psc.2570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/31/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022]
Abstract
Apolipoprotein E (apoE) mimetic peptides derived from the low-density lipoprotein receptor-binding region of apoE with both activities against multidrug-resistant bacteria and immunomodulatory effects have not previously been reported. We identified an apoE mimetic peptide analogue of the receptor-binding region of apoE (abbreviated as apoE23) with the sequence of LRKLRKRLVRLASHLRKLRKRLL, which exhibited high antibacterial effects. The minimal inhibitory concentration of apoE23 against multidrug-resistant Acinetobacter baumannii was 6 µg/ml. The antimicrobial activity of apoE23 depended on its amphipathic α-helical conformation. Moreover, apoE23 downregulated the expression of tumour necrosis factor-α, interleukin-6 and interleukin-10 in lipopolysaccharide-induced THP-1 cells. ApoE23 exhibits potential in future clinical applications.
Collapse
Affiliation(s)
- Chuan-qing Wang
- The Clinical Microbiology Lab, Department of Nosocomial Infection Control, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | | | | | | | | | | |
Collapse
|
34
|
Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J Neuroinflammation 2014; 11:111. [PMID: 24948358 PMCID: PMC4077554 DOI: 10.1186/1742-2094-11-111] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Having the apolipoprotein E4 (APOE-ϵ4) allele is the strongest genetic risk factor for the development of Alzheimer's disease (AD). Accumulation of amyloid beta (Aβ) in the brain is influenced by APOE genotype. Transgenic mice co-expressing five familial AD mutations (5xFAD) in the presence of human APOE alleles (ϵ2, ϵ3 or ϵ4) exhibit APOE genotype-specific differences in early Aβ accumulation, suggesting an interaction between APOE and AD pathology. Whether APOE genotype affects Aβ-plaque-associated neuroinflammation remains unclear. In the current study, we address the role of APOE genotype on Aβ-associated microglial reactivity in the EFAD transgenic mouse model. METHODS We analyzed Aβ-induced glial activation in the brains of 6-month-old EFAD transgenic mice (E2FAD, E3FAD and E4FAD). Region-specific morphological profiles of Aβ plaques in EFAD brain sections were compared using immunofluorescence staining. We then determined the degree of glial activation in sites of Aβ deposition while comparing levels of the inflammatory cytokine Interleukin-1β (IL-1β) by ELISA. Finally, we quantified parameters of Aβ-associated microglial reactivity using double-stained EFAD brain sections. RESULTS Characterization of Aβ plaques revealed there were larger and more intensely stained plaques in E4FAD mice relative to E2FAD and E3FAD mice. E4FAD mice also had a greater percentage of compact plaques in the subiculum than E3FAD mice. Reactive microglia and dystrophic astrocytes were prominent in EFAD brains, and primarily localized to two sites of significant Aβ deposition: the subiculum and deep layers of the cortex. Cortical levels of IL-1β were nearly twofold greater in E4FAD mice relative to E3FAD mice. To control for differences in levels of Aβ in the different EFAD mice, we analyzed the microglia within domains of specific Aβ deposits. Morphometric analyses revealed increased measures of microglial reactivity in E4FAD mice, including greater dystrophy, increased fluorescence intensity and a higher density of reactive cells surrounding cortical plaques, than in E3FAD mice. CONCLUSIONS In addition to altering morphological profiles of Aβ deposition, APOE genotype influences Aβ-induced glial activation in the adult EFAD cortex. These data support a role for APOE in modulating Aβ-induced neuroinflammatory responses in AD progression, and support the use of EFAD mice as a suitable model for mechanistic studies of Aβ-associated neuroinflammation.
Collapse
Affiliation(s)
- Gustavo A Rodriguez
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, NW Washington, DC 20057, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, NW Washington, DC 20057, USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The lipoprotein receptor low-density lipoprotein receptor-related protein 1 (LRP1) functions both in endocytosis and in signal transduction. Recently, it has become clear that LRP1 modulates the inflammatory response to various noxious stimuli. This review is to summarize our current knowledge about the role of LRP1 in inflammation. RECENT FINDINGS LRP1 modulates the inflammatory response in different organs and under various pathophysiological conditions. Both direct regulation of inflammatory signaling through the binding of extracellular messengers or intracellular signaling molecules and indirect modulation through the interaction with other transmembrane receptors or the endocytosis of extracellular factors have been described. Regulation by LRP1 effects cytokine secretion, phagocytosis and migration of cells of the immune system. SUMMARY In recent years, LRP1 emerged as an important regulator of the inflammatory response. Owing to the ubiquitous expression of this receptor, this function is of importance in different organs and under various pathophysiological conditions in which inflammation contributes to disease, that is atherosclerosis, neurodegeneration and organ fibrosis, for example of the lung or liver.
Collapse
Affiliation(s)
- Petra May
- Department of Medicine II and Center for Neurosciences, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Wang H, Anderson LG, Lascola CD, James ML, Venkatraman TN, Bennett ER, Acheson SK, Vitek MP, Laskowitz DT. ApolipoproteinE mimetic peptides improve outcome after focal ischemia. Exp Neurol 2012; 241:67-74. [PMID: 23219883 DOI: 10.1016/j.expneurol.2012.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/24/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Growing clinical evidence implicates isoform-specific effects of apolipoprotein E (apoE) in reducing neuroinflammation and mediating adaptive responses following ischemic and traumatic brain injury. However, the intact apoE holoprotein does not cross the blood-brain barrier and thus has limited therapeutic potential. We have created a small peptide, COG1410 (acetyl-AS-Aib-LRKL-Aib-KRLL-amide), derived from the apoE receptor-binding region. COG1410 retains the anti-inflammatory and neuroprotective biological properties of the intact holoprotein and penetrates the blood-brain barrier. In the current study, we utilized a murine model of transient focal cerebral ischemia and reperfusion to demonstrate that intravenous (IV) administration of COG1410 reduces infarct volume and radiographic progression of infarct, and improves functional outcome as assessed by rotarod when delivered up to 4h after ischemia onset.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Medicine (Neurology), Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C, Rebeck GW, LaDu MJ. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012; 60:559-69. [PMID: 22228589 DOI: 10.1002/glia.22289] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.
Collapse
Affiliation(s)
- Yuangui Zhu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC, Möller T, Morrison RS, Garden GA. Presenilin 2 is the predominant γ-secretase in microglia and modulates cytokine release. PLoS One 2010; 5:e15743. [PMID: 21206757 PMCID: PMC3012089 DOI: 10.1371/journal.pone.0015743] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/23/2010] [Indexed: 01/09/2023] Open
Abstract
Presenilin 1 (PS1) and Presenilin 2 (PS2) are the enzymatic component of the γ-secretase complex that cleaves amyloid precursor protein (APP) to release amyloid beta (Aβ) peptide. PS deficiency in mice results in neuroinflammation and neurodegeneration in the absence of accumulated Aβ. We hypothesize that PS influences neuroinflammation through its γ-secretase action in CNS innate immune cells. We exposed primary murine microglia to a pharmacological γ-secretase inhibitor which resulted in exaggerated release of TNFα and IL-6 in response to lipopolysaccharide. To determine if this response was mediated by PS1, PS2 or both we used shRNA to knockdown each PS in a murine microglia cell line. Knockdown of PS1 did not lead to decreased γ-secretase activity while PS2 knockdown caused markedly decreased γ-secretase activity. Augmented proinflammatory cytokine release was observed after knockdown of PS2 but not PS1. Proinflammatory stimuli increased microglial PS2 gene transcription and protein in vitro. This is the first demonstration that PS2 regulates CNS innate immunity. Taken together, our findings suggest that PS2 is the predominant γ-secretase in microglia and modulates release of proinflammatory cytokines. We propose PS2 may participate in a negative feedback loop regulating inflammatory behavior in microglia.
Collapse
Affiliation(s)
- Suman Jayadev
- Department of Neurology, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain. Free Radic Biol Med 2010; 49:1798-803. [PMID: 20869432 PMCID: PMC2970765 DOI: 10.1016/j.freeradbiomed.2010.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/01/2010] [Accepted: 09/15/2010] [Indexed: 11/25/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized histopathologically by the presence of senile plaques (SPs), neurofibrillary tangles, and synapse loss. The main component of SPs is amyloid-β peptide (Aβ), which has been associated with increased oxidative stress, leading to oxidative modification of proteins and consequently to neurotoxicity and neurodegeneration. Low-density lipoprotein receptor-related protein 1 (LRP1) is the primary moiety responsible for the efflux of Aβ from the brain to the blood across the blood-brain barrier. Impaired brain-to-blood transport of Aβ by LRP1 has been hypothesized to contribute to increased levels of Aβ in AD brain. The cause of LRP1 dysfunction is unknown, but we have hypothesized that Aβ oxidizes LRP1, thus damaging its own transporter. Consistent with this notion, we report in this study a significant increase in the levels of the lipid peroxidation product 4-hydroxy-2-nonenal bound to transmembrane LRP1 in AD hippocampus. In contrast, the levels of LRP1-resident 3-nitrotyrosine did not show a significant increase in AD hippocampus compared to age-matched controls. Based on this study, we propose that Aβ impairs its own efflux from the brain by oxidation of its transporter LRP1, leading to increased Aβ deposition in brain, thereby contributing to subsequent cognitive impairment in AD.
Collapse
Affiliation(s)
- Joshua B. Owen
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Christopher D. Aluise
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Michelle A. Erickson
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, St. Louis University, St. Louis, MO 63104, USA
| | - Tulin O. Price
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, St. Louis University, St. Louis, MO 63104, USA
| | - Guojun Bu
- Departments of Pediatrics and of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William A. Banks
- GRECC- VA Puget Sound Health Care System, Seattle, WA and Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
40
|
Langlois B, Perrot G, Schneider C, Henriet P, Emonard H, Martiny L, Dedieu S. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One 2010; 5:e11584. [PMID: 20644732 PMCID: PMC2904376 DOI: 10.1371/journal.pone.0011584] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/20/2010] [Indexed: 01/16/2023] Open
Abstract
Background The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.
Collapse
Affiliation(s)
- Benoit Langlois
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Hervé Emonard
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Laurent Martiny
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
- * E-mail:
| |
Collapse
|
41
|
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140:918-34. [PMID: 20303880 PMCID: PMC2873093 DOI: 10.1016/j.cell.2010.02.016] [Citation(s) in RCA: 2685] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/25/2010] [Accepted: 02/05/2010] [Indexed: 02/08/2023]
Abstract
Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease.
Collapse
Affiliation(s)
- Christopher K. Glass
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaoru Saijo
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093, USA
| | - Beate Winner
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Camino-López S, Badimon L, González A, Canals D, Peña E, Llorente-Cortés V. Aggregated low density lipoprotein induces tissue factor by inhibiting sphingomyelinase activity in human vascular smooth muscle cells. J Thromb Haemost 2009; 7:2137-46. [PMID: 19817993 DOI: 10.1111/j.1538-7836.2009.03638.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Our previous results demonstrated that aggregated low density lipoprotein (agLDL) induces tissue factor (TF) expression and activation through Rho A translocation in human vascular smooth muscle cells (VSMC). We also previously demonstrated that membrane sphingomyelin (SM) content is higher in agLDL-exposed VSMC than in control cells. The main enzymes regulating cellular SM content are the family of sphingomyelinases (Smases) that hydrolize SM to phosphorylcholine and ceramide (CER). OBJECTIVES We wished to investigate whether agLDL has the ability to modulate acidic- (A-) and neutral (N-) Smase activity and whether or not this effect is related to the upregulatory effect of agLDL on Rho A translocation and TF activation in human VSMC. METHODS AND RESULTS By measuring generated [(14)C]-phosphorylcholine, we found that agLDL significantly decreased A-Smase and specially N-Smase activity. Pharmacological Smase inhibitors increased Rho A and TF. Specific loss-of-function of A-Smase or N-Smase 1 (N1-Smase) by siRNA treatment (500 nmol L(-1), 12 hours) dramatically increased membrane Rho A protein levels (5- and 3-fold, respectively). Concomitantly, TF protein expression and TF procoagulant activity were also increased. Inhibition of A-Smase or N-Smase activity by agLDL, siRNA-anti A- or N1-Smase or pharmacological treatment significantly increased the SM content of vascular cells. The inhibition of SM synthesis by fumonisin B(1) (FB(1)) prevented the upregulatory effect of agLDL on TF. CONCLUSIONS These results demonstrate that inhibition of both A- and N1-Smase might explain the upregulatory effect of agLDL on TF activation, and suggest that this effect is related, at least in part, to membrane SM enrichment.
Collapse
Affiliation(s)
- S Camino-López
- Cardiovascular Research Center of Barcelona, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | | | | | | | | |
Collapse
|