1
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Yang CH, Bergsma A, Drougard A, Dror E, Chandler DP, Schramek D, Triche TJ, Pospisilik JA. TRIM28-dependent developmental heterogeneity determines cancer susceptibility through distinct epigenetic states. NATURE CANCER 2025; 6:385-403. [PMID: 39856421 PMCID: PMC11864977 DOI: 10.1038/s43018-024-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
Mutations in cancer risk genes increase susceptibility, but not all carriers develop cancer. Indeed, while DNA mutations are necessary drivers of cancer, only a small subset of mutated cells go on to cause the disease. To date, the mechanisms underlying individual cancer susceptibility remain unclear. Here, we took advantage of a unique mouse model of intrinsic developmental heterogeneity (Trim28+/D9) to investigate whether early-life epigenetic variation influences cancer susceptibility later in life. We found that heterozygosity of Trim28 is sufficient to generate two distinct early-life epigenetic states associated with differing cancer susceptibility. These developmentally primed states exhibit differential methylation patterns at typically silenced heterochromatin, detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential, frequently mutated in human cancers and correlated with poor prognosis. This study provides genetic evidence that intrinsic developmental heterogeneity can prime individual, lifelong cancer susceptibility.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hsiang Yang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Pediatrics, MSU College of Human Medicine, East Lansing, MI, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
2
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
3
|
Zheng Y, Luo L, Lambertz IU, Conti CJ, Fuchs-Young R. Early Dietary Exposures Epigenetically Program Mammary Cancer Susceptibility through Igf1-Mediated Expansion of the Mammary Stem Cell Compartment. Cells 2022; 11:2558. [PMID: 36010633 PMCID: PMC9406400 DOI: 10.3390/cells11162558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Diet is a critical environmental factor affecting breast cancer risk, and recent evidence shows that dietary exposures during early development can affect lifetime mammary cancer susceptibility. To elucidate the underlying mechanisms, we used our established crossover feeding mouse model, where exposure to a high-fat and high-sugar (HFHS) diet during defined developmental windows determines mammary tumor incidence and latency in carcinogen-treated mice. Mammary tumor incidence is significantly increased in mice receiving a HFHS post-weaning diet (high-tumor mice, HT) compared to those receiving a HFHS diet during gestation (low-tumor mice, LT). The current study revealed that the mammary stem cell (MaSC) population was significantly increased in mammary glands from HT compared to LT mice. Igf1 expression was increased in mammary stromal cells from HT mice, where it promoted MaSC self-renewal. The increased Igf1 expression was induced by DNA hypomethylation of the Igf1 Pr1 promoter, mediated by a decrease in Dnmt3b levels. Mammary tissues from HT mice also had reduced levels of Igfbp5, leading to increased bioavailability of tissue Igf1. This study provides novel insights into how early dietary exposures program mammary cancer risk, demonstrating that effective dietary intervention can reduce mammary cancer incidence.
Collapse
Affiliation(s)
- Yuanning Zheng
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Isabel U. Lambertz
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Claudio J. Conti
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, 28903 Madrid, Spain
| | - Robin Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
4
|
Zapaterini JR, Fonseca ARB, Bidinotto LT, Colombelli KT, Rossi ALD, Kass L, Justulin LA, Barbisan LF. Maternal Low-Protein Diet Deregulates DNA Repair and DNA Replication Pathways in Female Offspring Mammary Gland Leading to Increased Chemically Induced Rat Carcinogenesis in Adulthood. Front Cell Dev Biol 2022; 9:756616. [PMID: 35178394 PMCID: PMC8844450 DOI: 10.3389/fcell.2021.756616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague-Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.
Collapse
Affiliation(s)
- Joyce R Zapaterini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Antonio R B Fonseca
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Botucatu, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luis F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Proença ICT, Gonçalves LK, Schmitz F, Mello A, Funchal CS, Wyse A, Dani C. Purple grape juice consumption during the gestation reduces acetylcholinesterase activity and oxidative stress levels provoked by high-fat diet in hippocampus from adult female rats descendants. AN ACAD BRAS CIENC 2021; 93:e20191002. [PMID: 34190844 DOI: 10.1590/0001-3765202120191002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
The enzyme acetylcholinesterase participates in the end of cholinergic transmission and it has been shown that its activity is increased in some diseases that affect the brain, including Alzheimer disease. The objective of this study was to investigate the effect of purple grape juice consumption with or without high-fat diet in the gestational and lactation period on acetylcholinesterase activity and oxidative stress parameters in the hippocampus of female descendants. During pregnancy and lactation, 40 female Wistar rats received a control diet or a high-fat diet, with half of them receiving grape juice. After lactation, the female descendants received water and control diet in ad libitum until euthanasia on the 120 postnatal day. Hippocampus from were removed for analysis of AChE activity, protein oxidation and lipid peroxidation. It was observed that high-fat diet consumption during the pregnancy increased the AChE activity and the grape juice reduced this activity in descendants. The same was observed in protein oxidation, the descendants from high-fat diet had significantly highest values, and grape juice decreased the levels. We conclude that dietary choices during pregnancy can alter the acetylcholinesterase levels and grape juice is an important alternative to improve this function in adulthood.
Collapse
Affiliation(s)
- Isabel C T Proença
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Luciana K Gonçalves
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Alexandre Mello
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Claudia S Funchal
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Angela Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Systemic alterations play a dominant role in epigenetic predisposition to breast cancer in offspring of obese fathers and is transmitted to a second generation. Sci Rep 2021; 11:7317. [PMID: 33795711 PMCID: PMC8016877 DOI: 10.1038/s41598-021-86548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations. In this study, we show that mammary glands from F1 control (CO) female offspring exhibit enhanced growth when transplanted into OID females compared to CO mammary glands transplanted into CO females. Similarly, carcinogen-induced mammary tumors from F1 CO female offspring transplanted into OID females has a higher proliferation/apoptosis rate. Further, we show that granddaughters (F2) from the OID grand-paternal germline have accelerated tumor growth compared to CO granddaughters. This between-generation transmission of cancer predisposition is associated with changes in sperm tRNA fragments in OID males. Our findings indicate that systemic and mammary stromal alterations are significant contributors to programming of mammary development and likely cancer predisposition in OID daughters. Our data also show that breast cancer predisposition is transmitted to subsequent generations and may explain some familial cancers, if confirmed in humans.
Collapse
|
7
|
Early life fluoxetine treatment causes long-term lean phenotype in skeletal muscle of rats exposed to maternal lard-based high-fat diet. Biomed Pharmacother 2020; 131:110727. [PMID: 32927255 DOI: 10.1016/j.biopha.2020.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
There is a concern about early life exposure to Selective Serotonin Reuptake Inhibitors (SSRI) in child development and motor system maturation. Little is known, however, about the interaction of environmental factors, such as maternal nutrition, associated with early exposure to SSRI. The increased maternal consumption of high-fat diets is worrisome and affects serotonin system development with repercussions in body phenotype. This study aimed to assess the short- and long-term effects of neonatal fluoxetine treatment on the body and skeletal muscle phenotype of rats exposed to a maternal lard-based high-fat (H) diet during the perinatal period. A maternal lard-based high-fat diet causes reduced birth weight, a short-term reduction in type IIA fibers in the soleus muscle, and in type IIB fibers in the Extensor Digitorum Longus (EDL) muscle, reducing Lactate Dehydrogenase (LDH) activity in both muscles. In the long-term, the soleus showed reduced muscle weight, smaller area and perimeter of muscle fibers, while the EDL muscle showed reduced Citrate Synthase (CS) activity in offspring from the rats on the maternal lard-based high-fat diet. Early-life exposure to fluoxetine reduced body weight and growth and reduced soleus weight and enzymatic activity in young rats. Exposure to neonatal fluoxetine in adult rats caused a decreased body mass index, less food intake, and reduced muscle weight with reduced CS and LDH activity. Neonatal fluoxetine in young rats exposed to a maternal lard-based high-fat diet caused reduced body weight and growth, reduced soleus weight as well as area and perimeter of type I muscle fibers. In adulthood, there was a reduction in food intake, increased proportion of IIA type fibers, reduced area and perimeter of type IIB, and reduction in levels of CS activity in EDL muscle. Neonatal fluoxetine treatment in rats exposed to a maternal lard-based, high-fat diet induces a reduction in muscle weight, an increase in the proportion of oxidative fibers and greater oxidative enzymatic activity in adulthood.
Collapse
|
8
|
da Cruz RS, Chen E, Smith M, Bates J, de Assis S. Diet and Transgenerational Epigenetic Inheritance of Breast Cancer: The Role of the Paternal Germline. Front Nutr 2020; 7:93. [PMID: 32760734 PMCID: PMC7373741 DOI: 10.3389/fnut.2020.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade has made evident that in addition to passing their genetic material at conception, parents also transmit a molecular memory of past environmental experiences, including nutritional status, to their progeny through epigenetic mechanisms. In the 1990s, it was proposed that breast cancer originates in utero. Since then, an overwhelming number of studies in human cohorts and animal models have provided support for that hypothesis. It is becoming clear, however, that exposure in the parent generation can lead to multigenerational and transgenerational inheritance of breast cancer. Importantly, recent data from our lab and others show that pre-conception paternal diets reprogram the male germline and modulate breast cancer development in offspring. This review explores the emerging evidence for transgenerational epigenetic inheritance of breast cancer focusing on studies associated with ancestral nutritional factors or related markers such as birth weight. We also explore paternal factors and the epigenetic mechanisms of inheritance through the male germline while also reviewing the existing literature on maternal exposures in pregnancy and its effects on subsequent generations. Finally, we discuss the importance of this mode of inheritance in the context of breast cancer prevention, the challenges, and outstanding research questions in the field.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan Smith
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jaedus Bates
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
9
|
DNA methylation and one-carbon metabolism related nutrients and polymorphisms: analysis after mandatory flour fortification with folic acid. Br J Nutr 2020; 123:23-29. [PMID: 31583988 DOI: 10.1017/s0007114519002526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a growing research interest in determining whether changes in the global status of DNA methylation are related to the environment, in particular, to one-carbon metabolism. So, our aim was to investigate the effect of dietary methyl-group donor intake (methionine, folate, choline, betaine, vitamins B2, B6 and B12), biomarkers (total folate, unmetabolised folic acid (FA), 5-methyltetrahydrofolate, homocysteine, vitamins B6 and B12 concentrations) and genetic variants (polymorphisms involved in one-carbon metabolism) on global DNA methylation in a population exposed to mandatory flour fortification with FA. A cross-sectional study of health and living conditions was conducted among a representative sample of residents in São Paulo, Brazil. The mean of global DNA methylation was lower in young people than in adults and the elderly (P = 0·049). No differences between genotypes of polymorphism and global DNA methylation mean were identified. We observed that the increase in betaine intake led to an absolute change in percentage of DNA methylation (β = 0·0005, P = 0·024) using multiple regression. Betaine intake alone was associated with an absolute change in percentage of global DNA methylation. The study did not find an association between global DNA methylation and folate status even in a population exposed to mandatory flour fortification with FA.
Collapse
|
10
|
da Cruz RS, Andrade FDO, Carioni VMDO, Rosim MP, Miranda MLP, Fontelles CC, de Oliveira PV, Barbisan LF, Castro IA, Ong TP. Dietary zinc deficiency or supplementation during gestation increases breast cancer susceptibility in adult female mice offspring following a J-shaped pattern and through distinct mechanisms. Food Chem Toxicol 2019; 134:110813. [PMID: 31505237 DOI: 10.1016/j.fct.2019.110813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Zinc is required for fetal development and is involved in key processes associated with breast carcinogenesis. We evaluated whether maternal zinc deficiency or supplementation during gestation influences female offspring susceptibility to breast cancer in adulthood. C57BL/6 mice consumed during gestation control (30 p.p.m. zinc), zinc-deficient (8 p.p.m) or zinc-supplemented (45 p.p.m.) diets. Maternal zinc supplementation increased in female mice offspring the incidence of chemically-induced mammary adenocarcinomas that were heavier, compared to control group. This was accompanied by a decreased number of terminal end buds, increased cell proliferation and apoptosis, and increased tumor suppressors p21, p53 and Rassf1, Zfp382 and Stat3 expression in mammary glands, as well as increased zinc status. Although maternal zinc deficiency did not alter the incidence of these lesions, it also induced heavier mammary adenocarcinomas, compared to control group. These effects were accompanied by a decreased number of terminal end buds, increased proto-oncogenes c-Myc and Lmo4 expression and H3K9Me3 and H4K20Me3 epigenetic marks in mammary glands of offspring, and decreased zinc status and increased levels of oxidative marker malondialdehyde. The data suggest that both maternal zinc deficiency and supplementation during gestation programmed increased breast cancer susceptibility in adult mice offspring following a J-shaped pattern through distinct mechanisms.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | | | - Mariana Papaléo Rosim
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | - Mayara Lilian Paulino Miranda
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | - Camile Castilho Fontelles
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | | | - Luis Fernando Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil
| | - Inar Alves Castro
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), 05508-000, São Paulo, Brazil; Food Research Center (FoRC), 05508-000, São Paulo, Brazil.
| |
Collapse
|
11
|
Christians JK, Lennie KI, Wild LK, Garcha R. Effects of high-fat diets on fetal growth in rodents: a systematic review. Reprod Biol Endocrinol 2019; 17:39. [PMID: 30992002 PMCID: PMC6469066 DOI: 10.1186/s12958-019-0482-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Maternal nutrition during pregnancy has life-long consequences for offspring. However, the effects of maternal overnutrition and/ or obesity on fetal growth remain poorly understood, e.g., it is not clear why birthweight is increased in some obese pregnancies but not in others. Maternal obesity is frequently studied using rodents on high-fat diets, but effects on fetal growth are inconsistent. The purpose of this review is to identify factors that contribute to reduced or increased fetal growth in rodent models of maternal overnutrition. METHODS We searched Web of Science and screened 2173 abstracts and 328 full texts for studies that fed mice or rats diets providing ~ 45% or ~ 60% calories from fat for 3 weeks or more prior to pregnancy. We identified 36 papers matching the search criteria that reported birthweight or fetal weight. RESULTS Studies that fed 45% fat diets to mice or 60% fat diets to rats generally did not show effects on fetal growth. Feeding a 45% fat diet to rats generally reduced birth and fetal weight. Feeding mice a 60% fat diet for 4-9 weeks prior to pregnancy tended to increase in fetal growth, whereas feeding this diet for a longer period tended to reduce fetal growth. CONCLUSIONS The high-fat diets used most often with rodents do not closely match Western diets and frequently reduce fetal growth, which is not a typical feature of obese human pregnancies. Adoption of standard protocols that more accurately mimic effects on fetal growth observed in obese human pregnancies will improve translational impact in this field.
Collapse
Affiliation(s)
- Julian K. Christians
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Kendra I. Lennie
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Lisa K. Wild
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Raajan Garcha
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
12
|
Pinheiro-Castro N, Silva LBAR, Novaes GM, Ong TP. Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:149-161. [DOI: 10.1007/978-3-030-12668-1_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Liu J, Wang H, Yin Y, Li Q, Zhang M. NKAP functions as an oncogene and its expression is induced by CoCl 2 treatment in breast cancer via AKT/mTOR signaling pathway. Cancer Manag Res 2018; 10:5091-5100. [PMID: 30464609 PMCID: PMC6214303 DOI: 10.2147/cmar.s178919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose NKAP plays an important role in transcriptional repression, T-cell development, maturation and function acquisition, maintenance and survival of hematopoietic stem cells, and RNA splicing. In this study, we tried to explore the physiological role of NKAP in breast cancer. Methods We investigated NKAP expression in breast cancer patients and normal controls and its correlation with survival in breast cancer patients by searching on GEPIA. We knocked down the expression of NKAP in MCF-7 cells by RNAi technique and studied its effect on cell proliferation, migration, invasion, and apoptosis. And we revealed the effect of NKAP on MCF-7 cells under hypoxic conditions in vitro. Results NKAP was differentially expressed in breast cancer and normal tissues and is a potential prognostic indicator of breast cancer. Subsequently, NKAP knockdown significantly inhibited the proliferation and clonality of MCF-7 cells and induced its apoptosis through caspase 3-dependent pathway. In addition, knockdown of NKAP could strongly inhibit the migration and invasion of MCF-7 cells. In MCF-7 cells, NKAP affected the AKT/mTOR signaling pathway and markedly reduced the phosphorylation of AKT and mTOR, as well as the downstream protein. What’s interesting is CoCl2 was found to induce NKAP expression in MCF-7 cells. Downregulation of NKAP hindered the impact of CoCl2 on the MCF-7 cells, including cell proliferation and invasion, by adjusting AKT/mTOR signaling. Conclusion NKAP functioned as an oncogene, and its expression was induced by hypoxia in breast cancer via AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiangtao Liu
- Department of Internal Medical Oncology, Binzhou Central Hospital, Binzhou 251700, Shandong, People's Republic China
| | - Honghui Wang
- Department of Breast and Thyroid Surgery, Binzhou Central Hospital, Binzhou 251700, Shandong, People's Republic of China
| | - Yanhai Yin
- Department of Internal Medical Oncology, Binzhou Central Hospital, Binzhou 251700, Shandong, People's Republic China
| | - Qing Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250000, Shandong, People's Republic of China, ;
| | - Mei Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250000, Shandong, People's Republic of China, ;
| |
Collapse
|
14
|
Grape Juice Consumption with or without High Fat Diet during Pregnancy Reduced the Weight Gain and Improved Lipid Profile and Oxidative Stress Levels in Liver and Serum from Wistar Rats. BEVERAGES 2018. [DOI: 10.3390/beverages4040078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to evaluate the effects of high fat diet with or without grape juice during the pregnancy on gestational weight gain, biochemical parameters, and oxidative stress in plasma and liver from Wistar rats. Forty-nine rats were divided into four groups: control diet group (CD), high fat diet (HFD), grape juice and control diet (PGJCD), and grape juice and high fat diet (PGJHFD). During the treatment the weight gain of the rats was tracked. They had free access to their respective diets during 42 days of treatment. After offspring weaning, the mother rats were euthanized and blood and liver were collected. The high fat diet increased the total cholesterol and triglycerides serum levels as well as carbonyl levels in the liver, however this diet reduced the high-density lipoprotein (HDL) and urea levels in serum. Grape juice consumption reduced gestational body weight gain. In liver, the juice consumption increased sulfhydryl levels and reduced the superoxide dismutase (SOD) activity and TBARS level, in serum the consumption reduced aspartate aminotransferase (AST) and TBARS. We can conclude that the consumption of a diet rich in fat can promotes harmful effects on health during pregnancy, however the consumption of grape juice seems to be an important alternative to prevent oxidative damages and to promote the improvement of health.
Collapse
|
15
|
Grassi TF, Bidinotto LT, Lopes GAD, Zapaterini JR, Rodrigues MAM, Barbisan LF. Maternal western-style diet enhances the effects of chemically-induced mammary tumors in female rat offspring through transcriptome changes. Nutr Res 2018; 61:41-52. [PMID: 30683438 DOI: 10.1016/j.nutres.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that early life intake of high-fat diet or western-style diet (WD) enhances the development of mammary tumors in adult female rats. Thus, we hypothesized that maternal WD throughout pregnancy and the lactation period could speed up the development of MNU-induced mammary tumors and alter their gene expression. For this, the present study investigated the gene expression profile of chemically-induced mammary tumors in female rat offspring from dams fed a WD or a control diet. Pregnant female Sprague-Dawley rats received a WD (high-fat, low-fiber and oligoelements) or a control diet from gestational day 12 until post-natal day (PND) 21. At PND 21, female offspring received a single dose of N-Methyl-N-Nitrosourea (MNU, 50 mg/kg body weight) and were fed a control diet for 13 weeks. Tumor incidence, multiplicity, and latency were recorded and mammary gland samples were collected for histopathology and gene expression analysis. Tumor multiplicity and histological grade were significantly higher and tumor latency was lower in WD offspring compared to control offspring. Transcriptome profiling identified 57 differentially expressed genes in tumors from WD offspring as compared to control offspring. There was also an increase in mRNA expression of genes such as Emp3, Ccl7, Ets1, Abcc5, and Cyr61, indicative of more aggressive disease detected in tumors from WD offspring. Thus, maternal WD diet increased MNU-induced mammary carcinogenesis in adult female offspring through transcriptome changes that resulted in a more aggressive disease.
Collapse
Affiliation(s)
- Tony F Grassi
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata -FACISB, Barretos 14785-002, SP, Brazil
| | - Gisele A D Lopes
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Joyce R Zapaterini
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Maria A M Rodrigues
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Luís F Barbisan
- UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil.
| |
Collapse
|
16
|
Strategies to reduce non-communicable diseases in the offspring: negative and positive in utero programming. J Dev Orig Health Dis 2018; 9:642-652. [PMID: 30111388 DOI: 10.1017/s2040174418000569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs) are a major problem as they are the leading cause of death and represent a substantial economic cost. The 'Developmental Origins of Health and Disease Hypothesis' proposes that adverse stimuli at different life stages can increase the predisposition to these diseases. In fact, adverse in utero programming is a major origin of these diseases due to the high malleability of embryonic development. This review provides a comprehensive analysis of the scientific literature on in utero programming and NCDs highlighting potential medical strategies to prevent these diseases based upon this programming. We fully address the concept and mechanisms involved in this programming (anatomical disruptions, epigenetic modifications and microbiota alterations). We also examine the negative role of in utero programming on the increased predisposition of NCDs in the offspring, which introduces the passive medical approach that consists of avoiding adverse stimuli including an unhealthy diet and environmental chemicals. Finally, we extensively discuss active medical approaches that target the causes of NCDs and have the potential to significantly and rapidly reduce the incidence of NCDs. These approaches can be classified as direct in utero programming modifications and personalized lifestyle pregnancy programs; they could potentially provide transgenerational NCDs protection. Active strategies against NCDs constitute a promising tool for the reduction in NCDs.
Collapse
|
17
|
Ma Z, Kim YM, Howard EW, Feng X, Kosanke SD, Yang S, Jiang Y, Parris AB, Cao X, Li S, Yang X. DMBA promotes ErbB2‑mediated carcinogenesis via ErbB2 and estrogen receptor pathway activation and genomic instability. Oncol Rep 2018; 40:1632-1640. [PMID: 30015966 PMCID: PMC6072406 DOI: 10.3892/or.2018.6545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Environmental factors, including 7,12‑dimethylbenz[a]anthracene (DMBA) exposure, and genetic predisposition, including ErbB2 overexpression/amplification, have been demonstrated to increase breast cancer susceptibility. Although DMBA‑ and ErbB2‑mediated breast cancers are well‑studied in their respective models, key interactions between environmental and genetic factors on breast cancer risk remain unclear. Therefore, the present study aimed to investigate the effect of DMBA exposure on ErbB2‑mediated mammary tumorigenesis. MMTV‑ErbB2 transgenic mice exposed to DMBA (1 mg) via weekly oral gavage for 6 weeks exhibited significantly enhanced mammary tumor development, as indicated by reduced tumor latency and increased tumor multiplicity compared with control mice. Whole mount analysis of premalignant mammary tissues from 15‑week‑old mice revealed increased ductal elongation and proliferative index in DMBA‑exposed mice. Molecular analyses of premalignant mammary tissues further indicated that DMBA exposure enhanced epidermal growth factor receptor (EGFR)/ErbB2 and estrogen receptor (ER) signaling, which was associated with increased mRNA levels of EGFR/ErbB2 family members and ER‑targeted genes. Furthermore, analysis of tumor karyotypes revealed that DMBA‑exposed tumors displayed more chromosomal alterations compared with control tumors, implicating DMBA‑induced chromosomal instability in tumor promotion in this model. Together, the data suggested that DMBA‑induced deregulation of EGFR/ErbB2‑ER pathways plays a critical role in the enhanced chromosomal instability and promotion of ErbB2‑mediated mammary tumorigenesis. The study highlighted gene‑environment interactions that may increase risk of breast cancer, which is a critical clinical issue.
Collapse
Affiliation(s)
- Zhikun Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Young Mi Kim
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaoshan Feng
- Department of Oncology, First Affiliated Hospital of Henan University of Sciences and Technology, Luoyang, Henan 471500, P.R. China
| | - Stanley D Kosanke
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xiaohe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Fontelles CC, da Cruz RS, Hilakivi-Clarke L, de Assis S, Ong TP. Developmental Origins of Breast Cancer: A Paternal Perspective. Methods Mol Biol 2018; 1735:91-103. [PMID: 29380308 DOI: 10.1007/978-1-4939-7614-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The developmental origins of breast cancer have been considered predominantly from a maternal perspective. Although accumulating evidence suggests a paternal programming effect on metabolic diseases, the potential impact of fathers' experiences on their daughters' breast cancer risk has received less attention. In this chapter, we focus on the developmental origins of breast cancer and examine the emerging evidence for a role of fathers' experiences.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Abstract
Under- or overfeeding during pregnancy can lead to behavioral deficits in the offspring in later life. Here, we present a protocol for setting up and carrying out the hyperlocomotion test for assessing behavioral symptoms such as psychosis or mania. As an example, we use the acute rat phencyclidine-injection model which exhibits hyperlocomotion and stereotypic behaviors, resembling the positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Dan Ma
- Department of Neurosciences, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
20
|
Fontelles CC, da Cruz RS, Hilakivi-Clarke L, de Assis S, Ong TP. Investigation of Paternal Programming of Breast Cancer Risk in Female Offspring in Rodent Models. Methods Mol Biol 2018; 1735:207-220. [PMID: 29380314 DOI: 10.1007/978-1-4939-7614-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Emerging experimental evidence show that fathers' experiences during preconception can influence their daughters' risk of developing breast cancer. Here we describe detailed protocols for investigation in rats and mice of paternally mediated breast cancer risk programming effects.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil.
| |
Collapse
|
21
|
Lambertz IU, Luo L, Berton TR, Schwartz SL, Hursting SD, Conti CJ, Fuchs-Young R. Early Exposure to a High Fat/High Sugar Diet Increases the Mammary Stem Cell Compartment and Mammary Tumor Risk in Female Mice. Cancer Prev Res (Phila) 2017; 10:553-562. [DOI: 10.1158/1940-6207.capr-17-0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
|
22
|
Leung YK, Govindarajah V, Cheong A, Veevers J, Song D, Gear R, Zhu X, Ying J, Kendler A, Medvedovic M, Belcher S, Ho SM. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk. Endocr Relat Cancer 2017; 24:365-378. [PMID: 28487351 PMCID: PMC5488396 DOI: 10.1530/erc-17-0006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
In utero exposure to bisphenol A (BPA) increases mammary cancer susceptibility in offspring. High-fat diet is widely believed to be a risk factor of breast cancer. The objective of this study was to determine whether maternal exposure to BPA in addition to high-butterfat (HBF) intake during pregnancy further influences carcinogen-induced mammary cancer risk in offspring, and its dose-response curve. In this study, we found that gestational HBF intake in addition to a low-dose BPA (25 µg/kg BW/day) exposure increased mammary tumor incidence in a 50-day-of-age chemical carcinogen administration model and altered mammary gland morphology in offspring in a non-monotonic manner, while shortening tumor-free survival time compared with the HBF-alone group. In utero HBF and BPA exposure elicited differential effects at the gene level in PND21 mammary glands through DNA methylation, compared with HBF intake in the absence of BPA. Top HBF + BPA-dysregulated genes (ALDH1B1, ASTL, CA7, CPLX4, KCNV2, MAGEE2 and TUBA3E) are associated with poor overall survival in The Cancer Genomic Atlas (TCGA) human breast cancer cohort (n = 1082). Furthermore, the prognostic power of the identified genes was further enhanced in the survival analysis of Caucasian patients with estrogen receptor-positive tumors. In conclusion, concurrent HBF dietary and a low-dose BPA exposure during pregnancy increases mammary tumor incidence in offspring, accompanied by alterations in mammary gland development and gene expression, and possibly through epigenetic reprogramming.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Cancer CenterCincinnati, Ohio, USA
| | - Vinothini Govindarajah
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ana Cheong
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer Veevers
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Cancer CenterCincinnati, Ohio, USA
| | - Dan Song
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robin Gear
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xuegong Zhu
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jun Ying
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Cancer CenterCincinnati, Ohio, USA
| | - Ady Kendler
- Department of Pathology and Laboratory MedicineUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Cancer CenterCincinnati, Ohio, USA
| | - Scott Belcher
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Department of Environmental HealthCincinnati, Ohio, USA
- Center for Environmental GeneticsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Cancer CenterCincinnati, Ohio, USA
- Cincinnati Veteran Affairs Hospital Medical CenterCincinnati, Ohio, USA
| |
Collapse
|
23
|
Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats. J Nutr Biochem 2017; 44:71-79. [DOI: 10.1016/j.jnutbio.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
|
24
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
25
|
Fontelles CC, Guido LN, Rosim MP, Andrade FDO, Jin L, Inchauspe J, Pires VC, de Castro IA, Hilakivi-Clarke L, de Assis S, Ong TP. Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res 2016; 18:71. [PMID: 27456846 PMCID: PMC4960664 DOI: 10.1186/s13058-016-0729-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Although males contribute half of the embryo’s genome, only recently has interest begun to be directed toward the potential impact of paternal experiences on the health of offspring. While there is evidence that paternal malnutrition may increase offspring susceptibility to metabolic diseases, the influence of paternal factors on a daughter’s breast cancer risk has been examined in few studies. Methods Male Sprague-Dawley rats were fed, before and during puberty, either a lard-based (high in saturated fats) or a corn oil-based (high in n-6 polyunsaturated fats) high-fat diet (60 % of fat-derived energy). Control animals were fed an AIN-93G control diet (16 % of fat-derived energy). Their 50-day-old female offspring fed only a commercial diet were subjected to the classical model of mammary carcinogenesis based on 7,12-dimethylbenz[a]anthracene initiation, and mammary tumor development was evaluated. Sperm cells and mammary gland tissue were subjected to cellular and molecular analysis. Results Compared with female offspring of control diet-fed male rats, offspring of lard-fed male rats did not differ in tumor latency, growth, or multiplicity. However, female offspring of lard-fed male rats had increased elongation of the mammary epithelial tree, number of terminal end buds, and tumor incidence compared with both female offspring of control diet-fed and corn oil-fed male rats. Compared with female offspring of control diet-fed male rats, female offspring of corn oil-fed male rats showed decreased tumor growth but no difference regarding tumor incidence, latency, or multiplicity. Additionally, female offspring of corn oil-fed male rats had longer tumor latency as well as decreased tumor growth and multiplicity compared with female offspring of lard-fed male rats. Paternal consumption of animal- or plant-based high-fat diets elicited opposing effects, with lard rich in saturated fatty acids increasing breast cancer risk in offspring and corn oil rich in n-6 polyunsaturated fatty acids decreasing it. These effects could be linked to alterations in microRNA expression in fathers’ sperm and their daughters’ mammary glands, and to modifications in breast cancer-related protein expression in this tissue. Conclusions Our findings highlight the importance of paternal nutrition in affecting future generations’ risk of developing breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0729-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Luiza Nicolosi Guido
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Mariana Papaléo Rosim
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Fábia de Oliveira Andrade
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Lu Jin
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Jessica Inchauspe
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Vanessa Cardoso Pires
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Inar Alves de Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | | | - Sonia de Assis
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil. .,Food Research Center (FoRC), São Paulo, 05508-000, Brazil.
| |
Collapse
|
26
|
Guido LN, Fontelles CC, Rosim MP, Pires VC, Cozzolino SMF, Castro IA, Bolaños-Jiménez F, Barbisan LF, Ong TP. Paternal selenium deficiency but not supplementation during preconception alters mammary gland development and 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in female rat offspring. Int J Cancer 2016; 139:1873-82. [DOI: 10.1002/ijc.30223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Luiza N. Guido
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | - Camile C. Fontelles
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | - Mariana P. Rosim
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | - Vanessa C. Pires
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | - Silvia M. F. Cozzolino
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | - Inar A. Castro
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
| | | | - Luis F. Barbisan
- Department of Morphology; Institute of Biosciences; State University of São Paulo at Botucatu; São Paulo Brazil
| | - Thomas P. Ong
- Food and Experimental Nutrition Department; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo Brazil
- Food Research Center (FoRC); São Paulo Brazil
| |
Collapse
|
27
|
Che L, Liu P, Yang Z, Che L, Hu L, Qin L, Wang R, Fang Z, Lin Y, Xu S, Feng B, Li J, Wu D. Maternal high fat intake affects the development and transcriptional profile of fetal intestine in late gestation using pig model. Lipids Health Dis 2016; 15:90. [PMID: 27161113 PMCID: PMC4862081 DOI: 10.1186/s12944-016-0261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Background The objective of this study was to investigate the effects of maternal high fat intake on intestinal development and transcriptional profile. Methods Eight gilts with similar age and body weight were randomly allocated into 2 groups receiving the control and high fat diets (HF diet) from d 30 to 90 of gestation, with 4 gilts each group and one gilt each pen. At d 90 of gestation, two fetuses each gilt were removed by cesarean section. Intestinal samples were collected for analysis of morphology, enzyme activities and transcriptional profile. Results The results showed that feeding HF diet markedly increased the fetal weight and lactase activity, also tended to increase intestinal morphology. Porcine Oligo Microarray analysis indicated that feeding HF diet inhibited 64 % of genes (39 genes down-regulated while 22 genes up-regulated),which were related to immune response, cancer and metabolism, also markedly modified 33 signal pathways such as antigen processing and presentation, intestinal immune network for IgA production, Jak-STAT and TGF-ß signaling transductions, pathways in colorectal cancer and glycerolipid metabolism. Conclusion Collectively, it could be concluded that maternal high fat intake was able to increase fetal weight and lactase activity, however, it altered the intestinal immune response, signal transduction and metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0261-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China. .,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.
| | - Peilin Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Zhengguo Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Long Che
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Liang Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Linlin Qin
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Ru Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, No.46, Xinkang Road, Ya'an, Sichuan, 625014, People's Republic of China
| |
Collapse
|
28
|
Govindarajah V, Leung YK, Ying J, Gear R, Bornschein RL, Medvedovic M, Ho SM. In utero exposure of rats to high-fat diets perturbs gene expression profiles and cancer susceptibility of prepubertal mammary glands. J Nutr Biochem 2015; 29:73-82. [PMID: 26895667 DOI: 10.1016/j.jnutbio.2015.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Human studies suggest that high-fat diets (HFDs) increase the risk of breast cancer. The 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN-93G-based diets with isocaloric high olive oil, butterfat or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (P=.048 and P=.067, respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1 and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation.
Collapse
Affiliation(s)
- Vinothini Govindarajah
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio.,Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio.,Department of Pharmacology and Cell Biophysics Pharmacology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Jun Ying
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Robin Gear
- Department of Pharmacology and Cell Biophysics Pharmacology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Robert L Bornschein
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio.,Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio.,Cincinnati Cancer Center, Cincinnati, Ohio.,Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
29
|
Andrade FDO, de Assis S, Jin L, Fontelles CC, Barbisan LF, Purgatto E, Hilakivi-Clarke L, Ong TP. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood. Chem Biol Interact 2015; 239:118-28. [PMID: 26115784 DOI: 10.1016/j.cbi.2015.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study.
Collapse
Affiliation(s)
- Fábia de Oliveira Andrade
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil
| | - Sonia de Assis
- Department of Oncology, Georgetown University Lombardi Comprehensive Cancer Center, Research Building, Room E407, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20007, USA
| | - Lu Jin
- Department of Oncology, Georgetown University Lombardi Comprehensive Cancer Center, Research Building, Room E407, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20007, USA
| | - Camile Castilho Fontelles
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- Department of Morphology, Botucatu Bioscience Institute, State University of São Paulo Botucatu, Distrito de Rubião Júnior, s/n. Rubião Júnior, 18618000 Botucatu, SP, Brazil
| | - Eduardo Purgatto
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University Lombardi Comprehensive Cancer Center, Research Building, Room E407, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20007, USA
| | - Thomas Prates Ong
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil; Food Research Center (NAPAN), Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, Hajrezaei M, Razavi M, Safi SZ, Ameen Abdulla M, Mohd Ali H, Ibrahim Noordin M. Chemopreventive Activity of Ferulago angulate against Breast Tumor in Rats and the Apoptotic Effect of Polycerasoidin in MCF7 Cells: A Bioassay-Guided Approach. PLoS One 2015; 10:e0127434. [PMID: 25996383 PMCID: PMC4440818 DOI: 10.1371/journal.pone.0127434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.
Collapse
Affiliation(s)
- Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaeinasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Maryam Hajrezaei
- Department of Biomedical Science, Faculty of Medicine, university of Malaya, Kuala Lumpur, Malaysia
| | - Mahboubeh Razavi
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sher Zaman Safi
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, university of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
31
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|