1
|
Pombo MA, Rosli HG, Maiale S, Elliott C, Stieben ME, Romero FM, Garriz A, Ruiz OA, Idnurm A, Rossi FR. Unveiling the virulence mechanism of Leptosphaeria maculans in the Brassica napus interaction: the key role of sirodesmin PL in the induction of cell death. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1767-1783. [PMID: 39680058 DOI: 10.1093/jxb/erae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus, leading to substantial yield losses. Sirodesmin PL, the principal toxin produced by L. maculans, has been implicated in the infection process in plants. However, the precise molecular and physiological mechanisms governing its effects remain elusive. This study investigates the changes induced by sirodesmin PL at the transcriptomic, physiological, and morphological levels in B. napus cotyledons. Sirodesmin PL treatment up-regulated genes associated with plant defense processes, including response to chitin, sulfur compound biosynthesis, toxin metabolism, oxidative stress response, and jasmonic acid/ethylene synthesis and signaling. Validation of these transcriptomic changes is evidenced by several typical defense response processes, such as the accumulation of reactive oxygen species (ROS) and callose deposition. Concomitantly, oxidized sirodesmin PL induced concentration- and exposure duration-dependent cell death. This cellular death is likely to be attributed to diminished activity of PSII and reduced number of chloroplasts per cell. In agreement, a down-regulation of genes associated with the photosynthesis process is observed following sirodesmin PL treatment. Thus, it is plausible that L. maculans exploits sirodesmin PL as a virulence factor to instigate cell death in B. napus during its necrotrophic stage, favoring the infection process.
Collapse
Affiliation(s)
- Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Santiago Maiale
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Candace Elliott
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Micaela E Stieben
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Fernando M Romero
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Andrés Garriz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Oscar A Ruiz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Franco R Rossi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
2
|
Pu K, Li N, Gao Y, Wang T, Zhang M, Sun W, Li J, Xie J. Mitigating effects of Methyl Jasmonate on photosynthetic inhibition and oxidative stress of pepper (Capsicum annuum L) seedlings under low temperature combined with low light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109843. [PMID: 40168861 DOI: 10.1016/j.plaphy.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Low temperature combined with low light (LL) is a critical abiotic stress that restricting plant growth and yield of pepper (Capsicum annuum L.). Methyl jasmonate (MeJA) is considered with potential benefits for improving plant stress resistance; however, the physiological mechanisms underlying the adaptation of pepper to LL stress have not been explored. This study aimed to investigate the potential mitigating effects of foliar MeJA (200 μmol L-1) application on pepper seedlings subjected to LL stress (10/5 °C, 100 μmol m-2 s-1) for 168 h. Our results indicated that the application of exogenous MeJA reduced the negative effect on growth inhibition of pepper seedlings caused by LL stress, significantly increased chlorophyll contents and photosynthetic capacity as a result of improved photosynthesis rate. In addition, MeJA reduced the accumulation of reactive oxygen species and malondialdehyde contents induced by LL stress, while enhancing the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase as a result of upregulated expression levels of antioxidant enzyme genes (CaSOD, CaPOD, CaCAT, CaAPX, CaGR, CaDHAR, and CaMDHAR). Additionally, it increased the ascorbic acid and reduced glutathione content, while reducing oxidized glutathione content, thereby preventing membrane lipid peroxidation and protecting plants from oxidative damage under LL stress. Furthermore, seedlings treated with MeJA exhibited significantly enhanced soluble sugar and soluble protein contents in leaves. Taken together, present findings indicate that MeJA application may serve as an effective strategy for mitigating LL-induced oxidative stress by maintaining plant growth, enhancing chlorophyll fluorescence, upregulating the antioxidant defence system, optimizing ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Wenli Sun
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Xia Q, Tang H, Tan J, Allakhverdiev S, Guo Y. Determination of rice ( Oryza sativa L.) drought stress levels based on chlorophyll a fluorescence through independent component analysis. PHOTOSYNTHETICA 2025; 63:73-80. [PMID: 40270911 PMCID: PMC12012420 DOI: 10.32615/ps.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025]
Abstract
Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlF) is often used. However, existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve independent features, making it suitable for capturing drought-induced physiological changes. This study applies ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that the 20-dimensional ChlF features obtained by ICA provide superior classification performance, with Accuracy, Precision, Recall, F1-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively, compared to the entire curve. This work provides a rice drought stress levels determination method and highlights the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress detection using ChlF.
Collapse
Affiliation(s)
- Q. Xia
- School of Electrical Engineering and Automation, Changshu Institute of Technology, 215500 Changshu, China
| | - H. Tang
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - J.L. Tan
- Department of Chemical & Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | - Y. Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
4
|
Liu S, Zhang F, Feng H, Wang X, Wang Q, Lai X, Yan L. StTCTP Positively Regulates StSN2 to Enhance Drought Stress Tolerance in Potato by Scavenging Reactive Oxygen Species. Int J Mol Sci 2025; 26:2796. [PMID: 40141438 PMCID: PMC11943270 DOI: 10.3390/ijms26062796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Drought is a negative agronomic effect that can lead to an increase in reactive oxygen species (ROS) levels. Excessive drought can severely alter cell membrane fluidity and permeability, significantly reducing cell viability. The Gibberellic acid-stimulated Arabidopsis (Snakin/GASA) gene family has an important role as antioxidants in inhibiting the accumulation of ROS and improving crop drought resistance. However, the regulatory mechanism of potato StSnakin-2 (StSN2) in response to drought, along with how StSN2 expression is regulated, is not well understood. In this study, we found that StSN2 was induced by drought. Overexpression of StSN2 significantly increased drought tolerance, whereas silencing StSN2 increased sensitivity to drought. Overexpression of StSN2 resulted in higher antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) activity, and lowered hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation during drought stress. Also, overexpression of StSN2 increased the relative water content (RWC) of leaves and reduced the water loss in leaves. We screened the upstream regulatory protein translation-controlled tumor protein (StTCTP) of StSN2 through DNA pull-down combined with mass spectrometry. Yeast one-hybrid (YIH), electrophoretic mobility shift assay (EMSA), and luciferase reporting assay (LUC) indicated that StTCTP binds the StSN2 promoter. Like StSN2, StTCTP was highly expressed in response to drought. Overexpression of StTCTP increased the photosynthetic rate and CAT enzyme activity, and lowered H2O2 and MDA accumulation during drought. Meanwhile, overexpression of StTCTP increased leaf RWC and reduced water loss. Our research strongly suggested that StSN2 effectively cleared ROS and significantly boosted the drought resistance of potatoes. Furthermore, as a transcriptional activator of StSN2, StTCTP, much like StSN2, also enhanced the potato's drought tolerance. The results provided a foundation for the further study of StSN2 regulatory mechanisms under drought stress.
Collapse
Affiliation(s)
- Shifeng Liu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| | - Feng Zhang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Haojie Feng
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Xiyao Wang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Qiang Wang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| |
Collapse
|
5
|
Martina A, Ferroni L, Marrocchino E. The Soil-Plant Continuity of Rare Earth Elements: Insights into an Enigmatic Class of Xenobiotics and Their Interactions with Plant Structures and Processes. J Xenobiot 2025; 15:46. [PMID: 40126264 PMCID: PMC11932217 DOI: 10.3390/jox15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rare earth elements (REEs) are increasingly present in the environment owing to their extensive use in modern industries, yet their interactions with plants remain poorly understood. This review explores the soil-plant continuum of REEs, focusing on their geochemical behavior in soil, the mechanisms of plant uptake, and fractionation processes. While REEs are not essential for plant metabolism, they interact with plant structures and interfere with the normal functioning of biological macromolecules. Accordingly, the influence of REEs on the fundamental physiological functions of plants is reviewed, including calcium-mediated signalling and plant morphogenesis. Special attention is paid to the interaction of REEs with photosynthetic machinery and, particularly, the thylakoid membrane. By examining both the beneficial effects at low concentrations and toxicity at higher levels, this review provides some mechanistic insights into the hormetic action of REEs. It is recommended that future research should address knowledge gaps related to the bioavailability of REEs to plants, as well as the short- and long-range transport mechanisms responsible for REE fractionation. A better understanding of REE-plant interactions will be critical in regard to assessing their ecological impact and the potential risks in terms of agricultural and natural ecosystems, to ensure that the benefits of using REEs are not at the expense of environmental integrity or human health.
Collapse
Affiliation(s)
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (E.M.)
| | | |
Collapse
|
6
|
Kim TL, Lim H, Lee K, Denison MIJ, Natarajan S, Oh C. Comparative phenotypic, physiological, and transcriptomic responses to drought and recovery in two Fraxinus species. BMC PLANT BIOLOGY 2025; 25:348. [PMID: 40098103 PMCID: PMC11916329 DOI: 10.1186/s12870-025-06372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND This study focused on the drought tolerance and resilience of two ash species: Fraxinus chiisanensis and F. rhynchophylla. These two species are distributed in different habitats, suggesting that they have different levels of drought tolerance. Understanding their response to drought stress, particularly during the seedling stage, is crucial for selecting and developing drought-resistant varieties. This study aimed to compare the phenotypic, physiological, and transcriptomic characteristics of drought-stressed and recovered rewatered plants in a time-course experiment. RESULTS In F. rhynchophylla, drought stress resulted in more severe growth retardation, temperature increase, and a faster decline in the fluorescence response, accompanied by a significant rise in stress indices. However, these reactions recovered quickly after rehydration. In contrast, F. chiisanensis exhibited less growth retardation, a slower decline in fluorescence, and milder increases in stress indices, although many individuals did not fully recover after rehydration. The activity of antioxidant enzymes (SOD, CAT, APX) was more responsive and recovered more efficiently in F. rhynchophylla, while F. chiisanensis had a weaker and delayed response. Transcriptome analysis revealed that photosynthesis and enzyme activity were the most responsive to drought and recovery, as shown by Gene Ontology term analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified common pathways involved in starch and sucrose metabolism and phenylpropanoid biosynthesis in both species. F. rhynchophylla had more differentially expressed genes (DEGs) than F. chiisanensis, particularly on the drought and recovery day 6. Most drought-induced DEGs were restored after rehydration. Commonly associated genes included BGLU and TPS in sugar metabolism; CAT, GSTF, TT7, and HCT in antioxidant enzymes; PYL4 and RR17 in hormone signaling; and ADC1 and ASP3 in proline synthesis. CONCLUSIONS This study highlights the species-specific characteristics of drought and recovery responses of two Fraxinus species and provides targets for assessing and improving drought tolerance. Moreover, the results of this study provide insights into the physiological and genetic responses of Fraxinus and may guide future research on ash tree stress tolerance.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | | | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| |
Collapse
|
7
|
Wu F, Pan X, Zhou Y, Zhu Y, Liu K, Li W, Han J. The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107269. [PMID: 39946963 DOI: 10.1016/j.aquatox.2025.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on Chlorella pyrenoidosa was illustrated based on the physiological-biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of C. pyrenoidosa at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.
Collapse
Affiliation(s)
- Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| | - Xiangjie Pan
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; Research and Development Department of Jiangsu Jingruite Environmental Protection New Materials Co., Ltd, No. 159 Chengjiang Middle Road, Jiangyin, Jiangsu, 214434, China
| | - Yan Zhu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
8
|
Csepregi K, Rácz A, Czégény G, Hideg É. Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109333. [PMID: 39608338 DOI: 10.1016/j.plaphy.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Tobacco (Nicotiana tabacum L.) plants were grown outdoors (N°46.07, E°18.18) under either natural or UV-deprived sunlight for 25 days in the summer. High PAR resulted in high polyphenol content, which was selectively affected by solar UV-A and UV-B irradiation. Solar UV-A irradiation increased anthocyanins, but not flavonoids, in the epidermis, and this additional protection resulted in higher photochemical yields and lower NPQ. The simultaneous presence of UV-B overrode the effects of UV-A, increased epidermal flavonoids, and decreased anthocyanins. Leaves grown in full sunlight had the same photochemical yields of NPQ as those grown under a UV-excluding filter. A combination of these effects can falsely dismiss the effects of UV-B on outdoor photosynthesis. Phenolic acid content, corresponding to approximately 80% of phenolic compounds, did not depend on solar UV, and total flavonoids increased under full solar UV irradiation, but not under UV-A only. The polyphenol content in outdoor leaves also served as a reference point for an indoor experiment, which showed that even a short, 4-day exposure of low PAR grown plants to UV from an artificial source increased the amount of some, although not all, components close to or even above outdoor levels. In indoor leaves, a selective increase in quercetin glycosides (to 62-85% of outdoor levels) supports both enzymatic and non-enzymatic antioxidant functions, and the increase in crypto- and neochlorogenic acids (to 76% and 117% of outdoor levels, respectively) suggests a redistribution among biosynthesis pathways. These results demonstrate the potential and efficiency of cultivation systems without sunlight.
Collapse
Affiliation(s)
| | - Arnold Rácz
- Department of Plant Biology, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
9
|
Song X, Chen J, Xu C, Cai X, Song W, Chang A, Zhang Y, Luo C. Physiological and molecular mechanisms of exogenous salicylic acid in enhancing salt tolerance in tobacco seedlings by regulating antioxidant defence system and gene expression. FRONTIERS IN PLANT SCIENCE 2025; 16:1545865. [PMID: 39959351 PMCID: PMC11825763 DOI: 10.3389/fpls.2025.1545865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Introduction Salt stress has emerged as a predominant abiotic factor that jeopardizes global crop growth and yield. The plant hormone salicylic acid (SA) has notable potential in mitigating salt toxicity, yet its mechanism in enhancing the salinity tolerance of tobacco plants is not well explored. Methods This study aimed to assess the potential benefits of exogenous SA application (1.0 mM) on tobacco seedlings subjected to saline soil conditions. Results The foliar spray of SA partially mitigated these salt-induced effects, as evidenced by a reduction of malondialdehyde content, and improvements of leaf K+/Na+ ratios, pigment biosynthesis, and electron transport efficiency under NaCl stress. Additionally, SA increased the contents of total phenolic compound and soluble protein by 16.2% and 28.7% to alleviate NaCl-induced oxidative damage. Under salt stressed conditions, the activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase increased by 4.2%~14.4% in SA sprayed tobacco seedlings. Exogenous SA also increased ascorbate and glutathione levels and reduced their reduced forms by increasing the activities of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase. qRT-PCR analysis revealed that the key genes regulating SA biosynthesis, carbon assimilation, the antioxidant system and the ascorbate-glutathione cycle were activated by SA under conditions of salt stress. Discussion Our study elucidates the physiological and molecular mechanisms of exogenous SA in enhancing plant salt tolerance and provides a practical basis for crop improvement in saline environments.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jian Chen
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Can Xu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| |
Collapse
|
10
|
Jácome Cavalcante JS, Ferreira Neto M, Peixoto TDC, da Silva Júnior MP, Rodrigues Filho RA, Araújo KFDP, de Andrade RA, Souto LS, Rocha JLA, Silva LDA, Fernandes PD, Dias NDS, Sá FVDS. Analysis on Salinity Tolerance of Lettuce Cultivars Under Saline Irrigation and Application of Organic Acids. PLANTS (BASEL, SWITZERLAND) 2025; 14:262. [PMID: 39861615 PMCID: PMC11768306 DOI: 10.3390/plants14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars (Lactuca Sativa) under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids. The second factor consisted of five treatments: T1-control (water of 0.53 dS m-1); T2-saline stress (water of 4.0 dS m-1); T3-saline stress + ascorbic acid; T4-saline stress + gibberellic acid; and T5-saline stress + salicylic acid. The Grand Rapids lettuce cultivar tolerated water salinity, obtaining the highest production. The Simpson lettuce cultivar was sensitive to salinity, reducing biomass production under saline stress by 11.47% compared to Grand Rapids. Salicylic acid was more effective at mitigating saline stress in the Simpson lettuce cultivar than ascorbic and gibberellic acids, with a 24.85% increase in production compared to saline stress. The findings suggest that the Grand Rapids lettuce cultivar is more resilient to saline conditions, while salicylic acid can significantly enhance production in the sensitive Simpson cultivar under saline stress.
Collapse
Affiliation(s)
- Jussiara Sonally Jácome Cavalcante
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | - Miguel Ferreira Neto
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | | | - Marcondes Pereira da Silva Júnior
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | - Ricardo André Rodrigues Filho
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | - Kariolania Fortunato de Paiva Araújo
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | - Rayane Amaral de Andrade
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | - Lauter Silva Souto
- Academic Unit of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande 58429-900, PB, Brazil; (L.S.S.); (J.L.A.R.); (L.d.A.S.); (P.D.F.)
| | - Josinaldo Lopes Araújo Rocha
- Academic Unit of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande 58429-900, PB, Brazil; (L.S.S.); (J.L.A.R.); (L.d.A.S.); (P.D.F.)
| | - Luderlândio de Andrade Silva
- Academic Unit of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande 58429-900, PB, Brazil; (L.S.S.); (J.L.A.R.); (L.d.A.S.); (P.D.F.)
| | - Pedro Dantas Fernandes
- Academic Unit of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande 58429-900, PB, Brazil; (L.S.S.); (J.L.A.R.); (L.d.A.S.); (P.D.F.)
| | - Nildo da Silva Dias
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil; (J.S.J.C.); (M.F.N.); (M.P.d.S.J.); (R.A.R.F.); (K.F.d.P.A.); (R.A.d.A.); (N.d.S.D.)
| | | |
Collapse
|
11
|
Xie RR, Wu S, Huang WL, Luo Y, Lin J, Cheng Y, Lu J, Yu W, Chen S, Li W, Chen LS. Assessment of cold resistance in tobacco varieties using JIP-test parameters and seedling growth. PHYSIOLOGIA PLANTARUM 2025; 177:e70078. [PMID: 39868639 DOI: 10.1111/ppl.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment. Their cold resistance was assessed using the cold-resistant coefficient, derived from the relative growth rate of shoots, damage scores, and JIP-test parameters. The results showed that total electron carriers per reaction center (Sm) and relative variable fluorescence at the I-step (VI) were better indicators of cold resistance than maximum quantum yield of photochemistry at t = 0 (Fv/Fm), which was widely used to assess plant cold resistance. Next, the study examined the effects of CS and subsequent recovery on OJIP transients, JIP-test parameters, and seedling growth in two highly resistant (HR) and two highly sensitive (HS) varieties to confirm the reliability of the assessment methods. The results indicated that HR varieties experienced less photoinhibitory damage to photosystem II, exhibited lower growth inhibition during CS, and showed better recovery during the recovery period compared to HS varieties. These findings suggested that the JIP-test parameters could serve as a reliable tool for assessing tobacco cold resistance and aid in selecting varieties with enhanced resilience to CS.
Collapse
Affiliation(s)
- Rong-Rong Xie
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaxin Luo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wen Yu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Wang W, Li B, Zhao X, Zhang S, Li J. Light intensity moderates photosynthesis by optimizing photosystem mechanisms under high VPD stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109322. [PMID: 39591891 DOI: 10.1016/j.plaphy.2024.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
In recent decades, the global increase in vapor pressure deficit (VPD) has significantly inhibited plant growth and photosynthesis. Light intensity, a crucial environmental regulator, plays a vital role in stress response and photosynthetic adjustment. This study investigated whether increasing light intensity under high VPD conditions could optimise the photosystem and thereby enhance photosynthesis. We designed experiments using factorial combinations of two VPD levels (HVPD; high VPD, AVPD; appropriate VPD) and two irradiance gradients (L300; 300 μmol photons m-2 s-1, L600; 600 μmol photons m-2 s-1). Under high VPD, plants protect their photosystems by reducing light energy absorption and limiting photosynthetic electron flow, which results in reduced photosynthesis. However, when exposed to HVPD + L600, plants exhibited increased light energy absorption, as evidenced by elevated chlorophyll b and carotenoid levels, enhanced response to irradiance, and decreased NPQ and Y(NO). This regimen also enhanced photosynthetic electron transport by increasing the total driving force and plastoquinone pool, consequently improving the photochemical efficiency of the photosystem and ultimately boosting the net photosynthetic rate by 46.9%. This study confirmed that modulating light intensity under high VPD stress can improve photosynthesis by optimizing the photosystem. This novel approach can be utilized to enhance tomato production in arid regions.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| | - Bo Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| | - Xiaofan Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| | - Shuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Cvjetinovic J, Bedoshvili YD, Davidovich NA, Maksimov EG, Prikhozhdenko ES, Todorenko DA, Bodunova DV, Davidovich OI, Sergeev IS, Gorin DA. Exploring salinity induced adaptations in marine diatoms using advanced photonic techniques. Sci Rep 2024; 14:32007. [PMID: 39738413 PMCID: PMC11685788 DOI: 10.1038/s41598-024-83640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Photonic-based methods are crucial in biology and medicine due to their non-invasive nature, allowing remote measurements without affecting biological specimens. The study of diatoms using advanced photonic methods remains a relatively underexplored area, presenting significant opportunities for pioneering discoveries. This research provides a comprehensive analysis of marine diatoms, specifically Nitzschia sp., across varying salinity levels, integrating fluorescence lifetime imaging microscopy (FLIM), combined photoacoustic and fluorescence tomographies (PAFT), and ultrastructural examinations using transmission electron microscopy. Key findings include a systematic shift in the mean fluorescence lifetime from 570 ps at 20‰ to 940 ps at 80‰, indicating functional adaptations in chlorophyll molecules within light-harvesting complexes. At 60‰ salinity, anomalies are observed in the development of silica valves and polysaccharide layers, suggesting abnormalities in valve morphogenesis. Lipid droplets within the cells display a minimum diameter at 40‰, indicating metabolic adjustments to osmotic stress. The intensity of both fluorescence and photoacoustic signals increases with increasing salinity levels. These insights enhance understanding of the ecological implications of salinity stress on diatom communities and pave the way for future research on leveraging the unique adaptive mechanisms of microalgae for environmental monitoring and sustainable biotechnological applications.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia.
| | - Yekaterina D Bedoshvili
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya str, Irkutsk, 664033, Russia
| | - Nickolai A Davidovich
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
- T. I. Vyazemsky Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 298188, Feodosiya, Russia
| | - Eugene G Maksimov
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | | | - Daria A Todorenko
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Daria V Bodunova
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Olga I Davidovich
- T. I. Vyazemsky Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 298188, Feodosiya, Russia
| | - Igor S Sergeev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
| |
Collapse
|
14
|
Bąba W, Kompała-Bąba A, Sierka E, Bierza W. Photosynthetic response of Solidago gigantea Aition and Calamagrostis epigejos L. (Roth) to complex environmental stress on heavy metal contaminated sites. Sci Rep 2024; 14:31481. [PMID: 39733143 PMCID: PMC11682460 DOI: 10.1038/s41598-024-82952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations. The average values of leaf chlorophyll indexes were 27% lower in the LZ populations of both species and significantly lower in Sg plants in comparison to Ce ones. The average values of the anthocyanin index in CeLZ and SgLZ populations were significantly higher (by 18%) than in their respective controls. In both Ce and Sg plants occurring on LZ plots, the average leaf flavonol indexes were higher than on their controls by 31% and 15% and this index was significantly higher in SgLZ population than CeLZ and CeC plants (by 34% and 54%, respectively). Both Ce and Sg populations growing on LZ plots showed significantly lower photosynthetic rate (A), transpiration rate (E) and stomatal conductance (gs) in comparison to controls. On the other hand, a significantly higher photosynthetic rate was detected in SgLZ than in CeLZ populations. The catalase activities were significantly higher than recorded in Sg than in Ce tissues, irrespective of the plot type. They were also higher in LZ populations than those in controls for both species. Moreover, the H2O2 content in Sg tissues was significantly higher than those in Ce. Hydrogen peroxide content in CeLZ and SgLZ were respectively 39% (non-significant) and 57% higher, compared to their controls. The reverse pattern was found in the case of MDA, whose concentration was significantly higher in the leaves of Ce population compared to the control population. The average MDA concentration in CeLZ populations was 17% higher than in the CeC. In the case of Sg no significant differences were found. Mechanisms of plant species adaptation to industrial areas are crucial for species selection and planning effective reclamation of them. The analysis of chlorophyll fluorescence induction curves as well as well as the results of JIP test revealed the decreased of Fj value despite positive ΔK-band in SgLZ and CeLZ plants suggesting the increased rate of electron transfer from QA to QB at the acceptor side of PSII, thus a high quantity of P680+ and/or effective quenching by exogenous molecules. The increase in the I-P part of the induction curve typically attributed to the reduction of electron transporters (ferredoxin, intermediary acceptors, and NADP) of the PSI acceptor side was observed in both SgC and SgLZ but not in CeLZ populations. These changes demonstrate species-specific effects on electron transport during the light phase of photosynthesis under complex environmental stress. Our results show that Sg and Ce individuals developed a range of structural and functional adaptations to protect PSA against complex environmental stresses (possible combination of heavy metals, water deficiency, temperature, nutrient deficiency and salinity). Both species from LZ plots could tolerate high levels of Cd, Zn and Pb in leaf tissues. Therefore they can be potential candidates for use in phytoremediation of HM contaminated areas. However, further long-term field and experimental research on plant traits response and adaptation to complex environmental stresses on industrial habitats are needed.
Collapse
Affiliation(s)
- Wojciech Bąba
- Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland.
| | - Agnieszka Kompała-Bąba
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Edyta Sierka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Wojciech Bierza
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
15
|
Jat M, Ray M, Ahmad MA, Prakash P. Unravelling the photosynthetic dynamics and fluorescence parameters under ameliorative effects of 24-epibrassinolide in wheat (Triticum aestivum L.) grown under heat stress regime. Sci Rep 2024; 14:30745. [PMID: 39730434 DOI: 10.1038/s41598-024-79676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/11/2024] [Indexed: 12/29/2024] Open
Abstract
An experiment was performed at the Banaras Hindu University, India to study the effect of terminal heat stress on photosynthetic dynamics and fluorescence parameters of wheat genotypes and ameliorative effects of epibrassinolide by taking two genotypes with four concentrations as foliar spray at two growth stages of wheat. The highest values were observed in plots foliar sprayed with 1.0 µM 24-epibrassinolide (T1) under normal conditions (D1) where the genotype Sonalika (V1) performed significantly well w.r.t. the parameters viz. steady-state fluorescence (Fs) 116.22, quantum efficiency of PSII 0.59, maximum fluorescence (Fm) 776.5, normalized stress detection ratio (Fv/Fo) 4.47, maximum potential quantum efficiency of PSII (Fv/Fm) 0.82.Whereas under heat stress condition (late sown D2), there was significant reduction in these parameters in both the genotypes which was improved by the application of epibrassinolide suggesting its potential role in improving the photoinhibition process by raising the efficiency of PSII. Overall, the calibrated application of 24-epibrassinolide was found to be a potent growth regulator involved in the positive modulation of heat stress tolerance in wheat, coupled with improved photosynthetic efficiency in treated plots as compared to control.
Collapse
Affiliation(s)
- Manju Jat
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, BHU Varanasi, 221005, Uttar Pradesh, India
| | - Madhurya Ray
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, BHU Varanasi, 221005, Uttar Pradesh, India
| | - Md Afjal Ahmad
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, BHU Varanasi, 221005, Uttar Pradesh, India.
| | - Pravin Prakash
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, BHU Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
16
|
Bharati R, Shmeit YH, Šedivá JH, Cong TTN, Kundu JK, Severová L, Svoboda R, Fernández-Cusimamani E. Comparative assessment of morphological, cytological, and photosynthetic characteristics of the induced octoploid and its tetraploid counterpart of Celosia argentea L. BMC PLANT BIOLOGY 2024; 24:1227. [PMID: 39709350 DOI: 10.1186/s12870-024-05973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Celosia argentea is a widely recognized plant for its ornamental qualities and therapeutic uses in traditional medicine. As demand for such multipurpose plants grows, enhancing its phenotypic and physiological traits could further expand its commercial potential. Polyploidization, particularly through chemical treatments like oryzalin, offers a method to induce genetic variation and potentially improve desirable traits in plants. RESULTS Tetraploid (2n = 4×= 36) nodal segments of C. argentea were treated with oryzalin under in vitro conditions, resulting in successful induction of octoploidy (2n = 8×= 72). Flow cytometry and chromosome counting confirmed polyploidization, with the highest induction rate achieved using 40 µM oryzalin for 24 h. Comparative analyses between octoploid and tetraploid plants revealed significant differences in morphological traits, including increased stem and leaf thickness, larger leaf area, inflorescence characteristics and more compact growth in the octoploids. Additionally, octoploids exhibited enhanced chlorophyll content and altered photosynthetic characteristics, along with notable changes in stomatal size and density. Ploidy stability was maintained across generations, ensuring the heritability of the induced traits. CONCLUSIONS In vitro polyploidization in C. argentea led to significant phenotypic and physiological improvements, demonstrating its potential for application in ornamental horticulture and plant breeding. This research contributes to the understanding of the impact of in vitro polyploidization on plant development, offering insights for the commercial cultivation and enhancement of C. argentea. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Yamen Homaidan Shmeit
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Jana Hanzal Šedivá
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Publ. Res. Inst, Květnové square 391, Průhonice, 252 43, Czech Republic
| | - Tomáš Thanh Nguyen Cong
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions, Crop Research Institute, Drnovská 507, Prague 6, 16106, Czech Republic
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Roman Svoboda
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic.
| |
Collapse
|
17
|
Liu J, Du J, Wu D, Ji X, Zhao X. Impact of Arsenic Stress on the Antioxidant System and Photosystem of Arthrospira platensis. BIOLOGY 2024; 13:1049. [PMID: 39765716 PMCID: PMC11673294 DOI: 10.3390/biology13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Arthrospira platensis exhibits high tolerance to arsenic; however, the mechanisms underlying its response to the arsenic stress have not been fully elucidated. This study investigated the growth and resistance mechanisms of A. platensis under As3+ stress by measuring physiological and biochemical indices, conducting transcriptome sequencing, and validating the results through qPCR. The findings show that arsenic stress affected the antioxidant system and photosynthetic pigment synthesis in A. platensis. The algae mitigated arsenic-induced oxidative stress by increasing cellular metabolic rates, enhancing cell wall stability, and reducing membrane lipid peroxidation. Transcriptome analysis revealed that pathways related to oxidative phosphorylation and chlorophyll degradation were upregulated under arsenic stress, while the expression of membrane transporters was significantly downregulated. Additionally, the algae alleviated arsenic stress by producing hydrogen and polyamine compounds. This study provides insights into the mechanisms of A. platensis response to arsenic stress and elucidates the molecular pathways involved in the stress response to As3+.
Collapse
Affiliation(s)
- Jiawei Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
| | - Jie Du
- Bayannur Center for Disease Control and Prevention, Bayannaoer 015000, China;
| | - Di Wu
- Department of Chemical and Environment Engineering, Hetao College, Bayannaoer 015000, China;
| | - Xiang Ji
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
- Department of Chemical and Environment Engineering, Hetao College, Bayannaoer 015000, China;
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
| |
Collapse
|
18
|
Brown TJ, Vass I, Summerfield TC, Eaton-Rye JJ. Phe265 of the D1 protein is required to stabilize plastoquinone binding in the Q B-binding site of photosystem II in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2024; 733:150692. [PMID: 39278092 DOI: 10.1016/j.bbrc.2024.150692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In Photosystem II electrons from water splitting pass through a primary quinone electron acceptor (QA) to the secondary plastoquinone (QB). The D2 protein forms the QA-binding site and the D1 protein forms the QB-binding site. A non-heme iron sits between QA and QB resulting in a quinone-Fe-acceptor complex that must be activated before assembly of the oxygen-evolving complex can occur. An extended loop (residues 223-266) between the fourth (helix D) and fifth (helix E) helices of the D1 protein activates forward electron transfer via a conformational change that stabilizes a bidentate bicarbonate ligand to the non-heme iron while simultaneously stabilizing the binding of QB. We show that positioning of D1:Phe265 to provide a hydrogen bond to the distal oxygen of QB is required for forward electron transfer. In addition, mutations targeting D1:Phe265, resulted in a 50 mV decrease in the QB/QB- midpoint potential.
Collapse
Affiliation(s)
- Toby J Brown
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Imre Vass
- Institute of Plant Biology, HUN-REN, Biological Research Center, Szeged, Hungary
| | | | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
19
|
Gunasekaran JX, Yadav RM, Ramachandran P, Sharma S, Subramanyam R. Mild osmotic stress offers photoprotection in Chlamydomonas reinhardtii under high light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109050. [PMID: 39366200 DOI: 10.1016/j.plaphy.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/06/2024]
Abstract
The exposure of autotrophs to high light intensities significantly impacts their photosynthetic performance. When combined with unpredictable climate changes, the lethality of these effects is exacerbated and, often surpassing the organisms' threshold for tolerance. In this regard, our study centres on examining the mitigating effects of mild osmotic stress induced by 2% Polyethylene Glycol (PEG) in conjunction with high-light conditions, using Chlamydomonas reinhardtii as a model system. Cells were cultivated under low PEG-induced osmotic stress at various light intensities, and their responses were analyzed through biochemical and biophysical approaches. Remarkably, cells grown under lower PEG concentrations exhibited superior growth, increased biomass, and enhanced photosynthetic efficiency under high light compared to non-PEG-treated cells. Surprisingly, their non-photochemical quenching (NPQ) levels were lower, indicating the operation of a distinct photoprotective mechanism in PEG-grown samples. The PEG-grown cells demonstrated higher chlorophyll content but lower carotenoid content, supporting the NPQ data. Circular dichroism analysis suggested that the macro-organization of super-complexes was minimally disrupted in PEG-grown samples, even under high light. This was further supported by Blue native PAGE, which showed greater stability of the super-complexes in PEG-grown cells, implying heightened stability in pigment-protein interactions. Immunoblot analysis revealed minimal differences in core reaction center proteins between PEG-grown and non-PEG cells. Notably, this protective mechanism was absent in the cell wall-deficient mutant CC503. We propose that the partial photoprotection observed is attributed to the PEG shielding the cell wall. This result holds promise for enhancing algal biomass production under natural environmental conditions influenced by fluctuating light intensity.
Collapse
Affiliation(s)
- Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shriya Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
20
|
Dainelli M, Chiavacci B, Colzi I, Coppi A, Corti E, Daghio M, Falsini S, Ristori S, Papini A, Toni E, Viti C, Gonnelli C. Impact of PET micro/nanoplastics on the symbiotic system Azolla filiculoides-Trichormus azollae. CHEMOSPHERE 2024; 368:143718. [PMID: 39521286 DOI: 10.1016/j.chemosphere.2024.143718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The symbiotic system Azolla filiculoides-Trichormus azollae was exposed for ten days to environmentally relevant concentrations (i.e. 0.05 and 0.1 g L-1) of polyethylene terephthalate micro-nanoplastics (PET-MNPs). Plastic particles did not induce any visible toxicity symptoms or growth disorders to the fern, as well as any effects on leaf anatomy and chlorophyll fluorescence parameters. Nonetheless, in treated plants a decrease of chlorophyll content occurred and was coupled to reduction of Nitrogen Balance Index (NBI), an informative parameter of the plant nitrogen status. In the presence of MNPs, plants exhibited a substantial decline in the absorption of essential elements, as evidenced by decreased tissue concentration of Ca, Mg, Co and Mn. The exposure to the pollutants compromised root integrity and possibly its functioning in nutrient accumulation, with evident physical damages not only in the rhizodermis and cortex, but also in the vascular system. In addition, a DNA-based estimation of T. azollae revealed a decreasing trend in the relative abundance of the N2-fixing cyanobacteria for PET-treated samples. This was coupled with an alteration of the symbiont's phenotype highlighted by microscopy analysis, showing a reduction in number of vegetative cells between two consecutive heterocysts and in heterocyst size. This work is the first evidence of MNPs disturbing a strict symbiosis, with possible implications on nitrogen cycling in ecosystems, bio fertilization of agricultural lands and evolutionary pathways.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Beatrice Chiavacci
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Emilio Corti
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Sandra Ristori
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Elisabetta Toni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| |
Collapse
|
21
|
Biswas S, Khaing EP, Zhong V, Eaton-Rye JJ. Arg24 and 26 of the D2 protein are important for photosystem II assembly and plastoquinol exchange in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149150. [PMID: 38906313 DOI: 10.1016/j.bbabio.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified QB binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Victor Zhong
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
22
|
Meng X, Zhang S, Wang L, Yu Y, Duan S, Zhang Y, Lv Y, Wang Y. Evaluating crop nitrogen status in maize leaves: A predictive modelling approach using chlorophyll fluorescence parameters. Heliyon 2024; 10:e39601. [PMID: 39498026 PMCID: PMC11532872 DOI: 10.1016/j.heliyon.2024.e39601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The consumption of chemical fertilizers has increased eight-fold since the 19th century, outstripping crop yields increases and, emphasizing the need for precise nitrogen (N) assessment in crops to optimize fertilization and mitigate environmental impacts. This study developed a model using chlorophyll fluorescence technology to accurately evaluate the N status in maize leaves while addressing the limitations of current labor-intensive and environmentally sensitive methods. Based on a long-term experiment initiated in 2011, maize hybrid Fumin 985 was sampled in 2021 and 2022 under two crop-straw management strategies (SM: no tillage with surface straw mulch, SP: plough tillage with straw incorporation) and six N application rates. Partial least squares regression (PLSR) models were formulated using chlorophyll fluorescence parameters (ChlF) to assess leaf N content (N leaf). The results indicated that a N application rate of 270 kg ha-1 sufficed to meet crop N requirements. Leaf characteristics such as N leaf, total pigment content (TP), and leaf dry weight (DW leaf) changed significantly with increasing N application rates, influencing rapid chlorophyll fluorescence (OJIP) dynamics. Principal component analysis (PCA) reduced ChlF from 35 to 21, and four models were developed, among which, the model using ChlF and TP was more accurate than the model using DW alone. Key ChlF parameters for PLSR model performance included ABS/RC, φ(Eo), ETo/CSm, and δ(Ro)/(1-δ(Ro)). Although non-destructive N leaf detection using chlorophyll fluorescence technology proved feasible, additional leaf characteristics, such as TP, are necessary to improve model accuracy. Considering local field conditions is essential for the application of this technology at a larger scale. Precise evaluation of N status using chlorophyll fluorescence is beneficial for a more efficient N management and sustainable agriculture.
Collapse
Affiliation(s)
- Xiangzeng Meng
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China
| | - Shan Zhang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China
| | - Lichun Wang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China
| | - Yang Yu
- Jilin Provincial Agricultural Investment Land Resources Development Co. Ltd., 3777, Shengtai St, Changchun, 130033, Jilin, PR China
| | - Sijia Duan
- Jilin Provincial Agricultural Investment Land Resources Development Co. Ltd., 3777, Shengtai St, Changchun, 130033, Jilin, PR China
| | - Yixiang Zhang
- Jilin Provincial Agricultural Investment Land Resources Development Co. Ltd., 3777, Shengtai St, Changchun, 130033, Jilin, PR China
| | - Yanjie Lv
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China
| | - Yongjun Wang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China
| |
Collapse
|
23
|
Kalachanis D, Chondrogiannis C, Petropoulou Y. Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2867. [PMID: 39458814 PMCID: PMC11511256 DOI: 10.3390/plants13202867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were assessed during the period of fruit production (summer) and compared to their leaf counterparts. Our results indicate that leaf photosynthesis, transpiration and stomatal conductance drastically reduced during the summer drought, while they recovered significantly after the autumnal rainfalls. In acorns, gas exchange with the surrounding atmosphere is hindered by the complete absence of stomata; hence, credible CO2 uptake measurements could not be applied in the field. The linear electron transport rates (ETRs) in ambient air were similar in intact leaves and pericarps (i.e., when the physiological internal atmosphere of each tissue is maintained), while the leaf NPQ was significantly higher, indicating enhanced needs for harmless energy dissipation. The ETR measurements performed on leaf and pericarp discs at different CO2/O2 partial pressures in the supplied air mixture revealed that pericarps displayed significantly lower values at ambient gas levels, yet they increased by ~45% under high CO2/O2 ratios (i.e., at gas concentrations simulating the fruit's interior). Concomitantly, NPQ declined gradually in both tissues as the CO2/O2 ratio increased, yet the decrease was more pronounced in pericarps. Furthermore, net CO2 assimilation rates for both leaf and pericarp segments were low in ambient air and increased almost equally at high CO2, while pericarps exhibited significantly higher respiration. It is suggested that during summer, when leaves suffer from photoinhibition, acorns could contribute to the overall carbon balance, through the re-assimilation of respiratory CO2, thereby reducing the reproductive cost.
Collapse
Affiliation(s)
- Dimitrios Kalachanis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| | | | - Yiola Petropoulou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
24
|
Falcioni R, Antunes WC, de Oliveira RB, Chicati ML, Demattê JAM, Nanni MR. Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2831. [PMID: 39409701 PMCID: PMC11478917 DOI: 10.3390/plants13192831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| |
Collapse
|
25
|
Falcioni R, de Oliveira RB, Chicati ML, Antunes WC, Demattê JAM, Nanni MR. Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants. SENSORS (BASEL, SWITZERLAND) 2024; 24:6490. [PMID: 39409529 PMCID: PMC11479283 DOI: 10.3390/s24196490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first principal component accounting for more than 90% of the variation in sensor data. High predictive accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy for environmental monitoring and assessment. These methods offer a good strategy for promoting sustainability in future agricultural practices across a broad range of plant species, supporting cell biology and material analyses.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (R.B.d.O.); (M.L.C.); (W.C.A.); (M.R.N.)
| |
Collapse
|
26
|
Saburov V, Kazakova E, Moiseev A, Kazakov E, Podlutskii M, Babina D, Korol M, Gorbatova I, Volkova P. Combining clinostating and proton irradiation for modeling the space environment: a case study with a Chernobyl accession of Arabidopsis thaliana. Int J Radiat Biol 2024; 100:1696-1710. [PMID: 39353463 DOI: 10.1080/09553002.2024.2409665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE The study of mechanisms of plant responses to extreme conditions, particularly, microgravity and ionizing radiation, is crucial for space exploration. Modern space biology of plants focuses on increasing plant tolerance to harsh conditions of space environment. Given the limited access to the International Space Station, we designed and assembled the 3D clinostat for mimicking microgravity, which, in combination with proton irradiation, allows simulating space conditions. As a case study for testing the device, we studied the effect of clinostating on Arabidopsis thaliana accession originating from the Chernobyl exclusion zone. MATERIALS AND METHODS Using the combined clinostating and proton irradiation, we simulated the conditions of long-term space flight for Arabidopsis thaliana plants of the Chernobyl accession - progeny of chronically irradiated plants, grown from field-collected (Masa-0) and laboratory-cultivated (Masa-0-1) seeds, and for wild-type Col-8. The clinostating and irradiation of plants were also carried out separately. Plant responses were studied as photosynthetic and phenotypic endpoints of seedlings. RESULTS AND CONCLUSIONS Parameters of chlorophyll fluorescence estimated immediately after exposure showed that Masa-0-1 plants were resistant to the simulated space conditions, while Masa-0 demonstrated modulation of non-photochemical fluorescence quenching. Proton irradiation generally inhibited photosynthesis of Masa-0, Masa-0-1, and Col-8 seedlings. The combined effect of irradiation and clinostating modulated the photosynthetic activity of Col-8 seedlings. The leaf area of seedlings did not change after exposure to simulated conditions. The 3D clinostat model and software are published along with this article for researchers interested in the field of space biology.
Collapse
Affiliation(s)
- Vyacheslav Saburov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Elizaveta Kazakova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Alexander Moiseev
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Evgeniy Kazakov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Mikhail Podlutskii
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Darya Babina
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Marina Korol
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Irina Gorbatova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | | |
Collapse
|
27
|
Pu K, Li N, Gao Y, Zhang M, Wang T, Xie J, Li J. Alleviating Effects of Methyl Jasmonate on Pepper ( Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2694. [PMID: 39409564 PMCID: PMC11478966 DOI: 10.3390/plants13192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. 'Hang Jiao No. 2' were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| |
Collapse
|
28
|
Xu H, Wang Y, Lin K, Tan L, Wang J. Allelopathy of extracellular chemicals released by Karlodinium veneficum on photosynthesis of Prorocentrum donghaiense. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135079. [PMID: 38959835 DOI: 10.1016/j.jhazmat.2024.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Dinoflagellates Prorocentrum donghaiense and Karlodinium veneficum are the dominant species of harmful algal blooms in the East China Sea. The role of their allelopathy on the succession of marine phytoplankton populations is a subject of ongoing debate, particularly concerning the formation of blooms. To explore the allelopathy of K. veneficum on P. donghaiense, an investigation was conducted into photosynthetic performance (including PSII functional activities, photosynthetic electron transport chain, energy flux, photosynthetic different genes and photosynthetic performance) and photosynthetic damage-induced oxidative stress (MDA, SOD, and CAT activity). The growth of P. donghaiense was strongly restrained during the initial four days (1-6 folds, CK/CP), but the cells gradually resumed activity at low filtrate concentrations from the eighth day. On the fourth day of the strongest inhibition, allelochemicals reduced representative photosynthetic performance parameters PI and ΦPSII, disrupted related processes of photosynthesis, and elevated the levels of MDA content in P. donghaiense. Simultaneously, P. donghaiense repairs these impairments by up-regulating the expression of 13 photosynthetic genes, modifying photosynthetic processes, and activating antioxidant enzyme activities from the eighth day onward. Overall, this study provides an in-depth overview of allelopathic photosynthetic damage, the relationship between genes and photosynthesis, and the causes of oxidative damage induced by photosynthesis. ENVIRONMENTAL IMPLICATIONS: As a typical HAB species, Karlodinium veneficum is associated with numerous fish poisoning events, which have negative impacts on aquatic ecosystems and human health. Allelochemicals produced by K. veneficum can provide a competitive advantage by interfering with the survival, reproduction and growth of competing species. This study primarily investigated the effects of K. veneficum allelochemicals on the photosynthesis and photosynthetic genes of Prorocentrum donghaiense. Grasping the mechanism of allelochemicals inhibiting microalgae is helpful to better understand the succession process of algal blooms and provide a new scientific basis for effective prevention and control of harmful algal blooms.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanru Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
29
|
Lahlou A, Coghill I, Davidson MLH, Billon R, Barneche F, Lazar D, Le Saux T, Jullien L. Leaves to Measure Light Intensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304420. [PMID: 39081001 PMCID: PMC11423135 DOI: 10.1002/advs.202304420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Indexed: 09/26/2024]
Abstract
Quantitative measurement of light intensity is a key step in ensuring the reliability and the reproducibility of scientific results in many fields of physics, biology, and chemistry. The protocols presented so far use various photoactive properties of manufactured materials. Here, leaves are introduced as an easily accessible green material to calibrate light intensity. The measurement protocol consists in monitoring the chlorophyll fluorescence of a leaf while it is exposed to a jump of constant light. The inverse of the characteristic time of the initial chlorophyll fluorescence rise is shown to be proportional to the light intensity received by the leaf over a wide range of wavelengths and intensities. Moreover, the proportionality factor is stable across a wide collection of plant species, which makes the measurement protocol accessible to users without prior calibration. This favorable feature is finally harnessed to calibrate a source of white light from exploiting simple leaves collected from a garden.
Collapse
Affiliation(s)
- Aliénor Lahlou
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
- Sony Computer Science LaboratoriesParis75005France
| | - Ian Coghill
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| | - Mhairi L. H. Davidson
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieureCNRS, INSERM, Université PSLParis75005France
| | - Romain Billon
- Jardin des Plantes de ParisMuseum National d'Histoire NaturelleParis75005France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieureCNRS, INSERM, Université PSLParis75005France
| | - Dusan Lazar
- Department of Biophysics, Faculty of SciencePalacký UniversityOlomouc77900Czech Republic
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| |
Collapse
|
30
|
Shen X, Sun M, Nie B, Li X. Physiological adaptation of Cyperus esculentus L. seedlings to varying concentrations of saline-alkaline stress: Insights from photosynthetic performance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108911. [PMID: 38976943 DOI: 10.1016/j.plaphy.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Soil salinization effects plant photosynthesis in a number of global ecosystems. In this study, photosynthetic and physiological parameters were used to elucidate the impacts of saline-alkaline stress on Cyperus esculentus L. (C. esculentus) seedling photosynthesis. The results demonstrate that salt stress, alkali stress and mixed salt and alkali stress treatments all have similar bell-shaped influences on photosynthesis. At low concentrations (0-100 mmol L-1), saline-alkaline stress promoted net photosynthetic rate, transpiration rate and water use efficiency in C. esculentus. However, as the treatments increased in intensity (100-200 mmol L-1), plant photosynthetic parameters began to decline. We interpreted this as the capacity of C. esculentus to improve osmoregulatory capacity in low saline-alkaline stress treatments by accumulating photosynthetic pigment, proline and malondialdehyde to counterbalance the induced stress - an adaptive mechanism that failed once concentrations reached a critical threshold (100 mmol L-1). Stomatal conductance, maximum photosynthetic rate and actual photosynthetic rate all decreased with increasing concentration of the stress treatments, and intercellular carbon dioxide showed a decreasing and then increasing trend. These results indicated that when the saline-alkaline stress concentrations were low, C. esculentus seedlings showed obvious adaptive ability, but when the concentration increased further, the physiological processes of C. esculentus seedlings were significantly affected, with an obvious decrease in photosynthetic efficiency. This study provides a new understanding of the photosynthetic adaptation strategies of C. esculentus seedlings to varying concentrations of saline-alkaline stress.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxin Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bixia Nie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Lyu H, Lazár D. Assessing key parameters in simultaneous simulation of rapid kinetics of chlorophyll a fluorescence and trans-thylakoid electric potential difference. PHYSIOLOGIA PLANTARUM 2024; 176:e14517. [PMID: 39284786 DOI: 10.1111/ppl.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024]
Abstract
Our study attempts to address the following questions: among numerous photosynthetic modules, which parameters notably influence the rapid chlorophyll fluorescence (ChlF) rise, the so-called O-J-I-P transient, in conjunction with the P515 signal, as these two records are easily obtained and widely used in photosynthesis research, and how are these parameters ranked in terms of their importance? These questions might be difficult to answer solely through experimental assays. Therefore, we employed an established photosynthesis model. Firstly, we utilized the model to simulate the measured rapid ChlF rise and P515 kinetics simultaneously. Secondly, we employed the sensitivity analysis (SA) tool by randomly altering model parameters to observe their effects on model output variables. Thirdly, we systematically identified significant parameters for both or one of the kinetics across various scenarios. A novel aspect of our study is the application of the Morris method, a global SA tool, to simultaneously assess the significance of model parameters in shaping both or one of the kinetics. The Morris SA technique enables the quantification of how much a specific parameter affects O-J-I-P transient during particular time intervals (e.g., J, I, and P steps). This allowed us to theoretically analyze which step is more significantly influenced by the parameter. In summary, our study contributes to the field by providing a comprehensive analysis of photosynthesis kinetics and emphasizing the importance of parameter selection in modelling this process. These findings can inform future research efforts aimed at improving photosynthesis models and advancing our understanding of photosynthetic processes.
Collapse
Affiliation(s)
- Hui Lyu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
32
|
Rapacz M, Szewczyk-Taranek B, Bani I, Marcinkowski P. The fitness of pelargonium cuttings affects the relationship between the photochemical activity of the photosynthetic apparatus and rooting ability. Sci Rep 2024; 14:19716. [PMID: 39181951 PMCID: PMC11344810 DOI: 10.1038/s41598-024-70790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Pelargoniums cultivated for ornamental purposes rely on efficient vegetative propagation. This study researched applicability of chlorophyll fluorescence for validating the physiological conditions of pelargonium cuttings. Results indicated a correlation between the chlorophyll fluorescence and rooting potential. The ET0/RC values were negatively correlated with the rooting efficiency between the varieties and the duration of cold storage. A negative correlation was observed between OJIP parameters, representing energy flow in thylakoids, and chlorophyll content in cuttings with lower nutritional status. The phenomenological energy fluxes for leaf cross-sections and the number of active PSII reaction centers in the not-excited state (RC/CS0) increase with raised chlorophyll concentration. This imply the influence of rooting ability on the demand for photoassimilates in pelargonium cuttings, which can be detected early on through chlorophyll fluorescence analysis but not chlorophyll content measurements. Chlorophyll fluorescence evaluation, along with specific OJIP test parameters such as the performance indices PIABS and PItotal, prove useful for predicting rooting efficiency in relation to the nutritional status of cuttings, suggesting the effects of cuttings cold storage and discerning varietal differences in rooting. This study establishes the pragmatic application of chlorophyll fluorescence assessment for elucidating the physiological intricacies of pelargonium cuttings and factors influencing rooting efficiency.
Collapse
Affiliation(s)
- Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Mickiewicza 21, 31-120, Kraków, Poland
| | - Bożena Szewczyk-Taranek
- Department of Ornamental Plants and Garden Art, University of Agriculture in Kraków, Mickiewicza 21, 31-120, Kraków, Poland.
| | - Ipsa Bani
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Mickiewicza 21, 31-120, Kraków, Poland
| | | |
Collapse
|
33
|
Yan W, Lu Y, Guo L, Liu Y, Li M, Zhang B, Zhang B, Zhang L, Qin D, Huo J. Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle. PLANTS (BASEL, SWITZERLAND) 2024; 13:2115. [PMID: 39124232 PMCID: PMC11314146 DOI: 10.3390/plants13152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is a deciduous shrub with perennial rootstock found in China. The objectives of this study were to explore the drought tolerance of blue honeysuckle, determine the effect of drought stress on two photosystems, and examine the mechanism of acquired drought tolerance. In this study, blue honeysuckle under four levels of simulated field capacity (100%, 85%, 75%, and 65% RH) was grown in split-root pots for drought stress treatment, for measuring the changes in chlorophyll content, photosynthetic characteristics, and leaf chlorophyll fluorescence parameters. The chlorophyll content of each increased under mild stress and decreased under moderate and severe stress. The net photosynthetic rate, transpiration rate, intercellular carbon dioxide concentration, and stomatal conductance of blue honeysuckle decreased with the increase in water stress. However, the water utilization rate and stomatal limit system increased under mild and moderate stress and decreased under severe stress. The maximum fluorescence (Fm), maximum photochemical efficiency, and quantum efficiency of photosystem II decreased with the decrease in soil water content, and the initial fluorescence increased significantly (p < 0.01). With the decrease in soil water content, the energy allocation ratio parameters decreased under severe drought stress. The main activity of the unit reaction center parameters first increased and then decreased. ABS/CSm, TRo/CSm, ETo/CSm, and REo/CSm gradually declined. After a comprehensive analysis, the highest scores were obtained under adequate irrigation (CK). Overall, we concluded that the water irrigation system of blue honeysuckle should be considered adequate.
Collapse
Affiliation(s)
- Weijiao Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Yongchuan Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Liangchuan Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Mingkai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Boyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
| | - Lijun Zhang
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| |
Collapse
|
34
|
Nath A, Sharma A, Singh SK, Sundaram S. Assessing the Impact of Hexavalent Chromium (Cr VI) at Varied Concentrations on Spirulina platensis for Growth, Metal Sorption, and Photosynthetic Responses. Curr Microbiol 2024; 81:231. [PMID: 38896297 DOI: 10.1007/s00284-024-03743-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Spirulina platensis, a photosynthetic cyanobacterium, has garnered attention for its potential role in environmental remediation due to its ability to absorb and metabolize toxic heavy metals. Understanding its response toward toxicity of one of the most common contaminants, Cr(VI) is crucial for assessing its efficacy in bioremediation efforts. This study aims to investigate the physiological and biochemical responses of Spirulina platensis to varying concentrations of Cr(VI) from 0.5 to 5 ppm, shedding light on its potential as a bioindicator for environmental contamination and its suitability for bioremediation purposes. The impact of Cr(VI) on cell density, biosorption, pigment levels, nutrient content, fluorescence response, and photosynthetic efficiency was examined. The study revealed a gradual reduction in cell density, biomass production, and biosorption efficiency with increasing Cr(VI) concentrations. Pigment levels, carbohydrate, protein, and lipid content showed significant decreases, indicating physiological stress. Fluorescence response and photosynthetic efficiency were also adversely affected, suggesting alterations in electron transfer dynamics. A threshold for chromium toxicity was observed at 0.5 ppm, beyond which significant physiological disturbances occurred. This investigation highlights the sensitivity of Spirulina platensis to Cr(VI) toxicity and its potential as a bioindicator for heavy metal contamination. Metal sorption was highest in 0.5 ppm Cr(VI) with 56.56% removal. Notably, at lower concentrations, Cr(VI) acted as an intermediate electron acceptor, enhancing the electron transport chain and potentially increasing biomass under controlled conditions. The findings underscore the importance of understanding the mechanisms underlying heavy metal stress in microalgae for effective environmental remediation strategies. The research highlights the dual role of chromium(VI) in influencing S. platensis, depending on the concentration, and underscores the importance of understanding metal ion interactions with photosynthetic organisms for potential applications in bioremediation.
Collapse
Affiliation(s)
- Adi Nath
- Department of Botany, Nehru Gram Bharati Deemed to University, Prayagraj, 221505, India.
| | - Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | | | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
35
|
Cheng J, Xu C, Sun Y, Yu Q, Ding S, Wang Y, Wei W, Xu W, Zhang C, Gong D. Ultrasonic-assisted extraction of total flavonoids from Zanthoxylum bungeanum residue and their allelopathic mechanism on Microcystis aeruginosa. Sci Rep 2024; 14:13192. [PMID: 38851826 PMCID: PMC11162473 DOI: 10.1038/s41598-024-64129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China.
- Shandong Sanduha Ecological Agriculture Technology Co., Ltd, Liaocheng, 252000, China.
| | - Chengshuai Xu
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Yang Sun
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Qiuhan Yu
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Shuo Ding
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Yucai Wang
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Wenxue Wei
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Wei Xu
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
| | - Chaobo Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China.
- Shandong Nongmanyi Agricultural Technology Co., Ltd, Liaocheng, 252000, China.
| | - Donghui Gong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| |
Collapse
|
36
|
Arshad F, Eaton-Rye JJ. Indirect interactions involving the PsbM or PsbT subunits and the PsbO, PsbU and PsbV proteins stabilize assembly and activity of Photosystem II in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2024; 160:61-75. [PMID: 38488942 PMCID: PMC11108944 DOI: 10.1007/s11120-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth. In contrast, the ∆PsbM:∆PsbU and ∆PsbT:∆PsbU mutants assembled dimeric PS II at levels comparable to wild type and supported photoautotrophic growth at rates similar to those obtained with the corresponding ∆PsbM and ∆PsbT cells. Removal of PsbV was more detrimental than removal of PsbO. Only limited levels of dimeric PS II were observed in the ∆PsbM:∆PsbV mutant and the overall reduced level of assembled PS II in this mutant resulted in diminished rates of photoautotrophic growth and PS II activity below those obtained in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO strains. In addition, the ∆PsbT:∆PsbV mutant did not assemble active PS II centers although inactive monomers could be detected. The inability of the ∆PsbT:∆PsbV mutant to grow photoautotrophically, or to evolve oxygen, suggested a stable oxygen-evolving complex could not assemble in this mutant.
Collapse
Affiliation(s)
- Faiza Arshad
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
37
|
Kuvelja A, Morina F, Mijovilovich A, Bokhari SNH, Konik P, Koloniuk I, Küpper H. Zinc priming enhances Capsicum annuum immunity against infection by Botrytis cinerea- From the whole plant to the molecular level. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112060. [PMID: 38460554 DOI: 10.1016/j.plantsci.2024.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 μM Zn) or manganese (3 μM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 μM Zn, 0.02 μM Mn) and control conditions (1 μM Zn, 0.6 μM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.
Collapse
Affiliation(s)
- Anđela Kuvelja
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31/1160, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, České Budějovice 370 05, Czech Republic.
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, České Budějovice 370 05, Czech Republic
| | - Peter Konik
- University of South Bohemia, Faculty of Science, Branišovská 31/1160, České Budějovice 370 05, Czech Republic
| | - Igor Koloniuk
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Virology, Branišovská 31/1160, České Budějovice 370 05, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovská 31/1160, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31/1160, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
38
|
Xu K, Zhao L, Juneau P, Chen Z, Zheng X, Lian Y, Li W, Huang P, Yan Q, Chen X, He Z. The photosynthetic toxicity of nano-polystyrene to Microcystis aeruginosa is influenced by surface modification and light intensity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124206. [PMID: 38795819 DOI: 10.1016/j.envpol.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.
Collapse
Affiliation(s)
- Kui Xu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Libin Zhao
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Jiangsu Huanghai Ecological Environment Detection Co., Ltd., Yancheng, 224008, China
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiafei Zheng
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingli Lian
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weizhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Peihuan Huang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiongwen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Liu Q, Cui R, Du Y, Shen J, Jin C, Zhou X. The green tide causative-species Ulva prolifera responding to exposure to oil and dispersant. Heliyon 2024; 10:e29641. [PMID: 38698977 PMCID: PMC11064083 DOI: 10.1016/j.heliyon.2024.e29641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
In order to study the role of oil spills in the occurrence of green tide in the Yellow Sea, the physiological characteristics and photosynthetic activities of green tide causative-species Ulva prolifera was monitored under different conditions including two oil water-accommodated fractions (WAFs) of diesel oil and crude oil, dispersed water-accommodated fractions (DWAFs) and dispersant GM-2. The results showed that, the physiological parameters of U. prolifera including the growth, pigment, carbohydrate and protein contents decreased with the increased diesel oil WAF (WAFDO) concentration, while crude oil WAF (WAFCO) showed low concentration induction and high concentration inhibition effect. In addition, with the increase of WAFs concentration, two antioxidant activities were activated. However, compared with WAFDO alone and WAFCO alone, the mixture of oil and dispersant enhanced the toxicity on the above physiological characteristics of U. prolifera. On the other hand, the photosynthetic efficiency of U. prolifera showed a similar trend. Two WAFs showed significant concentration effects on the chlorophyll-a fluorescence transients and JIP-test. The addition of dispersant further blocked the electron flow beyond QA and from plastoquinone (PQ) to PSI acceptor side, damaged the active OEC centers at the PSII donor side, suppressed the pool size and the reduction rate of PSI acceptor side, and reduced the energy transfer efficiency between PSII functional units. These results implied that the crude oil spills may induce the formation of U. prolifera green tide, and the oil dispersant GM-2 used after the oil spills is unlikely to further stimulate the scale of bloom, while the diesel oil spills is always not conducive to the outbreak of green tide of U. prolifera.
Collapse
Affiliation(s)
- Qing Liu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ruifei Cui
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuxin Du
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junjie Shen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuili Jin
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaojian Zhou
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
40
|
Swain BB, Mishra S, Samal S, Adak T, Mohapatra PK, Ayyamperumal R. Chlorpyrifos enrichment enhances tolerance of Anabaena sp. PCC 7119 to dimethoate. ENVIRONMENTAL RESEARCH 2024; 249:118310. [PMID: 38331154 DOI: 10.1016/j.envres.2024.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 μM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 μs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.
Collapse
Affiliation(s)
| | | | - Subhashree Samal
- Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| | - Totan Adak
- Crop Protection Division, ICAR- National Rice Research Institute, Cuttack, 753006, India.
| | | | - Ramamoorthy Ayyamperumal
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; SIMATS Saveetha University, Chennai, Tamilnadu, 600077, India.
| |
Collapse
|
41
|
Augustynowicz J, Kowalczyk A, Latowski D, Kołton A, Sitek E, Kostecka-Gugała A. Do chromium-resistant bacterial symbionts of hyperaccumulator Callitriche cophocarpa support their host in phytobial remediation of water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171327. [PMID: 38428606 DOI: 10.1016/j.scitotenv.2024.171327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Callitriche cophocarpa Sendtn. is a macrophyte widely distributed in aquatic systems of the temperate climate zone and a known hyperaccumulator of chromium. Ten pure symbiotic bacterial isolates of C. cophocarpa were obtained and identified. Three of the isolates showed the highest resistance to Cr(VI): Microbacterium sp. (Ct1), Aeromonas sp. (Ct3) and Acinetobacter sp. (Ct6). Acinetobacter sp. (Ct6) was able to survive up to a concentration of 104 mg/L (2 mM). The isolates were also able to effectively detoxify Cr(VI) by reducing it to Cr(III). We tested whether inoculation of plants with a consortium consisting of Ct1, Ct3 and Ct6 affects: (1) the phytoextraction of chromium from leachates, (2) the physiological state of plants after Cr(VI) treatment. The solutions were landfill leachates and contained 10.7 mg/L of Cr(VI) - an amount 530 times exceeding the legal limits. We influenced the plants with Cr in two steps, each lasting for 10 days, first using mature shoots and then apical ones. The highest Cr content concomitant with the highest bioconcentration factor (BCF) were found in the inoculated plants: 1274 and 119 mg/kg dry mass (d.m.), respectively. The physiological status of the plants was assessed by biometric tests and advanced chlorophyll fluorescence analyses. The photosynthetic activity of mature shoots was influenced by Cr(VI) more negatively than that of young apical shoots. The inoculation with the bacterial consortium significantly reduced the negative effect of Cr(VI) on mature organs. In some cases the inoculated mature plants exhibited photosynthetic activity that was even higher than in the control plants. The results unequivocally show a beneficial effect of C. cophocarpa inoculation with the tested isolates resulting in a significant improvement of the phytoremediation properties of this aquatic chromium hyperaccumulator.
Collapse
Affiliation(s)
- Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - Anna Kowalczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Dariusz Latowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Kołton
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
42
|
Shah G, Bhatt U, Singh H, Kumar D, Sharma J, Strasser RJ, Soni V. Ecotoxicological assessment of cigarette butts on morphology and photosynthetic potential of Azolla pinnata. BMC PLANT BIOLOGY 2024; 24:300. [PMID: 38637728 PMCID: PMC11061998 DOI: 10.1186/s12870-024-04991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Cigarette butts (CBs) have become the most ubiquitous form of anthropogenic litter globally. CBs contain various hazardous chemicals that persist in the environment for longer period. These substances are susceptible to leaching into the environment through waterways. The recent study was aimed to evaluate the effects of disposed CBs on the growth and development of Azolla pinnata, an aquatic plant. It was found that after a span of 6 days, the root length, surface area, number of fronds, and photosynthetic efficacy of plant were considerably diminished on the exposure of CBs (concentrations 0 to 40). The exposure of CBs led to a decrease in the FM, FV/F0, and φP0, in contrast, the φD0 increased in response to CBs concentration. Moreover, ABS/CSm, TR0/CSm, and ET0/CSm displayed a negative correlation with CB-induced chemical stress. The performance indices were also decreased (p-value ≤ 0.05) at the highest concentration of CBs. LD50 and LD90 represent the lethal dose, obtained value for LD50 is 20.30 CBs and LD90 is 35.26 CBs through probit analysis. Our results demonstrate that the CBs cause irreversible damage of photosynthetic machinery in plants and also reflect the efficacy of chlorophyll a fluorescence analysis and JIP test for assessing the toxicity of CBs in plants.
Collapse
Affiliation(s)
- Garishma Shah
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Upma Bhatt
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Hanwant Singh
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Deepak Kumar
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Jyotshana Sharma
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Jussy, 1254, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001.
| |
Collapse
|
43
|
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116272. [PMID: 38564870 DOI: 10.1016/j.ecoenv.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.
Collapse
Affiliation(s)
- Ke Cao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Noelia Jaime-Pérez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Department of Experimental Plant Biology, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
44
|
Zhan D, Liu Y, Yu N, Hao C. Photosynthetic response of Chlamydomonas reinhardtii and Chlamydomonas sp. 1710 to zinc toxicity. Front Microbiol 2024; 15:1383360. [PMID: 38650883 PMCID: PMC11033396 DOI: 10.3389/fmicb.2024.1383360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Zinc (Zn) is an essential trace element but can lead to water contamination and ecological deterioration when present in excessive amounts. Therefore, investigating the photosynthetic response of microalgae to Zn stress is of great significance. In this study, we assessed the photosynthetic responses of neutrophilic Chlamydomonas reinhardtii and acidophilic Chlamydomonas sp. 1710 to Zn exposure for 96 h. The specific growth rate (μ), chlorophyll-a (Chl-a) content, and chlorophyll fluorescence parameters were determined. The results demonstrated that Chlamydomonas sp. 1710 was much more tolerant to Zn than C. reinhardtii, with the half-maximal inhibitory concentration (IC50) values of 225.4 mg/L and 23.4 mg/L, respectively. The μ and Chl-a content of C. reinhardtii decreased in the presence of 15 mg/L Zn, whereas those of Chlamydomonas sp. 1710 were unaffected by as high as 100 mg/L Zn. Chlorophyll fluorescence parameters indicated that the regulation of energy dissipation, including non-photochemical quenching, played a crucial role in Zn stress resistance for both Chlamydomonas strains. However, in the case of C. reinhardtii, non-photochemical quenching was inhibited by 5 mg/L Zn in the first 48 h, whereas for Chlamydomonas sp. 1710, it remained unaffected under 100 mg/L Zn. Chlamydomonas sp. 1710 also exhibited a 20 times stronger capacity for regulating the electron transfer rate than C. reinhardtii under Zn stress. The light energy utilization efficiency (α) of Chlamydomonas sp. 1710 had the most highly non-linear correlation with μ, indicating the energy utilization and regulation process of Chlamydomonas sp. 1710 was well protected under Zn stress. Collectively, our findings demonstrate that the photosystem of Chlamydomonas sp. 1710 is much more resilient and tolerant than that of C. reinhardtii under Zn stress.
Collapse
Affiliation(s)
- Di Zhan
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Yue Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Na Yu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Chunbo Hao
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| |
Collapse
|
45
|
Shmarev A, Vereshagin M, Pashkovskiy P, Kreslavski V, Allakhverdiev S. Influence of additional far-red light on the photosynthetic and growth parameters of lettuce plants and the resistance of the photosynthetic apparatus to high irradiance. PHOTOSYNTHETICA 2024; 62:180-186. [PMID: 39651408 PMCID: PMC11613827 DOI: 10.32615/ps.2024.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 12/11/2024]
Abstract
The effects of additional far-red light (FRL) on the photosynthetic and growth parameters of Lactuca sativa plants grown for 30 d and on the photosynthetic activity of the plants under high irradiance [4 h; 1,500 μmol(photon) m-2 s-1] were studied. The plants were grown under coloured light-emitting diodes at a ratio of red light (RL): blue light (BL): green light (GL): far-red light (FRL) = 0.7:1:0.3:0.4 or RL:BL:GL:FRL = 0.7:1:0.3:0.8 (test, T). Additional FRL led to an increase in plant biomass, height, and leaf area but to a decrease in photosynthesis and respiration rates. However, PSII activity was greater in plants with additional FRL. It is suggested that the increase in biomass occurred mainly due to an increase in leaf area but not in photosynthesis. In addition, PSII in the experiment was less resistant to high irradiance. The possible direct and indirect influences of the FRL on growth and photosynthesis were considered.
Collapse
Affiliation(s)
- A. Shmarev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - M. Vereshagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - P. Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - V.D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
46
|
Sheridan KJ, Eaton-Rye JJ, Summerfield TC. Mutagenesis of Ile184 in the cd-loop of the photosystem II D1 protein modifies acceptor-side function via spontaneous mutation of D1-His252 in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2024; 702:149595. [PMID: 38340653 DOI: 10.1016/j.bbrc.2024.149595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
The Photosystem II water-plastoquinone oxidoreductase is a multi-subunit complex which catalyses the light-driven oxidation of water to molecular oxygen in oxygenic photosynthesis. The D1 reaction centre protein exists in multiple forms in cyanobacteria, including D1FR which is expressed under far-red light. We investigated the role of Phe184 that is found in the lumenal cd-loop of D1FR but is typically an isoleucine in other D1 isoforms. The I184F mutant in Synechocystis sp. PCC 6803 was similar to the control strain but accumulated a spontaneous mutation that introduced a Gln residue in place of His252 located on the opposite side of the thylakoid membrane. His252 participates in the protonation of the secondary plastoquinone electron acceptor QB. The I184F:H252Q double mutant exhibited reduced high-light-induced photodamage and an altered QB-binding site that impaired herbicide binding. Additionally, the H252Q mutant had a large increase in the variable fluorescence yield although the number of photochemically active PS II centres was unchanged. In the I184F:H252Q mutant the extent of the increased fluorescence yield decreased. Our data indicates substitution of Ile184 to Phe modulates PS II-specific variable fluorescence in cells with the His252 to Gln substitution by modifying the QB-binding site.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, 9016, New Zealand; Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | | |
Collapse
|
47
|
Xu P, Tu X, An Z, Mi W, Wan D, Bi Y, Song G. Cadmium-Induced Physiological Responses, Biosorption and Bioaccumulation in Scenedesmus obliquus. TOXICS 2024; 12:262. [PMID: 38668485 PMCID: PMC11054603 DOI: 10.3390/toxics12040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.
Collapse
Affiliation(s)
- Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tu
- Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430056, China;
| | - Zhengda An
- College of Life Science, Wuhan University, Wuhan 430072, China;
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| |
Collapse
|
48
|
Wen D, Yu Y, Anderin Chuang CY, Jiang Y, Song H. Advancing sustainable seawater disinfection: Enhanced inactivation and mechanism of pulsed UV-LEDs irradiation on Tetraselmis sp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123425. [PMID: 38266700 DOI: 10.1016/j.envpol.2024.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Ultraviolet light-emitting diodes (UV-LEDs), as a novel ultraviolet light source with flexible pulse mode, has gained significant attention for applications in water disinfection and food sterilization. This study investigated the comparative inactivation efficiency of Tetraselmis sp. with continuous and pulsed UV-LEDs irradiation, exploring different wavelengths, duty rates and pulse frequencies. The results reveal a significant enhancement in inactivation efficiency (p < 0.05) under pulsed conditions even at the same UV dose, with inactivation efficiency increasing as duty rate or pulse frequency decreases. The optimal conditions for achieving peak inactivation efficacy are identified as a duty rate of 50% and a pulse frequency of 5 Hz. Within this parameter space, pulsed irradiation leads to a remarkable 1.7-fold increase in inactivation efficiency at UV265 nm and a 1.5-fold increase at UV285 nm compared to continuous irradiation, respectively. Additionally, the disruptive impacts on photosynthetic performance are more pronounced with pulsed irradiation, particularly at the 5 Hz pulse frequency. In shed of these findings, the application of pulsed UV-LEDs irradiation emerges as a promising alternative to the conventional continuous UV disinfection methods in the area of seawater disinfection, offering higher disinfection efficacy and energy consumption.
Collapse
Affiliation(s)
- Diya Wen
- State Key Laboratory of NBC Protection for Civilia, Beijing, China; International Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yifeng Yu
- International Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | | | - Yuelu Jiang
- International Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Hua Song
- State Key Laboratory of NBC Protection for Civilia, Beijing, China
| |
Collapse
|
49
|
Mao Y, Ye K, Yang S, Salam M, Yu W, He Q, He R, Li H. Repeated Exposure Enhanced Toxicity of Clarithromycin on Microcystis aeruginosa Versus Single Exposure through Photosynthesis, Oxidative Stress, and Energy Metabolism Shift. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4070-4082. [PMID: 38390827 DOI: 10.1021/acs.est.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 μg/L upon single exposure but it reduced to 6.90 μg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
50
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice. PLANTA 2024; 259:81. [PMID: 38438662 DOI: 10.1007/s00425-023-04315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
MAIN CONCLUSION Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|