1
|
Zavorskas J, Edwards H, Marten MR, Harris S, Srivastava R. Generalizable Metamaterials Design Techniques Inspire Efficient Mycelial Materials Inverse Design. ACS Biomater Sci Eng 2025; 11:1897-1920. [PMID: 39898596 DOI: 10.1021/acsbiomaterials.4c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Fungal mycelial materials can mimic numerous nonrenewable materials; they are even capable of outperforming certain materials at their own applications. Fungi's versatility makes mock leather, bricks, wood, foam, meats, and many other products possible. That said, there is currently a critical need to develop efficient mycelial materials design techniques. In mycelial materials, and the wider field of biomaterials, design is primarily limited to costly forward techniques. New mycelial materials could be developed faster and cheaper with robust inverse design techniques, which are not currently used within the field. However, computational inverse design techniques will not be tractable unless clear and concrete design parameters are defined for fungi, derived from genotype and bulk phenotype characteristics. Through mycelial materials case studies and a comprehensive review of metamaterials design techniques, we identify three critical needs that must be addressed to implement computational inverse design in mycelial materials. These critical needs are the following: 1) heuristic search/optimization algorithms, 2) efficient mathematical modeling, and 3) dimensionality reduction techniques. Metamaterials researchers already use many of these computational techniques that can be adapted for mycelial materials inverse design. Then, we suggest mycelium-specific parameters as well as how to measure and use them. Ultimately, based on a review of metamaterials research and the current state of mycelial materials design, we synthesize a generalizable inverse design paradigm that can be applied to mycelial materials or related design fields.
Collapse
Affiliation(s)
- Joseph Zavorskas
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, U-3222, Storrs, Connecticut 06269, United States
| | - Harley Edwards
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Steven Harris
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Dr, Ames, Iowa 50011, United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, U-3222, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Camilleri E, Narayan S, Lingam D, Blundell R. Mycelium-based composites: An updated comprehensive overview. Biotechnol Adv 2025; 79:108517. [PMID: 39778780 DOI: 10.1016/j.biotechadv.2025.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Mycelium-based composites hold significant potential as sustainable alternatives to traditional materials, offering innovative solutions to the escalating challenges of global warming and climate change. This review examines their production techniques, advantages, and limitations, emphasizing their role in addressing pressing environmental and economic concerns. Current applications span various industries, including manufacturing and biomedical fields, where mycelium-based composites demonstrate the capacity to mitigate environmental impact and enhance economic sustainability. Key findings highlight their environmental benefits, economic viability, and versatile applications, showcasing their potential to revolutionize multiple sectors. However, challenges such as consumer acceptance, intrinsic variability, and the need for standardized guidelines persist, underscoring the importance of further research and innovation. By optimizing material properties and refining production processes, mycelium-based composites could pave the way for widespread adoption as sustainable materials, contributing to a greener and more environmentally conscious future.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta.
| | - Sumesh Narayan
- Department of Mechanical Engineering, School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Fiji.
| | - Divnesh Lingam
- Department of Mechanical Engineering, School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Fiji
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta.
| |
Collapse
|
3
|
Shin HJ, Ro HS, Kawauchi M, Honda Y. Review on mushroom mycelium-based products and their production process: from upstream to downstream. BIORESOUR BIOPROCESS 2025; 12:3. [PMID: 39794674 PMCID: PMC11723872 DOI: 10.1186/s40643-024-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production. Some fungi have also been consumed as major food crops, such as the fruiting bodies of various mushrooms. Recently, new trends have emerged, shifting from traditional applications towards the innovative use of mushroom mycelium as eco-friendly bioresources. This approach has gained attention in the development of alternative meats, mycofabrication of biocomposites, and production of mycelial leather and fabrics. These applications aim to replace animal husbandry and recycle agricultural waste for use in construction and electrical materials. This paper reviews current research trends on industrial applications of mushroom mycelia, covering strain improvements and molecular breeding as well as mycelial products and the production processes. Key findings, practical considerations, and valorization are also discussed.
Collapse
Affiliation(s)
- Hyun-Jae Shin
- Department of Biochemical Engineering, Chosun University, Gwangju, Republic of Korea.
| | - Hyeon-Su Ro
- Department of Bio and Medical Big Data (BK4 Program) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Chen H, Klemm S, Dönitz AG, Ou Y, Schmidt B, Fleck C, Simon U, Völlmecke C. Tailoring the Mechanical Properties of Fungal Mycelium Mats with Material Extrusion Additive Manufacturing of PHBH and PLA Biopolymers. ACS OMEGA 2024; 9:49609-49617. [PMID: 39713613 PMCID: PMC11656364 DOI: 10.1021/acsomega.4c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
To advance the concept of a circular economy, fungal mycelium-based materials are drawing increased attention as substitutes for nonsustainable materials, such as petroleum-based and animal-derived products, due to their biodegradability, low carbon footprint, and cruelty-free nature. Addressing the challenge of mechanical properties in fungal mycelium products, this study presents a straightforward approach for reinforcing fungal mycelium mats. This is achieved by using two bio-based and biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and polylactic acid (PLA), via material extrusion additive manufacturing (MEX AM), commonly known as 3D printing, to produce fungal mycelium-biopolymer composites. By analyzing the mechanical properties, roughness, and morphology, this study demonstrates significant improvements in ultimate tensile strength with the application of PHBH and even more with PLA, while elasticity is reduced. The study also discusses potential improvements to enhance the quality of the fungal mycelium-biopolymer composites without trading off bio-based and biodegradable features, offering a promising pathway for the development of more durable and sustainable fungal mycelium products.
Collapse
Affiliation(s)
- Huaiyou Chen
- Faculty
III Process Sciences, Institute of Materials Science and Technology,
Chair of Advanced Ceramic Materials, Technische
Universität Berlin, Berlin 10623, Germany
| | - Sophie Klemm
- Faculty
III - Process Sciences, Institute of Materials Science and Technology,
Chair of Materials Science & Engineering/Fachgebiet Werkstofftechnik, Technische Universität Berlin, Str. des 17. Juni 135, Berlin 10623, Germany
| | - Antonia G. Dönitz
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| | - Yating Ou
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| | - Bertram Schmidt
- Faculty
III Process Sciences, Institute of Biotechnology, Chair of Applied
and Molecular Microbiology, Technische Universität
Berlin, Berlin 10623, Germany
| | - Claudia Fleck
- Faculty
III - Process Sciences, Institute of Materials Science and Technology,
Chair of Materials Science & Engineering/Fachgebiet Werkstofftechnik, Technische Universität Berlin, Str. des 17. Juni 135, Berlin 10623, Germany
| | - Ulla Simon
- Faculty
III Process Sciences, Institute of Materials Science and Technology,
Chair of Advanced Ceramic Materials, Technische
Universität Berlin, Berlin 10623, Germany
| | - Christina Völlmecke
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
5
|
Schultz N, Fazli A, Piros S, Barranco-Origel Y, DeLa Cruz P, Schneider DY. Characterization of Mycelium Biocomposites under Simulated Weathering Conditions. ACS APPLIED BIO MATERIALS 2024; 7:8408-8422. [PMID: 39591509 PMCID: PMC11653254 DOI: 10.1021/acsabm.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Expanded polystyrene (EPS) remains a popular packaging material despite environmental concerns such as pollution, difficulty to recycle, and toxicity to wildlife. The goal of this study is to evaluate the potential of an ecofriendly alternative to traditional EPS composed of a mycelium biocomposite grown from agricultural waste. In this material, the mycelium spores are incorporated into cellulosic waste, resulting in a structurally sound biocomposite completely enveloped by mycelium fibers. One of the main criteria for shipping applications is the ability of a material to withstand extreme weather conditions. Accordingly, this study focused on evaluating a commercially available mycelium material before and after exposure to various weathering conditions, including high and low temperatures at different humidity levels. Fourier transform infrared spectroscopy (FTIR) was performed to examine any transformations in the mycelium structure and composition, whereas scanning electron microscopy (SEM) was used to reveal any changes in the morphology. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses were conducted to evaluate the thermal behavior, whereas mechanical properties were measured by using shore hardness and Izod Impact testing. Although some irreversible changes were observed due to the exposure to high temperatures, the material exhibited good thermal stability and impact resistance. FTIR analysis demonstrated small changes in the biocomposite structure and protein rearrangement as a result of weathering, whereas SEM revealed some cracking in the cellulose substrate. A combination of low temperatures and humidity resulted in significant moisture absorption, as indicated by TGA and DSC. This in turn decreased the hardness of the fibers by nearly 2-fold; however, the impact strength of the entire biocomposite remained unchanged. Overall, these results provide important insight into the structure-property relationships of mycelium-based materials.
Collapse
Affiliation(s)
- Nicholas Schultz
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
| | - Ajimahl Fazli
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
- Eurofins
EAG Laboratories, 810
Kifer Rd. Sunnyvale, California 94086, United States
| | - Sharmaine Piros
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
| | - Yuritzi Barranco-Origel
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
| | - Patricia DeLa Cruz
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
- Eurofins
EAG Laboratories, 810
Kifer Rd. Sunnyvale, California 94086, United States
| | - Dr Yanika Schneider
- Department
of Chemical and Materials Engineering, San
José State University, One Washington Square, San Jose, California 95192, United States
- Eurofins
EAG Laboratories, 810
Kifer Rd. Sunnyvale, California 94086, United States
| |
Collapse
|
6
|
Ben Hmad I, Mokni Ghribi A, Bouassida M, Ayadi W, Besbes S, Ellouz Chaabouni S, Gargouri A. Combined effects of α-amylase, xylanase, and cellulase coproduced by Stachybotrys microspora on dough properties and bread quality as a bread improver. Int J Biol Macromol 2024; 277:134391. [PMID: 39094867 DOI: 10.1016/j.ijbiomac.2024.134391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study aims to explore the feasibility of introducing, during the manufacture of bakery bread, an enzymatic cocktail coproduced by the fungus Stachybotrys microspora: α-amylases, xylanases and cellulases, using wheat bran as a nutrient source. Among the characteristics of the alveograph (dough tenacity "P" and dough extensibility "L"), the addition of a cocktail of enzymes at a concentration of 2 %, to weak wheat flour, has made it possible to significantly reduce its P/L ratio from 2.45 to 1.41. Furthermore, the use of enzyme cocktails at 2 %, 4 %, and 6 % concentrations increases the brown color of the bread crust. The great reduction in the rate of bread firmness, during storage over 5 days, was obtained in the presence of an enzyme cocktail in comparison with bread control (65.13 N for the control and 22.99 N, 23.24 N, and 18.24 N for bread enriched with enzyme cocktail at 2 %, 4 % and 6 % concentrations, respectively). In conclusion, the enzyme cocktail added can synergistically improve bread dough rheology and bread properties.
Collapse
Affiliation(s)
- Ines Ben Hmad
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, PO Box "1177" 3018, Sfax, Tunisia.
| | - Abir Mokni Ghribi
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia; Laboratory of Analyze, Valorization and Foods Security, National School of Engineering, University of Sfax, PO Box 3038, Sfax, Tunisia
| | - Mouna Bouassida
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia; Laboratory of Plant Improvement and Valorization of Agricultural Resources, National School of Engineering, Sfax University, P.O. Box 1173-3038, Tunisia
| | - Wajdi Ayadi
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, PO Box "1177" 3018, Sfax, Tunisia
| | - Souhail Besbes
- Laboratory of Analyze, Valorization and Foods Security, National School of Engineering, University of Sfax, PO Box 3038, Sfax, Tunisia
| | - Semia Ellouz Chaabouni
- Laboratory of Plant Improvement and Valorization of Agricultural Resources, National School of Engineering, Sfax University, P.O. Box 1173-3038, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, PO Box "1177" 3018, Sfax, Tunisia
| |
Collapse
|
7
|
Aiduang W, Jinanukul P, Thamjaree W, Kiatsiriroat T, Waroonkun T, Lumyong S. A Comprehensive Review on Studying and Developing Guidelines to Standardize the Inspection of Properties and Production Methods for Mycelium-Bound Composites in Bio-Based Building Material Applications. Biomimetics (Basel) 2024; 9:549. [PMID: 39329571 PMCID: PMC11429656 DOI: 10.3390/biomimetics9090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Mycelium-bound composites (MBCs) represent a promising advancement in bio-based building materials, offering sustainable alternatives for engineering and construction applications. This review provides a comprehensive overview of the current research landscape, production methodologies, and standardization ideas related to MBCs. A basic search on Scopus revealed over 250 publications on MBCs between 2020 and 2024, with more than 30% focusing on engineering and materials science. Key studies have investigated the physical and mechanical properties of MBCs, optimizing parameters such as substrate type, fungal species, incubation time, and post-processing to enhance material performance. Standardizing the inspection of MBC properties is crucial for ensuring quality and reliability. Various testing standards, including those from the American Society for Testing and Materials (ASTM), the International Organization for Standardization (ISO), the Japanese Industrial Standard (JIS), European Standards (EN), Deutsches Institut für Normung (DIN), and the Thai Industrial Standards Institute (TIS), are utilized to evaluate density, water absorption, compression strength, tensile strength, insulation, and other critical properties. This review highlights the distinction between lab-scale and apply-scale testing methodologies, emphasizing the need for comprehensive evaluation protocols. Additionally, the production process of MBCs involves critical steps like substrate preparation, fungal species selection, and mycelium growth, necessitating the implementation of good manufacturing practices (GMPs) to ensure consistency and quality. The internal and external structures of MBCs significantly influence their performance, necessitating standardized inspection methods using advanced techniques such as scanning electron microscopy (SEM), X-ray computed tomography (CT) scanning, and surface profilometry. By establishing robust inspection protocols and production standards, the industry can enhance the reliability and adoption of MBCs, contributing to innovations in materials science and promoting environmental sustainability. This review underscores the importance of interdisciplinary collaboration, advanced characterization tools, and regulatory frameworks to address challenges and advance the field of MBCs.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanongkiat Kiatsiriroat
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
8
|
Ngece K, Ntondini TL, Khwaza V, Paca AM, Aderibigbe BA. Polyene-Based Derivatives with Antifungal Activities. Pharmaceutics 2024; 16:1065. [PMID: 39204411 PMCID: PMC11360744 DOI: 10.3390/pharmaceutics16081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Polyenes are a class of organic compounds well known for their potent antifungal properties. They are effective due to their ability to target and disrupt fungal cell membranes by binding to ergosterol and forming pores. Despite their effectiveness as antifungal drugs, polyenes have several limitations, such as high toxicity to the host cell and poor solubility in water. This has prompted ongoing research to develop safer and more efficient derivatives to overcome such limitations while enhancing their antifungal activity. In this review article, we present a thorough analysis of polyene derivatives, their structural modifications, and their influence on their therapeutic effects against various fungal strains. Key studies are discussed, illustrating how structural modifications have led to improved antifungal properties. By evaluating the latest advancements in the synthesis of polyene derivatives, we highlight that incorporating amide linkers at the carboxylic moiety of polyene molecules notably improves their antifungal properties, as evidenced by derivatives 4, 5, 6G, and 18. This review can help in the design and development of novel polyene-based compounds with potent antifungal activities.
Collapse
Affiliation(s)
| | | | - Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| |
Collapse
|
9
|
Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics (Basel) 2024; 9:337. [PMID: 38921217 PMCID: PMC11202202 DOI: 10.3390/biomimetics9060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Mycelium-based green composites (MBCs) represent an eco-friendly material innovation with vast potential across diverse applications. This paper provides a thorough review of the factors influencing the production and properties of MBCs, with a particular focus on interdisciplinary collaboration and long-term sustainability goals. It delves into critical aspects such as fungal species selection, substrate type selection, substrate preparation, optimal conditions, dehydrating methods, post-processing techniques, mold design, sterilization processes, cost comparison, key recommendations, and other necessary factors. Regarding fungal species selection, the paper highlights the significance of considering factors like mycelium species, decay type, hyphal network systems, growth rate, and bonding properties in ensuring the safety and suitability of MBCs fabrication. Substrate type selection is discussed, emphasizing the importance of chemical characteristics such as cellulose, hemicellulose, lignin content, pH, organic carbon, total nitrogen, and the C: N ratio in determining mycelium growth and MBC properties. Substrate preparation methods, optimal growth conditions, and post-processing techniques are thoroughly examined, along with their impacts on MBCs quality and performance. Moreover, the paper discusses the importance of designing molds and implementing effective sterilization processes to ensure clean environments for mycelium growth. It also evaluates the costs associated with MBCs production compared to traditional materials, highlighting potential cost savings and economic advantages. Additionally, the paper provides key recommendations and precautions for improving MBC properties, including addressing fungal strain degeneration, encouraging research collaboration, establishing biosecurity protocols, ensuring regulatory compliance, optimizing storage conditions, implementing waste management practices, conducting life cycle assessments, and suggesting parameters for desirable MBC properties. Overall, this review offers valuable insights into the complex interplay of factors influencing MBCs production and provides guidance for optimizing processes to achieve sustainable, high-quality composites for diverse applications.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
10
|
Aiduang W, Jatuwong K, Jinanukul P, Suwannarach N, Kumla J, Thamjaree W, Teeraphantuvat T, Waroonkun T, Oranratmanee R, Lumyong S. Sustainable Innovation: Fabrication and Characterization of Mycelium-Based Green Composites for Modern Interior Materials Using Agro-Industrial Wastes and Different Species of Fungi. Polymers (Basel) 2024; 16:550. [PMID: 38399928 PMCID: PMC10891725 DOI: 10.3390/polym16040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Mycelium-based bio-composites (MBCs) represent a sustainable and innovative material with high potential for contemporary applications, particularly in the field of modern interior design. This research investigates the fabrication of MBCs for modern interior materials using agro-industrial wastes (bamboo sawdust and corn pericarp) and different fungal species. The study focuses on determining physical properties, including moisture content, shrinkage, density, water absorption, volumetric swelling, thermal degradation, and mechanical properties (bending, compression, impact, and tensile strength). The results indicate variations in moisture content and shrinkage based on fungal species and substrate types, with bamboo sawdust exhibiting lower shrinkage. The obtained density values range from 212.31 to 282.09 kg/m3, comparable to traditional materials, suggesting MBCs potential in diverse fields, especially as modern interior elements. Water absorption and volumetric swelling demonstrate the influence of substrate and fungal species, although they do not significantly impact the characteristics of interior decoration materials. Thermal degradation analysis aligns with established patterns, showcasing the suitability of MBCs for various applications. Scanning electron microscope observations reveal the morphological features of MBCs, emphasizing the role of fungal mycelia in binding substrate particles. Mechanical properties exhibit variations in bending, compression, impact, and tensile strength, with MBCs demonstrating compatibility with traditional materials used in interior elements. Those produced from L. sajor-caju and G. fornicatum show especially promising characteristics in this context. Particularly noteworthy are their superior compression and impact strength, surpassing values observed in certain synthetic foams multiple times. Moreover, this study reveals the biodegradability of MBCs, reaching standards for environmentally friendly materials. A comprehensive comparison with traditional materials further supports the potential of MBCs in sustainable material. Challenges in standardization, production scalability, and market adoption are identified, emphasizing the need for ongoing research, material engineering advancements, and biotechnological innovations. These efforts aim to enhance MBC properties, promoting sustainability in modern interior applications, while also facilitating their expansion into mass production within the innovative construction materials market.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.); (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.); (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.); (R.O.)
| | - Nakarin Suwannarach
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.); (N.S.); (J.K.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.); (N.S.); (J.K.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.); (R.O.)
| | - Rawiwan Oranratmanee
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.); (R.O.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Teeraphantuvat T, Jatuwong K, Jinanukul P, Thamjaree W, Lumyong S, Aiduang W. Improving the Physical and Mechanical Properties of Mycelium-Based Green Composites Using Paper Waste. Polymers (Basel) 2024; 16:262. [PMID: 38257061 PMCID: PMC10820316 DOI: 10.3390/polym16020262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The growing demand for environmentally friendly and sustainable materials has led to the invention of innovative solutions aiming to reduce negative impacts on the environment. Mycelium-based green composites (MBCs) have become an alternative to traditional materials due to their biodegradability and various potential uses. Although MBCs are accepted as modern materials, there are concerns related to some of their physical and mechanical properties that might have limitations when they are used. This study investigates the effects of using paper waste to improve MBC properties. In this study, we investigated the physical and mechanical properties of MBCs produced from lignocellulosic materials (corn husk and sawdust) and mushroom mycelia of the genus Lentinus sajor-caju TBRC 6266, with varying amounts of paper waste added. Adding paper waste increases the density of MBCs. Incorporating 20% paper waste into corn husks led to the enhancement of the compression, bending, and impact strength of MBCs by over 20%. Additionally, it was also found that the MBCs produced from corn husk and 10% paper waste could help in reducing the amount of water absorbed into the material. Adding paper waste to sawdust did not improve MBC properties. At the same time, some properties of MBCs, such as low tensile strength and high shrinkage, might need to be further improved in the future to unlock their full potential, for which there are many interesting approaches. Moreover, the research findings presented in this publication provide a wealth of insightful information on the possibility of using paper waste to improve MBC performance and expand their suitability for a range of applications in sustainable packaging materials and various home decorative items. This innovative approach not only promotes the efficient utilization of lignocellulosic biomass but also contributes to the development of environmentally friendly and biodegradable alternatives to traditional materials.
Collapse
Affiliation(s)
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Hanafiah ZM, Azmi AR, Wan-Mohtar WAAQI, Olivito F, Golemme G, Ilham Z, Jamaludin AA, Razali N, Halim-Lim SA, Wan Mohtar WHM. Water Quality Assessment and Decolourisation of Contaminated Ex-Mining Lake Water Using Bioreactor Dye-Eating Fungus (BioDeF) System: A Real Case Study. TOXICS 2024; 12:60. [PMID: 38251015 PMCID: PMC10818540 DOI: 10.3390/toxics12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The environmental conditions of a lake are influenced by its type and various environmental forces such as water temperature, nutrients content, and longitude and latitude to which it is exposed. Due to population growth and development limits, former mining lakes are being converted to more lucrative land uses like those of recreational zones, agriculture, and livestock. The fungus Ganoderma lucidum has the potential to be utilised as a substitute or to perform synergistic bacteria-coupled functions in efficient contaminated lake water treatment. The purpose of this paper is to evaluate the water quality and water quality index (WQI) of an ex-mining lake named Main Lake in the Paya Indah Wetland, Selangor. Furthermore, the current work simulates the use of a Malaysian fungus in decolourising the contaminated ex-mining lake by the BioDeF system in a 300 mL jar inoculated with 10% (v/v) of pre-grown Ganoderma lucidum pellets for 48 h. According to the results, the lake water is low in pH (5.49 ± 0.1 on average), of a highly intense dark brownish colour (average reading of 874.67 ± 3.7 TCU), and high in iron (Fe) content (3.2422 ± 0.2533 mg/L). The water quality index of the lake was between 54.59 and 57.44, with an average value of 56.45; thus, the water was categorized as Class III, i.e., under-polluted water, according to the Malaysian Department of Environment Water Quality Index (DOE-WQI, DOE 2020). The batch bioreactor BioDeF system significantly reduced more than 90% of the water's colour. The utilization of Ganoderma lucidum as an adsorbent material offers a variety of advantages, as it is easily available and cultivated, and it is not toxic.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Ammar Radzi Azmi
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fabrizio Olivito
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy;
| | - Giovanni Golemme
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy;
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.I.); (A.A.J.)
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.I.); (A.A.J.)
| | - Nadzmin Razali
- Gamuda Land, Menara Gamuda, PJ Trade Centre, No. 8 Jalan PJU 8/8A, Bandar Damansara Perdana, Petaling Jaya 47820, Malaysia
| | - Sarina Abdul Halim-Lim
- Operational and Quality Management Unit, Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| |
Collapse
|
13
|
Abdallah YK, Estévez AT. Biowelding 3D-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus ostreatus Mycelium. Biomimetics (Basel) 2023; 8:504. [PMID: 37887635 PMCID: PMC10604342 DOI: 10.3390/biomimetics8060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Mycelium biocomposites are eco-friendly, cheap, easy to produce, and have competitive mechanical properties. However, their integration in the built environment as durable and long-lasting materials is not solved yet. Similarly, biocomposites from recycled food waste such as seashells have been gaining increasing interest recently, thanks to their sustainable impact and richness in calcium carbonate and chitin. The current study tests the mycelium binding effect to bioweld a seashell biocomposite 3D-printed brick. The novelty of this study is the combination of mycelium and a non-agro-based substrate, which is seashells. As well as testing the binding capacity of mycelium in welding the lattice curvilinear form of the V3 linear Brick model (V3-LBM). Thus, the V3-LBM is 3D printed in three separate profiles, each composed of five layers of 1 mm/layer thickness, using seashell biocomposite by paste extrusion and testing it for biowelding with Pleurotus ostreatus mycelium to offer a sustainable, ecofriendly, biomineralized brick. The biowelding process investigated the penetration and binding capacity of the mycelium between every two 3D-printed profiles. A cellulose-based culture medium was used to catalyse the mycelium growth. The mycelium biowelding capacity was investigated by SEM microscopy and EDX chemical analysis of three samples from the side corner (S), middle (M), and lateral (L) zones of the biowelded brick. The results revealed that the best biowelding effect was recorded at the corner and lateral zones of the brick. The SEM images exhibited the penetration and the bridging effect achieved by the dense mycelium. The EDX revealed the high concentrations of carbon, oxygen, and calcium at all the analyzed points on the SEM images from all three samples. An inverted relationship between carbon and oxygen as well as sodium and potassium concentrations were also detected, implying the active metabolic interaction between the fungal hyphae and the seashell-based biocomposite. Finally, the results of the SEM-EDX analysis were applied to design favorable tessellation and staking methods for the V3-LBM from the seashell-mycelium composite to deliver enhanced biowelding effect along the Z axis and the XY axis with <1 mm tessellation and staking tolerance.
Collapse
Affiliation(s)
- Yomna K. Abdallah
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Alberto T. Estévez
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| |
Collapse
|
14
|
Yang L, Xu R, Joardar A, Amponsah M, Sharifi N, Dong B, Qin Z. Design and build a green tent environment for growing and charactering mycelium growth in lab. LAB ON A CHIP 2023; 23:4044-4051. [PMID: 37606082 DOI: 10.1039/d3lc00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 μm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth.
Collapse
Affiliation(s)
- Libin Yang
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
| | - Ruohan Xu
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse University, Syracuse, NY 13244, USA
| | - Anushka Joardar
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Jamesville DeWitt Highschool, 6845 Edinger Dr, Dewitt, NY 13214, USA
| | - Michael Amponsah
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Liverpool High School, 4338 Wetzel Rd, Liverpool, NY 13090, USA
| | - Nina Sharifi
- Syracuse University School of Architecture, Slocum Hall, Syracuse, NY 13244, USA
- Applied Sciences and Technology Research in Architecture Lab, Syracuse Center of Excellence, Syracuse, NY, USA
| | - Bing Dong
- Department of Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse University, Syracuse, NY 13244, USA
- Built Environment Science and Technology (BEST) Lab, Syracuse University, 403 SyracuseCoE, Syracuse, NY 13244, USA
| | - Zhao Qin
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse University, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, NY 13244, USA
| |
Collapse
|
15
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
16
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
17
|
Rao KM, Uthappa UT, Kim HJ, Han SS. Tissue Adhesive, Biocompatible, Antioxidant, and Antibacterial Hydrogels Based on Tannic Acid and Fungal-Derived Carboxymethyl Chitosan for Wound-Dressing Applications. Gels 2023; 9:gels9050354. [PMID: 37232946 DOI: 10.3390/gels9050354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to develop hydrogels for tissue adhesion that are biocompatible, antioxidant, and antibacterial. We achieved this by using tannic acid (TA) and fungal-derived carboxymethyl chitosan (FCMCS) incorporated in a polyacrylamide (PAM) network using free-radical polymerization. The concentration of TA greatly influenced the physicochemical and biological properties of the hydrogels. Scanning electron microscopy showed that the nanoporous structure of the FCMCS hydrogel was retained with the addition of TA, resulting in a nanoporous surface structure. Equilibrium-swelling experiments revealed that increasing the concentration of TA significantly improved water uptake capacity. Antioxidant radical-scavenging assays and porcine skin adhesion tests confirmed the excellent adhesive properties of the hydrogels, with adhesion strengths of up to 39.8 ± 1.2 kPa for 1.0TA-FCMCS due to the presence of abundant phenolic groups on TA. The hydrogels were also found to be biocompatible with skin fibroblast cells. Furthermore, the presence of TA significantly enhanced the antibacterial properties of the hydrogels against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Therefore, the developed drug-free antibacterial and tissue-adhesive hydrogels can potentially be used as wound dressings for infected wounds.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon Jin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
18
|
Darwish A, El-Sayed NS, Al Kiey SA, Kamel S, Turky G. Polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly (AM-co-ECA-co-AMPS): Broadband dielectric spectroscopy investigations. Int J Biol Macromol 2023; 232:123443. [PMID: 36709806 DOI: 10.1016/j.ijbiomac.2023.123443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
In this study, the dielectric behavior of polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly(AM-co-ECA-co-AMPS) was investigated by broadband dielectric spectroscopy (BDS). The dielectric spectra obtained from -70 to 70 °C showed a superposition of three distinctive processes, electrode polarization, charge carrier's transport, and a molecular relaxation process. These dynamic processes were further analyzed along with the effect of both temperature and reduced graphene oxide (rGO) content. The development of a clear electrochemical double layer (ECDL) at the electrode/hydrogel interface strongly supports its possible application in supercapacitors' forms of energy storage. TGA, DSC, rheology, and electrochemical properties were studied. Furthermore, when the composite hydrogel with rGO content of 2.5 % was assembled into a symmetric supercapacitor, it displayed a specific capacitance of 756 F.g-1 at 1 A.g-1 and 704 F.g-1 after 5000 cycles with high capacitance retention of 93.2 %. The superior conductivity and porous structure of the rGO composite hydrogel are credited with the hydrogel's excellent electrochemical capabilities.
Collapse
Affiliation(s)
- Abdelfattah Darwish
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| | | | - Sherief A Al Kiey
- Physical Chemistry Department, National Research Centre, 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 12622, Egypt
| | - Gamal Turky
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| |
Collapse
|
19
|
Indarti E, Muliani S, Yunita D. Characteristics of Biofoam Cups Made from Sugarcane Bagasse with Rhizopus oligosporus as Binding Agent. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/8257317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups (
) and the SF1.5 biofoam cups (
). Both B-SF1 and B-SF1.5 had lower porosity (
and
, respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength (
kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength (
MPa) and the DB-SF1.5 exhibited the slowest degradation rate (
) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.
Collapse
Affiliation(s)
- Eti Indarti
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Master Program of Agriculture Industrial Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sri Muliani
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Dewi Yunita
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
20
|
Safakas K, Giotopoulou I, Giannakopoulou A, Katerinopoulou K, Lainioti GC, Stamatis H, Barkoula NM, Ladavos A. Designing Antioxidant and Antimicrobial Polyethylene Films with Bioactive Compounds/Clay Nanohybrids for Potential Packaging Applications. Molecules 2023; 28:molecules28072945. [PMID: 37049708 PMCID: PMC10095763 DOI: 10.3390/molecules28072945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
In the present work, direct incorporation of bioactive compounds onto the surface and interlayer of nanoclays before their incorporation into the final polymeric film was conducted, based on a green methodology developed by our group that is compatible with food packaging. This will lead to the higher thermal stability and the significant reduction of the loss of activity of the active ingredients during packaging configuration. On this basis, the essential oil (EO) components carvacrol (C), thymol (T) as well as olive leaf extract (OLE), which is used for the first time, were incorporated onto organo-modified montmorillonite (O) or inorganic bentonite (B) through the evaporation/adsorption method. The prepared bioactive nanocarriers were further mixed with low-density polyethylene (LDPE), via melt compounding, in order to prepare films for potential use as fresh fruit and vegetable packaging material. Characterization of the bioactive nanocarriers and films were performed through XRD, TGA, tensile, antimicrobial and antioxidant tests. Films with organically modified montmorillonite loaded with carvacrol (OC), thymol (OT) and olive leaf extract (OOLE) at 5% wt. showed better results in terms of mechanical properties. The films with polyethylene and organically modified montmorillonite loaded with carvacrol or thymol at 20% wt. (PE_OC20 and PE_OT20), as well as with olive leaf extract at 5 or 10 %wt., clay:bioactive substance ratio 1:0.5 and 10% compatibilizer (PE_OOLE5_MA10 and PE_OOLE10_MA10) exhibited the highest antioxidant activity. The resulting films displayed outstanding antimicrobial properties against Gram-negative Escherichia coli (E. coli) with the best results appearing in the films with 10% OC and OT.
Collapse
|
21
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
González-Conde M, Vega J, López-Figueroa F, García-Castro M, Moscoso A, Sarabia F, López-Romero JM. Green Synthesis of Silver Nanoparticles and Its Combination with Pyropia columbina (Rhodophyta) Extracts for a Cosmeceutical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1010. [PMID: 36985903 PMCID: PMC10054154 DOI: 10.3390/nano13061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
We report the green synthesis of silver nanoparticles (AgNPs) by using daisy petals (Bellis perennis), leek (Allium porrum) and garlic skin (Allium sativum) as reducing agents and water as solvent. AgNPs are obtained with high monodispersity, spherical shapes and size ranging from 5 to 35 nm and characterized by UV-Vis and TEM techniques. The obtained yields in AgNPs are in concordance with the total phenolic content of each plant. We also study the incorporation of AgNPs in combination with the red algae Pyropia columbina extracts (PCE) into cosmetic formulations and analyze their combined effect as photoprotective agents. Moreover, we carry out the inclusion of the PCE containing mycosporine-like amino acids (MAAs), which are strong UV-absorbing and antioxidant compounds, into β-cyclodextrin (βCD) and pNIPAM nanoparticles and analyze stability and release. The thermoresponsive polymer is grown by free radical polymerization using N-isopropylacrylamide (NIPAM) as the monomer, N,N'-methylenebisacrylamide (BIS) as the cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as the initiator, while βCD complex is prepared by heating in water. We evaluate the nanoparticle and βCD complex formation by UV-Vis and FT-IR, and NMR spectroscopies, respectively, and the nanoparticles' morphology, including particle size, by TEM. The cosmetic formulations are subsequently subjected to accelerated stability tests and photoprotective analyses: a synergistic effect in the combination of AgNPs and PCE in photoprotection was found. It is not related to a UV screen effect but to the antioxidant activity, having potential against photoaging.
Collapse
Affiliation(s)
- Mercedes González-Conde
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Julia Vega
- Andalusian Institute of Blue Biotechnology and Development (IBYDA) Experimental Center Grice Hutchinson, University of Málaga, Lomas de San Julián, 2, 29004 Malaga, Spain
| | - Félix López-Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA) Experimental Center Grice Hutchinson, University of Málaga, Lomas de San Julián, 2, 29004 Malaga, Spain
| | - Miguel García-Castro
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Ana Moscoso
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - J. Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| |
Collapse
|
23
|
Direct and selective determination of p-coumaric acid in food samples via layered Nb4AlC3-MAX phase. Food Chem 2023; 403:134130. [DOI: 10.1016/j.foodchem.2022.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022]
|
24
|
Characterization of Fungal Foams from Edible Mushrooms Using Different Agricultural Wastes as Substrates for Packaging Material. Polymers (Basel) 2023; 15:polym15040873. [PMID: 36850157 PMCID: PMC9966758 DOI: 10.3390/polym15040873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Agricultural wastes and leaves, which are classified as lignocellulosic biomass, have been used as substrates in the production of fungal foams due to the significant growth of the mushroom industry in recent years. Foam derived from fungi can be utilized in a variety of industrial applications, including the production of packaging materials. Here, white oyster mushrooms (Pleurotus florida) and yellow oyster mushrooms (Pleurotus citrinopileatus) were cultivated on rice husk, sawdust, sugarcane bagasse, and teak leaves. Fungal foams were produced after 30 days of incubation, which were then analyzed using scanning electron microscopy (SEM), thermal analysis (TGA), and chemical structure using Fourier-transform infrared spectroscopy. Mechanical testing examined the material's hardness, resilience, and springiness, and water absorption tests were used to determine the durability of the fungal foams. Our findings demonstrated that fungal foams made from rice husk and teak leaves in both mycelium species showed better mechanical properties, thermal stability, and minimal water absorption compared to the other substrates, and can thus have great potential as efficient packaging materials.
Collapse
|
25
|
Mycelium-Composite Materials-A Promising Alternative to Plastics? J Fungi (Basel) 2023; 9:jof9020210. [PMID: 36836324 PMCID: PMC9965147 DOI: 10.3390/jof9020210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Plastic waste inefficiently recycled poses a major environmental concern attracting attention from both civil society and decision makers. Counteracting the phenomenon is an important challenge today. New possibilities are being explored to find alternatives to plastics, and one of them refers to mycelium-composite materials (MCM). Our study aimed at investigating the possibility of using wood and litter inhabiting basidiomycetes, an underexplored group of fungi that grow fast and create strong mycelial mats, to produce biodegradable materials with valuable properties, using cheap by-products as a substrate for growth. Seventy-five strains have been tested for their ability to grow on low-nutrient media and to form compact mycelial mats. Eight strains were selected further for evaluation on several raw substrates for producing in vitro myco-composites. The physico-mechanical properties of these materials, such as firmness, elasticity and impermeability, were analyzed. Abortiporus biennis RECOSOL73 was selected to obtain, at the laboratory scale, a real biodegradable product. Our results suggest that the strain used is a promising candidate with real possibilities for scalability. Finally, corroborating our results with scientific available data, discussions are being made over the feasibility of such technology, cost-effectiveness, scalability, availability of raw materials and, not least, where future studies should be directed to.
Collapse
|
26
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Varghese SA, Pulikkalparambil H, Promhuad K, Srisa A, Laorenza Y, Jarupan L, Nampitch T, Chonhenchob V, Harnkarnsujarit N. Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers (Basel) 2023; 15:polym15030648. [PMID: 36771949 PMCID: PMC9920369 DOI: 10.3390/polym15030648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Waste management in the agricultural sector has become a major concern. Increased food production to satisfy the surge in population has resulted in the generation of large volumes of solid waste. Agro-waste is a rich source of biocompounds with high potential as a raw material for food packaging. Utilization of agro-waste supports the goal of sustainable development in a circular economy. This paper reviews recent trends and the development of agro-wastes from plant and animal sources into eco-friendly food packaging systems. Different plant and animal sources and their potential development into packaging are discussed, including crop residues, process residues, vegetable and fruit wastes, and animal-derived wastes. A comprehensive analysis of the properties and production methods of these packages is presented. Future aspects of agro-waste packaging systems and the inherent production problems are addressed.
Collapse
Affiliation(s)
- Sandhya Alice Varghese
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Harikrishnan Pulikkalparambil
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Lerpong Jarupan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Tarinee Nampitch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5045; Fax: +662-562-5046
| |
Collapse
|
28
|
Ogidi CO, Oyebode KO. Assessment of nutrient contents and bio-functional activities of edible fungus bio-fortified with copper, lithium and zinc. World J Microbiol Biotechnol 2022; 39:56. [PMID: 36572785 DOI: 10.1007/s11274-022-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Bio-enrichment of edible mushrooms is an outstanding strategy to deliver essential nutrients to human. In this study, an edible fungus; Pleurotus pulmonarius was cultivated on spent mushroom substrate (SMS) supplemented with copper, lithium, and zinc. Proximate and mineral analysis of cultivated mushroom was determined using methods of AOAC. Antimicrobial activity of cultivated mushroom was assessed against microorganisms using agar well diffusion. Antioxidant property of mushroom was assessed against free radicals. Similar (p ≤ 0.05) protein contents of 18.93%, 18.80% and 17.90% were respectively obtained in P. pulmonarius biofortified with Cu + Li + Zn, Cu + Zn and Zn. Crude fibre in element fortified-mushroom ranged from 9.02 to 10.11%, while non-fortified mushroom was 8.66%. Copper content of P. pulmonarius fortified with Cu alone and Cu + Zn were 96.12 mg/100 g and 98.09 mg/100 g, respectively. Mushroom fortified with Zn has the highest zinc content of 520.15 mg/100 g. Mushroom fortified with Li and Li + Zn have a similar (p ≤ 0.05) Li content of 106.02 mg/100 g and 104.30 mg/100 g, respectively. Extract from mushroom-fortified with copper has the highest zone of inhibition (15.1 mm) against Klebsiella pneumoniae at 1.0 mg/ml. Mushroom fortified with Cu + Li + Zn and Li + Zn, respectively have similar (p ≤ 0.05) scavenging activities of 79.10 and 81.0% against DPPH. Mushroom fortified with Zn or Zn + Cu enhanced the growth of Lactobacillus acidophilus and Lactobacillus plantarum. Antimicrobial, antioxidant and prebiotic activities of fortified-mushroom could be attributed to arrays of phytochemicals and bio-accumulated elements. Hence, bio-fortified mushrooms can be used as functional foods and as biopharmaceuticals to treat ailments associated with nutrient deficient.
Collapse
Affiliation(s)
- Clement Olusola Ogidi
- Department of Food Science and Technology, School of Agriculture, Food and Natural Resources, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria.
| | | |
Collapse
|
29
|
Zhao W, Yang A, Wang J, Huang D, Deng Y, Zhang X, Qu Q, Ma W, Xiong R, Zhu M, Huang C. Potential application of natural bioactive compounds as skin-whitening agents: A review. J Cosmet Dermatol 2022; 21:6669-6687. [PMID: 36204978 DOI: 10.1111/jocd.15437] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Melanin is a skin pigment that gives color to the skin, hair, and eyes. The accumulation or over production of melanin can lead to aesthetic problems as well as serious diseases associated with hyperpigmentation. Skin lightening is described as the procedure of using natural or synthetic products to lighten the skin tone or provide an even skin complexion by reducing the amount of melanin in the skin; therefore, skin lightening products help people to treat their skin problems. Ingredients such as hydroquinone, ascorbic acid, and retinoic acid were used as whitening agents to lighten the skin. However, they have many adverse effects on the skin and body health, such as skin irritation. AIM In this review, firstly, discuss on the directly/indirectly target melanogenesis-related signal pathways. Secondly, summarize potential natural bioactive ingredients with skin lightening properties from plants, marine organisms, microorganisms. Finally, the remaining problems and future challenges are also discussed. METHODS For relevant literature, a literature search was conducted using Google Scholar and Web of Science. Natural bioactive compounds, tyrosinase inhibitors, and other related topics were researched and evaluated. RESULTS Natural products isolated from plant and animal resources are potential active cosmetic candidates for lightening the skin tone and skin whitening and protection against UV irradiation. Natural bioactive ingredients as cosmetic whitening additives have attracted increasingly attention due to their safety and cost effectiveness, with few side effects. CONCLUSION Although natural active substances have been advocated for use in whitening cosmetics in recent years, there are still many challenges due to the fact that traditional inhibitors are used perennial in cosmetics which cannot be easily changed and the research on natural active substances is still in its infancy. In the future, by improving the extraction technique of natural extracts, it is achieved to give a qualitative and quantitative analysis of the active ingredients of the extracts, to determine the effect of the active components of action, and to find the substances that have the best possible whitening effect in natural organisms.
Collapse
Affiliation(s)
- Wei Zhao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | | | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou, China
| | - Dan Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| |
Collapse
|
30
|
Fu Z, Guo F, Qiu J, Zhang R, Wang M, Wang L. Extension of the alkyl chain length to adjust the properties of laccase-mimicking MOFs for phenolic detection and discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121606. [PMID: 35839694 DOI: 10.1016/j.saa.2022.121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
2-Methylimidazole (MIM) is a classic organic ligand that shows excellent thermal stability and chemical robustness and is widely used in ZIFs. Recently, transformations of MOFs have been realized by using metals or ligands. In this study, we propose a new strategy-adjusting MIM by extending the alkyl chain length -to change the properties of related MOFs. Furthermore, we used copper as the metal core to replace zinc to mimic the active sites of laccases (electron transfer between copper and imidazole ring). As a result, the nanostructures transformed from nanoleaves to nanovesicles, which changed the Cu(II)/Cu(I) ratio from 3.7 to 1.7, as well as the lattice constant (decreased the diffraction angle) and enzyme-like activity (inhibition). In addition, we revealed that superoxidase anions were the main factors responsible for its laccase-like activity. We applied it to detect and discriminate phenolics. Laccase-mimicking activity was best at pH 7.0. When compared to protein laccase, the Cu-MeIm nanozyme had a greater Vmax at the same mass concentration. It was used to identify and distinguish phenolics. In the presence of Cu-MeIm nanozymes, the linear range is 0.1-2 mM and the detection limit of 2,4-DCP is 0.034 mM.
Collapse
Affiliation(s)
- Zhendong Fu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Feng Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Jiahe Qiu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Runchi Zhang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Mingxu Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China; School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
| |
Collapse
|
31
|
Lee NA, Shen SC, Buehler MJ. An automated biomateriomics platform for sustainable programmable materials discovery. MATTER 2022; 5:3597-3613. [PMID: 36817352 PMCID: PMC9937510 DOI: 10.1016/j.matt.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, the potential to create functional materials from various forms of organic matter has received increased interest due to its potential to address environmental concerns. However, the process of creating novel materials from biomass requires extensive experimentation. A promising means of predicting the properties of such materials would be the use of machine-learning models trained on or integrated into self-learned experimental data and methods. We outline an automated system for the discovery and characterization of novel, sustainable, and functional materials from input biomass. Artificial intelligence provides the capacity to examine experimental data, draw connections between composite composition and behavior, and design future experiments to expand the system's understanding of the studied materials. Extensions to the system are described that could further accelerate the discovery of sustainable composites, including the use of interpretable machine-learning methods to expand the insights gleaned from to human-readable materiomic insights about material process-structure-functional relationships.
Collapse
Affiliation(s)
- Nicolas A. Lee
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, MA 02139, USA
- School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA 02139, USA
| | - Sabrina C. Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, MA 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Peng L, Yi J, Yang X, Xie J, Chen C. Development and Characterization of Mycelium Bio-Composites by Utilization of Different Agricultural Residual Byproducts. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Aiduang W, Kumla J, Srinuanpan S, Thamjaree W, Lumyong S, Suwannarach N. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. J Fungi (Basel) 2022; 8:1125. [PMID: 36354892 PMCID: PMC9697540 DOI: 10.3390/jof8111125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mycelium-based composites (MBCs) are characterized as biodegradable materials derived from fungal species. These composites can be employed across a range of industrial applications that involve the manufacturing of packaging materials as well as the manufacturing of buildings, furniture, and various other household items. However, different fungal species and substrates can directly affect the functional properties of MBCs, which ultimately vary their potential to be used in many applications. In this study, the mechanical, physical, and chemical properties of MBCs made from four different fungal species (Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, and Schizophyllum commune) combined with three different types of lignocellulosic residues (sawdust, corn husk, and rice straw) were investigated. The results indicate that differences in both the type of lignocellulosic residues and the fungal species could affect the properties of the obtained MBCs. It was found that the MBCs obtained from sawdust had the highest degree of density. Moreover, MBCs obtained from S. commune with all three types of lignocellulosic residues exhibited the highest shrinkage value. The greatest degree of water absorption was observed in the MBCs obtained from rice straw, followed by those obtained from corn husk and sawdust. Additionally, the thermal degradation ability of the MBCs was observed to be within a range of 200 to 325 °C, which was in accordance with the thermal degradation ability of each type of lignocellulosic residue. The greatest degrees of compressive, flexural, impact, and tensile strength were observed in the MBCs of G. williamsianum and L. sajor-caju. The results indicate that the MBCs made from corn husk, combined with each fungal species, exhibited the highest values of flexural, impact, and tensile strength. Subsequently, an analysis of the chemical properties indicated that the pH value, nitrogen content, and organic matter content of the obtained MBCs were within the following ranges: 4.67−6.12, 1.05−1.37%, and 70.40−86.28%, respectively. The highest degree of electrical conductivity was observed in MBCs obtained from rice straw. Most of the physical and mechanical properties of the obtained MBCs were similar to those of polyimide and polystyrene foam. Therefore, these composites could be used to further develop relevant strategies that may allow manufacturers to effectively replace polyimide and polystyrene foams in the future.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
35
|
Hassanpouraghdam Y, Pooresmaeil M, Namazi H. In-vitro evaluation of the 5-fluorouracil loaded GQDs@Bio-MOF capped with starch biopolymer for improved colon-specific delivery. Int J Biol Macromol 2022; 221:256-267. [PMID: 36067851 DOI: 10.1016/j.ijbiomac.2022.08.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Herein, for the first time, the photoluminescent graphene quantum dots@Bio-metal organic framework (GQDs@Bio-MOF) nanohybrid was prepared. BET analysis obtained the average pore diameter of GQDs@Bio-MOF about 11.97 nm. The existence of nanoscale porosity in GQDs@Bio-MOF displays its suitability for 5-Fu loading owing to the smaller size of 5-Fu. 5-Fu entrapment efficiency and loading capacity were found to be ~42.04 % and ~4.20 %, respectively (5-Fu@GQDs@Bio-MOF). The 5-Fu@GQDs@Bio-MOF was capped with starch biopolymer (St@5-Fu@GQDs@Bio-MOF), fabricated sample displayed 4.67 for pHPZC. SEM analysis displayed that the St@5-Fu@GQDs@Bio-MOF microspheres have a spherical shape with a diameter of ~2 μm. The in vitro drug release assay displayed better release behavior for St@5-Fu@GQDs@Bio-MOF than 5-Fu@GQDs@Bio-MOF, releasing about 62.3 % of the entrapped 5-Fu within 96 h of incubation. The 5-Fu release showed the best fitting with the Higuchi model with R2 0.9884. The in vitro cytotoxicity screening outcomes displayed that the St@GQDs@Bio-MOF is a promising biocompatible carrier, with cell viability of higher than 84 %. Accumulation of the results revealed that the St@5-Fu@GQDs@Bio-MOF is a new system with advantages of sustained drug release and biocompatibility that are the main criteria for each newly designed anticancer drug carrier.
Collapse
Affiliation(s)
- Yashar Hassanpouraghdam
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
36
|
New Poplar-Derived Biocomposites via Single-Step Thermoforming Assisted by Phosphoric Acid Pretreatment. Polymers (Basel) 2022; 14:polym14173636. [PMID: 36080713 PMCID: PMC9460407 DOI: 10.3390/polym14173636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
One-step thermoforming represents an effective approach to preparing glue-free biocomposites. This study aimed to produce glue-free biocomposites with high-temperature resistance and mechanical properties using phosphoric acid pretreatments combined with thermoforming. Due to the hot-moulding process, the cell wall was destroyed, which allowed the fibres to adhere closely together. Most hemicelluloses were hydrolysed through pretreatment with phosphoric acid, and the contact area between the cellulose and lignin was significantly increased. The biocomposites prepared by ball milling demonstrated remarkable flexural strength (49.03 MPa) and tensile strength (148.23 MPa). Moreover, they had excellent thermal stability, with the maximum temperature for pyrolysis rate at 374 °C, which was much higher than that of poplar (337 °C). In addition, the material released no formaldehyde during the preparation process, which is in line with the concept of green production.
Collapse
|
37
|
Wang Z, Su J, Ali A, Sun Y, Li Y, Yang W, Zhang R. Enhanced removal of fluoride, nitrate, and calcium using self-assembled fungus-flexible fiber composite microspheres combined with microbially induced calcium precipitation. CHEMOSPHERE 2022; 302:134848. [PMID: 35526689 DOI: 10.1016/j.chemosphere.2022.134848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Self-assembled fungus-flexible fiber composite microspheres (SFFMs) were firstly combined with microbially induced calcium precipitation (MICP) in a continuous-flow bioreactor and achieved the efficient removal of fluoride (F-), nitrate (NO3-), and calcium (Ca2+). Under the influent F- of 3.0 mg L-1, pH of 7.0, and HRT of 8 h, the average removal efficiencies reached 77.54%, 99.39%, and 67.25% (0.29, 2.03, and 8.34 mg L-1 h-1), respectively. Fluorescence spectrum and flow cytometry analyses indicated that F- content significantly affected the metabolism and viability of bacteria. SEM images showed that flexible fibers and intertwined hyphae provided effective locations for bacterial colonization in SFFMs. The precipitated products were characterized by XRD and FTIR, which revealed that F- was mainly removed in the form of calcium fluoride and calcium fluorophosphate (CaF2 and Ca5(PO4)3F). High-throughput analysis at different levels demonstrated that Pseudomonas sp. WZ39 acted as the core strain, which played a crucial role in the bioreactor. The mechanism of enhanced denitrification was attributed to minor F- stress and bioaugmentation technology. This study highlighted the superiorities of SFFMs and MICP combined remediation and documented a promising option for F-, NO3-, and Ca2+ removal.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
38
|
Proliferative effects of nanobubbles on fibroblasts. Biomed Eng Lett 2022; 12:393-400. [PMID: 36238371 PMCID: PMC9550906 DOI: 10.1007/s13534-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, the potential of nanobubbles (NBs) for biological activation has been actively investigated. In this study, we investigated the proliferative effects of nitrogen NBs (N-NBs) on fibroblast cells using cell assays with image analysis and flow cytometry. A high concentration of N-NBs (more than 4 × 108 NBs/mL) was generated in Dulbecco’s modified Eagle’s medium (DMEM) using a gas–liquid mixing method. In image analysis, the cells were counted and compared, which showed an 11% increase in cell number in the culture medium with N-NBs. However, in two further cell cytometry analyses, the effect of nanobubbles on cell division was found to be insignificant (approximately 2%); as there is insufficient evidence that N-NB is involved in cell division mechanism, further studies are needed to determine whether NB affects other cellular mechanisms such as apoptosis. This study presents the first successful attempt of directly generating and quantifying N-NBs in a culture medium for cell culture. The findings suggest that the N-NBs in the culture medium can potentially facilitate cell proliferation.
Collapse
|
39
|
Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr Opin Chem Biol 2022; 70:102188. [PMID: 35970133 DOI: 10.1016/j.cbpa.2022.102188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Natural materials possess many distinctive "living" attributes, such as self-growth, self-healing, environmental responsiveness, and evolvability, that are beyond the reach of many existing synthetic materials. The emerging field of engineered living materials (ELMs) takes inspiration from nature and harnesses engineered living systems to produce dynamic and responsive materials with genetically programmable functionalities. Here, we identify and review two main directions for the rational design of ELMs: first, engineering of living materials with enhanced performances by incorporating functional material modules, including engineered biological building blocks (proteins, polysaccharides, and nucleic acids) or well-defined artificial materials; second, engineering of smart ELMs that can sense and respond to their surroundings by programming dynamic cellular behaviors regulated via cell-cell or cell-environment interactions. We next discuss the strengths and challenges of current ELMs and conclude by providing a perspective of future directions in this promising area.
Collapse
Affiliation(s)
- Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Chen
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sizhe Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Aiduang W, Chanthaluck A, Kumla J, Jatuwong K, Srinuanpan S, Waroonkun T, Oranratmanee R, Lumyong S, Suwannarach N. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review. J Fungi (Basel) 2022; 8:842. [PMID: 36012830 PMCID: PMC9460913 DOI: 10.3390/jof8080842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
The continually expanding use of plastic throughout our world, along with the considerable increase in agricultural productivity, has resulted in a worrying increase in global waste and related environmental problems. The reuse and replacement of plastic with biomaterials, as well as the recycling of agricultural waste, are key components of a strategy to reduce plastic waste. Agricultural waste is characterized as lignocellulosic materials that mainly consist of cellulose, hemicellulose, and lignin. Saprobe fungi are able to convert agricultural waste into nutrients for their own growth and to facilitate the creation of mycelium-based composites (MBC) through bio-fabrication processes. Remarkably, different fungal species, substrates, and pressing and drying methods have resulted in varying chemical, mechanical, physical, and biological properties of the resulting composites that ultimately vary the functional aspects of the finished MBC. Over the last two decades, several innovative designs have produced a variety of MBC that can be applied across a range of industrial uses including in packaging and in the manufacturing of household items, furniture, and building materials that can replace foams, plastics, and wood products. Materials developed from MBC can be considered highly functional materials that offer renewable and biodegradable benefits as promising alternatives. Therefore, a better understanding of the beneficial properties of MBC is crucial for their potential applications in a variety of fields. Here, we have conducted a brief review of the current findings of relevant studies through an overview of recently published literature on MBC production and the physical, mechanical, chemical, and biological properties of these composites for use in innovative architecture, construction, and product designs. The advantages and disadvantages of various applications of mycelium-based materials (MBM) in various fields have been summarized. Finally, patent trends involving the use of MBM as a new and sustainable biomaterial have also been reviewed. The resulting knowledge can be used by researchers to develop and apply MBC in the form of eco-friendly materials in the future.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Athip Chanthaluck
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Jatuwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
41
|
Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics (Basel) 2022; 7:biomimetics7030103. [PMID: 35997423 PMCID: PMC9397049 DOI: 10.3390/biomimetics7030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022] Open
Abstract
Today’s architectural and agricultural practices negatively impact the planet. Mycelium-based composites are widely researched with the aim of producing sustainable building materials by upcycling organic byproducts. To go further, this study analyzed the growth process and tested the mechanical behavior of composite materials grown from fungal species used in bioremediation. Agricultural waste containing high levels of fertilizers serves as the substrate for mycelium growth to reduce chemical dispersal in the environment. Compression and three-point bending tests were conducted to evaluate the effects of the following variables on the mechanical behavior of mycelium-based materials: substrate particle size (with or without micro-particles), fungal species (Pleurotus ostreatus and Coprinus comatus), and post-growth treatment (dried, baked, compacted then dried, and compacted then baked). Overall, the density of the material positively correlated with its Young’s and elastic moduli, showing higher moduli for composites made from substrate with micro-particles and for compacted composites. Compacted then baked composites grown on the substrate with micro-particles provided the highest elastic moduli in compression and flexural testing. In conclusion, this study provides valuable insight into the selection of substrate particle size, fungal species, and post-growth treatment for various applications with a focus on material manufacturing, food production, and bioremediation.
Collapse
|
42
|
A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates. Biomimetics (Basel) 2022; 7:biomimetics7030100. [PMID: 35892369 PMCID: PMC9394424 DOI: 10.3390/biomimetics7030100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycelium-based composites have the potential to replace petrochemical-based materials within architectural systems and can propose biodegradable alternatives to synthetic sound absorbing materials. Sound absorbing materials help improve acoustic comfort, which in turn benefit our health and productivity. Mycelium-based composites are novel materials that result when mycelium, the vegetative root of fungi, is grown on agricultural plant-based residues. This research presents a material study that explores how substrate variants and fabrication methods affect the sound absorption properties of mycelium-based composites grown on paper-based waste substrate materials. Samples were grown using Pleurotus ostreatus fungi species on waste cardboard, paper, and newsprint substrates of varying processing techniques. Measurements of the normal-incidence sound absorption coefficient were presented and analyzed. This paper outlines two consecutive acoustic tests: the first round of experimentation gathered broad comparative data, useful for selecting materials for sound absorption purposes. The second acoustic test built on the results of the first, collecting more specific performance data and assessing material variability. The results of this study display that cardboard-based mycelium materials perform well acoustically and structurally and could successfully be used in acoustic panels.
Collapse
|
43
|
Sanmartín-Matalobos J, Bermejo-Barrera P, Aboal-Somoza M, Fondo M, García-Deibe AM, Corredoira-Vázquez J, Alves-Iglesias Y. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2501. [PMID: 35889725 PMCID: PMC9318497 DOI: 10.3390/nano12142501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Since the discovery of Quantum Dots (QDs) by Alexey I. Ekimov in 1981, the interest of researchers in that particular type of nanomaterials (NMs) with unique optical and electrical properties has been increasing year by year. Thus, since 2009, the number of scientific articles published on this topic has not been less than a thousand a year. The increasing use of QDs due to their biomedical, pharmaceutical, biological, photovoltaics or computing applications, as well as many other high-tech uses such as for displays and solid-state lighting (SSL), has given rise to a considerable number of studies about its potential toxicity. However, there are a really low number of reported studies on the detection and quantification of QDs, and these include ICP-MS and electrochemical analysis, which are the most common quantification techniques employed for this purpose. The knowledge of chemical phenomena occurring on the surface of QDs is crucial for understanding the interactions of QDs with species dissolved in the dispersion medium, while it paves the way for a widespread use of chemosensors to facilitate its detection. Keeping in mind both human health and environmental risks of QDs as well as the scarcity of analytical techniques and methodological approaches for their detection, the adaptation of existing techniques and methods used with other NMs appears necessary. In order to provide a multidisciplinary perspective on QD detection, this review focused on three interrelated key aspects of QDs: properties, surface chemistry and detection.
Collapse
Affiliation(s)
- Jesús Sanmartín-Matalobos
- Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (M.F.); (J.C.-V.); (Y.A.-I.)
| | - Pilar Bermejo-Barrera
- Trace Element, Speciation and Spectroscopy Group (GETEE), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (P.B.-B.); (M.A.-S.)
| | - Manuel Aboal-Somoza
- Trace Element, Speciation and Spectroscopy Group (GETEE), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (P.B.-B.); (M.A.-S.)
| | - Matilde Fondo
- Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (M.F.); (J.C.-V.); (Y.A.-I.)
| | - Ana M. García-Deibe
- Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (M.F.); (J.C.-V.); (Y.A.-I.)
| | - Julio Corredoira-Vázquez
- Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (M.F.); (J.C.-V.); (Y.A.-I.)
| | - Yeneva Alves-Iglesias
- Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (M.F.); (J.C.-V.); (Y.A.-I.)
- Trace Element, Speciation and Spectroscopy Group (GETEE), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain; (P.B.-B.); (M.A.-S.)
| |
Collapse
|
44
|
Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, Jamaludin AA, Abdul Patah MF, Ahmad Usuldin SR, Rowan N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: a review. Bioengineered 2022; 13:14903-14935. [PMID: 37105672 DOI: 10.1080/21655979.2023.2184785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| | - Afnan Ahmadi Zahuri
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Agro-Biotechnology Institute, Malaysia, National Institutes of Biotechnology Malaysia, Serdang, Selangor, Malaysia
| | - Neil Rowan
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| |
Collapse
|
45
|
Sohrabi H, Sani PS, Orooji Y, Majidi MR, Yoon Y, Khataee A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem Toxicol 2022; 165:113176. [DOI: 10.1016/j.fct.2022.113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|
46
|
Mycelium-Based Composite Graded Materials: Assessing the Effects of Time and Substrate Mixture on Mechanical Properties. Biomimetics (Basel) 2022; 7:biomimetics7020048. [PMID: 35645175 PMCID: PMC9149872 DOI: 10.3390/biomimetics7020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mycelium-based composites (MBC) are biodegradable, lightweight, and regenerative materials. Mycelium is the vegetative root of fungi through which they decompose organic matter. The proper treatment of the decomposition process results in MBC. MBC have been used in different industries to substitute common materials to address several challenges such as limited resources and large landfill waste after the lifecycle. One of the industries which started using this material is the architecture, engineering, and construction (AEC) industry. Therefore, scholars have made several efforts to introduce this material to the building industry. The cultivation process of MBC includes multiple parameters that affect the material properties of the outcome. In this paper, as a part of a larger research on defining a framework to use MBC as a structural material in the building industry, we defined different grades of MBC to address various functions. Furthermore, we tested the role of substrate mixture and the cultivation time on the mechanical behavior of the material. Our tests show a direct relationship between the density of the substrate and the mechanical strength. At the same time, there is a reverse relation between the cultivation time and the material mechanical performance.
Collapse
|
47
|
Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics (Basel) 2022; 7:biomimetics7020044. [PMID: 35466261 PMCID: PMC9036240 DOI: 10.3390/biomimetics7020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
In an increasing effort to address the environmental challenges caused by the currently linear economic paradigm of “produce, use, and discard”, the construction industry has been shifting towards a more circular model. A circular economy requires closing of the loops, where the end-of-life of a building is considered more carefully, and waste is used as a resource. In comparison to traditional building materials such as timber, steel and concrete, mycelium-based materials are renewable alternatives that use organic agricultural and industrial waste as a key ingredient for production, and do not rely on mass extraction or exploitation of valuable finite or non-finite resources. Mycelium-based materials have shown their potential as a more circular and economically competitive alternative to conventional synthetic materials in numerous industries ranging from packaging, electronic prototyping, furniture, fashion to architecture. However, application of mycelium-based materials in the construction industry has been limited to small-scale prototypes and architectural installations due to low mechanical properties, lack of standardisation in production methods and material characterisation. This paper aims to review the current state of the art in research and applications of mycelium-based materials across disciplines, with a particular focus on digital methods of fabrication, production, and design. The information gathered from this review will be synthesised to identify key challenges in scaling up applications of mycelium-based materials as load-bearing structural elements in architecture and suggest opportunities and directions for future research.
Collapse
|
48
|
Colorimetric/spectral dual-mode analysis of sensitive fluorescent probe based on 2,3,3-trimethyl-3H-benzo[e]indole detection of acid pH. Bioorg Chem 2022; 124:105792. [DOI: 10.1016/j.bioorg.2022.105792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
|
49
|
Henning LM, Simon U, Abdullayev A, Schmidt B, Pohl C, Nunez Guitar T, Vakifahmetoglu C, Meyer V, Bekheet MF, Gurlo A. Effect of Fomes fomentarius Cultivation Conditions on Its Adsorption Performance for Anionic and Cationic Dyes. ACS OMEGA 2022; 7:4158-4169. [PMID: 35155910 PMCID: PMC8829953 DOI: 10.1021/acsomega.1c05748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Lab-cultivated mycelia of Fomes fomentarius (FF), grown on a solid lignocellulose medium (FF-SM) and a liquid glucose medium (FF-LM), and naturally grown fruiting bodies (FF-FB) were studied as biosorbents for the removal of organic dyes methylene blue and Congo red (CR). Both the chemical and microstructural differences were revealed using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, zeta potential analysis, and scanning electron microscopy, illuminating the superiority of FF-LM and FF-SM over FF-FB in dye adsorption. The adsorption process of CR on FF-LM and FF-SM is best described by the Redlich-Peterson model with β constants close to 1, that is, approaching the monolayer Langmuir model, which reach maximum adsorption capacities of 48.8 and 13.4 mg g-1, respectively, in neutral solutions. Adsorption kinetics follow the pseudo-second-order model where chemisorption is the rate-controlling step. While the desorption efficiencies were low, adsorption performances were preserved and even enhanced under simulated dye effluent conditions. The results suggest that F. fomentarius can be considered an attractive biosorbent in industrial wastewater treatment and that its cultivation conditions can be specifically tailored to tune its cell wall composition and adsorption performance.
Collapse
Affiliation(s)
- Laura M. Henning
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ulla Simon
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Amanmyrat Abdullayev
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Bertram Schmidt
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carsten Pohl
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Tamara Nunez Guitar
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Cekdar Vakifahmetoglu
- Department
of Materials Science and Engineering, Izmir
Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Vera Meyer
- Chair
of Applied and Molecular Microbiology, Institute of Biotechnology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maged F. Bekheet
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair
of Advanced Ceramic Materials, Institute of Material Science and Technology,
Faculty III Process Sciences, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
50
|
Sydor M, Bonenberg A, Doczekalska B, Cofta G. Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review. Polymers (Basel) 2021; 14:145. [PMID: 35012167 PMCID: PMC8747211 DOI: 10.3390/polym14010145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.
Collapse
Affiliation(s)
- Maciej Sydor
- Department of Woodworking and Fundamentals of Machine Design, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Agata Bonenberg
- Institute of Interior Design and Industrial Design, Faculty of Architecture, Poznan University of Technology, 60-965 Poznań, Poland;
| | - Beata Doczekalska
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-637 Poznań, Poland; (B.D.); (G.C.)
| | - Grzegorz Cofta
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-637 Poznań, Poland; (B.D.); (G.C.)
| |
Collapse
|