1
|
Ma X, Chang L, Li S, Gu Y, Wan J, Sang H, Ding L, Liu M, He Q. Genetic associations of birthweight, childhood, and adult BMI with metabolic dysfunction-associated steatotic liver disease: a Mendelian randomization. BMC Gastroenterol 2024; 24:291. [PMID: 39198755 PMCID: PMC11351507 DOI: 10.1186/s12876-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE The causal relationship between life course adiposity with metabolic dysfunction-associated steatotic liver disease (MASLD) is ambiguous. We aimed to investigate whether there is an independent genetic causal relationship between body size at various life course and MASLD. METHODS We performed univariable and multivariable Mendelian randomization (MR) to estimate the causal effect of body size at different life stages on MASLD (i.e., defined by the clinical comprehensive diagnosis from the electronic health record [HER] codes [ICD9/ICD10] or diagnostic phrases), including birthweight, childhood body mass index (BMI), adult BMI, waist circumference (WC), waist-to-hip ratio (WHR), body fat percentage (BFP). RESULTS In univariate analyses, higher genetically predicted lower birthweight (ORIVW = 0.61, 95%CI, 0.52 to 0.74), Childhood BMI ( ORIVW = 1.37, 95%CI, 1.12 to 1.64), and adult BMI (ORIVW = 1.41, 95%CI, 1.27 to 1.57) was significantly associated with subsequent risk of MASLD after Bonferroni correction. The MVMR analysis demonstrated compelling proof that birthweight and adult BMI had a direct causal relationship with MASLD. However, after adjusting for birthweight and adult BMI, the direct causal relationship between childhood BMI and MASLD disappeared. CONCLUSION For the first time, this MR elucidated new evidence for the effect of life course adiposity on MASLD risk, providing lower birthweight and duration of obesity are independent risk factors for MASLD. Our findings indicated that weight management during distinct time periods plays a significant role in the prevention and treatment of MASLD.
Collapse
Affiliation(s)
- Xiaohui Ma
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Shuo Li
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Jieying Wan
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Hequn Sang
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China.
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University Genaral Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, Tianjin, China.
| |
Collapse
|
2
|
Stinson SE, Kromann Reim P, Lund MAV, Lausten-Thomsen U, Aas Holm L, Huang Y, Brøns C, Vaag A, Thiele M, Krag A, Fonvig CE, Grarup N, Pedersen O, Christiansen M, Ängquist L, Sørensen TIA, Holm JC, Hansen T. The interplay between birth weight and obesity in determining childhood and adolescent cardiometabolic risk. EBioMedicine 2024; 105:105205. [PMID: 38918147 PMCID: PMC11293585 DOI: 10.1016/j.ebiom.2024.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Birth weight (BW) is associated with risk of cardiometabolic disease (CMD) in adulthood, which may depend on the state of obesity, in particular if developed at a young age. We hypothesised that BW and a polygenic score (PGS) for BW were associated with cardiometabolic risk and related plasma protein levels in children and adolescents. We aimed to determine the modifying effect of childhood obesity on these associations. METHODS We used data from The cross-sectional HOLBAEK Study with 4263 participants (median [IQR] age, 11.7 [9.2, 14.3] years; 57.1% girls and 42.9% boys; 48.6% from an obesity clinic and 51.4% from a population-based group). We gathered information on BW and gestational age, anthropometrics, cardiometabolic risk factors, calculated a PGS for BW, and measured plasma proteins using Olink Inflammation and Cardiovascular II panels. We employed multiple linear regression to examine the associations with BW as a continuous variable and performed interaction analyses to assess the effect of childhood obesity on cardiometabolic risk and plasma protein levels. FINDINGS BW and a PGS for BW associated with cardiometabolic risk and plasma protein levels in childhood and adolescence. Childhood obesity modified the associations between BW and measures of insulin resistance, including HOMA-IR (βadj [95% CI per SD] for obesity: -0.12 [-0.15, -0.08]; normal weight: -0.04 [-0.08, 0.00]; Pinteraction = 0.004), c-peptide (obesity: -0.11 [-0.14, -0.08]; normal weight: -0.02 [-0.06, 0.02]; Pinteraction = 5.05E-04), and SBP SDS (obesity: -0.12 [-0.16, -0.08]; normal weight: -0.06 [-0.11, -0.01]; Pinteraction = 0.0479). Childhood obesity also modified the associations between BW and plasma levels of 14 proteins (e.g., IL15RA, MCP1, and XCL1; Pinteraction < 0.05). INTERPRETATION We identified associations between lower BW and adverse metabolic phenotypes, particularly insulin resistance, blood pressure, and altered plasma protein levels, which were more pronounced in children with obesity. Developing effective prevention and treatment strategies for this group is needed to reduce the risk of future CMD. FUNDING Novo Nordisk Foundation (NNF15OC0016544, NNF0064142 to T.H., NNF15OC0016692 to T.H. and A.K., NNF18CC0033668 to S.E.S, NNF18SA0034956 to C.E.F., NNF20SA0067242 to DCA, NNF18CC0034900 to NNF CBMR), The Innovation Fund Denmark (0603-00484B to T.H.), The Danish Cardiovascular Academy (DCA) and the Danish Heart Foundation (HF) (PhD2021007-DCA to P.K.R, 18-R125-A8447-22088 (HF) and 21-R149-A10071-22193 (HF) to M.A.V.L., PhD2023009-HF to L.A.H), EU Horizon (668031, 847989, 825694, 964590 to A.K.), Innovative Health Initiative (101132901 for A.K.), A.P. Møller Foundation (19-L-0366 to T.H.), The Danish National Research Foundation, Steno Diabetes Center Sjælland, and The Region Zealand and Southern Denmark Health Scientific Research Foundation.
Collapse
Affiliation(s)
- Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pauline Kromann Reim
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Asp Vonsild Lund
- The Children's Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lausten-Thomsen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Vaag
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Childhood Health, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Children's Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
de Ruyter H, Aitokari L, Lahti S, Riekki H, Huhtala H, Lakka T, Laivuori H, Kurppa K. Maternal gestational hypertension, smoking and pre-eclampsia are associated with metabolic dysfunction-associated fatty liver disease in overweight offspring. Acta Obstet Gynecol Scand 2024; 103:1183-1191. [PMID: 38433535 PMCID: PMC11103127 DOI: 10.1111/aogs.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Due to a steep increase in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD) has also become the most common chronic hepatic condition among children and adolescents. Various maternal and pregnancy-related factors have also been implicated in the development of MAFLD, but human studies remain scarce. MATERIAL AND METHODS Comprehensive data of 460 overweight or obese children aged 2-16 years were collected and combined with data on selected maternal and pregnancy-related factors for a case-control study. MALFD was defined as alanine aminotransferase >2× upper limit of normal. Children with and without MAFLD were compared regarding to the study variables and multivariable regression analysis was utilized. RESULTS Median age of the study children was 11.8 (quartiles 9.1-14.2) years; 44% were girls and 17.8% had MAFLD. Children with MAFLD were older (12.7 vs. 11.6 years, p = 0.002), while the groups did not differ age-standardized body mass index (BMI-SDS) or gender. Factors associated with MAFLD in a multivariable model considering also the offspring's present BMI-SDS, sex, and maternal prepregnancy overweight, were child's older age (odds ratio [OR] 1.16, 95% confidence interval [CI]: 1.06-1.28), maternal gestational smoking (OR 2.01, 95% CI: 1.16-3.47), gestational hypertension (OR 3.44, 95% CI: 1.08-11.0) and pre-eclampsia (OR 2.93, 95% CI: 1.15-7.45). There was no significant association between MAFLD and maternal BMI, birth anthropometrics or perinatal complications. CONCLUSIONS Maternal smoking, gestational hypertension and pre-eclampsia were associated with MAFLD among overweight or obese children. Further prospective studies are needed to verify causal relationships.
Collapse
Affiliation(s)
- Hanna de Ruyter
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
| | - Linnea Aitokari
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
- Celiac Disease Research CenterTampere UniversityTampereFinland
| | - Siiri Lahti
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
| | - Hanna Riekki
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
| | - Heini Huhtala
- Faculty of Social SciencesTampere UniversityTampereFinland
| | - Timo Lakka
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
- Kuopio Research Institute of Exercise MedicineKuopioFinland
| | - Hannele Laivuori
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
- Medical and Clinical GeneticsUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Kalle Kurppa
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere University and Tampere University Hospital, Wellbeing Services County of PirkanmaaTampereFinland
- Celiac Disease Research CenterTampere UniversityTampereFinland
- University Consortium of SeinäjokiSeinäjokiFinland
| |
Collapse
|
4
|
Knuth MM, Xue J, Elnagheeb M, Gharaibeh RZ, Schoenrock SA, McRitchie S, Brouwer C, Sumner SJ, Tarantino L, Valdar W, Rector RS, Simon JM, Ideraabdullah F. Early life exposure to vitamin D deficiency impairs molecular mechanisms that regulate liver cholesterol biosynthesis, energy metabolism, inflammation, and detoxification. Front Endocrinol (Lausanne) 2024; 15:1335855. [PMID: 38800476 PMCID: PMC11116800 DOI: 10.3389/fendo.2024.1335855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Emerging data suggests liver disease may be initiated during development when there is high genome plasticity and the molecular pathways supporting liver function are being developed. Methods Here, we leveraged our Collaborative Cross mouse model of developmental vitamin D deficiency (DVD) to investigate the role of DVD in dysregulating the molecular mechanisms underlying liver disease. We defined the effects on the adult liver transcriptome and metabolome and examined the role of epigenetic dysregulation. Given that the parental origin of the genome (POG) influences response to DVD, we used our established POG model [POG1-(CC011xCC001)F1 and POG2-(CC001xCC011)F1] to identify interindividual differences. Results We found that DVD altered the adult liver transcriptome, primarily downregulating genes controlling liver development, response to injury/infection (detoxification & inflammation), cholesterol biosynthesis, and energy production. In concordance with these transcriptional changes, we found that DVD decreased liver cell membrane-associated lipids (including cholesterol) and pentose phosphate pathway metabolites. Each POG also exhibited distinct responses. POG1 exhibited almost 2X more differentially expressed genes (DEGs) with effects indicative of increased energy utilization. This included upregulation of lipid and amino acid metabolism genes and increased intermediate lipid and amino acid metabolites, increased energy cofactors, and decreased energy substrates. POG2 exhibited broader downregulation of cholesterol biosynthesis genes with a metabolomics profile indicative of decreased energy utilization. Although DVD primarily caused loss of liver DNA methylation for both POGs, only one epimutation was shared, and POG2 had 6.5X more differentially methylated genes. Differential methylation was detected at DEGs regulating developmental processes such as amino acid transport (POG1) and cell growth & differentiation (e.g., Wnt & cadherin signaling, POG2). Conclusions These findings implicate a novel role for maternal vitamin D in programming essential offspring liver functions that are dysregulated in liver disease. Importantly, impairment of these processes was not rescued by vitamin D treatment at weaning, suggesting these effects require preventative measures. Substantial differences in POG response to DVD demonstrate that the parental genomic context of exposure determines offspring susceptibility.
Collapse
Affiliation(s)
- Megan M. Knuth
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jing Xue
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Marwa Elnagheeb
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Raad Z. Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan McRitchie
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- University of North Carolina at Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC, United States
| | - Susan J. Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jeremy M. Simon
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Folami Ideraabdullah
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Mouzaki M, Woo JG, Divanovic S. Gestational and Developmental Contributors of Pediatric MASLD. Semin Liver Dis 2024; 44:43-53. [PMID: 38423068 DOI: 10.1055/s-0044-1782210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) is common and can be seen as early as in utero. A growing body of literature suggests that gestational and early life exposures modify the risk of MASLD development in children. These include maternal risk factors, such as poor cardiometabolic health (e.g., obesity, gestational diabetes, rapid weight gain during pregnancy, and MASLD), as well as periconceptional dietary exposures, degree of physical activity, intestinal microbiome, and smoking. Paternal factors, such as diet and obesity, also appear to play a role. Beyond gestation, early life dietary exposures, as well as the rate of infant weight gain, may further modify the risk of future MASLD development. The mechanisms linking parental health and environmental exposures to pediatric MASLD are complex and not entirely understood. In conclusion, investigating gestational and developmental contributors to MASLD is critical and may identify future interventional targets for disease prevention.
Collapse
Affiliation(s)
- Marialena Mouzaki
- Divisions of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Hong Y, Ullah R, Wang JB, Fu JF. Trends of obesity and overweight among children and adolescents in China. World J Pediatr 2023; 19:1115-1126. [PMID: 36920656 PMCID: PMC10015139 DOI: 10.1007/s12519-023-00709-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Recent decades have shown a rapid increase in the prevalence of overweight and obesity among Chinese children based on several national surveys. Restrictions due to the coronavirus disease 2019 outbreak have worsened its epidemiology. This review updates the trends in the prevalence of overweight and obesity among Chinese children and adolescents and analyzes the underlying reasons to provide evidence for better policy making. METHODS Studies published in English and Chinese were retrieved from PubMed, Google Scholar, China National Knowledge Infrastructure and Wanfang. RESULTS The prevalence of overweight and obesity has been increasing for decades and varies with age, sex and geography but is more pronounced in primary school students. The increase in obesity in boys appeared to be slower, whereas that in girls showed a declining trend. The northern areas of China have persistently maintained the highest levels of obesity with a stable trend in recent years. Meanwhile, the prevalence in eastern regions has dramatically increased. Notably, the overall prevalence of obesity in children has shown a stabilizing trend in recent years. However, the occurrence of obesity-related metabolic diseases increased. The effect of migrants floating into east-coast cities should not be neglected. CONCLUSIONS The high prevalence of overweight and obesity among Chinese children and adolescents persists but with varying patterns. Obesity-related metabolic diseases occur more frequently despite a stable trend of obesity. Multiple factors are responsible for the changing prevalence. Thus, comprehensive and flexible policies are needed to effectively manage and prevent the burden of obesity and its related complications.
Collapse
Affiliation(s)
- Ye Hong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Jian-Bing Wang
- Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jun-Fen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
| |
Collapse
|
7
|
Naume MM, Jørgensen MH, Høi-Hansen CE, Nielsen MR, Born AP, Vissing J, Borgwardt L, Stærk DMR, Ørngreen MC. Low skeletal muscle mass and liver fibrosis in children with cerebral palsy. Eur J Pediatr 2023; 182:5047-5055. [PMID: 37656239 PMCID: PMC10640414 DOI: 10.1007/s00431-023-05177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The purpose of the study was to conduct a nutritional and metabolic assessment of children with cerebral palsy, including an investigation of liver status, body composition, and bone mineral density. In this cross-sectional study we included 22 children with cerebral palsy. By using ultrasound, transient elastography, dual x-ray absorptiometry (DXA) scan, blood samples, anthropometric measurements, and a three-day diet registration, the nutritional and metabolic status was evaluated. Liver fibrosis and steatosis were found in four patients (18.2%), all with severe motor impairments, low skeletal muscle mass, and epilepsy. All patients with liver involvement had normal liver-related blood samples. Decreased bone mineral density was found in 26.3%, and 91.0% had low skeletal muscle mass. Fat mass and muscle mass were significantly lower in the patients with severe motor impairments compared to the patients with less severe motor impairments. Within the children classified as 'underweight' or 'normal' according to body mass index, body fat determined by DXA scan was normal or high in 50% of these patients. CONCLUSIONS This study is the first to report liver fibrosis and steatosis in children with cerebral palsy. Possible causes of liver fibrosis and/or steatosis are altered body composition with low skeletal muscle mass, decreased mobility and medical drug intake. Further investigations of liver involvement and risk factors are needed. WHAT IS KNOWN • Children and adolescents with cerebral palsy are at risk of malnutrition and altered body composition, both of which can lead to fatty liver disease. • It is unknown whether children with cerebral palsy are at increased risk of metabolic disturbances such as fatty liver disease. WHAT IS NEW • Altered body composition and low skeletal muscle mass, regardless of ambulation is present in 91% of the children with cerebral palsy. • Liver fibrosis and/or steatosis were found in 18.2% of the patients. Possible causes are altered body composition, decreased mobility and medical drug intake.
Collapse
Affiliation(s)
- Marie Mostue Naume
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Marianne Hørby Jørgensen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christina Engel Høi-Hansen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Maja Risager Nielsen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alfred Peter Born
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Mette Cathrine Ørngreen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Lomas-Soria C, Rodríguez-González GL, Ibáñez CA, Reyes-Castro LA, Nathanielsz PW, Zambrano E. Maternal Obesity Programs the Premature Aging of Rat Offspring Liver Mitochondrial Electron Transport Chain Genes in a Sex-Dependent Manner. BIOLOGY 2023; 12:1166. [PMID: 37759566 PMCID: PMC10526092 DOI: 10.3390/biology12091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
We investigated whether maternal obesity affects the hepatic mitochondrial electron transport chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND) male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring ate the C diet and were euthanized at 110 and 650PND. The livers were collected for RNA-seq and immunohistochemistry. Male offspring livers had more differentially expressed genes (DEGs) down-regulated by both MO and natural aging than females. C-650PND vs. C-110PND and MO-110PND vs. C-110PND comparisons revealed 1477 DEGs in common for males (premature aging by MO) and 35 DEGs for females. Analysis to identify KEGG pathways enriched from genes in common showed changes in 511 and 3 KEGG pathways in the male and female livers, respectively. Mitochondrial function pathways showed ETC-related gene down-regulation. All ETC complexes, sirtuin2, sirtuin3, sod-1, and catalase, exhibited gene down-regulation and decreased protein expression at young and old ages in MO males vs. C males; meanwhile, MO females down-regulated only at 650PND. Conclusions: MO accelerates the age-associated down-regulation of ETC pathway gene expression in male offspring livers, thereby causing sex-dependent oxidative stress, premature aging, and metabolic dysfunction.
Collapse
Affiliation(s)
- Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- CONAHCyT-Cátedras, Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Carlos A. Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
9
|
Irfan R, Kumar S. Letter to the Editor: Association between birth weight, preterm birth, and nonalcoholic fatty liver disease in a community-based cohort. Hepatology 2023; 78:E8. [PMID: 36929826 DOI: 10.1097/hep.0000000000000368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Rabia Irfan
- Federal Medical and Dental College, Rawalpindi, Pakistan
| | - Satesh Kumar
- Shaheed Mohtarma Benazir Bhutto Medical College, Liyari, Karachi, Pakistan
| |
Collapse
|
10
|
Cai A, Portengen L, Ertaylan G, Legler J, Vermeulen R, Lenters V, Remy S. Prenatal Exposure to Metabolism-Disrupting Chemicals, Cord Blood Transcriptome Perturbations, and Birth Weight in a Belgian Birth Cohort. Int J Mol Sci 2023; 24:ijms24087607. [PMID: 37108768 PMCID: PMC10141364 DOI: 10.3390/ijms24087607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Prenatal exposure to metabolism-disrupting chemicals (MDCs) has been linked to birth weight, but the molecular mechanisms remain largely unknown. In this study, we investigated gene expressions and biological pathways underlying the associations between MDCs and birth weight, using microarray transcriptomics, in a Belgian birth cohort. Whole cord blood measurements of dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyls 153 (PCB-153), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and transcriptome profiling were conducted in 192 mother-child pairs. A workflow including a transcriptome-wide association study, pathway enrichment analysis with a meet-in-the-middle approach, and mediation analysis was performed to characterize the biological pathways and intermediate gene expressions of the MDC-birth weight relationship. Among 26,170 transcriptomic features, we successfully annotated five overlapping metabolism-related gene expressions associated with both an MDC and birth weight, comprising BCAT2, IVD, SLC25a16, HAS3, and MBOAT2. We found 11 overlapping pathways, and they are mostly related to genetic information processing. We found no evidence of any significant mediating effect. In conclusion, this exploratory study provides insights into transcriptome perturbations that may be involved in MDC-induced altered birth weight.
Collapse
Affiliation(s)
- Anran Cai
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Lützen Portengen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Gökhan Ertaylan
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Juliette Legler
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Roel Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Virissa Lenters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
11
|
Kong L, Ye C, Wang Y, Zheng J, Zhao Z, Li M, Xu Y, Lu J, Chen Y, Xu M, Wang W, Ning G, Bi Y, Wang T. Causal effect of lower birthweight on non-alcoholic fatty liver disease and mediating roles of insulin resistance and metabolites. Liver Int 2023; 43:829-839. [PMID: 36719063 DOI: 10.1111/liv.15532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS The causal association of lower birthweight with non-alcoholic fatty liver disease (NAFLD) and the mediating pathways remain unclear. We aimed to investigate the causal, independent association of lower birthweight with NAFLD and identify potential metabolic mediators and their mediation effects in this association. METHODS We performed two-step, two-sample Mendelian randomization (MR) using genome-wide association study (GWAS) summary statistics for birthweight from the Early Growth Genetics Consortium of 298 142 Europeans, NAFLD from a GWAS meta-analysis of 8434 NAFLD cases and 770 180 controls of Europeans, and 25 candidate mediators from corresponding reliable GWASs. RESULTS Genetically determined each 1-SD lower birthweight was associated with a 45% (95% CI: 1.25-1.69) increased risk of NAFLD, and this causal association persisted after adjusting for childhood obesity or adult adiposity traits in multivariable MR. Two-step MR identified 6 of 25 candidate mediators partially mediate the effect of lower birthweight on NAFLD, including fasting insulin (proportion mediated: 22.05%), leucine (17.29%), isoleucine (13.55%), valine (11.37%), alanine (10.01%) and monounsaturated fatty acids (MUFA; 7.23%). Bidirectional MR suggested a unidirectional effect of insulin resistance on isoleucine, leucine and valine and a unidirectional effect of alanine on insulin resistance. CONCLUSIONS This MR study elucidated the causal impact of lower birthweight on subsequent risk of NAFLD, independently of later-life adiposity and identified mediators including insulin resistance, branched-chain amino acids, alanine and MUFA in this association pathway. Our findings shed light on the pathogenesis of NAFLD and imply additional targets for prevention and intervention of NAFLD attributed to low birthweight.
Collapse
Affiliation(s)
- Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Elingaard-Larsen LO, Villumsen SO, Justesen L, Thuesen ACB, Kim M, Ali M, Danielsen ER, Legido-Quigley C, van Hall G, Hansen T, Ahluwalia TS, Vaag AA, Brøns C. Circulating Metabolomic and Lipidomic Signatures Identify a Type 2 Diabetes Risk Profile in Low-Birth-Weight Men with Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15071590. [PMID: 37049431 PMCID: PMC10096690 DOI: 10.3390/nu15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The extent to which increased liver fat content influences differences in circulating metabolites and/or lipids between low-birth-weight (LBW) individuals, at increased risk of type 2 diabetes (T2D), and normal-birth-weight (NBW) controls is unknown. The objective of the study was to perform untargeted serum metabolomics and lipidomics analyses in 26 healthy, non-obese early-middle-aged LBW men, including five men with screen-detected and previously unrecognized non-alcoholic fatty liver disease (NAFLD), compared with 22 age- and BMI-matched NBW men (controls). While four metabolites (out of 65) and fifteen lipids (out of 279) differentiated the 26 LBW men from the 22 NBW controls (p ≤ 0.05), subgroup analyses of the LBW men with and without NAFLD revealed more pronounced differences, with 11 metabolites and 56 lipids differentiating (p ≤ 0.05) the groups. The differences in the LBW men with NAFLD included increased levels of ornithine and tyrosine (PFDR ≤ 0.1), as well as of triglycerides and phosphatidylcholines with shorter carbon-chain lengths and fewer double bonds. Pathway and network analyses demonstrated downregulation of transfer RNA (tRNA) charging, altered urea cycling, insulin resistance, and an increased risk of T2D in the LBW men with NAFLD. Our findings highlight the importance of increased liver fat in the pathogenesis of T2D in LBW individuals.
Collapse
|
13
|
Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G99-G114. [PMID: 36472341 DOI: 10.1152/ajpgi.00168.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main liver disease worldwide, and its prevalence in children and adolescents has been increasing in the past years. It has been demonstrated that parental exposure to different conditions, both preconceptionally and during pregnancy, can lead to fetal programming of several metabolic diseases, including NAFLD. In this article, we review some of the maternal and paternal conditions that may be involved in early-life programing of adult NAFLD. First, we describe the maternal nutritional factors that have been suggested to increase the risk of NAFLD in the offspring, such as an obesogenic diet, overweight/obesity, and altered lipogenesis. Second, we review the association of certain vitamin supplementation and the use of some drugs during pregnancy, for instance, glucocorticoids, with a higher risk of NAFLD. Furthermore, we discuss the evidence showing that maternal-fetal pathologies, including gestational diabetes mellitus (GDM), insulin resistance (IR), and intrauterine growth restriction (IUGR), as well as the exposure to environmental contaminants, and the impact of microbiome changes, are important factors in early-life programming of NAFLD. Finally, we review how paternal preconceptional conditions, such as exercise and diet (particularly obesogenic diets), may impact fetal growth and liver function. Altogether, the presented evidence supports the hypothesis that both in utero exposure and parental conditions may influence fetal outcomes, including the development of NAFLD in early life and adulthood. The study of these conditions is crucial to better understand the diverse mechanisms involved in NAFLD, as well as for defining new preventive strategies for this disease.
Collapse
Affiliation(s)
| | | | - Yeniley Ruiz-Noa
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | | - Gloria Barbosa-Sabanero
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | |
Collapse
|
14
|
Maternal risk factors associated with term low birth weight in India: A review. ANTHROPOLOGICAL REVIEW 2023. [DOI: 10.18778/1898-6773.85.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Low birth weight is one of the leading factors for infant morbidity and mortality. To a large extent affect, various maternal risk factors are associated with pregnancy outcomes by increasing odds of delivering an infant with low birth weight. Despite this association, understanding the maternal risk factors affecting term low birth weight has been a challenging task. To date, limited studies have been conducted in India that exert independent magnitude of these effects on term low birth weight. The aim of this review is to examine the current knowledge of maternal risk factors that contribute to term low birth weight in the Indian population. In order to identify the potentially relevant articles, an extensive literature search was conducted using PubMed, Goggle Scholar and IndMed databases (1993 – Dec 2020). Our results indicate that maternal age, educational status, socio-economic status, ethnicity, parity, pre-pregnancy weight, maternal stature, maternal body mass index, obstetric history, maternal anaemia, gestational weight gain, short pregnancy outcome, hypertension during pregnancy, infection, antepartum haemorrhage, tobacco consumption, maternal occupation, maternal psychological stress, alcohol consumption, antenatal care and mid-upper arm circumference have all independent effects on term low birth weight in the Indian population. Further, we argue that exploration for various other dimensions of maternal factors and underlying pathways can be useful for a better understanding of how it exerts independent association on term low birth weight in the Indian sub-continent.
Collapse
|
15
|
Hegarty R, Kyrana E, Fitzpatrick E, Dhawan A. Fatty liver disease in children (MAFLD/PeFLD Type 2): unique classification considerations and challenges. Ther Adv Endocrinol Metab 2023; 14:20420188231160388. [PMID: 36968656 PMCID: PMC10034351 DOI: 10.1177/20420188231160388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
In children, fatty liver disease is a group of disorders that often overlaps with inherited metabolic disorders (IMDs), which requires prompt diagnosis and specific management. Metabolic dysfunction-associated fatty liver disease (MAFLD) or, formerly, non-alcoholic fatty liver disease (NAFLD) is the hepatic component of a multisystemic disease that requires a positive criteria in metabolic dysfunction for diagnosis. However, in children, the diagnosis of MAFLD is one of the exclusions of an IMD [paediatric fatty liver disease (PeFLD) type 1] including the possibility that an IMD can be identified in the future following investigations that may be negative at the time. Therefore, while children with fatty liver with metabolic dysfunction could be classified as MAFLD (PeFLD type 2) and managed that way, those who do not fulfil the criteria for metabolic dysfunction should be considered separately bearing in mind the possibility of identifying a yet undiagnosed IMD (PeFLD type 3). This concept is ever more important in a world where MAFLD is the most common cause of liver disease in children and adolescents in whom about 7% are affected. The disease is only partially understood, and awareness is still lacking outside hepatology and gastroenterology. Despite its increasing pervasiveness, the management is far from a one-size-fits-all. Increasing complexities around the genetic, epigenetic, non-invasive modalities of assessment, psychosocial impacts, therapeutics, and natural history of the disease have meant that an individualised approach is required. This is where the challenge lies so that children with fatty liver are considered on their own merits. The purpose of this review is to give a clinical perspective of fatty liver disease in children with relevance to metabolic dysfunction.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, and
MowatLabs, King’s College Hospital, London, UK
| | - Eirini Kyrana
- Paediatric Liver, GI and Nutrition Centre, and
MowatLabs, King’s College Hospital, London, UK
| | - Emer Fitzpatrick
- Department of Gastroenterology, Hepatology and
Nutrition, Our Lady’s Hospital Crumlin, Dublin, Ireland
| | | |
Collapse
|
16
|
Prinz N, Putri RR, Reinehr T, Danielsson P, Weghuber D, Norman M, Rochow N, Marcus C, Holl RW, Hagman E. The association between perinatal factors and cardiometabolic risk factors in children and adolescents with overweight or obesity: A retrospective two-cohort study. PLoS Med 2023; 20:e1004165. [PMID: 36638094 PMCID: PMC9886302 DOI: 10.1371/journal.pmed.1004165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/30/2023] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Children with obesity have an increased risk of cardiometabolic risk factors, but not all children carry a similar risk. Perinatal factors, i.e., gestational age (GA) and birth weight for GA, may affect the risk for metabolic complications. However, there are conflicting data whether the association between birth size and cardiometabolic risk factors is independent among children with obesity. Moreover, differential effects of GA and birth weight for GA on cardiometabolic risk factors in pediatric obesity are still unexplored. We aimed to investigate the association between birth weight for GA and cardiometabolic risk factors in children and adolescents with overweight or obesity and to assess whether the association is modified by prematurity. METHODS AND FINDINGS We conducted a retrospective study of 2 cohorts, using data from the world's 2 largest registers of pediatric obesity treatment-The Swedish childhood obesity treatment register (BORIS) and The Adiposity Patients Registry (APV) (1991 to 2020). Included were individuals with overweight or obesity between 2 to 18 years of age who had data of birth characteristics and cardiometabolic parameters. Birth data was collected as exposure variable and the first reported cardiometabolic parameters during pediatric obesity treatment as the main outcome. The median (Q1, Q3) age at the outcome measurement was 11.8 (9.4, 14.0) years. The main outcomes were hypertensive blood pressure (BP), impaired fasting glucose, elevated glycated hemoglobin (HbA1c), elevated total cholesterol, elevated low-density lipoprotein (LDL) cholesterol, elevated triglycerides, decreased high-density lipoprotein (HDL) cholesterol, and elevated transaminases. With logistic regression, we calculated the odds ratio (OR) and its 95% confidence interval (CI) for each cardiometabolic parameter. All the analyses were adjusted for sex, age, degree of obesity, migratory background, and register source. In total, 42,760 (51.9% females) individuals were included. Small for GA (SGA) was prevalent in 10.4%, appropriate for GA (AGA) in 72.4%, and large for GA (LGA) in 17.2%. Most individuals (92.5%) were born full-term, 7.5% were born preterm. Median (Q1, Q3) body mass index standard deviation score at follow-up was 2.74 (2.40, 3.11) units. Compared with AGA, children born SGA were more likely to have hypertensive BP (OR = 1.20 [95% CI 1.12 to 1.29], p < 0.001), elevated HbA1c (1.33 [1.06 to 1.66], p = 0.03), and elevated transaminases (1.21 [1.10 to 1.33], p < 0.001) as well as low HDL (1.19 [1.09 to 1.31], p < 0.001). On the contrary, individuals born LGA had lower odds for hypertensive BP (0.88 [0.83 to 0.94], p < 0.001), elevated HbA1c (0.81 [0.67 to 0.97], p < 0.001), and elevated transaminases (0.88 [0.81 to 0.94], p < 0.001). Preterm birth altered some of the associations between SGA and outcomes, e.g., by increasing the odds for hypertensive BP and by diminishing the odds for elevated transaminases. Potential selection bias due to occasionally missing data could not be excluded. CONCLUSIONS Among children and adolescents with overweight/obesity, individuals born SGA are more likely to possess cardiometabolic risk factors compared to their counterparts born AGA. Targeted screening and treatment of obesity-related comorbidities should therefore be considered in this high-risk group of individuals.
Collapse
Affiliation(s)
- Nicole Prinz
- Insitute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Resthie R. Putri
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Pernilla Danielsson
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Private Medical School, Salzburg, Austria
- Obesity Research Unit, Paracelsus Private Medical School, Salzburg, Austria
| | - Mikael Norman
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Niels Rochow
- Department of Pediatrics, Paracelsus Medical University, Nuremberg, Germany
- Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Reinhard W. Holl
- Insitute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Emilia Hagman
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
17
|
Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022; 17:1446-1461. [PMID: 35188871 PMCID: PMC9586600 DOI: 10.1080/15592294.2022.2039850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90 mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.
Collapse
Affiliation(s)
- Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alisha M. Mavis
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dereje Jima
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mustafa Bashir
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Jeongeun Hyun
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Melanie N. Cabezas
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alice Parish
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Donna Niedzwiecki
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Manal F. Abdelmalek
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Amadou C, Nabi O, Serfaty L, Lacombe K, Boursier J, Mathurin P, Ribet C, de Ledinghen V, Zins M, Charles M. Association between birth weight, preterm birth, and nonalcoholic fatty liver disease in a community-based cohort. Hepatology 2022; 76:1438-1451. [PMID: 35474232 PMCID: PMC9796225 DOI: 10.1002/hep.32540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The association between birth weight (BW) and metabolic outcomes has been described since the 1980s but NAFLD has been rarely studied. This study aimed to investigate the association between BW and NAFLD occurrence in adult subjects. APPROACH AND RESULTS The study population consisted of participants from the French nationwide Constances cohort from 2012 to 2019. Participants with a history of chronic viral hepatitis or excessive alcohol consumption were excluded. Noninvasive diagnosis of NAFLD and fibrosis was performed using a combination of the Fatty Liver Index (FLI) and the Forns Index. The relationship between BW and NAFLD was analyzed with a sex-stratified logistic regression model adjusted for sociodemographic parameters, lifestyle, and birth term, whereas liver fibrosis was analyzed with a sex-stratified linear regression model. In total, 55,034 individuals with reliable BW were included (43% men, mean age: 38 years). NAFLD (FLI ≥ 60) was present in 5530 individuals (10%). Multivariate logistic regression showed a significant U-shaped relationship between BW and NAFLD, with no significant interaction with sex. A significant and slightly decreasing association was found between BW and Forns Index (β = -0.05; p = 0.04). Premature birth (OR, 1.23; 95% CI, 1.03-1.48 for birth between 33 and 37 weeks versus ≥ 37 weeks) was associated with NAFLD, with a significant direct effect of premature birth, and without an indirect effect of low BW in mediation analysis. Forns Index was not significantly higher in participants with preterm birth compared to full-term birth. CONCLUSIONS This large prospective adult-based cohort confirms the relationship between BW and NAFLD occurrence.
Collapse
Affiliation(s)
- Coralie Amadou
- Paris‐Saclay UniversityParisFrance,Department of Diabetes and EndocrinologySud‐Francilien HospitalCorbeil‐EssonnesFrance
| | - Oumarou Nabi
- Inserm Unité Mixte de Recherche‐S1136Institut Pierre‐Louis Epidémiologie et Santé PubliqueSorbonne UniversitéParisFrance
| | - Lawrence Serfaty
- Hepatogastroenterology DepartmentHôpital HautepierreHôpitaux Universitaires de StrasbourgStrasbourgFrance,Inserm Unité Mixte de Recherche_S938Sorbonne UniversitéParisFrance
| | - Karine Lacombe
- Inserm Unité Mixte de Recherche‐S1136Institut Pierre‐Louis Epidémiologie et Santé PubliqueSorbonne UniversitéParisFrance
| | - Jérôme Boursier
- Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques LaboratoryUnité Propre de Recherche de l'Enseignement Supérieur EA3859Structure Fédérative de Recherche 4208Angers UniversityAngersFrance,Hepato‐Gastroenterology DepartmentAngers University HospitalAngersFrance
| | - Philippe Mathurin
- Hepato‐GastroenterologyCentre hospitalier universitaire LilleLilleFrance
| | - Céline Ribet
- Unité Mixte de Recherche 011Population‐Based Epidemiological CohortsInsermVillejuifFrance
| | - Victor de Ledinghen
- Hepatology UnitHaut‐Lévêque HospitalBordeaux University HospitalPessacFrance,Inserm U1053Bordeaux UniversityBordeauxFrance
| | - Marie Zins
- Paris‐Saclay UniversityParisFrance,Unité Mixte de Recherche 011Population‐Based Epidemiological CohortsInsermVillejuifFrance
| | - Marie‐Aline Charles
- Centre for Research in Epidemiology and StatisticsInsermInstitut National de Recherche Pour l'agriculture, l'alimentation et l'environnementParisFrance
| |
Collapse
|
19
|
Cohen CC, Harrall KK, Gilley SP, Perng W, Sauder KA, Scherzinger A, Shankar K, Sundaram SS, Glueck DH, Dabelea D. Body composition trajectories from birth to 5 years and hepatic fat in early childhood. Am J Clin Nutr 2022; 116:1010-1018. [PMID: 36055960 PMCID: PMC9535524 DOI: 10.1093/ajcn/nqac168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Adiposity is an established risk factor for pediatric nonalcoholic fatty liver disease (NAFLD), but little is known about the influence of body composition patterns earlier in life on NAFLD risk. OBJECTIVES We aimed to examine associations of body composition at birth and body composition trajectories from birth to early childhood with hepatic fat in early childhood. METHODS Data were from the longitudinal Healthy Start Study in Colorado. Fat-free mass index (FFMI), fat mass index (FMI), percentage body fat (BF%), and BMI were assessed at birth and/or ∼5 y in >1200 children by air displacement plethysmography and anthropometrics. In a subset (n = 285), hepatic fat was also assessed at ∼5 y by MRI. We used a 2-stage modeling approach: first, we fit body composition trajectories from birth to early childhood using mixed models with participant-specific intercepts and linear slopes (i.e., individual deviations from the population average at birth and rate of change per year, respectively); second, associations of participant-specific trajectory deviations with hepatic fat were assessed by multivariable-adjusted linear regression. RESULTS Participant-specific intercepts at birth for FFMI, FMI, BF%, and BMI were inversely associated with log-hepatic fat in early childhood in models adjusted for offspring demographics and maternal/prenatal variables [back-transformed β (95% CI) per 1 SD: 0.93 (0.88, 0.99), 0.94 (0.88, 0.99), 0.94 (0.89, 0.99), and 0.90 (0.85, 0.96), respectively]. Whereas, faster velocities for BF% and BMI from birth to ∼5 y were positively associated with log-hepatic fat [back-transformed β (95% CI) per 1 SD: 1.08 (1.01, 1.15) and 1.08 (1.02, 1.15), respectively]. These latter associations of BF% and BMI velocities with childhood hepatic fat were attenuated to the null when adjusted for participant-specific intercepts at birth. CONCLUSIONS Our findings suggest that a smaller birth weight, combined with faster adiposity accretion in the first 5 y, predicts higher hepatic fat in early childhood. Strategies aiming to promote healthy body composition early in life may be critical for pediatric NAFLD prevention.This study was registered voluntarily at clinicaltrials.gov as NCT02273297.
Collapse
Affiliation(s)
- Catherine C Cohen
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kylie K Harrall
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie P Gilley
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Sauder
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Scherzinger
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shikha S Sundaram
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Almeida LDS, Teixeira CJ, Campos CV, Casaloti LG, Sodré FS, Capetini VC, Amaral AG, Payolla TB, Pantaleão LC, Anhê GF, Bordin S. Low Birth Weight Intensifies Changes in Markers of Hepatocarcinogenesis Induced by Fructose Consumption in Rats. Metabolites 2022; 12:metabo12100886. [PMID: 36295788 PMCID: PMC9608855 DOI: 10.3390/metabo12100886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) due to fetal exposure to glucocorticoid excess results in metabolic inflexibility and hepatic steatosis upon nutritional stress during adulthood. We previously demonstrated that rats born to dexamethasone (DEX)-treated mothers developed hepatic steatosis when exposed to 10% fructose solution during adult life. Persistent triacylglyceride (TAG) accumulation in the liver, in turn, is a feature of non-alcoholic fatty liver disease (NAFLD), which serves as a risk factor for non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). In the present study, we demonstrate that the combination of IUGR and fructose treatment during adulthood also results in increased hepatic myeloperoxidase (MPO) activity, AKT phosphorylation and serum aspartate transaminase. Growth-restricted rats also presented reduced hepatic TRIB3 and GADD45a after fructose treatment. Other markers of cell proliferation, such as Cyclin D, PCNA, Hgf and Hspa4/Hsp70 expression and the number of Ki-67 positive cells, were all increased in the liver of growth- restricted rats treated with fructose. On the other hand, the combination of IUGR and fructose treatment during adult life reduced the levels of IGF-1. In conclusion, our data indicate that after exposure to fructose, adult rats subjected to dexamethasone-induced IUGR display exacerbated molecular changes in markers of NASH and HCC.
Collapse
Affiliation(s)
- Lorena de Souza Almeida
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Campinas 13083-881, SP, Brazil
| | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo 05508-000, SP, Brazil
| | - Carolina Vieira Campos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Campinas 13083-881, SP, Brazil
| | - Laís Guadalupe Casaloti
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Campinas 13083-881, SP, Brazil
| | - Frhancielly Shirley Sodré
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo 05508-000, SP, Brazil
| | - Vinícius Cooper Capetini
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Campinas 13083-881, SP, Brazil
| | - Andressa Godoy Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo 05508-000, SP, Brazil
| | - Tanyara Baliani Payolla
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo 05508-000, SP, Brazil
| | - Lucas Carminatti Pantaleão
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Campinas 13083-881, SP, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo 05508-000, SP, Brazil
- Correspondence:
| |
Collapse
|
21
|
Roeb E, Canbay A, Bantel H, Bojunga J, de Laffolie J, Demir M, Denzer UW, Geier A, Hofmann WP, Hudert C, Karlas T, Krawczyk M, Longerich T, Luedde T, Roden M, Schattenberg J, Sterneck M, Tannapfel A, Lorenz P, Tacke F. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – April 2022 – AWMF-Registernummer: 021–025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1346-1421. [PMID: 36100202 DOI: 10.1055/a-1880-2283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E Roeb
- Gastroenterologie, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - A Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - H Bantel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - J Bojunga
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin., Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - J de Laffolie
- Allgemeinpädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - M Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | - U W Denzer
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Marburg, Deutschland
| | - A Geier
- Medizinische Klinik und Poliklinik II, Schwerpunkt Hepatologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - W P Hofmann
- Gastroenterologie am Bayerischen Platz - Medizinisches Versorgungszentrum, Berlin, Deutschland
| | - C Hudert
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - T Karlas
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie, Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M Krawczyk
- Klinik für Innere Medizin II, Gastroent., Hepat., Endokrin., Diabet., Ern.med., Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - T Luedde
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - M Roden
- Klinik für Endokrinologie und Diabetologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - J Schattenberg
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Sterneck
- Klinik für Hepatobiliäre Chirurgie und Transplantationschirurgie, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - A Tannapfel
- Institut für Pathologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - P Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - F Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | | |
Collapse
|
22
|
Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) - April 2022 - AWMF Registration No.: 021-025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e733-e801. [PMID: 36100201 DOI: 10.1055/a-1880-2388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
23
|
Benefits of Physical Exercise as Approach to Prevention and Reversion of Non-Alcoholic Fatty Liver Disease in Children and Adolescents with Obesity. CHILDREN 2022; 9:children9081174. [PMID: 36010064 PMCID: PMC9406958 DOI: 10.3390/children9081174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important health concern during childhood; indeed, it is the most frequent cause of chronic liver diseases in obese children. No valid pharmacological therapies for children affected by this condition are available, and the recommended treatment is lifestyle modification, usually including nutrition and exercise interventions. In this narrative review, we summarized up-to-date information on the benefits of physical exercise on NAFLD in children and adolescents with obesity. The role of exercise as non-pharmacological treatment was emphasized in order to provide recent advances on this topic for clinicians not deeply involved in the field. Several studies on obese children and adults confirm the positive role of physical activity (PA) in the treatment of NAFLD, but to date, there are no pediatric randomized clinical trials on exercise versus usual care. Among the pathogenic mechanisms involved in the PA effects on NAFLD, the main players seem to be insulin resistance and related inflammation, oxidative stress, and gut dysbiosis, but further evaluations are necessary to deeply understand whether these factors are correlated and how they synergistically act. Thus, a deeper research on this theme is needed, and it would be extremely interesting.
Collapse
|
24
|
Cohen CC, Francis EC, Perng W, Sauder KA, Scherzinger A, Sundaram SS, Shankar K, Dabelea D. Exposure to maternal fuels during pregnancy and offspring hepatic fat in early childhood: The healthy start study. Pediatr Obes 2022; 17:e12902. [PMID: 35122420 PMCID: PMC9177565 DOI: 10.1111/ijpo.12902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Intrauterine overnutrition has been associated with paediatric nonalcoholic fatty liver disease (NAFLD), but the exact mechanisms involved remain unclear. OBJECTIVE To examine whether maternal fuels and metabolic markers during pregnancy are associated with offspring hepatic fat in childhood. METHODS This analysis included 286 mother-child pairs from the Healthy Start Study, a longitudinal pre-birth cohort in Colorado. Fasting blood draws were collected in early pregnancy (~17 weeks) and mid-pregnancy (~27 weeks). Offspring hepatic fat was assessed by magnetic resonance imaging (MRI) at ~5 years. RESULTS In early pregnancy, maternal triglycerides (TGs) and free fatty acids (FFAs) were positively associated with offspring hepatic fat [Back-transformed β (95% CI): 1.15 (1.05, 1.27) per 1 standard deviation (SD) TGs; 1.14 (1.05, 1.23) per 1 SD FFAs]. Maternal total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were also associated with offspring hepatic fat, but only among boys [1.22 (1.08, 1.37) per 1 SD TC; 1.21 (1.07, 1.37) per 1 SD LDL-C]. In mid-pregnancy, only maternal TGs remained associated with offspring hepatic fat. Adjusting for potential confounders or mediators did not affect associations. CONCLUSIONS Maternal lipid concentrations, especially in early pregnancy, are associated with higher offspring hepatic fat, and may, therefore, be targeted in future interventions among pregnant women.
Collapse
Affiliation(s)
- Catherine C. Cohen
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ellen C. Francis
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A. Sauder
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Scherzinger
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shikha S. Sundaram
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
25
|
de Groot JM, Geurtsen ML, Santos S, Jaddoe VWV. Ethnic disparities in liver fat accumulation in school-aged children. Obesity (Silver Spring) 2022; 30:1472-1482. [PMID: 35785476 PMCID: PMC9546249 DOI: 10.1002/oby.23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) has a different prevalence in adults from different ethnic groups. This study examined whether these ethnic differences originate in early life and could be explained by early-life factors. METHODS This observational study was embedded in a population-based prospective cohort study from fetal life onward among 2,570 children born in Rotterdam, the Netherlands. Information about prepregnancy, pregnancy, and childhood factors, as well as childhood BMI, was obtained from questionnaires and physical examinations. Liver fat was assessed by magnetic resonance imaging at age 10 years. RESULTS Median liver fat fraction was 2.0% (95% CI: 1.2%-5.3%), and NAFLD prevalence was 2.8%. Children from a Turkish background had the highest median liver fat percentage (2.5%, 95% CI: 1.2%-10.7%) and NAFLD prevalence (9.1%). Children of Cape Verdean, Dutch Antillean, Surinamese-Creole, or Turkish background had a higher total liver fat fraction compared with children with a Dutch background (p < 0.05). After controlling for early-life factors, these differences persisted only in children with a Turkish background. CONCLUSIONS Prevalence of liver fat accumulation and NAFLD differs between ethnic subgroups living in the Netherlands, especially for those with a Turkish background. Early-life factors have a strong influence on these associations and may hold clues for future preventive strategies.
Collapse
Affiliation(s)
- Jasmin M. de Groot
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Madelon L. Geurtsen
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Susana Santos
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Vincent W. V. Jaddoe
- Generation R Study GroupErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
26
|
Furthner D, Weghuber D, Dalus C, Lukas A, Stundner-Ladenhauf HN, Mangge H, Pixner T. Nonalcoholic Fatty Liver Disease in Children with Obesity: Narrative Review and Research Gaps. Horm Res Paediatr 2022; 95:167-176. [PMID: 34351306 DOI: 10.1159/000518595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the leading hepatic disease in children, ranging from steatosis to steatohepatitis and fibrosis. Age, sex, hormonal levels, pubertal stages, genetic risk- and epigenetic factors are among the many influencing factors. Appearing predominantly in children with obesity, but not exclusively, it is the liver's manifestation of the metabolic syndrome but can also exist as an isolated entity. SUMMARY Pediatric NAFLD differs from the adult phenotype. This narrative review on NAFLD in children with obesity provides an overview of the current knowledge on risk factors, screening, and diagnostic methods, as well state-of-the-art treatment. The recent discussion on the proposition of a new nomenclature - Metabolic [Dysfunction-] Associated Liver Disease - is featured, and current gaps of knowledge are discussed. KEY MESSAGES Currently, there is no international consensus on screening and monitoring of pediatric NAFLD. With lifestyle interventions being the cornerstone of treatment, no registered pharmacological treatment for pediatric NAFLD is available. Development and validation of additional noninvasive biomarkers, scores and imaging tools suitable to subcategorize, screen and monitor pediatric patients are necessary. With a variety of upcoming and promising agents, clear recommendations for pediatric nonalcoholic steatohepatitis trials are urgently needed.
Collapse
Affiliation(s)
- Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria.,Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria.,University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria.,University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria.,Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | | | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria.,Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
27
|
Kuula J, Lundbom J, Hakkarainen A, Hovi P, Hauta-Alus H, Kaseva N, Sandboge S, Björkqvist J, Eriksson J, Pietiläinen KH, Lundbom N, Kajantie E. Abdominal adipose tissue and liver fat imaging in very low birth weight adults born preterm: birth cohort with sibling-controls. Sci Rep 2022; 12:9905. [PMID: 35701494 PMCID: PMC9198082 DOI: 10.1038/s41598-022-13936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Preterm birth at very low birth weight (VLBW, < 1500 g) is associated with an accumulation of cardiovascular and metabolic risk factors from childhood at least to middle age. Small-scale studies suggest that this could partly be explained by increased visceral or ectopic fat. We performed magnetic resonance imaging on 78 adults born preterm at VLBW in Finland between 1978 and 1990 and 72 term same-sex siblings as controls, with a mean age of 29 years. We collected T1-weighted images from the abdomen, and magnetic resonance spectra from the liver, subcutaneous abdominal adipose tissue, and tibia. The adipose tissue volumes of VLBW adults did not differ from their term siblings when adjusting for age, sex, and maternal and perinatal factors. The mean differences were as follows: subcutaneous − 0.48% (95% CI − 14.8%, 16.3%), visceral 7.96% (95% CI − 10.4%, 30.1%), and total abdominal fat quantity 1.05% (95% CI − 13.7%, 18.4%). Hepatic triglyceride content was also similar. VLBW individuals displayed less unsaturation in subcutaneous adipose tissue (− 4.74%, 95% CI − 9.2%, − 0.1%) but not in tibial bone marrow (1.68%, 95% CI − 1.86%, 5.35%). VLBW adults displayed similar adipose tissue volumes and hepatic triglyceride content as their term siblings. Previously reported differences could thus partly be due to genetic or environmental characteristics shared between siblings. The VLBW group displayed less unsaturation in subcutaneous abdominal adipose tissue, suggesting differences in its metabolic activity and energy storage.
Collapse
Affiliation(s)
- Juho Kuula
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. .,Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland.
| | - Jesper Lundbom
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petteri Hovi
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
| | - Helena Hauta-Alus
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland.,Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Nina Kaseva
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
| | - Samuel Sandboge
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland.,Psychology/Welfare Sciences, Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Johan Björkqvist
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
| | - Johan Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Human Potential Translational Research Programme and Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Kajantie
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Abstract
Introduction: Fatty liver disease, defined by the presence of liver fat infiltration, is part of a cluster of disorders that occur in the context of metabolic syndrome. Epigenetic factors - defined as stable and heritable changes in gene expression without changes in the DNA sequence - may not only play an important role in the disease development in adulthood, but they may start exerting their influence in the prenatal stage.Areas covered: By using systems biology approaches, we review the main epigenetic modifications and highlight their likely roles in the pathogenesis of nonalcoholic fatty liver disease.Expert opinion: Knowledge of the mechanisms by which epigenetic modifications participate in complex disorders would not only help scientists find novel therapeutic strategies but could also aid in implementing preventive care measures at gestation.
Collapse
Affiliation(s)
- Carlos Jose Pirola
- School of Medicine, Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (Conicet)-university of Buenos Aires. Institute of Medical Research (IDIM)
| | - Silvia Sookoian
- School of Medicine, Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET)-University of Buenos Aires. Institute of Medical Research (IDIM), Buenos Aires, Argentina
| |
Collapse
|
29
|
Soullane S, Willems P, Lee GE, Auger N. Early life programming of nonalcoholic fatty liver disease in children. Early Hum Dev 2022; 168:105578. [PMID: 35489298 DOI: 10.1016/j.earlhumdev.2022.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Research is beginning to implicate early life characteristics in the development of pediatric nonalcoholic fatty liver disease, however the relationship with perinatal characteristics is poorly understood. AIMS We evaluated the association between perinatal characteristics and nonalcoholic fatty liver disease in childhood. STUDY DESIGN Nested case-control study. SUBJECTS 5104 children born in Quebec, Canada between 2006 and 2019. Exposures included maternal diabetes, obesity, prematurity, and other birth complications. OUTCOME MEASURES The outcome was nonalcoholic fatty liver disease diagnosed in hospital before 14 years of age. We calculated adjusted odds ratios (OR) and 95% confidence intervals (CI) for the association between birth characteristics and nonalcoholic fatty liver disease. RESULTS A total of 104 children with nonalcoholic fatty liver disease were included. Gestational diabetes (OR 2.17, 95% CI 1.15-4.10), preexisting diabetes (OR 5.75, 95% CI 2.67-12.4), and maternal obesity (OR 3.06, 95% CI 1.71-5.45) were associated with childhood nonalcoholic fatty liver disease. Prematurity (OR 1.93, 95% CI 1.06-3.54) and neonatal intensive care unit admission (OR 2.18, 95% CI 1.10-4.33) were also associated with nonalcoholic fatty liver disease. However, there was no association with low birthweight, small-for-gestational age birth, and macrosomia. CONCLUSIONS Maternal metabolic disorders and prematurity may initiate processes early in life that lead to the development of nonalcoholic fatty liver disease in childhood.
Collapse
Affiliation(s)
- Safiya Soullane
- Faculty of Medicine, McGill University, 3605 Mountain St, Montreal, Quebec H3G 2M1, Canada.
| | - Philippe Willems
- Division of Gastroenterology, Faculty of Medicine, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada.
| | - Ga Eun Lee
- University of Montreal Hospital Research Centre, 900 Saint-Denis St, Montreal, Quebec H2X 0A9, Canada; Institut national de santé publique du Québec, 190 Cremazie Blvd E, Montreal, Quebec H2P 1E2, Canada.
| | - Nathalie Auger
- University of Montreal Hospital Research Centre, 900 Saint-Denis St, Montreal, Quebec H2X 0A9, Canada; Institut national de santé publique du Québec, 190 Cremazie Blvd E, Montreal, Quebec H2P 1E2, Canada; Department of Social and Preventive Medicine, School of Public Health, University of Montreal, 7101 Park Avenue, Montreal, Quebec H3N 1X9, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020 Pine Ave W, Montreal, Quebec H3A 1A2, Canada.
| |
Collapse
|
30
|
The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol 2022; 226:607-632. [PMID: 34968458 PMCID: PMC9182711 DOI: 10.1016/j.ajog.2021.12.035] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Most women in the United States do not meet the recommendations for healthful nutrition and weight before and during pregnancy. Women and providers often ask what a healthy diet for a pregnant woman should look like. The message should be “eat better, not more.” This can be achieved by basing diet on a variety of nutrient-dense, whole foods, including fruits, vegetables, legumes, whole grains, healthy fats with omega-3 fatty acids that include nuts and seeds, and fish, in place of poorer quality highly processed foods. Such a diet embodies nutritional density and is less likely to be accompanied by excessive energy intake than the standard American diet consisting of increased intakes of processed foods, fatty red meat, and sweetened foods and beverages. Women who report “prudent” or “health-conscious” eating patterns before and/or during pregnancy may have fewer pregnancy complications and adverse child health outcomes. Comprehensive nutritional supplementation (multiple micronutrients plus balanced protein energy) among women with inadequate nutrition has been associated with improved birth outcomes, including decreased rates of low birthweight. A diet that severely restricts any macronutrient class should be avoided, specifically the ketogenic diet that lacks carbohydrates, the Paleo diet because of dairy restriction, and any diet characterized by excess saturated fats. User-friendly tools to facilitate a quick evaluation of dietary patterns with clear guidance on how to address dietary inadequacies and embedded support from trained healthcare providers are urgently needed. Recent evidence has shown that although excessive gestational weight gain predicts adverse perinatal outcomes among women with normal weight, the degree of prepregnancy obesity predicts adverse perinatal outcomes to a greater degree than gestational weight gain among women with obesity. Furthermore, low body mass index and insufficient gestational weight gain are associated with poor perinatal outcomes. Observational data have shown that first-trimester gain is the strongest predictor of adverse outcomes. Interventions beginning in early pregnancy or preconception are needed to prevent downstream complications for mothers and their children. For neonates, human milk provides personalized nutrition and is associated with short- and long-term health benefits for infants and mothers. Eating a healthy diet is a way for lactating mothers to support optimal health for themselves and their infants.
Collapse
|
31
|
Querter I, Pauwels NS, De Bruyne R, Dupont E, Verhelst X, Devisscher L, Van Vlierberghe H, Geerts A, Lefere S. Maternal and Perinatal Risk Factors for Pediatric Nonalcoholic Fatty Liver Disease: A Systematic Review. Clin Gastroenterol Hepatol 2022; 20:740-755. [PMID: 33862225 DOI: 10.1016/j.cgh.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The intrauterine and early life environment can have an important impact on long-term metabolic health. We investigated the impact of maternal prepregnancy obesity, (pre)gestational diabetes, breastfeeding, and birth anthropometrics/preterm birth on the development of NAFLD in children and adolescents. METHODS A comprehensive search was performed in MEDLINE, PubMed Central, EMBASE, and grey literature databases through August 2020. The primary outcome was the prevalence of pediatric NAFLD, whereas the histologic severity of steatohepatitis and/or fibrosis were secondary outcomes. Study selection, data extraction, and quality assessment were performed by 2 independent reviewers. RESULTS Our systematic review included 33 articles. Study heterogeneity regarding patient populations, diagnostic tools, and overall quality was considerable. Eight studies determined the impact of maternal prepregnancy overweight/obesity and identified this as a possible modifiable risk factor for pediatric NAFLD. Conversely, 8 studies investigated (pre)gestational diabetes, yet the evidence on its impact is conflicting. Breastfeeding was associated with a reduced risk for NAFLD, steatohepatitis, and fibrosis, especially in studies that evaluated longer periods of breastfeeding. Being born preterm or small for gestational age has an unclear impact on the development of NAFLD, although an early catch-up growth might drive NAFLD. CONCLUSIONS In a systematic review, we found that maternal prepregnancy overweight and obesity were associated with an increased risk of pediatric NAFLD. Breastfeeding might be protective against the development of NAFLD when the duration of breastfeeding is sufficiently long (≥6 months).
Collapse
Affiliation(s)
- Ilya Querter
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Nele S Pauwels
- Knowledge Center for Health Ghent, Ghent University and Ghent University Hospital, Ghent
| | - Ruth De Bruyne
- Pediatric Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine and Pediatrics, Ghent University, Ghent
| | | | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent; Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
32
|
Brøns C, Thuesen ACB, Elingaard-Larsen LO, Justesen L, Jensen RT, Henriksen NS, Juel HB, Størling J, Ried-Larsen M, Sparks LM, van Hall G, Danielsen ER, Hansen T, Vaag A. Increased liver fat associates with severe metabolic perturbations in low birth weight men. Eur J Endocrinol 2022; 186:511-521. [PMID: 35212643 DOI: 10.1530/eje-21-1221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Ectopic liver fat deposition, resulting from impaired subcutaneous adipose tissue expandability, may represent an age-dependent key feature linking low birth weight (LBW) with increased risk of type 2 diabetes (T2D). We examined whether presumably healthy early middle-aged, non-obese LBW subjects exhibit increased liver fat content, whether increased liver fat in LBW is associated with the severity of dysmetabolic traits and finally whether such associations may be confounded by genetic factors. METHODS Using 1H magnetic resonance spectroscopy, we measured hepatic fat content in 26 early middle-aged, non-obese LBW and 22 BMI-matched normal birth weight (NBW) males. Endogenous glucose production was measured by stable isotopes, and a range of plasma adipokine and gut hormone analytes were measured by multiplex ELISA. Genetic risk scores were calculated from genome-wide association study (GWAS) data for birth weight, height, T2D, plasma cholesterol and risk genotypes for non-alcoholic fatty liver disease (NAFLD). RESULTS The LBW subjects had significantly increased hepatic fat content compared with NBW controls (P= 0.014), and 20% of LBW vs no controls had overt NAFLD. LBW subjects with NAFLD displayed widespread metabolic changes compared with NBW and LBW individuals without NAFLD, including hepatic insulin resistance, plasma adipokine and gut hormone perturbations as well as dyslipidemia. As an exception, plasma adiponectin levels were lower in LBW subjects both with and without NAFLD as compared to NBW controls. Genetic risk for selected differential traits did not differ between groups. CONCLUSION Increased liver fat content including overt NAFLD may be on the critical path linking LBW with increased risk of developing T2D in a non-genetic manner.
Collapse
Affiliation(s)
- Charlotte Brøns
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Anne Cathrine Baun Thuesen
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Rasmus Tanderup Jensen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Lauren M Sparks
- Translational Research Institute, Advent Health, Orlando, Florida, USA
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
| | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
34
|
Hepatic Lipid Accumulation and Dysregulation Associate with Enhanced Reactive Oxygen Species and Pro-Inflammatory Cytokine in Low-Birth-Weight Goats. Animals (Basel) 2022; 12:ani12060766. [PMID: 35327163 PMCID: PMC8944635 DOI: 10.3390/ani12060766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Occurrence of low birth weight (LBW) is a major concern in livestock production, resulting in poor postnatal growth, lowered efficiency of feed utilization, and impaired metabolic health in adult life. In the southwest region of China, birth weight of indigenous strains of goats varies seasonally with lower weights in summer and winter, but the metabolic regulation of the LBW offspring is still unknown. In this study, by comparing LBW goats to normal birth weight group, we examined hepatic lipid content in association with regulatory mechanisms. Histological studies showed higher microvesicular morphology in the liver of LBW goats in accompany with a significantly higher level of hepatic free fatty acids, total triglycerides, and cholesterols. Lipid metabolism impairment, increased oxidative stress, and inflammation were observed by transcriptome analysis. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation further demonstrated lipid peroxidation, antioxidant pathway, and pro-inflammatory response involved in the hepatic lipid dysregulation from LBW group. Therefore, dysregulations of hepatic lipid metabolism, including fatty acid biosynthesis and degradation, lipid transportation, and oxidative stress, played important roles to contribute the lipid accumulation in LBW goats. Moreover, due to impaired antioxidant capacity, the oxidative damage could interact with persisting pro-inflammatory responses, leading to a higher risk of liver injury and metabolic syndromes in their adult life.
Collapse
|
35
|
Nakayama K, Ichikawa G, Naganuma J, Koyama S, Arisaka O, Sairenchi T, Kobashi G, Yoshihara S. Adiposity rebound in very-low-birth-weight infants. J Pediatr Endocrinol Metab 2022; 35:105-108. [PMID: 34845885 DOI: 10.1515/jpem-2021-0333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Adiposity rebound (AR) refers to an increase in body mass index (BMI) after a nadir. Early AR, in which AR occurs earlier than five years old, is a risk factor for future obesity and metabolic syndrome, but has not been widely studied in very-low-birth-weight infants (VLBWIs). METHODS The subjects were VLBWIs born in Dokkyo Medical University NICU from January 2008 to December 2010. Height and weight measured at birth and at intervals until seven years old were obtained from medical records. The lowest BMI after one year of age was used for the age of AR. The subjects were divided into those with early and normal AR (<5 and ≥5 years old). BMI percentile at age seven years was compared using the interquartile range (IQR). Changes in BMI were evaluated by repeated measures analysis of variance (ANOVA). RESULTS There were 38 early AR cases and 62 normal AR cases, giving a prevalence of early AR similar to that in infants with normal birth weight. BMI percentile at age seven years was significantly higher in early AR cases than in normal AR cases (44.6 [IQR: 21.0-79.2] vs. 14.4 [IQR: 3.8-40.8] kg/m2). Changes in BMI were also significantly higher in early AR cases (p=0.024 by ANOVA). CONCLUSIONS Early AR in VLBWIs is a predictor of future obesity.
Collapse
Affiliation(s)
- Koryo Nakayama
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Go Ichikawa
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Junko Naganuma
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Satomi Koyama
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Osamu Arisaka
- Department of Pediatrics, Nasu Red Cross Hospital, Ohtawara, Tochigi, Japan
| | - Toshimi Sairenchi
- Center for Research Collaboration and Support, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| |
Collapse
|
36
|
Mutamba AK, He X, Wang T. Therapeutic advances in overcoming intrauterine growth restriction induced metabolic syndrome. Front Pediatr 2022; 10:1040742. [PMID: 36714657 PMCID: PMC9875160 DOI: 10.3389/fped.2022.1040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a great public health challenge as it affects neonatal survival and influences their normal biological development and metabolism. Several clinical researches have revealed the occurrence of metabolic syndrome, such as insulin resistance, obesity, type 2 diabetes mellitus, oxidative stress, dyslipidemia, as direct results of IUGR. Therefore, it is essential to understand its underlying mechanism, impact and develop effective therapies. The purpose of this work is to review the current knowledge on IUGR induced metabolic syndrome and relevant therapies. Here in, we elaborate on the characteristics and causes of IUGR by pointing out recent research findings. Furthermore, we discuss the impact of IUGR on different organs of the body, followed by preclinical studies on IUGR using suitable animal models. Additionally, various metabolic disorders with their genetic implications, such as insulin resistance, type 2 diabetes mellitus, dyslipidemia, obesity are detailed. Finally, the current therapeutic options used in the treatment of IUGR are summarized with some prospective therapies highlighted.
Collapse
Affiliation(s)
- Alpha Kalonda Mutamba
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaori He
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Wang
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, China
| |
Collapse
|
37
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
38
|
Wiese MD, Meakin AS, Varcoe TJ, Darby JRT, Sarr O, Kiser P, Bradshaw EL, Regnault TRH, Morrison JL. Hepatic cytochrome P450 function is reduced by life-long Western diet consumption in guinea pig independent of birth weight. Life Sci 2021; 287:120133. [PMID: 34774623 DOI: 10.1016/j.lfs.2021.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of triglycerides and cholesterol within the liver and dysregulation of specific hepatic cytochrome P450 (CYPs) activity. CYPs are involved in the metabolism of endogenous and exogenous chemicals. Hepatic CYP activity is dysregulated in human studies and animal models of a Western diet (WD) or low birth weight (LBW) independently, but the additive effects of LBW and postnatal WD consumption are unknown. As such, the aim of this study was to determine the independent and combined effect of birthweight and postnatal diet on hepatic CYP activity in a guinea pig model. METHODS LBW was generated via uterine artery ablation at mid gestation (term = 70 days gestation). Normal birthweight (NBW) and LBW pups were allocated either a control diet (CD) or WD at weaning. After 4 months of dietary intervention, guinea pigs were humanely killed, and liver tissue collected for biochemical and functional hepatic CYP activity analyses. RESULTS Independent of birthweight, functional activity of CYP3A was significantly reduced in female and male WD compared to CD animals (female, P < 0.0001; male, P = 0.004). Likewise, CYP1A2 activity was significantly reduced in male WD compared to CD animals (P = 0.020) but this same reduction was not observed in females. CONCLUSION Diet, but not birthweight, significantly altered hepatic CYP activity in both sexes, and the effect of diet appeared to be greater in males. These findings may have clinical implications for the management of NAFLD and associated co-morbidities between the sexes.
Collapse
Affiliation(s)
- Michael D Wiese
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Ashley S Meakin
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Tamara J Varcoe
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Jack R T Darby
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ousseynou Sarr
- Departments of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Patti Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Emma L Bradshaw
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Timothy R H Regnault
- Departments of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada; Departments of Obstetrics and Gynaecology, Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Janna L Morrison
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
39
|
Sweeny KF, Lee CK. Nonalcoholic Fatty Liver Disease in Children. Gastroenterol Hepatol (N Y) 2021; 17:579-587. [PMID: 35465068 PMCID: PMC9021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It represents a spectrum of disease from simple hepatic steatosis to steatohepatitis that may develop into progressive hepatic fibrosis and even cirrhosis. NAFLD is the most rapidly increasing indication for liver transplantation in adults. In children, the incidence of NAFLD has also increased over the past decade. Although the majority of children with NAFLD are overweight or obese, there is an increasing subset of children with normal body mass index with so-called lean NAFLD. NAFLD in children is associated with several extrahepatic manifestations, including hyperlipidemia, insulin resistance, and obstructive sleep apnea. The pathogenesis of NAFLD in children involves a multifactorial interaction among genetics, in utero exposures, early childhood exposures, and ongoing nutritional exposures. Although there are some similarities between pediatric NAFLD and adult NAFLD, liver biopsies in children show histologic differences between the two. The current standard-of-care treatment of NAFLD in children is lifestyle change to decrease caloric intake and increase physical activity. There are no medications currently approved for the treatment of NAFLD in children. This article aims to summarize the current understanding of pediatric NAFLD and future directions for intervention and therapeutic aims.
Collapse
Affiliation(s)
- Katherine F. Sweeny
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Christine K. Lee
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Shapiro WL, Noon SL, Schwimmer JB. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children. Pediatr Obes 2021; 16:e12849. [PMID: 34498413 PMCID: PMC8807003 DOI: 10.1111/ijpo.12849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022]
Abstract
Children with obesity are at risk for numerous health problems, including nonalcoholic fatty liver disease (NAFLD). This review focuses on progress made in the epidemiology of NAFLD in children for the years 2015-2020. The estimated prevalence of NAFLD in children with obesity is 26%. The incidence of NAFLD in children has risen rapidly over the past decade. An understanding of the reasons for this rise is incomplete, but over the past 5 years, many studies have provided additional insight into the complexity of risk factors, diagnostic approaches, and associated comorbidities. Risk factors for NAFLD are wide-ranging, including perinatal factors involving both the mother and newborn, as well as environmental toxin exposure. Progress made in the noninvasive assessment will be critical to improving issues related to variability in approach to screening and diagnosis of NAFLD in children. The list of serious comorbidities observed in children with NAFLD continues to grow. Notably, for many of these conditions, such as diabetes and depression, the rates observed have exceeded the rates reported in children with obesity without NAFLD. Recent advancements reviewed show an increased awareness of this problem, while also calling attention to the need for additional research to guide successful efforts at prevention and treatment.
Collapse
Affiliation(s)
- Warren L. Shapiro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital, San Diego, California,Southern California Permanente Medical Group, Pasadena, California
| | - Sheila L. Noon
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital, San Diego, California
| |
Collapse
|
41
|
Cohen CC, Perng W, Sundaram SS, Scherzinger A, Shankar K, Dabelea D. Hepatic Fat in Early Childhood Is Independently Associated With Estimated Insulin Resistance: The Healthy Start Study. J Clin Endocrinol Metab 2021; 106:3140-3150. [PMID: 34289064 PMCID: PMC8530740 DOI: 10.1210/clinem/dgab541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Fatty liver disease is a common metabolic abnormality in adolescents with obesity but remains understudied in early childhood. OBJECTIVES To describe hepatic fat deposition in prepubertal children and examine cross-sectional associations with metabolic markers and body composition. METHODS Data were from 286 children ages 4 to 8 years old in the Healthy Start Study, a longitudinal prebirth cohort in Colorado (USA). Assessments included magnetic resonance imaging to quantify hepatic and abdominal fats, fasting blood draws to measure metabolic markers, and air displacement plethysmography to measure body composition (fat mass and fat-free mass). RESULTS The median (interquartile range) for hepatic fat was 1.65% (1.24%, 2.11%). Log-transformed hepatic fat was higher in Hispanic [mean (95% CI): 0.63 (0.52, 0.74)] vs non-Hispanic white children [0.46 (0.38, 0.53), P = 0.01] and children with overweight/obesity [0.64 (0.49, 0.79)] vs normal-weight [0.47 (0.40, 0.53), P = 0.02]. Higher log-hepatic fat was associated with higher insulin [β (95% CI): 1.47 (0.61, 2.33) uIU/mL, P = 0.001] and estimated insulin resistance (homeostatic model assessment) [0.40 (0.20, 0.60), P < 0.001] in the full sample and glucose [5.53 (2.84, 8.21) mg/dL, P < 0.001] and triglycerides [10.92 (2.92,18.91) mg/dL, P = 0.008] in boys, in linear regression models adjusted for sociodemographics, maternal/perinatal confounders, and percentage body fat. Log-hepatic fat was also associated with abdominal subcutaneous adipose tissue [SAT; 7.37 (1.12,13.60) mm2, P = 0.02] in unadjusted models, but this was attenuated and insignificant after adjusting for confounders. CONCLUSIONS While hepatic fat was low in children 4 to 8 years old, it was independently associated with estimated insulin resistance and exhibited sex-specific associations with glucose and triglycerides, suggesting hepatic fat may be an early indicator of metabolic dysfunction in youth.
Collapse
Affiliation(s)
- Catherine C Cohen
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Shikha S Sundaram
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Scherzinger
- Department of Radiology, University of Colorado, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Hunter AK, Lin HC. Review of Clinical Guidelines in the Diagnosis of Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis (Hoboken) 2021; 18:40-44. [PMID: 34484704 PMCID: PMC8405050 DOI: 10.1002/cld.1094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Anna K. Hunter
- Division of GastroenterologyDoernbecher Children’s HospitalPortlandOR,Department of PediatricsOregon Health & Science UniversityPortlandOR
| | - Henry C. Lin
- Division of GastroenterologyDoernbecher Children’s HospitalPortlandOR,Department of PediatricsOregon Health & Science UniversityPortlandOR
| |
Collapse
|
43
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
44
|
Guo Q, Tang Y, Li Y, Xu Z, Zhang D, Liu J, Wang X, Xia W, Xu S. Perinatal High-Salt Diet Induces Gut Microbiota Dysbiosis, Bile Acid Homeostasis Disbalance, and NAFLD in Weanling Mice Offspring. Nutrients 2021; 13:nu13072135. [PMID: 34206629 PMCID: PMC8308454 DOI: 10.3390/nu13072135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
A perinatal high-salt (HS) diet was reported to elevate plasma triglycerides. This study aimed to investigate the hypothesis that a perinatal HS diet predisposed offspring to non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of abnormal lipid metabolism, and the possible mechanism. Female C57BL/6 mice were fed a control diet (0.5% NaCl) or HS diet (4% NaCl) during pregnancy and lactation and their offspring were sacrificed at weaning. The perinatal HS diet induced greater variation in fecal microbial beta-diversity (β-diversity) and increased bacteria abundance of Proteobacteria and Bacteroides. The gut microbiota dysbiosis promoted bile acid homeostasis disbalance, characterized by the accumulation of lithocholic acid (LCA) and deoxycholic acid (DCA) in feces. These alterations disturbed gut barrier by increasing the expression of tight junction protein (Tjp) and occludin (Ocln), and increased systemic lipopolysaccharide (LPS) levels and hepatic inflammatory cytokine secretion (TNF-α and IL-6) in the liver. The perinatal HS diet also inhibited hepatic expression of hepatic FXR signaling (CYP7A1 and FXR), thus triggering increased hepatic expression of pro-inflammatory cytokines (TNF-α and IL-6) and hepatic lipid metabolism-associated genes (SREBP-1c, FAS, ACC), leading to unique characteristics of NAFLD. In conclusion, a perinatal HS diet induced NAFLD in weanling mice offspring; the possible mechanism was related to increased bacteria abundance of Proteobacteria and Bacteroides, increased levels of LCA and DCA in feces, and increased expressions of hepatic FXR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Xia
- Correspondence: ; Tel.: +86-27-83693417
| | | |
Collapse
|
45
|
Sarli PM, Manousopoulou A, Efthymiou E, Zouridis A, Potiris A, Pervanidou P, Panoulis K, Vlahos N, Deligeoroglou E, Garbis SD, Eleftheriades M. Liver Proteome Profile of Growth Restricted and Appropriately Grown Newborn Wistar Rats Associated With Maternal Undernutrition. Front Endocrinol (Lausanne) 2021; 12:684220. [PMID: 34127923 PMCID: PMC8195994 DOI: 10.3389/fendo.2021.684220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with adverse perinatal outcomes and epigenetic modifications that impact gene expression leading to permanent changes of fetal metabolic pathways and thereby influence development of disease in childhood and adult life. In this study, we investigated the result of maternal food restriction on liver protein expression in Wistar male newborn pups. Materials & Methods Ten (n = 10) timed pregnant Wistar rats on their 14th day of gestation were randomly assigned to either control (n = 4) or food restricted group (n = 6). The control group had ad libitum access to food. In the food restricted group, maternal diet was limited in a moderate fashion (50%) from day 15 of pregnancy until delivery. All rats delivered spontaneously on day 21 and newborn pups were immediately weighed. Pups born to normally nourished mothers were considered as controls, while pups born to food restricted mothers were subdivided into two groups, based on their birth weight: growth restricted (FGR) and appropriately grown (non-FGR). Rats were euthanized immediately after birth and liver tissues of 11 randomly selected male offspring (FGR n = 4, non-FGR n = 4, control n = 3) were collected and analyzed using quantitative proteomics. Results In total 6,665 proteins were profiled. Of these, 451 and 751 were differentially expressed in FGR and non-FGR vs. control, respectively, whereas 229 proteins were commonly expressed. Bioinformatics analysis of the differentially expressed proteins (DEPs) in FGR vs. control revealed induction of the super-pathway of cholesterol biosynthesis and inhibition of thyroid hormone metabolism, fatty acid beta oxidation and apelin liver signaling pathway. Analysis of DEPs in non-FGR vs. control groups showed inhibition of thyroid hormone metabolism, fatty acid beta oxidation, and apelin liver signaling pathway. Conclusion This study demonstrates the impact of prenatal food restriction on the proteomic liver profile of FGR and non-FGR offspring underlying the importance of both prenatal adversities and birth weight on liver-dependent postnatal disease.
Collapse
Affiliation(s)
- Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Elias Efthymiou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Panoulis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D. Garbis
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Yu EL, Schwimmer JB. Epidemiology of Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis (Hoboken) 2021; 17:196-199. [PMID: 33868665 PMCID: PMC8043694 DOI: 10.1002/cld.1027] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elizabeth L. Yu
- Department of PediatricsDivision of Gastroenterology, Hepatology, and NutritionUniversity of California San Diego School of MedicineLa JollaCA,Department of GastroenterologyRady Children’s HospitalSan DiegoCA
| | - Jeffrey B. Schwimmer
- Department of PediatricsDivision of Gastroenterology, Hepatology, and NutritionUniversity of California San Diego School of MedicineLa JollaCA,Department of GastroenterologyRady Children’s HospitalSan DiegoCA
| |
Collapse
|
47
|
Scapaticci S, D’Adamo E, Mohn A, Chiarelli F, Giannini C. Non-Alcoholic Fatty Liver Disease in Obese Youth With Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:639548. [PMID: 33889132 PMCID: PMC8056131 DOI: 10.3389/fendo.2021.639548] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent form of chronic liver disease in children and adolescents worldwide. Simultaneously to the epidemic spreading of childhood obesity, the rate of affected young has dramatically increased in the last decades with an estimated prevalence of NAFLD of 3%-10% in pediatric subjects in the world. The continuous improvement in NAFLD knowledge has significantly defined several risk factors associated to the natural history of this complex liver alteration. Among them, Insulin Resistance (IR) is certainly one of the main features. As well, not surprisingly, abnormal glucose tolerance (prediabetes and diabetes) is highly prevalent among children/adolescents with biopsy-proven NAFLD. In addition, other factors such as genetic, ethnicity, gender, age, puberty and lifestyle might affect the development and progression of hepatic alterations. However, available data are still lacking to confirm whether IR is a risk factor or a consequence of hepatic steatosis. There is also evidence that NAFLD is the hepatic manifestation of Metabolic Syndrome (MetS). In fact, NAFLD often coexist with central obesity, impaired glucose tolerance, dyslipidemia, and hypertension, which represent the main features of MetS. In this Review, main aspects of the natural history and risk factors of the disease are summarized in children and adolescents. In addition, the most relevant scientific evidence about the association between NAFLD and metabolic dysregulation, focusing on clinical, pathogenetic, and histological implication will be provided with some focuses on the main treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| |
Collapse
|
48
|
Shaunak M, Byrne CD, Davis N, Afolabi P, Faust SN, Davies JH. Non-alcoholic fatty liver disease and childhood obesity. Arch Dis Child 2021; 106:3-8. [PMID: 32409495 DOI: 10.1136/archdischild-2019-318063] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) in children and adolescents has an estimated prevalence of 36.1% in the context of obesity. This figure is anticipated to increase in conjunction with the global obesity epidemic. Worryingly, NAFLD in childhood persisting into adulthood is likely to be harmful, contributing to significant hepatic and extrahepatic morbidities. Early disease detection is required, although the optimum timing, frequency and mode of screening remains undetermined. While the efficacy of several medications, antioxidants, fatty acid supplements and probiotics has been investigated in children, healthy eating and physical activity remain the only prevention and treatment strategies for paediatric NAFLD. This short review discusses the epidemiology, diagnosis, pathogenesis and management of NAFLD in childhood obesity.
Collapse
Affiliation(s)
- Meera Shaunak
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher D Byrne
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nikki Davis
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul Afolabi
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Justin Huw Davies
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
49
|
The impact of maternal protein restriction during perinatal life on the response to a septic insult in adult rats. J Dev Orig Health Dis 2020; 12:915-922. [PMID: 33353580 DOI: 10.1017/s2040174420001269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although abundant evidence exists that adverse events during pregnancy lead to chronic conditions, there is limited information on the impact of acute insults such as sepsis. This study tested the hypothesis that impaired fetal development leads to altered organ responses to a septic insult in both male and female adult offspring. Fetal growth restricted (FGR) rats were generated using a maternal protein-restricted diet. Male and female FGR and control diet rats were housed until 150-160 d of age when they were exposed either a saline (control) or a fecal slurry intraperitoneal (Sepsis) injection. After 6 h, livers and lungs were analyzed for inflammation and, additionally, the amounts and function of pulmonary surfactant were measured. The results showed increases in the steady-state mRNA levels of inflammatory cytokines in the liver in response to the septic insult in both males and females; these responses were not different between FGR and control diet groups. In the lungs, cytokines were not detectable in any of the experimental groups. A significant decrease in the relative amount of surfactant was observed in male FGR offspring, but this was not observed in control males or in female animals. Overall, it is concluded that FGR induced by maternal protein restriction does not impact liver and lung inflammatory response to sepsis in either male or female adult rats. An altered septic response in male FGR offspring with respect to surfactant may imply a contribution to lung dysfunction.
Collapse
|
50
|
Cheng K, Jia P, Ji S, Song Z, Zhang H, Zhang L, Wang T. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food Funct 2020; 12:278-290. [PMID: 33300526 DOI: 10.1039/d0fo01459a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and inflammation are crucial contributors to liver damage and nonalcoholic fatty liver disease (NAFLD) in adulthood in offspring affected by intrauterine growth retardation (IUGR). Resveratrol (RSV) has been reported to treat and/or prevent hepatic diseases under various pathological conditions. However, the therapeutic and/or preventive effects of RSV on hepatic abnormality in IUGR adults have not been investigated until now. The effects of IUGR and RSV on the hepatic metabolic status, mitochondrial function, redox homeostasis and inflammation in pigs in adulthood were investigated. A total of 36 pairs of IUGR and normal birth weight piglets were orally fed with 80 mg RSV per kg body weight per d or vehicle (0.5% carboxymethylcellulose) for 7-21 d after birth. And then the offspring were fed with a basal diet supplemented with 300 mg RSV per kg feed or a basal diet from weaning to slaughter at 150 d. The plasma and liver samples were collected for subsequent analysis. RSV exerted beneficial effects on hepatic injury and metabolic alterations in IUGR pigs, which may be due to improved mitochondrial function and fatty acid oxidation by intensified mitochondrial biogenesis, enhanced antioxidant levels such as glutathione reductase and total superoxide dismutase activities, increased interleukin 10 gene expression and repolarization of macrophages. RSV alleviated hepatic lipid accumulation in IUGR pigs by improving mitochondrial function, redox status and inflammation, implying that it is a potential candidate for further development as an effective clinical treatment for NAFLD associated with IUGR.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|