1
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6579-6596. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
2
|
Li J, Wei Y, Lai Q, Li X, Wang Y, Wang X, Chen Y, Liu H, Yang K, Yuan B. Efficacy of a resveratrol nanoformulation prepared using a facile solvent-free method. NANOSCALE 2025; 17:12937-12949. [PMID: 40336370 DOI: 10.1039/d5nr00691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Resveratrol (RSV) is a natural polyphenolic compound known for its anti-oxidant, anti-inflammatory, anticancer, and cardioprotective properties. However, the limited water solubility and poor bioavailability of RSV significantly hinder its application in the food and pharmaceutical industries. To address these challenges, we developed a facile, scalable, and specifically, organic-solvent-free method to prepare highly stable and concentrated RSV nanoformulations. By utilizing an ethoxylated hydrogenated castor oil (EHCO) aqueous solution, we successfully dissolved RSV in water at concentrations of up to 30 mg mL-1. This RSV solution could be subsequently incorporated with hydrogenated lecithin S10 to formulate stable lipid nanoparticles, sized 140-180 nm. The entire process was performed under heating and stirring, eliminating the need for organic solvents and ensuring simplicity and high reproducibility. The resulting RSV-CO60@S10 nanoformulations exhibited relatively high encapsulation efficiency (with final RSV concentrations of up to 30 mg mL-1), long-term stability (exceeding 6 months), preserved antioxidant activity, and effective cellular internalization capabilities that could alleviate oxidative stress. Additionally, these nanoparticles exhibited promising therapeutic efficacy toward atopic dermatitis in mice. These findings offer valuable insights into the potential utilization of RSV across diverse applications.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Qin Lai
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
- Department of Rheumatology and Immunology, the First affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xiangyang Li
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Yu Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xun Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Yinghua Chen
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan Key Laboratory of Dermatology and Immunological Diseases, Dongguan 523058, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| |
Collapse
|
3
|
Huang K, Chen Z, Wang R, Ying H, Duan J, Zhang Y, Shi Q, Yang C, Yang L. Genetic targets related to aging for the treatment of coronary artery disease. BMC Med Genomics 2025; 18:66. [PMID: 40205433 PMCID: PMC11984209 DOI: 10.1186/s12920-025-02137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Coronary Artery Disease (CAD) is the most common cardiovascular disease worldwide, threatening human health, quality of life and longevity. Aging is a dominant risk factor for CAD. This study aims to investigate the potential mechanisms of aging-related genes and CAD, and to make molecular drug predictions that will contribute to the diagnosis and treatment. METHODS We downloaded the gene expression profile of circulating leukocytes in CAD patients (GSE12288) from Gene Expression Omnibus database, obtained differentially expressed aging genes through "limma" package and GenaCards database, and tested their biological functions. Further screening of aging related characteristic genes (ARCGs) using least absolute shrinkage and selection operator and random forest, generating nomogram charts and ROC curves for evaluating diagnostic efficacy. Immune cells were estimated by ssGSEA, and then combine ARCGs with immune cells and clinical indicators based on Pearson correlation analysis. Unsupervised cluster analysis was used to construct molecular clusters based on ARCGs and to assess functional characteristics between clusters. The DSigDB database was employed to explore the potential targeted drugs of ARCGs, and the molecular docking was carried out through Autodock Vina. Finally, single-cell data (GSE159677) of arterial intima was used to further explore the expression of aging signature genes in different cell subpopulations. RESULTS We identified 8 ARCGs associated with CAD, in which HIF1A and FGFR3 were up while NOX4, TCF7L2, HK3, CDK18, TFAP4, and ITPK1 were down in CAD patients. Based on this, CAD patients can be divided into two molecular clusters, among which cluster A mainly involves functional pathways such as ECM receptor interaction and focal adhesion; cluster B mainly involves functional pathways such as amimo sugar and nucleotide sugar metabolism and pyrimidine metabolism. In addition, the molecular docking results showed that retinoic acid and resveratrol had good binding affinity with targets genes. Further single-cell analysis results showed that NOX4, TCF7L2, ITPK1, and HIF1A were specifically expressed in different types of cells in atherosclerotic tissues. CONCLUSION Our study identified several ARCGs that may be involved in the pathogenesis and progression of CAD. Further, retinoic acid and resveratrol were potential candidate molecule drugs for inhibiting these targets.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Zijun Chen
- Department of Cardiology, Shanghai East Hospital, Shanghai, 200120, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Qianyuan Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
4
|
Cai W, Li Z, Wang W, Liu S, Li Y, Sun X, Sutton R, Deng L, Liu T, Xia Q, Huang W. Resveratrol in animal models of pancreatitis and pancreatic cancer: A systematic review with machine learning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156538. [PMID: 40037107 DOI: 10.1016/j.phymed.2025.156538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Resveratrol (RES), a common type of plant polyphenols, has demonstrated promising therapeutic efficacy and safety in animal models of pancreatitis and pancreatic cancer. However, a comprehensive analysis of these data is currently unavailable. This study aimed to systematically review the preclinical evidence regarding RES's effects on animal models of pancreatitis and pancreatic cancer via meta-analyses and optimised machine learning techniques. METHODS Animal studies published from inception until June 30th 2024, were systematically retrieved and manually filtrated across databases including PubMed, EMBASE, Web of Science, Ovid MEDLINE, Scopus, and Cochrane Library. Methodological quality of the included studies was evaluated following the SYRCLE's RoB tool. Predefined outcomes included histopathology and relevant biochemical parameters for acute pancreatitis, and tumour weight/tumour volume for pancreatic cancer, comparing treatment and model groups. Pooled effect sizes of the outcomes were calculated using STATA 17.0 software. Machine learning techniques were employed to predict the optimal usage and dosage of RES in pancreatitis models. RESULTS A total of 50 studies comprising 33 for acute pancreatitis, 1 chronic pancreatitis, and 16 for pancreatic cancer were included for data synthesis after screening 996 records. RES demonstrated significant improvements on pancreatic histopathology score, pancreatic function parameters (serum amylase and lipase), inflammatory markers (TNF-α, IL-1β, IL-6, and pancreatic myeloperoxidase), oxidative biomarkers (malondialdehyde and superoxide dismutase), and lung injury (lung histopathology and myeloperoxidase) in acute pancreatitis models. In pancreatic cancer models, RES notably reduced tumour weight and volume. Machine learning highlighted tree-structured Parzen estimator-optimised gradient boosted decision tree model as achieving the best performance, identifying course after disease induction, total dosage, single dosage, and total number of doses as critical factors for improving pancreatic histology. Optimal single dosage was 20-105 mg/kg with 3 to 9 doses. CONCLUSION This study comprehensively demonstrates the therapeutic effects of RES in mitigating pancreatitis and pancreatic cancer in animal models. Anti-inflammatory, anti-oxidative, and anti-tumour growth properties are potential mechanisms of action for RES.
Collapse
Affiliation(s)
- Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyu Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Sun
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Lihui Deng
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Dzwonkowski M, Bahirwani J, Rollins S, Muratore A, Christian V, Schneider Y. Selected Use of Complementary and Alternative Medicine (CAM) Agents in IBD. Curr Gastroenterol Rep 2025; 27:1. [PMID: 39821707 DOI: 10.1007/s11894-025-00960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) can cause significant psychological, physical, and economic burdens on patients and healthcare systems. Studies show over one-fifth of patients will seek nontraditional methods of treatment for managing their symptoms. Understanding the benefits - and potential harms - of these therapies is important to provide holistic and evidence-based care to our IBD patients. RECENT FINDINGS In this review, we present several studied herbal therapies for the management of both Crohn's disease and ulcerative colitis. These include cannabinoids, Tripterygium wilfordii, Chios mastic gum, Boswellia serrata, Indigo Naturalis, curcumin, resveratrol, and Zingiber officinale. While these herbal remedies have been shown to have anti-inflammatory effects and positive outcomes in IBD patients, larger scale studies are lacking and the use may be limited by bioavailability, lack of standardization of formulations, and adverse reactions. In reviewing the literature, we discuss the current data available including benefits, adverse reactions, and considerations for use surrounding several of the more common herbal remedies used for IBD.
Collapse
Affiliation(s)
- Monica Dzwonkowski
- Department of Gastroenterology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Janak Bahirwani
- Department of Gastroenterology, Kadlec Clinic, Richland, WA, USA
| | - Samantha Rollins
- Department of Gastroenterology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Alicia Muratore
- Division of Gastroenterology and Hepatology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Vikram Christian
- Department of Pediatric Gastroenterology, M Health Fairview, Minneapolis, MN, USA
| | - Yecheskel Schneider
- Department of Gastroenterology, St. Luke's University Health Network, Bethlehem, PA, USA.
| |
Collapse
|
7
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
8
|
Qian M, Shi H, Wang F, You C, Zhang Y, Li X. Preparation, characterization, stability and functional properties of andrographolide loaded kafirin/carboxymethyl cellulose composite particles using antisolvent precipitation method. Int J Biol Macromol 2025; 284:138105. [PMID: 39608519 DOI: 10.1016/j.ijbiomac.2024.138105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Enhancing the oral bioavailability of hydrophobic nutraceuticals and protecting bioactive components through encapsulation systems has gained significant attention in food science. This study explored the preparation and characterization of kafirin (Kaf)/carboxymethyl cellulose (CMC) composite nanoparticles for encapsulating andrographolide (AG) using the antisolvent precipitation method. The optimal Kaf to CMC mass ratio was identified as 4:1, resulting in nanoparticles with an average diameter of 146.4 nm. CMC markedly improved the water dispersibility of the nanoparticles compared to Kaf alone. The formation of these composite nanoparticles was mainly driven by hydrophobic interactions, hydrogen bonding, and electrostatic interactions. Compared to Kaf nanoparticles, the Kaf/CMC nanoparticles showed enhanced encapsulation efficiency, gastrointestinal release characteristics, and stability. Additionally, AG-loaded composite nanoparticles showed exhibited superior biological safety and anti-cancer effects, highlighting their potential for therapeutic applications. In conclusion, Kaf/CMC composite nanoparticles present a promising delivery system for hydrophobic nutraceuticals and drugs, contributing to advancements in drug delivery technologies and nutraceutical formulations.
Collapse
Affiliation(s)
- Mengyu Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Zhao XY, Zhong QH, Tan HW, Yan R, Wang XY, Cai NL, Ji YC, Lau ATY, Xu YM. Non-cytotoxic levels of resveratrol enhance the anticancer effects of cisplatin by increasing the methyltransferase activity of CARM1 in human cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156127. [PMID: 39476485 DOI: 10.1016/j.phymed.2024.156127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Resveratrol (RSVL) is a plant-derived polyhydroxyphenolic compound with excellent anticancer properties, alone or in combination with other chemotherapeutic drugs. However, the anticancer mechanism of RSVL is diverse and high concentrations are often required for RSVL to exert its anticancer effect, which would also adversely affect normal cells. PURPOSE The main objective of this study is to investigate the molecular mechanism of how non-cytotoxic concentrations of RSVL enhance the anticancer effect of cisplatin involving a newly identified RSVL-binding protein. METHODS Cell viability of cell lines from three cancer types exposed to RSVL and/or cisplatin was measured by NBB staining assay. RSVL-binding proteins were identified using RSVL-bound CNBr-activated Sepharose 4B beads coupled with LC-MS/MS, and the binding between RSVL and novel RSVL-binding protein was further confirmed with an in vitro pull-down assay. The expression of proteins was examined by immunoblot analysis, and the activity of methyltransferase was evaluated by in vitro methylation assay. The methylation level of H3R17 in the gene promoter was investigated using ChIP-qPCR. Bioinformatics analysis was conducted to identify pathway enrichment of genes, predict drug sensitivity, and analyze the survival of cancer patients. RESULTS Low doses of RSVL might promote cancer cell growth whereas high doses of RSVL showed cytotoxic effects on normal cells. When co-treated with a lower cisplatin dose, non-cytotoxic RSVL levels showed synergistic anticancer effects. Here, coactivator-associated arginine methyltransferase 1 (CARM1) was identified as a novel RSVL-binding protein, and we showed that the upregulation of CARM1 increased the sensitivity of cancer cells to RSVL. Interestingly, we found that CARM1 was essential in the RSVL-induced sensitivity of cisplatin. Further molecular mechanistic studies revealed that RSVL could stabilize CARM1 protein, resulting in the upregulation and increased methyltransferase activity of CARM1. Additionally, we showed that the methylation levels of H3R17 in the promoter of p21, a downstream gene of CARM1 involving cell cycle arrest, were significantly increased after RSVL treatment. Finally, data from our bioinformatics analysis suggested that CARM1 could be utilized as a potential biomarker for chemotherapeutic drug sensitivity and prognosis in cancers. CONCLUSIONS This study identified CARM1 as a RSVL-binding protein for the first time and elucidated the potential roles of CARM1 in enhancing the efficacy of cisplatin by low doses of RSVL, which could have important clinical implications.
Collapse
Affiliation(s)
- Xiao-Yun Zhao
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Qiu-Hua Zhong
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Heng Wee Tan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Rui Yan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Xiu-Yun Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Na-Li Cai
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yan-Chen Ji
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Andy T Y Lau
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Yan-Ming Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
10
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
11
|
Liu C, Gong Q, Liu W, Zhao Y, Yan X, Yang T. Berberine-loaded PLGA nanoparticles alleviate ulcerative colitis by targeting IL-6/IL-6R axis. J Transl Med 2024; 22:963. [PMID: 39448992 PMCID: PMC11515557 DOI: 10.1186/s12967-024-05682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
AIMS The present study aims to develop a nano-delivery system that encapsulates berberine (BBR) into PLGA-based nanoparticles (BPL-NPs), to treat ulcerative colitis (UC). Furthermore, the therapeutic efficacy and molecular targeting mechanisms of BPL-NPs in the management of UC are thoroughly examined. METHODS Emulsion solvent-driven methods were used to self-assemble BBR and PLGA into nanoparticles, resulting in the development of the nano-delivery system (BPL-NPs). The therapeutic effectiveness of BPL-NPs was evaluated using a dextran sulfate sodium (DSS)-induced model of ulcerative colitis in mice and a lipopolysaccharide (LPS)-induced model of inflammation in THP-1 macrophages. The interaction between Mφs and NCM-460 cells was investigated using a co-culture system. The molecular targeting ability of BPL-NPs in the treatment of UC was validated through in vitro as well as in vivo experiments. RESULTS The BPL-NPs demonstrated a particle size of 184 ± 22.4 nm, enhanced dispersibility in deionized water, and a notable encapsulation efficiency of 31.1 ± 0.2%. The use of BPL-NPs clearly improved the clinical symptoms and pathological changes associated with UC in mice while also ensuring minimal toxicity. In addition, BPL-NPs improved intestinal epithelial cell apoptosis and enhanced the function of the intestinal barrier by inhibiting M1 Mφs infiltration and IL-6 signaling pathway in mice with UC. Furthermore, the BPL-NPs were found to selectively target the IL-6/IL-6R axis during the M1 Mφs-induced apoptosis of NCM460 cells. CONCLUSION The BPL-NPs were confirmed to harbor anti-inflammatory effects both in vitro and in vivo, along with enhanced water solubility and bioactivity. In addition, the precise targeting of the IL-6/IL-6R axis was confirmed as the mechanism by which the BPL-NPs exerted therapeutic effects in UC, as demonstrated in both in vitro as well as in vivo studies.
Collapse
Affiliation(s)
- Chao Liu
- Cardiovascular Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiming Gong
- Cardiovascular Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
| | - Wanning Liu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yihan Zhao
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Xi'an, 712046, China
| | - Xinhao Yan
- Key Laboratory of Clinical Molecular Biology, Hanzhong Vocational and Technical College, No.81, West side of National Road 316, Hanzhong, 723002, China.
| | - Tao Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changle West Road, Xi'an, 710032, China.
- Colorectal and Anal Surgery, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang, 550001, China.
| |
Collapse
|
12
|
Bahaa MM, Hegazy SK, Maher MM, Bahgat MM, El-Haggar SM. Pentoxifylline in patients with ulcerative colitis treated with mesalamine by modulation of IL-6/STAT3, ZO-1, and S1P pathways: a randomized controlled double-blinded study. Inflammopharmacology 2024; 32:3247-3258. [PMID: 39192162 DOI: 10.1007/s10787-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that lasts a long time and has a variety of causes. AIM The primary aim of this study was to evaluate pentoxifylline's (PTX) essential function in patients with UC. METHODS Fifty-two mild to moderate UC patients who matched the eligibility requirements participated in this clinical study. One gram of mesalamine (t.i.d.) and a placebo were administered to the mesalamine group (n = 26) for a duration of 24 weeks. Mesalamine 1 g t.i.d. and PTX 400 mg two times daily were administered to the PTX group (n = 26) for 24 weeks. A gastroenterologist investigated patients at the start and 6 months after the medication was given to assess disease activity index (DAI) and numeric pain rating scale (NRS). Also, interleukin-6 (IL-6), sphingosine 1 phosphate (S1P), tumor necrosis factor-alpha (TNF-α), and fecal myeloperoxidase (MPO) were measured before and after therapy. Zonula occuldin-1 (ZO-1) and signal transducer and activator of transcription factor-3 (STAT-3) expression was assessed before and after therapy as well as histological assessment. Short Form 36 Health Survey (SF-36), was assessed for each patient before and after 6 months of treatment. RESULTS The PTX group showed statistically lower levels of serum SIP, TNF-α, IL-6, faecal MPO, gene expression of STAT-3, and a significant increase of ZO-1 in comparison with the mesalamine group. DAI and NRS significantly decreased whereas SF-36 significantly increased in the PTX group. CONCLUSION PTX could alleviate inflammation in patients with UC, so it might be promising adjunctive for patients with UC. TRIAL REGISTRATION IDENTIFIER NCT05558761.
Collapse
Affiliation(s)
- Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Maha M Maher
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Monir M Bahgat
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Song Y, Zhang J, Zhu L, Zhang H, Wu G, Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: a review. Food Funct 2024; 15:8629-8643. [PMID: 39140384 DOI: 10.1039/d3fo03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.
Collapse
Affiliation(s)
- Yanan Song
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou 256600, China
| |
Collapse
|
14
|
Civelek M, Cicha I, Spielvogel H, Tietze R, Lyer S, Janko C, Alexiou C. Nanocarriers for therapeutic phytochemicals. Nanomedicine (Lond) 2024; 19:1711-1716. [PMID: 39301957 PMCID: PMC11418208 DOI: 10.1080/17435889.2024.2380242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Mehtap Civelek
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Helmut Spielvogel
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Ramadan H, Moustafa N, Ahmed RR, El-Shahawy AA, Eldin ZE, Al-Jameel SS, Amin KA, Ahmed OM, Abdul-Hamid M. Therapeutic effect of oral insulin-chitosan nanobeads pectin-dextrin shell on streptozotocin-diabetic male albino rats. Heliyon 2024; 10:e35636. [PMID: 39170289 PMCID: PMC11336891 DOI: 10.1016/j.heliyon.2024.e35636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
The current study inspects the therapeutic effects of orally ingested insulin-loaded chitosan nanobeads (INS-CsNBs) with a pectin-dextrin (PD) coating on streptozotocin (STZ)-induced diabetes in Wistar rats. The study also assessed antioxidant effects in pancreatic tissue homogenate, insulin, C-peptide, and inflammatory markers interleukin-1 beta and interleukin-6 (IL-1β and IL-6) in serum. Additionally, histopathological and immunohistochemical examination of insulin granules, oxidative stress, nuclear factor kappa B (NF-κB P65), and sirtuin-1 (SIRT-1) protein detection, as well as gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl2), and Bcl-2-associated X protein (Bax) in pancreatic tissue were investigated. After induction of diabetes with STZ, rats were allocated into 6 groups: the normal control (C), the diabetic control (D), and the diabetic groups treated with INS-CsNBs coated with PD shell (50 IU/kg) (NF), free oral insulin (10 IU/kg) (FO), CsNBs-PD shell (50 IU/kg) (NB), and subcutaneous insulin (10 IU/kg) (Sc). The rats were treated daily for four weeks. Treatment of diabetic rats with INS-CsNBs coated with PD shell resulted in a significant improvement in blood glucose levels, elevated antioxidant activities, decreased NF-κB P65, IL-1β, and IL-6 levels, upregulated Nrf-2 and HO-1, in addition to a marked improvement in the histological architecture and integrity compared to the diabetic group. The effects of oral INS-CsNBs administration were comparable to those of subcutaneous insulin. In conclusion, oral administration of INS-loaded Cs-NBs with a pectin-dextrin shell demonstrated an ameliorative effect on STZ-induced diabetes, avoiding the drawbacks of subcutaneous insulin.
Collapse
Affiliation(s)
- Hanaa Ramadan
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Nadia Moustafa
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rasha Rashad Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed A.G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62521 Beni-Suef 12827, Egypt
| | - Zienab E. Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62521 Beni-Suef 12827, Egypt
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
16
|
Xie H, Zhao J, Wang S, Kong L, Li X, Aga E, Gong Ga LZ, Ye B. PH-sensitive BSA-modified resveratrol micelles targeting macrophages alleviate symptoms of rheumatoid arthritis. Int Immunopharmacol 2024; 136:112324. [PMID: 38820967 DOI: 10.1016/j.intimp.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, leading to severe inflammatory infiltration and joint damage, accompanied by a decrease in pH of joint microenvironment. Macrophages play an important role in the pathogenesis of RA, with high expression of bovine serum albumin (BSA) receptors on the surface of macrophages. Resveratrol (Res) has strong anti-inflammatory effects, but its application is limited due to its poor water solubility and low bioavailability. Therefore, we constructed pH-sensitive micelles by encapsulating Res and modifying BSA on the surface of the micelles (BSA-Res@Ms), thereby greatly improving the therapeutic effect of RA. Our research results indicated that BSA-Res@Ms had a smooth and uniform appearance, small particle size, high drug encapsulation efficiency, good stability, and pH-sensitive properties. In vitro, BSA-Res@Ms increased the uptake of Res by RAW264.7 cells, reduced the levels of pro-inflammatory cytokines and cleared excess ROS produced by activated RAW264.7 cells, and inhibited the generation of osteoclasts. In vivo, BSA-Res@Ms could target inflamed joint sites, significantly alleviate joint inflammation symptoms, inhibit activated macrophages, improve synovial hyperplasia and inflammatory cell infiltration, and protect cartilage. BSA-Res@Ms provide a very promising method for the treatment of RA, which can effectively improve the inflammatory manifestations of RA.
Collapse
Affiliation(s)
- Hongjun Xie
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China
| | - Jing Zhao
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China
| | - Shuo Wang
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Erbu Aga
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China
| | - Lan Zi Gong Ga
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China.
| | - Bengui Ye
- Tibet University Medical College, NO.10 Zangda East Road, Tibet 850000, China.
| |
Collapse
|
17
|
Sinha A, Roy S. Prospective therapeutic targets and recent advancements in the treatment of inflammatory bowel disease. Immunopharmacol Immunotoxicol 2024:1-14. [PMID: 39013809 DOI: 10.1080/08923973.2024.2381756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Inflammatory Bowel Disease (IBD) poses a persistent challenge in the realm of gastroenterology, necessitating continual exploration of innovative treatment strategies. The limited efficacy and potential side effects associated with existing therapeutic modalities underscore the urgent need for novel approaches in IBD management. This study aims to examine potential therapeutic targets and recent advancements in understanding the disease's intricate pathogenesis, with a spotlight on the gut microbiome, immune dysregulation, and genetic predispositions. METHODS A comprehensive review was conducted to delve into the pressing demand for new avenues in IBD treatment. The study examined potential therapeutic targets such as phosphodiesterase 4 (PDE4) inhibitors, immune system modulators, Tyrosine kinase receptors (TYK), Toll-like receptors (TLRs), modulation of the gut microbiota, stem cell therapy, fibrosis management, interleukins (ILs) regulation, and oxidative stress mitigation. Additionally, advances in precision medicine, biologics, small molecule inhibitors, and microbiome modulation techniques were explored. RESULTS The investigation unveiled promising therapeutic targets and provided insights into recent breakthroughs that herald a transformative era in the therapeutic landscape for IBD. Advances in precision medicine, biologics, small molecule inhibitors, and the exploration of microbiome modulation techniques stood out as pivotal milestones in the field of gastroenterology. CONCLUSIONS The findings offer renewed hope for enhanced efficacy, reduced side effects, and improved patient outcomes in the treatment of IBD. These innovative approaches necessitate continual exploration and underscore the urgent need for novel strategies in IBD management, potentially revolutionizing the realm of gastroenterology.
Collapse
Affiliation(s)
- Akshit Sinha
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| | - Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
18
|
Luo S, Zhang J, Sun J, Zhao T, Deng J, Yang H. Future development trend of food-borne delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:385-433. [PMID: 39218507 DOI: 10.1016/bs.afnr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.
Collapse
Affiliation(s)
- Shuwei Luo
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Juntao Zhang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jing Sun
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Tong Zhao
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haixia Yang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
19
|
Xu J, Zhang Y, Yao X, Wang S, Lv K, Luo G, Wang J, Li G. Intestinal Targeted Nanogel with Broad-Spectrum Autonomous ROS Scavenging Performance for Enhancing the Bioactivity of trans-Resveratrol. Int J Nanomedicine 2024; 19:5995-6014. [PMID: 38895150 PMCID: PMC11185258 DOI: 10.2147/ijn.s464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction To improve the bioavailability of trans-resveratrol (trans-Res), it is commonly co-delivered with antioxidant bioactives using a complex synthetic intestinal targeted carrier, however, which makes practical application challenging. Methods A nanogel (Ngel), as broad-spectrum autonomous ROS scavenger, was prepared using selenized thiolated sodium alginate (TSA-Se) and crosslinked with calcium lactate (CL) for loading trans-Res to obtain Ngel@Res, which maintained spherical morphology in the upper digestive tract but broke down in the lower digestive tract, resulting in trans-Res release. Results Under protection of Ngel, trans-Res showed enhanced stability and broad-spectrum ROS scavenging activity. The synergistic mucoadhesion of Ngel prolonged the retention time of trans-Res in the intestine. Ngel and Ngel@Res increased the lifespan of Caenorhabditis elegans to 26.00 ± 2.17 and 26.00 ± 4.27 days by enhancing the activity of antioxidases, upregulating the expression of daf-16, sod-5 and skn-1, while downregulating the expression of daf-2 and age-1. Conclusion This readily available, intestinal targeted selenized alginate-based nanogel effectively improves the bioactivity of trans-Res.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Yue Zhang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Xiaolin Yao
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| | - Sijuan Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Kaiqiang Lv
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guangwen Luo
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Jiaqi Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
20
|
Liang Y, Ren T, Li R, Yu Z, Wang Y, Zhang X, Qin Z, Li J, Hu J, Luo C. Natural Products with Potential Effects on Hemorrhoids: A Review. Molecules 2024; 29:2673. [PMID: 38893547 PMCID: PMC11173953 DOI: 10.3390/molecules29112673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Hemorrhoid disease is a common anorectal disorder affecting populations worldwide, with high prevalence, treatment difficulties, and considerable treatment costs. Compared to other treatment options, medical therapy for hemorrhoids offers minimal harm, more dignity to patients, and is more economical. Unfortunately, there are few chemical hemorrhoid medications available clinically, which makes the search for efficacious, cost-effective, and environmentally friendly new medication classes a focal point of research. In this context, searching for available natural products to improve hemorrhoids exhibits tremendous potential. These products are derived from nature, predominantly from plants, with a minor portion coming from animals, fungi, and algae. They have excellent coagulation pathway regulation, anti-inflammatory, antibacterial, and tissue regeneration activities. Therefore, we take the view that they are a class of potential hemorrhoid drugs, prevention products, and medication add-on ingredients. This article first reviews the factors contributing to the development of hemorrhoids, types, primary symptoms, and the mechanisms of natural products for hemorrhoids. Building on this foundation, we screened natural products with potential hemorrhoid improvement activity, including polyphenols and flavonoids, terpenes, polysaccharides, and other types.
Collapse
Affiliation(s)
- Yicheng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Tankun Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Ruyi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Zhonghui Yu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637002, China;
| | - Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Zonglin Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Jinlong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Jing Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| |
Collapse
|
21
|
Esfahani SK, Dehghani S, Hosseinzadeh H, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. An exosomal approach for oral delivery of resveratrol: Implications for inflammatory bowel disease treatment in rat model. Life Sci 2024; 346:122638. [PMID: 38614294 DOI: 10.1016/j.lfs.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIMS Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches. MAIN METHODS The current study developed RSV-loaded MEXOs to enhance the RSV oral bioavailability, introducing a suitable exosomal formulation for suppressing colon inflammation in acetic acid-induced rat models. KEY FINDINGS The results showed a remarkable encapsulation efficiency of 83.33 %. The in vitro release profile demonstrated a good retaining capability in acidic conditions (pH 1.2) and a considerable release in a simulated duodenal environment (pH 6.8). According to the permeability study, encapsulation of RSV improved its transportation across the Caco-2 monolayer. Moreover, the in vivo and histological analysis results proved that the RSV-MEXOs formulation successfully alleviates the inflammation in colitis rat models and effectively relieves the colitis. SIGNIFICANCE Our findings suggest that MEXOs should be of great attention as promising oral drug delivery vehicles for further clinical evaluations.
Collapse
Affiliation(s)
- Shaghayegh Kazemi Esfahani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Li J, Li W, Zhuang L. Natural biomimetic nano-system for drug delivery in the treatment of rheumatoid arthritis: a literature review of the last 5 years. Front Med (Lausanne) 2024; 11:1385123. [PMID: 38784236 PMCID: PMC11114446 DOI: 10.3389/fmed.2024.1385123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized primarily by synovitis, leading to the destruction of articular cartilage and bone and ultimately resulting in joint deformity, loss of function, and a significant impact on patients' quality of life. Currently, a combination of anti-rheumatic drugs, hormonal drugs, and biologics is used to mitigate disease progression. However, conventional drug therapy has limited bioavailability, and long-term use often leads to drug resistance and toxic side effects. Therefore, exploring new therapeutic approaches for RA is of great clinical importance. Nanodrug delivery systems offer promising solutions to overcome the limitations of conventional drugs. Among them, liposomes, the first nanodrug delivery system to be approved for clinical application and still widely studied, demonstrate the ability to enhance therapeutic efficacy with fewer adverse effects through passive or active targeting mechanisms. In this review, we provide a review of the research progress on the targeting mechanisms of various natural biomimetic nano-delivery systems in RA therapy. Additionally, we predict the development trends and application prospects of these systems, offering new directions for precision treatment of RA.
Collapse
Affiliation(s)
| | | | - Liping Zhuang
- Beidahuang Group Mudanjiang Hospital, Mudanjiang, Heilongjiang, China
| |
Collapse
|
23
|
Yang J, Lin J, Zhang W, Shen M, Wang Y, Xie J. Resveratrol-loaded pH-responsive Mesona chinensis polysaccharides-zein nanoparticles for effective treatment of ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3992-4003. [PMID: 38323719 DOI: 10.1002/jsfa.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Resveratrol (Res) is promising food functional factor with favorable antioxidant and anti-inflammatory properties, although its poor water solubility and low bioavailability limit extensive application. Therefore, in combination with another promising polysaccharide (Mesona chinensis polysaccharides, MCP), Res-loaded food nanocarriers (ResNPs) were developed to increase its water solubility, bioactivity and targeting properties. ResNPs were then applied to alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis. RESULTS Resveratrol can be well encapsulated in MCP-based nanoparticles in an amorphous state, improving its water solubility. ResNPs showed pH-response controlled release behavior in the gastrointestinal tract and increased the enrichment of Res in the colon. In vivo experiments of ResNPs against DSS-induced ulcerative colitis (UC) revealed that ResNPs significantly improved UC symptoms, modulated intestinal inflammation and down-regulated oxidative stress levels compared to free Res. ResNPs also play an positive role with respect to inhibiting the mitogen-activated protein kinase pathway and promoting the expression of tight junction proteins. In addition, ResNPs improved the species composition and relative abundance of intestinal flora in UC mice, which effectively regulated the balance of intestinal flora and promoted the production of short-chain fatty acids. CONCLUSION These results suggest that MCP-based nanoparticles can effectively improve the solubility of resveratrol and enhance its in vivo bioactivity. Moreover, the present study also provides a new strategy for the prevention and treatment of UC with food polyphenol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Faisal Z, Mazhar A, Batool SA, Akram N, Hassan M, Khan MU, Afzaal M, Hassan UU, Shah YA, Desta DT. Exploring the multimodal health-promoting properties of resveratrol: A comprehensive review. Food Sci Nutr 2024; 12:2240-2258. [PMID: 38628180 PMCID: PMC11016399 DOI: 10.1002/fsn3.3933] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
Resveratrol, a natural polyphenol in various plants, has gained significant attention for its potential health-promoting properties. It has been demonstrated, after reviewing various clinical and in vitro studies, that resveratrol possesses potent antioxidant potential. Resveratrol demonstrates cellular component protection by directly neutralizing free radicals (FRs) and enhancing the expression of natural antioxidant enzymes, thereby mitigating oxidative damage to proteins, lipids, and nucleic acids. Clinical trials have shown promising results, indicating that resveratrol supplementation can enhance antioxidant defenses and reduce oxidative damage markers in various populations. In addition to its antioxidant effects, resveratrol exhibits potent anti-inflammatory properties. It can modulate key inflammatory pathways, such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), thereby suppressing the production of pro-inflammatory cytokines and chemokines. Furthermore, resveratrol's multimodal effects extend beyond its antioxidant and anti-inflammatory properties. It has been discovered to exert regulatory effects on various cellular processes, including apoptosis, cell cycle progression, angiogenesis, and immunological responses. The primary aim of this review paper is to provide a thorough overview of the current knowledge on resveratrol, including its chemical composition, bioaccessibility, clinical effectiveness, and utilization in nanotechnology to enhance its bioavailability. From future perspectives, revising the administration methods for certain contexts and understanding the underlying systems responsible for resveratrol's effects will require further inquiry. For the highest potential health results, advanced trial-based research is necessary for combinational nano-delivery of resveratrol.
Collapse
Affiliation(s)
- Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Aimen Mazhar
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Maleeha Hassan
- Department of Dietetics and Nutritional ScienceUniversity of SialkotSialkotPakistan
| | - Muhammad Usman Khan
- Department of Food Science and TechnologyBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Usman Ul Hassan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural and Medical Science Research CentreUniversity of NizwaNizwaOman
| | - Derese Tamiru Desta
- School of Nutrition, Food Science and TechnologyHawassa UniversityHawassaEthiopia
| |
Collapse
|
25
|
Zhang X, Gao X, Yi X, Yu H, Shao M, Li Y, Shen X. Multi-targeting inulin-based nanoparticles with cannabidiol for effective prevention of ulcerative colitis. Mater Today Bio 2024; 25:100965. [PMID: 38318477 PMCID: PMC10839446 DOI: 10.1016/j.mtbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is closely related to severe inflammation, damaged colonic mucosal barrier, increased oxidative stress and intestinal ecological imbalance. However, due to the nonspecific distribution and poor bioavailability of drugs, UC treatment is still a serious challenge. Here, a mitochondria/colon dual targeted nanoparticles based on redox response was developed to effectively alleviate UC. Cannabidiol nanoparticles (CBD NPs) with a particle size of 143.2 ± 3.11 nm were prepared by self-assembly using polymers (TPP-IN-LA) obtained by modifying inulin with (5-carboxypentyl) triphenyl phosphonium bromide (TPP) and α-lipoic acid (α-LA). Excitingly, the constructed CBD NPs showed excellent mitochondrial targeting, with a Pearson correlation coefficient of 0.76 at 12 h. The results of animal imaging in vivo showed that CBD NPs could be effectively accumulated in colon tissue. Not only that, CBD showed significant glutathione stimulated release in the presence of 10 mM glutathione at pH 7.4. The results of in vivo animal experiments showed that CBD NPs significantly ameliorated DSS-induced colonic inflammation by modulating the TLR4-NF-κB signaling pathway. Moreover, CBD NPs significantly improved the histological damage of colon in UC mice, increased the expression level of tight junction protein ZO-1, and effectively restored the intestinal mucosal barrier function and intestinal mucosal permeability. More importantly, CBD NPs significantly improved the species composition, abundance and amount of short chain fatty acids of intestinal flora in UC mice, thus effectively maintaining the balance of intestinal flora. The dual-targeted and glutathione-responsive nanoparticles prepared in this study provide a promising idea for achieving targeted delivery of CBD for effective treatment of UC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xia Gao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiangzhou Yi
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Yu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingyang Shao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xuanri Shen
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
26
|
Huang L, Huang XH, Yang X, Hu JQ, Zhu YZ, Yan PY, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201:107100. [PMID: 38341055 DOI: 10.1016/j.phrs.2024.107100] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xue-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Lv W, Jin W, Lin J, Wang Z, Ma Y, Zhang W, Zhu Y, Hu Y, Qu Q, Guo S. Forsythia suspensa polyphenols regulate macrophage M1 polarization to alleviate intestinal inflammation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155336. [PMID: 38295660 DOI: 10.1016/j.phymed.2024.155336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
28
|
Proshkina E, Koval L, Platonova E, Golubev D, Ulyasheva N, Babak T, Shaposhnikov M, Moskalev A. Polyphenols as Potential Geroprotectors. Antioxid Redox Signal 2024; 40:564-593. [PMID: 38251662 DOI: 10.1089/ars.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Significance: Currently, a large amount of evidence of beneficial effects of diets enriched with polyphenols on various aspects of health has been accumulated. These phytochemicals have a geroprotective potential slowing down the pathological processes associated with aging and ensuring longevity. In this study, a comprehensive analysis was conducted to determine the adherence of individual polyphenols to geroprotector criteria. Data from experimental models, clinical trials, and epidemiological studies were analyzed. Recent Advances: Sixty-two polyphenols have been described to increase the life span and improve biomarkers of aging in animal models. They act via evolutionarily conserved molecular mechanisms, including hormesis and maintenance of redox homeostasis, epigenetic regulation, response to cellular damage, metabolic control, and anti-inflammatory and senolytic activity. Epidemiological and clinical studies suggest that certain polyphenols have a potential for prevention and treatment of various diseases, including cancer, metabolic disorders, and cardiovascular conditions in humans. Critical Issues: Among the reviewed phytochemicals, chlorogenic acid, quercetin, epicatechin, genistein, resveratrol, and curcumin were identified as compounds with the highest geroprotective potential. However, there is a lack of unambiguous information on the effectiveness and safety of polyphenols for increasing health span, preventing and treating aging-associated diseases in humans. Future Directions: Further research is needed to fully understand the effects of polyphenols considering their long-term consumption, metabolic modification and bioavailability, complex interactions between different groups of polyphenols and with other phytochemicals, as well as their effects on individuals with different health status. Antioxid. Redox Signal. 40, 564-593.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Denis Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
29
|
Firouzi Amandi A, Bahmanyar Z, Dadashpour M, Lak M, Natami M, Döğüş Y, Alem M, Adeli OA. Fabrication of magnetic niosomal platform for delivery of resveratrol: potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int 2024; 24:46. [PMID: 38287318 PMCID: PMC10826113 DOI: 10.1186/s12935-024-03219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Recently, the presence of different nanoparticles (NPs) has developed targeting drug delivery in treatment of cancer cell. Targeted drug delivery systems using NPs have shown great promise in improving the efficacy of intracellular uptake as well as local concentration of therapeutics with minimizing side effects. The current study planned to synthesized resveratrol-loaded magnetic niosomes nanoparticles (RSV-MNIONPs) and evaluate their cytotoxicity activity in pancreatic cancer cells. For this aim, magnetic nanoparticles (MNPs) were synthesized and loaded into niosomes (NIOs) by the thin film hydration technique and then characterized via DLS, FT-IR, TEM, SEM and VSM techniques. Moreover, the cytotoxic activity of the RSV-MNIONPs on the Capan-1 cells line was assessed by the MTT test. The distribution number of RSV-MNIONPs was gained about 80 nm and 95 nm with surface charge of - 14.0 mV by SEM and TEM analysis, respectively. RSV loading efficacy in NIOs was about 85%, and the drug releases pattern displayed a sustained discharge with a maximum amount about 35% and 40%, within 4 h in pH = 7.4 and pH = 5.8, respectively. The cytotoxicity of the RSV-MNIONPs in the presence of an external magnetic field is higher than that of the RSV, indicating enhanced cellular uptake in their encapsulated states. Furthermore, RSV loaded MNNPs were found to induce more cell cycle arrest at the G0/G1 checkpoint than free RSV. Compared with RSV-treated cells, the mRNA expression levels of BAX, Bcl2, FAS, P 53, Cyclin D and hTERT, were significantly changed in cells treated with RSV loaded MNNPs. The niosomes NPs approaches have been widely used to attain higher solubility, improved bioavailability, enhanced stability, and control delivery of RSV. Our formulation displayed antitumor activity and can be considered an appropriate carrier with a great potential for future usage in cancer therapy.
Collapse
Affiliation(s)
- Akram Firouzi Amandi
- Department of Medical Immunology, Facultyof Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mehrnoosh Lak
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yusuf Döğüş
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Omid Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
30
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
31
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
32
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
33
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
34
|
Yuan Y, Zhang X, Pan S, Xu X, Wu T. Effects and Mechanisms of Resveratrol on the Adhesion of Lactobacillus acidophilus NCFM. Probiotics Antimicrob Proteins 2023; 15:1529-1538. [PMID: 36376613 DOI: 10.1007/s12602-022-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Based on the adhesion and surface properties of Lactobacillus acidophilus NCFM, five common polyphenols in fruits and vegetables, including resveratrol, epicatechin, quercetin, hesperidin, and caffeic acid, were screened, and the reasons for resveratrol promoting adhesion were systematically explained. The results showed that resveratrol could significantly enhance NCFM adhesion to mucin (1.73 fold), followed by epicatechin (1.47 fold), caffeic acid (1.30 fold), and hesperidin (0.99 fold), while quercetin had a certain degree of inhibition (0.84 fold). The effects of these polyphenols on surface hydrophobicity and auto-aggregation of NCFM were consistent with adhesion results. Then, how resveratrol promotes NCFM adhesion was further explored. The results of the proteomic analysis showed that resveratrol changed the surface layer proteins of NCFM, involving 4 up-regulated proteins and 12 down-regulated proteins. In addition, resveratrol promoted the expression of mucin genes and the glycosylation of mucins on the HT-29 cell surface. Our results indicate that resveratrol changes the surface layer proteins of NCFM to modify surface properties and adhere to mucins. Meanwhile, resveratrol promotes expression and glycosylation of mucins in HT-29 cells. Our findings provide theoretical support for an in-depth explanation of the interaction among resveratrol, NCFM, and the HT-29 cells.
Collapse
Affiliation(s)
- Yanan Yuan
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinyue Zhang
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyi Pan
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaoyun Xu
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ting Wu
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
35
|
Sun DP, Chen JT, Yang ST, Chen TH, Liu SH, Chen RM. Resveratrol triggers the ER stress-mediated intrinsic apoptosis of neuroblastoma cells coupled with suppression of Rho-dependent migration and consequently prolongs mouse survival. Chem Biol Interact 2023; 382:110645. [PMID: 37482209 DOI: 10.1016/j.cbi.2023.110645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Neuroblastoma, the most common childhood tumor, are highly malignant and fatal because neuroblastoma cells extremely defend against apoptotic targeting. Traditional treatments for neuroblastomas are usually ineffective and lead to serious side effects and poor prognoses. In this study, we investigated the molecular mechanisms of resveratrol-induced insults to neuroblastoma cells and survival extension of nude mice with neuroblastomas, especially in the endoplasmic reticular (ER) stress-intracellular reactive oxygen species (iROS) axis-mediated signals. Resveratrol specifically killed neuroblastoma cells mainly via apoptosis and autophagy rather than necrosis. As to the mechanisms, resveratrol time-dependently triggered productions of Grp78 protein and iROS in neuroblastoma cells. Attenuating the ER stress-iROS signaling axis significantly suppressed resveratrol-induced autophagy, DNA damage, and cell apoptosis. Successively, resveratrol decreased phosphorylation of retinoblastoma protein and induced cell cycle arrest at the S phase, translocation of Bak protein to mitochondria, a reduction in the mitochondrial membrane potential, cascade activation of caspases-9, -3, and -6, and DNA fragmentation. Moreover, weakening the ER stress-iROS axis concomitantly overcome resveratrol-induced decreases in translocation of Rho protein to membranes and succeeding cell migration. Interestingly, administration of resveratrol did not cause significant side effects but could protect the neuroblastoma-bearing nude mice from body weight loss and consequently extended the animal survival. In parallel, resveratrol elevated levels of Grp78 and then induced cell apoptosis in neuroblastoma tissues. This study has shown that resveratrol could kill neuroblastoma cells and extend survival of animals with neuroblastomas by triggering the ER stress-iROS-involved intrinsic apoptosis and suppression of Rho-dependent cell migration. Our results imply the potential of resveratrol as a drug candidate for chemotherapy of neuroblastoma patients.
Collapse
Affiliation(s)
- Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jui-Tai Chen
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Tai Yang
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
36
|
Ghasemi‐Dehnoo M, Lorigooini Z, Amini‐Khoei H, Sabzevary‐Ghahfarokhi M, Rafieian‐Kopaei M. Quinic acid ameliorates ulcerative colitis in rats, through the inhibition of two TLR4-NF-κB and NF-κB-INOS-NO signaling pathways. Immun Inflamm Dis 2023; 11:e926. [PMID: 37647443 PMCID: PMC10408368 DOI: 10.1002/iid3.926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE In this study, the therapeutic effect of quinic acid (QA), which has anti-inflammatory activity, was investigated on acetic acid-induced colitis in male Wistar rats. METHODS Ulcerative colitis (UC) was induced in rats by acetic acid intrarectally, and the protective effects of QA in 10, 30, 60, and 100 mg/kg doses were investigated. Rats were treated for 5 days and their colon tissues were dissected out at the end. Macroscopic and histopathological examinations were performed in colon tissues. Also, the expression of inflammatory and apoptotic genes, including TLR4, IL-1β, INOS, IL-6, TNF-α, NF-κB, Caspase-3, Caspase-8, Bax, and Bcl-2, was measured. Biochemistry indices, such as malondialdehyde (MDA) and nitrite oxide (NO) content, in addition to, total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), and enzymes activities were also assessed. RESULTS Colitis increased the levels of MDA and NO, and enhanced the inflammatory and apoptotic gene expressions, while reducing the SOD and CAT enzymes activity, and TAC levels in the colitis rats. Also, results showed that colitis was associated with the infiltration of inflammatory cells, epithelium damage, and edema in colon tissue. QA significantly ameliorated histopathological indices, oxidative stress, inflammation, and apoptosis in colitis rats. CONCLUSION QA ameliorated UC through the inhibition of two TLR4-NF-κB and NF-κB-INOS-NO signaling pathways, which results in the reduction of colitis complications, including oxidative stress, inflammation, apoptosis and histopathological injuries in rats. Therefore it can be concluded, that QA exerts its therapeutic effects through antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maryam Ghasemi‐Dehnoo
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Hossein Amini‐Khoei
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Milad Sabzevary‐Ghahfarokhi
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Mahmoud Rafieian‐Kopaei
- Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
37
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
38
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
39
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
40
|
Jiang D, Xia X, He Z, Xue Y, Xiang X. Hyaluronic acid-functionalized redox-responsive organosilica nanoparticles for targeted resveratrol delivery to attenuate acrylamide-induced toxicity. Int J Biol Macromol 2023; 232:123463. [PMID: 36716846 DOI: 10.1016/j.ijbiomac.2023.123463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The purpose of this study is to construct a redox-responsive and targeted nanoparticle to effectively deliver resveratrol (Res) for alleviating acrylamide (ACR) toxicity. Here, Res-loaded tetrasulfide-containing organosilica nanoparticles (DSMSNs) functionalized with hyaluronic acid on the surface (DSMSNs@Res@HA) were prepared. The DSMSNs@Res@HA nanoparticles were spherical with an encapsulation efficiency of 46.68 ± 1.64 % and a hydrated particle size of about 237.73 nm. As expected, DSMSNs@Res@HA were capable of significantly protecting PC12 cells against ACR-induced damage in oxidative stress, mitochondrial membrane potential decrease, and cell apoptosis compared with free Res and DSMSNs@Res at the equivalent dose. Moreover, DSMSNs@Res@HA could be biodegraded and released Res in response to GSH stimulus. In vivo experiments suggested that DSMSNs@Res@HA significantly reduced histological damage in the brain, liver, and kidney of rats compared with free Res and DSMSNs@Res. After oral administration of DSMSNs@Res@HA, the intestinal flora of ACR-treated rats could be effectively regulated by improving the species uniformity and abundance as well as recovering the species diversity. According to these findings, DSMSNs@Res@HA is worth further investigation as a potential therapeutic nanomedicine to alleviate ACR toxicity and restore gut microbiota diversity.
Collapse
Affiliation(s)
- Dan Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zhixiong He
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
41
|
Ye N, Zhao P, Ayue S, Qi S, Ye Y, He H, Dai L, Luo R, Chang D, Gao F. Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis treatment. Int J Biol Macromol 2023; 232:123229. [PMID: 36642354 DOI: 10.1016/j.ijbiomac.2023.123229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Curcumin (CUR) is a promising natural compound in ulcerative colitis (UC) treatment, but limited by its low oral bioavailability and poor targeting ability. Therefore, given the targeting action of lactoferrin (LF) by binding to the LF receptors of intestinal epithelial cells (IECs) and of folic acid (FA) by binding to the FA receptors of macrophages, we developed an oral dual-targeting nanosystem. Laminarin (LA)-coated, FA-modified LF nanoparticles (NPs) were used to encapsulate CUR (LA/FA/CUR-NPs) with a food-grade, enzyme-sensitive, and dual-targeting capacity. For the generated NPs, LF improved the loading efficiency of CUR (95.08 %). The LA layer could improve the upper gastrointestinal tract stability of the NPs while improve drug release around colon lesion through β-glucanase digestion. Based on the cellular uptake evaluation, FA/CUR-NPs were capable of specifically targeting colonic epithelial cells and macrophages through LF and FA ligands, respectively, to enhance the uptake efficiency. Moreover, based on the advantage of the dual-targeting strategy, oral administration of FA/CUR-NPs obviously reduced colitis symptoms by alleviating inflammation, accelerating colonic mucosal barrier repair and restoring the balance of the intestinal microbiota. This dual-targeted nanodesign corresponded to the multi-bioresponsibilities of CUR, thus offering a promising approach in UC treatment.
Collapse
Affiliation(s)
- Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Peng Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shibu Ayue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yan Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Haoqi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
42
|
Jiang D, Xia X, He Z, Xue Y, Xiang X. Biodegradable organosilica-based targeted and redox-responsive delivery system of resveratrol for efficiently alleviating ulcerative colitis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
43
|
Haskey N, Gold SL, Faith JJ, Raman M. To Fiber or Not to Fiber: The Swinging Pendulum of Fiber Supplementation in Patients with Inflammatory Bowel Disease. Nutrients 2023; 15:nu15051080. [PMID: 36904081 PMCID: PMC10005525 DOI: 10.3390/nu15051080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence-based dietary guidance around dietary fiber in inflammatory bowel disease (IBD) has been limited owing to insufficient reproducibility in intervention trials. However, the pendulum has swung because of our increased understanding of the importance of fibers in maintaining a health-associated microbiome. Preliminary evidence suggests that dietary fiber can alter the gut microbiome, improve IBD symptoms, balance inflammation, and enhance health-related quality of life. Therefore, it is now more vital than ever to examine how fiber could be used as a therapeutic strategy to manage and prevent disease relapse. At present, there is limited knowledge about which fibers are optimal and in what form and quantity they should be consumed to benefit patients with IBD. Additionally, individual microbiomes play a strong role in determining the outcomes and necessitate a more personalized nutritional approach to implementing dietary changes, as dietary fiber may not be as benign as once thought in a dysbiotic microbiome. This review describes dietary fibers and their mechanism of action within the microbiome, details novel fiber sources, including resistant starches and polyphenols, and concludes with potential future directions in fiber research, including the move toward precision nutrition.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, The Irving K. Barber Faculty of Science, University of British Columbia—Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephanie L. Gold
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maitreyi Raman
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
44
|
Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15020699. [PMID: 36840021 PMCID: PMC9964760 DOI: 10.3390/pharmaceutics15020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.
Collapse
|
45
|
Hai YP, Lee ACH, Chen K, Kahaly GJ. Traditional Chinese medicine in thyroid-associated orbitopathy. J Endocrinol Invest 2023; 46:1103-1113. [PMID: 36781592 DOI: 10.1007/s40618-023-02024-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Orbital fibroblasts (OF) are considered the central target cells in the pathogenesis of thyroid-associated orbitopathy (TAO), which comprises orbital inflammation, orbital tissue edema, adipogenesis, fibrosis, oxidative stress and autophagy. Certain active ingredients of traditional Chinese medicine (TCM) demonstrated inhibition of TAO-OF in pre-clinical studies and they could be translated into novel therapeutic strategies. METHODS The pertinent and current literature of pre-clinical studies on TAO investigating the effects of active ingredients of TCM was reviewed using the NCBI PubMed database. RESULTS Eleven TCM compounds demonstrated inhibition of TAO-OF in-vitro and three of them (polydatin, curcumin, and gypenosides) resulted in improvement in TAO mouse models. Tanshinone IIA reduced inflammation, oxidative stress and adipogenesis. Both resveratrol and its precursor polydatin displayed anti-oxidative and anti-adipogenic properties. Celastrol inhibited inflammation and triptolide prevented TAO-OF activation, while icariin inhibited autophagy and adipogenesis. Astragaloside IV reduced inflammation via suppressing autophagy and inhibited fat accumulation as well as collagen deposition. Curcumin displayed multiple actions, including anti-inflammatory, anti-oxidative, anti-adipogenic, anti-fibrotic and anti-angiogenic effects via multiple signaling pathways. Gypenosides reduced inflammation, oxidative stress, tissue fibrosis, as well as oxidative stress mediated autophagy and apoptosis. Dihydroartemisinin inhibited OF proliferation, inflammation, hyaluronan (HA) production, and fibrosis. Berberine attenuated inflammation, HA production, adipogenesis, and fibrosis. CONCLUSIONS Clinical trials of different phases with adequate power and sound methodology will be warranted to evaluate the appropriate dosage, safety and efficacy of these compounds in the management of TAO.
Collapse
Affiliation(s)
- Y P Hai
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - A C H Lee
- Division of Endocrinology and Metabolism, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - K Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - G J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany.
| |
Collapse
|
46
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Xu Y, Huang J, Fan Y, Long H, Liang M, Chen Q, Wang Z, Wu C, Wang Y. Macrophage-Targeted Berberine-Loaded β-Glucan Nanoparticles Enhance the Treatment of Ulcerative Colitis. Int J Nanomedicine 2022; 17:5303-5314. [PMID: 36406639 PMCID: PMC9673505 DOI: 10.2147/ijn.s379792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
Aim This study focuses on constructing of an anti-inflammatory drug delivery system by encapsulation of berberine in the β-glucan nanoparticles and evaluates its effect on treating ulcerative colitis. Methods β-Glucan and the anti-inflammatory drug berberine (BER) are self-assembled into nanoparticles to construct a drug delivery system (GLC/BER). The interaction between the drug and the carrier was characterized by circular dichroism, ultraviolet-visible spectroscopy, and dynamic light scattering. The anti-inflammatory effect of the GLC/BER was evaluated through a lipopolysaccharide (LPS)-induced RAW264.7 macrophage inflammation model and a sodium sulfate (DSS)-induced C57BL/6 mouse ulcerative colitis model. Results The GLC/BER nanoparticles have a particle size of 80-120 nm and a high encapsulation efficiency of 37.8±4.21%. In the LPS-induced RAW264.7 macrophage inflammation model, GLC/BER significantly promoted the uptake of BER by RAW264.7 cells. RT-PCR and ELISA assay showed that it could significantly inhibit the inflammatory factors including IL-1β, IL-6 and COX-2. Furthermore, GLC/BER shows inhibiting effect on the secretion of pro-inflammatory factors such as IL-1β and IL-6, down-regulating the production of nitrite oxide; in animal studies, GLC/BER was found to exert a relieving effect on mice colitis. Conclusion The study found that GLC/BER has an anti-inflammatory effect in vitro and in vivo, and the GLC carrier improves the potency and bioavailability of BER, providing a new type of nanomedicine for the treatment of colitis.
Collapse
Affiliation(s)
- Yuying Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Jintao Huang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yapei Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Haiyue Long
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Minting Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Qunjie Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Zhiping Wang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|