1
|
Zhang Q, Lu M, Ou R, Lin H, Xuan G, Wang X, Xu X, Zhang W, Wang G. Nanodot-Inspired Precise Bacterial Gene Suppression in a Smart Hydrogel Bandage for Underwater Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415169. [PMID: 39950874 PMCID: PMC11967816 DOI: 10.1002/advs.202415169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Indexed: 04/05/2025]
Abstract
The complex and dynamic nature of aquatic ecosystems, particularly in marine environments, makes managing wound infections a significant challenge for individuals engaged in underwater activities and for aquatic organisms. Although antibiotics have played a critical role in safeguarding humans and aquatic health, their risk of drug resistance and environmental impact present substantial obstacles to long-term sustainability. Using fin rot disease in turbot (Scophthalmus maximus) caused by infection of Vibrio anguillarum (V. anguillarum) as a model, a new strategy is presented that employs a carbon dot (CD)-based antisense oligonucleotide (ASO) delivery system, combined with an adhesive hydrogel, to achieve targeted gene silencing of V. anguillarum for underwater healing. The CDs that cause enhanced cytoplasmic membrane permeability, efficiently deliver ASOs into V. anguillarum without requiring additional equipment or chemical facilitators. The specific design of the ASO sequence enables targeted silencing of empA, achieving efficiency as high as 71.2%. An adhesive hydrogel is applied to boost the local concentration of ASO/CDs at wound sites in seawater, effectively sealing the infected area and preventing fin rot disease in turbot. This study pioneer targeted bacterial gene regulation using CD-based delivery integrated with a hydrogel bandage, offering practical solutions for managing underwater bacterial diseases.
Collapse
Affiliation(s)
- Qingsong Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of China5 Yushan RoadQingdao266003China
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdao266237China
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| | - Menghan Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of China5 Yushan RoadQingdao266003China
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdao266237China
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| | - Richang Ou
- College of Materials Science and EngineeringOcean University of ChinaQingdao266100China
| | - Hong Lin
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| | - Guanhua Xuan
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| | - Xiudan Wang
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| | - Xiaofeng Xu
- College of Materials Science and EngineeringOcean University of ChinaQingdao266100China
| | - Weiwei Zhang
- School of Marine SciencesNingbo University169 Qixingnan RoadNingbo315832China
| | - Guoqing Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of China5 Yushan RoadQingdao266003China
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdao266237China
- SKL of Marine Food Processing & Safety ControlCollege of Food Science and EngineeringOcean University of China1299 Sansha RoadQingdao266404China
| |
Collapse
|
2
|
Wang M, Peng N, Qin W, Zhu H, Abbas K, Li Y, Li Z, Wang J, Bi H. "Self-Capped" Carbon Dots with Excellent Anti-Bacteria Effect and an Extremely Low Cytotoxicity Applied for Hand Sanitizer. Adv Healthc Mater 2025; 14:e2404770. [PMID: 39962832 DOI: 10.1002/adhm.202404770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 04/18/2025]
Abstract
The increasing challenge of antibiotic resistance necessitates the development of novel antibacterial strategies. In this study, a novel kind of self-capped carbon dots is synthesized from methylene blue (MB) and cetyltrimethylammonium chloride (CTAC), and named as MC-CDs that are specifically designed for enhanced photodynamic antibacterial activity. Under 660 nm laser irradiation, MC-CDs demonstrate high inactivation rates of Escherichia coli (96.83%) and Staphylococcus aureus (94.44%) at 14 and 18 µg mL-1 effectively, disrupting bacterial cell membranes. The incorporation of zinc cations (Zn2+) doping further enhances the antibacterial potential of MC-CDs, enabling substantial efficacy even in the absence of light due to improved electrostatic interactions with bacterial membranes. In comparison to commercial agents such as salicylic acid, p-chloro-m-xylenol, and triclosan, Zn@MC-CDs exhibit superior antibacterial performance. When formulated into a hand sanitizer, Zn@MC-CDs maintained over 90% efficacy, displaying excellent stability and extremely low cytotoxicity, highlighting their potential for safe and effective use in personal hygiene products. This study introduces self-capped carbon dot as a promising antibacterial agent, addressing a critical need for advanced and reliable solutions in infection control.
Collapse
Affiliation(s)
- Meiyan Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Weixia Qin
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Haimei Zhu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yan Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
3
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
4
|
Straksys A, Abouhagger A, Kirsnytė-Šniokė M, Kavleiskaja T, Stirke A, Melo WCMA. Development and Characterization of a Gelatin-Based Photoactive Hydrogel for Biomedical Application. J Funct Biomater 2025; 16:43. [PMID: 39997577 PMCID: PMC11856571 DOI: 10.3390/jfb16020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against S. aureus, E. coli, and C. albicans, offering as a possible alternative to traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Antanas Straksys
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-02300 Vilnius, Lithuania; (A.S.); (A.A.); (M.K.-Š.); (A.S.)
| | - Adei Abouhagger
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-02300 Vilnius, Lithuania; (A.S.); (A.A.); (M.K.-Š.); (A.S.)
| | - Monika Kirsnytė-Šniokė
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-02300 Vilnius, Lithuania; (A.S.); (A.A.); (M.K.-Š.); (A.S.)
| | - Tatjana Kavleiskaja
- Department of Polymer Chemistry, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania;
| | - Arunas Stirke
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-02300 Vilnius, Lithuania; (A.S.); (A.A.); (M.K.-Š.); (A.S.)
| | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-02300 Vilnius, Lithuania; (A.S.); (A.A.); (M.K.-Š.); (A.S.)
| |
Collapse
|
5
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Hussain A, Alajmi MF, Ganguly S. Sustainable Doped Carbon Dots as Antioxidant and Nanocarrier for Therapeutic Cargos. J Fluoresc 2024:10.1007/s10895-024-03940-1. [PMID: 39320634 DOI: 10.1007/s10895-024-03940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Aside from their fluorescence sensing capabilities, carbon dots doped with heteroatoms show tremendous promise as nanocarriers for medicinal compounds and as antioxidants. We present a method for producing carbon dots from chitosan and lemon extract (CLCDs) using a one-step hydrothermal coupling synthesis. The as-synthesized CLCDs exhibited remarkable colloidal stability, antioxidant behavior, cytocompatibility, and nanocarrier for drug molecules. The nanoparticles was analyzed using advanced techniques such as Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) to determine the precise composition of their surface. In order to evaluate the drug transport properties of CLCDs, their surfaces were further modified with anticancer drug compounds. The drug release behavior was studied against physiologically simulated fluids and at different pH environments showing better delayed response in acidic condition. The plausible mechanistic pathways have been confirmed after fitting the results into Higuchi, Weibull and Korsmeyer-Peppas models. The goodness of fit was more than 95% for the Korsmeyer-Peppas model, with the release mechanism supported by anomalous transport. Moreover, the radical scavenging activity of CLCDs was also confirmed at low levels (1 mg/mL) which could be inferred > 85% efficacy against mostly employed testing agents (DPPH, ABTS, and hydroxyl radicals). Thus, the prepared CLCDs could be used as suitable nanovector in payload delivery with prominent antioxidant activity and low toxicity against living cell lines.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - S Ganguly
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
7
|
Anand A, Huang CC, Lai JY, Bano D, Pardede HI, Hussain A, Saleem S, Unnikrishnan B. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anal Bioanal Chem 2024; 416:3907-3921. [PMID: 38656364 DOI: 10.1007/s00216-024-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Darakhshan Bano
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Helen Indah Pardede
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Amina Hussain
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sehresh Saleem
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
8
|
Zhang Q, Fu J, Lin H, Xuan G, Zhang W, Chen L, Wang G. Shining light on carbon dots: Toward enhanced antibacterial activity for biofilm disruption. Biotechnol J 2024; 19:e2400156. [PMID: 38804136 DOI: 10.1002/biot.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.
Collapse
Affiliation(s)
- Qingsong Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Guoqing Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Sun X, Luo S, Zhang L, Miao Y, Yan G. Photodynamic antibacterial activity of oxidase-like nanozyme based on long-lived room-temperature phosphorescent carbon dots. Food Chem 2024; 434:137541. [PMID: 37757701 DOI: 10.1016/j.foodchem.2023.137541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
In this study, a novel long-lived room-temperature phosphorescent (RTP) carbon dots (P-CDs) with the properties of ultraviolet/visible (UV/Vis) light photoresponsive oxidase-like nanozyme were synthesized from diethylenetriaminepentaacetic acid and through a one-step hydrothermal method. P-CDs were used as a light-driven oxidative-like enzyme for antimicrobial studies. The results showed that under UV/Vis light irradiation, P-CDs could efficiently convert O2 into 1O2, and the strong oxidizing property of 1O2 greatly enhanced the growth inhibition of P-CDs on Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Meanwhile, P-CDs exhibited good photodynamic antifungal properties against Botrytis cinerea (B. cinerea). Then the P-CDs were made into P-CDs/PVA films, which effectively prolonged the preservation period of fruits under photodynamic antibacterial action. The good biocompatibility and efficient photosensitive oxygen activation can make P-CDs a more practically useful oxidase-like nanozyme.
Collapse
Affiliation(s)
- Xiaojie Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China
| | - Shiqing Luo
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China
| | - Lifang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Taiyuan 030006, China.
| | - Yanming Miao
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China.
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| |
Collapse
|
11
|
Domena JB, Ferreira BCLB, Chen J, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. The art of simplicity: Water-soluble porphyrin-like carbon dots self-assemble into mesmerizing red glow. Colloids Surf B Biointerfaces 2024; 234:113719. [PMID: 38181692 DOI: 10.1016/j.colsurfb.2023.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
In this new study, we present an intriguing development in the field of theranostics: the simplistic self-assembly of red-emissive amphiphilic porphyrin-like carbon dots (P-CDs). By harnessing their exceptional photophysical properties, we have revealed a strong candidate as the ideal photosensitizer (PS) for applications, particularly in the realm of imaging. Spanning a remarkable size average between 1-4 nm, these particles exhibit both highly stable and unparalleled emission characteristics between 650 and 715 nm in water in comparison to current carbon dots (CDs) available. Lastly, these CDs were fairly non-toxic when tested against normal human cell lines as well as were found to have favorable imaging capabilities in zebrafish embryo.
Collapse
Affiliation(s)
- Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - M Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - A Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA; Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Regina M Graham
- Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
12
|
Liu Y, Liu H, Guo S, Zhao Y, Qi J, Zhang R, Ren J, Cheng H, Zong M, Wu X, Li B. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr Polym 2024; 323:121445. [PMID: 37940307 DOI: 10.1016/j.carbpol.2023.121445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon nanomaterials (CNMs) mainly include fullerene, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, and their derivatives. As a new type of material in the field of nanomaterials, it has outstanding physical and chemical properties, such as minor size effects, substantial specific surface area, extremely high reaction activity, biocompatibility, and chemical stability, which have attracted widespread attention in the medical community in the past decade. However, the single use of carbon nanomaterials has problems such as self-aggregation and poor water solubility. Researchers have recently combined them with bacterial cellulose to form a new intelligent composite material to improve the defects of carbon nanomaterials. This composite material has been widely synthesized and used in targeted drug delivery, biosensors, antibacterial dressings, tissue engineering scaffolds, and other nanomedicine fields. This paper mainly reviews the research progress of carbon nanomaterials based on bacterial cellulose in nanomedicine. In addition, the potential cytotoxicity of these composite materials and their components in vitro and in vivo was discussed, as well as the challenges and gaps that need to be addressed in future clinical applications.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Haiyan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
13
|
Chen R, Zhang Y, Zhang Z, Yao L, Liu L, Wang J, Wang R. Open roads and bridge: Preservation of fresh beef by a packaging film constructed from photosensitizing bacterial cellulose. Food Chem 2023; 437:137789. [PMID: 39491247 DOI: 10.1016/j.foodchem.2023.137789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Food packaging is now widely used in everyday life to protect food from certain environmental factors. In this work, we have successfully prepared a bacterial cellulose/chitosan-TPE-COOH composite film (BC/CS-TPE), which can achieve broad-spectrum killing of bacteria through a variety of antibacterial mechanisms and ensure the freshness of the beef. In this complex film, CS acts as "advance team", responsible for breaking through the cell wall or outer membrane of bacteria, while the reactive oxygen species produced by photosensitizer under irradiation attacks bacteria, further increasing the destructive effect on the bacterial cell membrane. This allows the film to have outstanding antibacterial properties that can kill 108 CFU/mL pathogens in 10 min. At the same time, cell experiments and hemolysis experiments proved that the film has good biocompatibility. Therefore, BC/CS-TPE film, as the efficient functional food packaging film, has a broad future application prospect.
Collapse
Affiliation(s)
- Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yajie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Lizhi Liu
- Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China.
| |
Collapse
|
14
|
Lacivita V, Tarantino F, Molaei R, Moradi M, Conte A, Alessandro Del Nobile M. Carbon dots from sour whey to develop a novel antimicrobial packaging for fiordilatte cheese. Food Res Int 2023; 172:113159. [PMID: 37689912 DOI: 10.1016/j.foodres.2023.113159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
In this study, monodispersed and quasi-spherical C-Dots with an average size of 7.2 nm were successfully synthesized from sour whey solution by a hydrothermal method (200 °C for 9 h) for fiordilatte cheese packaging. C-Dots (2500 and 5000 mgL-1) were added to the cheese through an alginate-based coating or directly to the cheese brine. No significant changes in TM4 cell viability were observed at concentrations lower than 10,000 mgL-1. Microbiological and sensory properties of cheese coated and uncoated with C-Dots indicate a substantial preserving effect of the C-Dots. The uncoated control fiordilatte exhibited unacceptable levels of microbial proliferation within 3.5 days. Conversely, the coated cheese remained within acceptable limits, effectively doubling its shelf life compared to the control, primarily due to the coating protection rather than the addition of C-Dots. When compared to the control fiordilatte, the addition of C-Dots in the brine at 5000 mgL-1 resulted in an extension of over 10 days in cheese shelf life. Considering the significance of the sustainable approach in C-Dots synthesis and the exceptional use of C-Dots in the food industry, these findings hold great potential in terms of research and industrial applications.
Collapse
Affiliation(s)
- Valentina Lacivita
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| | - Francesca Tarantino
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy.
| | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25 - 71122 Foggia, Italy
| |
Collapse
|
15
|
Zhu H, Peng N, Liang X, Yang S, Cai S, Chen Z, Yang Y, Wang J, Wang Y. Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials. Biomed Mater 2023; 18:062002. [PMID: 37722396 DOI: 10.1088/1748-605x/acfada] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Antibiotics play an important role in the treatment of diseases, but bacterial resistance caused by their widespread and unreasonable use has become an urgent problem in clinical treatment. With the rapid advancement of nanoscience and nanotechnology, the development of nanomedicine has been transformed into a new approach to the problem of bacterial resistance. As a new type of carbon-based nanomaterial, carbon dots (CDs) have attracted the interest of antibacterial researchers due to their ease of preparation, amphiphilicity, facile surface functionalization, and excellent optical properties, among other properties. This article reviewed the synthesis methods and properties of various CDs and their composites in order to highlight the advancements in the field of CDs-based antibacterial agents. Then we focused on the relationship between the principal properties of CDs and the antibacterial mechanism, including the following: (1) the physical damage caused by the small size, amphiphilicity, and surface charge of CDs. (2) Photogenerated electron transfer characteristics of CDs that produce reactive oxygen species (ROS) in themselves or in other compounds. The ability of ROS to oxidize can lead to the lipid peroxidation of cell membranes, as well as damage proteins and DNA. (3) The nano-enzyme properties of CDs can catalyze reactions that generate ROS. (4) Synergistic antibacterial effect of CDs and antibiotics or other nanocomposites. Finally, we look forward to the challenges that CDs-based nanocomposites face in practical antibacterial applications and propose corresponding solutions to further expand the application potential of nanomaterials in the treatment of infectious diseases, particularly drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Song Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Shenghao Cai
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zifan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
16
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
17
|
Zhang N, Shi R, Zhou M, Wang P, Yu Y, Wang Q. Amyloid-like protein bridged nano-materials and fabrics for preparing rapid and long lasting antibacterial, UV-resistant and personal thermal management textiles. Int J Biol Macromol 2023; 247:125699. [PMID: 37414308 DOI: 10.1016/j.ijbiomac.2023.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Textiles with efficient and long-lasting antibacterial properties have attracted significant attention. However, a single antibacterial model is insufficient to with variable environments and achieve higher antibacterial activity. In this study, lysozyme was used as assistant and stabilizer, and the efficient peeling and functional modification of molybdenum disulfide nanosheets were realized by ultrasonic. Additionally, lysozyme in the presence of reducing agents to form amyloid-like phase-transited lysozyme (PTL) and self-assembling on the wool fabric. Finally, the AgNPs are reduced in situ by PTL and anchored onto the fabric. It has been demonstrated that Ag-MoS2/PTL@wool generates ROS under light irradiation, rapidly converts photothermal heat into generate hyperthermia, and promotes the release of Ag+. The aforementioned "four-in-one" approach resulted in bactericidal rates of 99.996 % (4.4 log, P < 0.0005) and 99.998 % (4.7 log, P < 0.0005) for S.aureus and E.coli, respectively. Even after 50 washing cycles, the inactivation rates remained at 99.813 % and 99.792 % for E.coli and S.aureus, respectively. In the absence of sunlight, AgNPs and PTL continue to provide continuous antibacterial activity. This work emphasizes the importance of amyloid protein in the synthesis and application of high-performance nanomaterials and provides a new direction for the safe and effective application of multiple synergistic antibacterial modes for microbial inactivation.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Rongjin Shi
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
18
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
19
|
Tang T, Liu Y, Wang P, Xiang Y, Liu L, Xiao S, Wang G. Carbon quantum dots as a nitric oxide donor can promote wound healing of deep partial-thickness burns in rats. Eur J Pharm Sci 2023; 183:106394. [PMID: 36740102 DOI: 10.1016/j.ejps.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/01/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION In this study, a new carbon quantum dots-NO (CQDs-NO) that is based on spermidine trihydrochloride and can be used as a nitric oxide donor was prepared using a two-step hyperthermia-intermittent ultrasonic method, after which its healing effect on deep partial-thickness burn wounds was tested in rats. MATERIALS AND METHODS CQDs-NO were prepared by a two-step hyperthermia-intermittent ultrasonic method. NO-released rate and biocompatibility of CQDs-NO were tested. The biological functions of CQDs-NO were measured by scratch assay, Western blotting, histology, and transcriptome sequencing. RESULTS CQDs-NO with a concentration of 1 μg/mL and 5 μg/mL showed no cytotoxicity. CQDs-NO could release NO when co-cultured with cells or glutathione peroxidase. We also found that CQDs-NO promotes the biological processes such as angiogenesis, cell-substrate adhesion, extracellular matrix organization, cell migration, and wound healing in human umbilical vein endothelial cells (HUVEC). Additionally, CQDs-NO promoted wound healing of deep partial-thickness burn by enhancing vascularization, matrix deposition, as well as regulating the inflammatory reactions of wounds. CONCLUSIONS CQDs-NO could be used as an alternative method for deep partial-thickness burn healing.
Collapse
Affiliation(s)
- Tao Tang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Yingying Liu
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Peng Wang
- Department of Burns and Plastic Surgery Linfen Central Hospital, Linfen, Shanxi, 041000, China
| | - Yang Xiang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Lei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shichu Xiao
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| | - Guangyi Wang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| |
Collapse
|
20
|
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:4808. [PMID: 36902238 PMCID: PMC10003542 DOI: 10.3390/ijms24054808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, cancer is one of the leading causes of death among men and women, it is characterized by the unregulated proliferation of tumor cells. Some of the common risk factors associated with cancer development include the consistent exposure of body cells to carcinogenic agents such as alcohol, tobacco, toxins, gamma rays and alpha particles. Besides the above-mentioned risk factors, conventional therapies such as radiotherapy, and chemotherapy have also been linked to the development of cancer. Over the past decade, tremendous efforts have been invested in the synthesis of eco-friendly green metallic nanoparticles (NPs), and their medical application. Comparatively, metallic NPs have greater advantages over conventional therapies. Additionally, metallic NPs can be functionalized with different targeting moieties e.g., liposomes, antibodies, folic acid, transferrin, and carbohydrates. Herein, we review and discuss the synthesis, and therapeutic potential of green synthesized metallic NPs for enhanced cancer photodynamic therapy (PDT). Finally, the advantages of green hybridized activatable NPs over conventional photosensitizers (PSs) and the future perspectives of nanotechnology in cancer research are discussed in the review. Furthermore, we anticipate that the insights offered in this review will inspire the design and development of green nano-formulations for enhanced image-guided PDT in cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | |
Collapse
|
21
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
22
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
23
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
24
|
Naskar A, Kim KS. Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications. Pharmaceutics 2022; 14:2343. [PMID: 36365161 PMCID: PMC9693063 DOI: 10.3390/pharmaceutics14112343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022] Open
Abstract
Photo-stimuli-responsive therapeutic nanomaterials have gained widespread attention as frontline materials for biomedical applications. The photoactivation strategies are classified as single-modality (based on either reactive oxygen species (ROS)-based photodynamic therapy (PDT), hyperthermia-based photothermal therapy (PTT)), or dual-modality (which combines PDT and PTT). Due to its minimal invasiveness, phototherapy has been extensively applied as an efficient therapeutic platform for many diseases, including skin cancers. However, extensive implementation of phototherapy to address the emergence of multidrug-resistant (MDR) bacterial infections remains challenging. This review focuses on copper sulfide (CuS) nanomaterials as efficient and cost-effective PDT and PTT therapeutic nanomaterials with antibacterial activity. The features and merits of CuS nanomaterials as therapeutics are compared to those of other nanomaterials. Control of the dimensions and morphological complexity of CuS nanomaterials through judicious synthesis is then introduced. Both the in vitro antibacterial activity and the in vivo therapeutic effect of CuS nanomaterials and derivative nanocomposites composed of 2D nanomaterials, polymers, metals, metal oxides, and proteins are described in detail. Finally, the perspective of photo-stimuli-responsive CuS nanomaterials for future clinical antibacterial applications is highlighted. This review illustrates that CuS nanomaterials are highly effective, low-toxic, and environmentally friendly antibacterial agents or platform nanomaterials for combatting MDR bacterial infections.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
25
|
Liu Y, Ma Y, Chen M, Zhou T, Ji R, Guo R, Chen J. Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157201. [PMID: 35817103 DOI: 10.1016/j.scitotenv.2022.157201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The application of carbon dots (CDs), a novel carbon nanomaterial, is extensive, leading to inevitable CD pollution. However, studies on their environmental fate and related risks to aquatic ecosystems are limited. Here, the trophic transfer of CDs from Chlorella pyrenoidosa to Daphnia magna and their toxic effects on the two organisms were analyzed. 14C-labelling was used to quantify and evaluate the fate of CDs. The results showed that the radioactivity of CDs in water was >80 % of the initial radioactivity, and that water extractable residues were dominant in organisms, with only 3 % or less recovered from the mineralization product 14CO2. The distribution of radioactivity illustrated how the exposure routes changed the fate of CDs in aquatic environments. CD aggregates were found in algal cells and Daphnia intestinal tract, indicating the cellular uptake of CDs in these aquatic organisms. Wall-membrane detachment, cell collapse, and rupture were observed in the ultrastructural investigations of microalgae, whereas pneumatosis cystoides intestinalis was observed in the ultrastructural investigations of D. magna. CD exposure affected the growth and chlorophyll content of C. pyrenoidosa as well as the feeding behavior, oxidative stress system, digestive system, and symbiotic bacteria of D. magna. The toxicity of CDs is also affected by the route of exposure. These findings suggest that dietary exposure to CDs was more likely to cause environmental risk and adverse effects than aqueous exposure, and the environmental risks associated with CDs should not be underestimated.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meilin Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianhan Zhou
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Lin F, Wang Z, Wu FG. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharmaceuticals (Basel) 2022; 15:1236. [PMID: 36297348 PMCID: PMC9607459 DOI: 10.3390/ph15101236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing threats to the public and thus require the development of new antibacterial/antifungal agents and strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial nanomaterials and serve as potential alternatives to conventional antibiotics. In recent years, great efforts have been made by many researchers to develop new carbon dot-based antimicrobial agents to combat microbial infections. Here, as an update to our previous relevant review (C 2019, 5, 33), we summarize the recent achievements in the utilization of CDs for microbial inactivation. We review four kinds of antimicrobial CDs including nitrogen-doped CDs, metal-containing CDs, antibiotic-conjugated CDs, and photoresponsive CDs in terms of their starting materials, synthetic route, surface functionalization, antimicrobial ability, and the related antimicrobial mechanism if available. In addition, we summarize the emerging applications of CD-related antimicrobial materials in medical and industry fields. Finally, we discuss the existing challenges of antimicrobial CDs and the future research directions that are worth exploring. We believe that this review provides a comprehensive overview of the recent advances in antimicrobial CDs and may inspire the development of new CDs with desirable antimicrobial activities.
Collapse
Affiliation(s)
| | | | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
27
|
Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. CHEMOSPHERE 2022; 302:134815. [PMID: 35526688 DOI: 10.1016/j.chemosphere.2022.134815] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs), the intensifying nanostructured form of carbon material, have exhibited incredible impetus in several research fields such as bio-imaging, bio-sensing, drug delivery systems, optoelectronics, photovoltaics, and photocatalysis, thanks to their exceptional properties. The CQDs show extensive photonic and electronic properties, as well as their light-collecting, tunable photoluminescence, remarkable up-converted photoluminescence, and photo-induced transfer of electrons were widely studied. These properties have great advantages in a variety of visible-light-induced catalytic applications for the purpose of fully utilizing the energy from the solar spectrum. The major purpose of this review is to validate current improvements in the fabrication of CQDs, characteristics, and visible-light-induced catalytic applications, with a focus on CQDs multiple functions in photo-redox processes. We also examine the problems and future directions of CQD-based nanostructured materials in this growing research field, with an eye toward establishing a decisive role for CQDs in photocatalysis, bio-imaging, and bio-sensing applications that are enormously effective and stable over time. In the end, a look forward to future developments is presented, with a view to overcoming challenges and encouraging further research into this promising field.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
28
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
29
|
Yan H, Li P, Jiang X, Wang X, Hu Y, Zhang Y, Su R, Su W. Preparation of graphene oxide/polydopamine-curcumin composite nanomaterials and its antibacterial effect against Staphylococcus aureus induced by white light. BIOMATERIALS ADVANCES 2022; 139:213040. [PMID: 35914429 DOI: 10.1016/j.bioadv.2022.213040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Curcumin (Cur) plays a key role in photodynamic antibacterial activity as a photosensitizer. On the other hand, the antimicrobial potential of graphene oxide (GO) has been reported controversially, and how to improve its antimicrobial ability has become an meaningful study. In this study, we prepared polydopamine-curcumin (PDA-Cur) by pi-pi stacking and loaded it onto the GO surface to obtain GO/PDA-Cur composite nanomaterials. GO/PDA-Cur was characterized by physical and optical means, and GO/PDA-Cur possessed good dispersion and stability in water. In vitro antibacterial results showed that GO/PDA-Cur mediated photodynamic therapy significantly reduced Gram-positive Staphylococcus aureus (S. aureus) by 4 orders of magnitude with a bactericidal rate of 99.99 %. The antibacterial mechanism stems from the fact that GO/PDA-Cur can generate reactive oxygen species (ROS) under white light irradiation (405-780 nm), which causes bacterial outer membrane breakage and cellular deformation. In addition, GO/PDA-Cur has good biocompatibility. The antibacterial ability of graphene oxide was significantly improved by combining it with PDA-Cur, which allows it to be used as a photodynamic antibacterial material.
Collapse
Affiliation(s)
- Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Xiantao Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Xiaoxun Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuting Hu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
30
|
Tang S, Zhang H, Mei L, Dou K, Jiang Y, Sun Z, Wang S, Hasanin MS, Deng J, Zhou Q. Fucoidan-derived carbon dots against Enterococcus faecalis biofilm and infected dentinal tubules for the treatment of persistent endodontic infections. J Nanobiotechnology 2022; 20:321. [PMID: 35836267 PMCID: PMC9281061 DOI: 10.1186/s12951-022-01501-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) biofilm-associated persistent endodontic infections (PEIs) are one of the most common tooth lesions, causing chronic periapical periodontitis, root resorption, and even tooth loss. Clinical root canal disinfectants have the risk of damaging soft tissues (e.g., mucosa and tongue) and teeth in the oral cavity, unsatisfactory to the therapy of PEIs. Nanomaterials with remarkable antibacterial properties and good biocompatibility have been developed as a promising strategy for removing pathogenic bacteria and related biofilm. Herein, carbon dots (CDs) derived from fucoidan (FD) are prepared through a one-pot hydrothermal method for the treatment of PEIs. The prepared FDCDs (7.15 nm) with sulfate groups and fluorescence property are well dispersed and stable in water. Further, it is found that in vitro FDCDs display excellent inhibiting effects on E. faecalis and its biofilm by inducing the formation of intracellular and extracellular reactive oxygen species and altering bacterial permeability. Importantly, the FDCDs penetrated the root canals and dentinal tubules, removing located E. faecalis biofilm. Moreover, the cellular assays show that the developed FDCDs have satisfactory cytocompatibility and promote macrophage recruitment. Thus, the developed FDCDs hold great potential for the management of PEIs.
Collapse
Affiliation(s)
- Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Keke Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuying Jiang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, 266400, China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mohamed Sayed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China. .,University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
31
|
Tavakkoli Yaraki M, Liu B, Tan YN. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. NANO-MICRO LETTERS 2022; 14:123. [PMID: 35513555 PMCID: PMC9072609 DOI: 10.1007/s40820-022-00856-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
| |
Collapse
|
32
|
Self-Cleaning Coatings for the Protection of Cementitious Materials: The Effect of Carbon Dot Content on the Enhancement of Catalytic Activity of TiO2. COATINGS 2022. [DOI: 10.3390/coatings12050587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The urgent demand for pollution protection of monuments and buildings forced the interest towards specific preservation methods, such as the application of photocatalytic coatings with self-cleaning and protective activity. TiO2 photocatalysts without and with a variety of carbon dots loading (TC0, TC25–75) were synthesized via a green, simple, low cost and large-scale hydrothermal method using citric acid, hydroxylamine and titanium isopropoxide (TTIP) and resulted in uniform anatase phase structures. In photocatalysis experiments, TC25 and TC50 composites with 1:3 and 1:1 mass ratio of C-dots solution to TTIP, respectively, showed the best degradation efficiency for methyl orange (MO) under UV-A light, simulated solar light and sunlight compared to TiO2, commercial Au/TiO2 (TAu) and catalysts with higher C-dot loading (TC62.5 and TC75). Treatment of cement mortars with a mixture of photocatalyst and a consolidant (FX-C) provided self-cleaning activity under UV-A and visible light. This study produced a variety of new, durable, heavy metal-free C-dots/TiO2 photocatalysts that operate well under outdoor weather conditions, evidencing the C-dot dosage-dependent performance. For the building protection against pollution, nanostructured photocatalytic films were proposed with consolidation and self-cleaning ability under solar irradiation, deriving from combined protective silica-based agents and TiO2 photocatalysts free or with low C-dot content.
Collapse
|
33
|
Dual-mode antibacterial core-shell gold nanorod@mesoporous-silica/curcumin nanocomplexes for efficient photothermal and photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Zhao D, Zhang R, Liu X, Li X, Xu M, Huang X, Xiao X. Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-Staphylococcus aureus Biofilm. Int J Nanomedicine 2022; 17:937-952. [PMID: 35280335 PMCID: PMC8904944 DOI: 10.2147/ijn.s350739] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Pathogenic bacteria, especially the ones with highly organized, systematic aggregating bacteria biofilm, would cause great harm to human health. The development of highly efficient antibacterial and antibiofilm functional fluorescent nanomaterial would be of great significance. Methods This paper reports the preparation of a series of antibacterial functional carbon dots (CDs) with chitosan (CS) and its derivatives as raw materials through one-step route, and the impact of various experiment parameters upon the optical properties and the antibacterial abilities have been explored, including the structures of the raw materials, excipients, and solvents. Results The CDs prepared by quaternary ammonium salt of chitosan (QCS) and ethylenediamine (EDA) exhibit multiple antibacterial effects through membrane breaking, DNA and protein destroying, and the production of singlet oxygen. The CDs showed excellent broad-spectrum inhibitory activity against a variety of bacteria (Gram-positive and negative bacteria), in particular, to the biofilm of Staphylococcus aureus with minimum inhibitory concentration at 10 µg/mL, showing great potential in killing bacteria and biofilms. The biocompatibility experiments proved that QCS-EDA-CDs are non-toxic to human normal hepatocytes and have low haemolytic effect. Furthermore, the prepared QCS-EDA-CDs have been successfully used in bacterial and biofilm imaging thanks to their excellent optical properties. Conclusion This paper explored the preparation and application of functional CDs, which can be used as the visual probe and therapeutic agents in the treatment of infections caused by bacteria and biofilm.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
- Correspondence: Dan Zhao, Tel +1 806 208 4690, Email
| | - Rui Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xuemei Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xianju Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| |
Collapse
|
35
|
Zhao C, Wang X, Yu L, Wu L, Hao X, Liu Q, Lin L, Huang Z, Ruan Z, Weng S, Liu A, Lin X. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater 2022; 138:528-544. [PMID: 34775123 DOI: 10.1016/j.actbio.2021.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Bacterial resistance to antibiotics have become one of the most severe threats in global public health, so the development of new-style antimicrobial agents is urgent. In this work, quaternized carbon quantum dots (qCQDs) with broad-spectrum antibacterial activity were synthesized by a simple green "one-pot" method using dimethyl diallyl ammonium chloride and glucose as reaction precursors. The qCQDs displayed satisfactory antibacterial activity against both Gram-positive and gram-negative bacteria. In rat models of wounds infected with mixed bacteria, qCQDs obviously restored the weight of rats, significantly reduced the death of rats from severe infection, and promoted the recovery and healing of infected wounds. Biosafety tests confirmed that qCQDs had no obvious toxic and side effects during the testing stage. The analysis of quantitative proteomics revealed that qCQDs mainly acted on ribosomal proteins in Staphylococcus aureus (Gram-positive bacteria) and significantly down-regulated proteins associated with citrate cycle in Escherichia coli (Gram-negative bacteria). Meanwhile, real-time quantitative PCR confirmed that the variation trend of genes corresponding to the proteins associated with ribosome and citrate cycle was consistent with the proteomic results after treatment of qCQDs, suggesting that qCQDs has a new antibacterial mechanism which is different from the reported carbon quantum dots with antibacterial action. STATEMENT OF SIGNIFICANCE: With the development of the research on carbon quantum dots, the application of carbon quantum dots in the field of medicine has attracted extensive attention. In this paper, quaternized carbon quantum dots (qCQDs) with antimicrobial activity prepared by specific methods were studied, including antimicrobial spectrum, antimicrobial mechanism and in vivo antimicrobial application. The antimicrobial mechanism of qCQDs was studied by proteomics and RT-qRCR, and the different mechanisms of qCQDs against Gram-positive and Gram-negative bacteria were also found. This study provides a research foundation for the application of carbon quantum dots in antimicrobial field, and also expands the application range of carbon quantum dots in medicine field.
Collapse
Affiliation(s)
- Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian, 351100, China
| | - Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lina Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoli Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Zhipeng Ruan
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian, 351100, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
36
|
Loukanov A, Kuribara A, Nikolova S, Saito M. Light-activated oxidize-mimicking nanozyme for inhibition of pathogenic Escherichia coli. Microsc Res Tech 2022; 85:1949-1955. [PMID: 35014741 DOI: 10.1002/jemt.24056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
Here we demonstrate the nanozyme properties of histidine-containing carbon nanodots as externally tunable antibacterial agents through irradiation with visible (VIS) light. The correlative (light and electron) microscopic analysis of treated Escherichia coli O157:H7 revealed that the positive charged carbon nanoparticles might readily adsorb at slightly acid pH on the negative charged cellular envelope of bacteria, and thus, inhibit their growth with over 80% efficiency under illumination with VIS light. The reason was that under VIS irradiation in the range 400-500 nm the adsorbed nanoparticles behaved as effective oxidase-mimicking enzymes and generated reactive oxygen species on the labeled cells. Thus, the light-activated artificial nanozyme caused serious physical damaging of bacterial envelope, which was leading to irreversible cellular inhibition. The outcomes of this study are likely to broaden the scope of designed photoactive carbon nanozymes as powerful antibacterial agents against the emergence of antibiotic and multidrug-resistant strains, as well as proposing of new strategies for infection control.
Collapse
Affiliation(s)
- Alexandre Loukanov
- Department of Materials Engineering, National Institute of Technology, Gunma College, Maebashi, Gunma, Japan.,Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| | - Ayano Kuribara
- Department of Materials Engineering, National Institute of Technology, Gunma College, Maebashi, Gunma, Japan
| | - Svetla Nikolova
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Masakazu Saito
- Department of Materials Engineering, National Institute of Technology, Gunma College, Maebashi, Gunma, Japan
| |
Collapse
|
37
|
PCN-224 Nanoparticle/Polyacrylonitrile Nanofiber Membrane for Light-Driven Bacterial Inactivation. NANOMATERIALS 2021; 11:nano11123162. [PMID: 34947511 PMCID: PMC8707920 DOI: 10.3390/nano11123162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023]
Abstract
Increasing issues of pathogen drug resistance and spreading pose a serious threat to the ability to treat common infectious diseases, which encourages people to explore effective technology to meet the challenge. Photodynamic antibacterial inactivation (aPDI) is being explored for inactivating pathogens, which could be used as a novel approach to prevent this threat. Here, porphyrin-embedded MOF material (PCN-224) with photodynamic effect was synthesized, then the PCN-224 nanoparticles (NPs) were embedded into PAN nanofibers with an electrospinning process (PAN-PCN nanofiber membrane). On the one hand, polyacrylonitrile (PAN) nanofibers help to improve the stability of PCN-224 NPs, which could avoid their leakage. On the other, the PAN nanofibers are used as a support material to load bactericidal PCN-224 NPs, realizing recycling after bacterial elimination. An antibacterial photodynamic inactivation (aPDI) study demonstrated that the PAN-PCN 0.6% nanofiber membrane processed 3.00 log unit elimination towards a E. coli bacterial strain and 4.70 log unit towards a S. aureus strain under illumination. A mechanism study revealed that this efficient bacterial elimination was due to singlet oxygen (1O2). Although the materials are highly phototoxic, an MTT assay showed that the as fabricated nanofiber membranes had good biocompatibility in the dark, and the cell survival rates were all above 85%. Taken together, this work provided an application prospect of nanofibers with an aPDI effect to deal with the issues of pathogen drug resistance and spreading.
Collapse
|
38
|
Maldonado-Carmona N, Ouk TS, Leroy-Lhez S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer's structure and delivery systems. Photochem Photobiol Sci 2021; 21:113-145. [PMID: 34784052 DOI: 10.1007/s43630-021-00128-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Etiological agents of previously eradicated infectious diseases are now resurgent as multidrug-resistant strains, especially for Gram-negative strains. Finding new therapeutic solutions is a real challenge for our society. In this framework, Photodynamic Antimicrobial ChemoTherapy relies on the generation of toxic reactive oxygen species in the presence of light, oxygen, and a photosensitizer molecule. The use of reactive oxygen species is common for disinfection processes, using chemical agents, such as chlorine and hydrogen peroxide, and as they do not have a specific molecular target, it decreases the potential of tolerance to the antimicrobial treatment. However, light-driven generated reactive species result in an interesting alternative, as reactive species generation can be easily tuned with light irradiation and several PSs are known for their low environmental impact. Over the past few years, this topic has been thoroughly studied, exploring strategies based on single-molecule PSs (tetrapyrrolic compounds, dipyrrinate derivatives, metal complexes, etc.) or on conjunction with delivery systems. The present work describes some of the most relevant advances of the last 6 years, focusing on photosensitizers design, formulation, and potentiation, aiming for the disinfection of Gram-negative bacteria.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.,Department of Chemistry, University of Coimbra, Coimbra Chemistry Center, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.
| |
Collapse
|
39
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
40
|
Yan H, Zhang B, Zhang Y, Su R, Li P, Su W. Fluorescent Carbon Dot-Curcumin Nanocomposites for Remarkable Antibacterial Activity with Synergistic Photodynamic and Photothermal Abilities. ACS APPLIED BIO MATERIALS 2021; 4:6703-6718. [PMID: 35006973 DOI: 10.1021/acsabm.1c00377] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photosensitizer (PS)-mediated photodynamic therapy (PDT) has attracted more and more attention as an alternative to traditional antibiotic therapy. Nevertheless, the limitations of traditional photosensitizers seriously hinder their practical application, as a result, the methods to improve the antibacterial properties of traditional photosensitizers have become a hot topic in the field of photomedicine. Herein, a compound nano-PS system has been constructed with synergistic photodynamic and photothermal (PTT) antibacterial effects, triggered by a dual-wavelength illumination. Fluorescent carbon dots (CDs) were synthesized and employed as carriers for the delivery of curcumin (Cur) to obtain CDs/Cur. Upon combined near-infrared and 405 nm visible dual-wavelength irradiation, CDs/Cur could simultaneously generate ROS and a moderate temperature increase, triggering synergistic antibacterial effects against both Gram-positive and Gram-negative bacteria. The results of scanning electron microscopy and fluorescence confocal imaging showed that the combined effect of CDs/Cur with PDT and PTT caused more serious damage to the cell membrane. In addition, CDs/Cur exhibited low cytotoxicity and negligible hemolytic activity, showing great biocompatibility. Therefore, the construction of CDs/Cur by employing CDs as photosensitizer delivery carriers provides a strategy for the improvement of the antibacterial effect of the photosensitizer and the design of next-generation antibacterial agents in photomedicine.
Collapse
Affiliation(s)
- Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Baoqu Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
41
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
42
|
Budimir M, Marković Z, Vajdak J, Jovanović S, Kubat P, Humpoliček P, Mičušik M, Danko M, Barras A, Milivojević D, Špitalsky Z, Boukherroub R, Marković BT. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
44
|
Shen H, Jiang C, Li W, Wei Q, Ghiladi RA, Wang Q. Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS 2-Chitosan Nanocomposite Materials with Visible Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31193-31205. [PMID: 34164984 DOI: 10.1021/acsami.1c08178] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the rise in prevalence of multidrug-resistant pathogens attributed to the overuse of antibiotics, infectious diseases caused by the transmission of microbes from contaminated surfaces to new hosts are an ever-increasing threat to public health. Thus, novel materials that can stem this crisis, while also functioning via multiple antimicrobial mechanisms so that pathogens are unable to develop resistance to them, are in urgent need. Toward this goal, in this work, we developed in situ grown bacterial cellulose/MoS2-chitosan nanocomposite materials (termed BC/MoS2-CS) that utilize synergistic membrane disruption and photodynamic and photothermal antibacterial activities to achieve more efficient bactericidal activity. The BC/MoS2-CS nanocomposite exhibited excellent antibacterial efficacy, achieving 99.998% (4.7 log units) and 99.988% (3.9 log units) photoinactivation of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively, under visible-light illumination (xenon lamp, 500 W, λ ≥ 420 nm, and 30 min). Mechanistic studies revealed that the use of cationic chitosan likely facilitated bacterial membrane disruption and/or permeability, with hyperthermia (photothermal) and reactive oxygen species (photodynamic) leading to synergistic pathogen inactivation upon visible-light illumination. No mammalian cell cytotoxicity was observed for the BC/MoS2-CS membrane, suggesting that such composite nanomaterials are attractive as functional materials for infection control applications.
Collapse
Affiliation(s)
- Huiying Shen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Romero MP, Alves F, Stringasci MD, Buzzá HH, Ciol H, Inada NM, Bagnato VS. One-Pot Microwave-Assisted Synthesis of Carbon Dots and in vivo and in vitro Antimicrobial Photodynamic Applications. Front Microbiol 2021; 12:662149. [PMID: 34234756 PMCID: PMC8255795 DOI: 10.3389/fmicb.2021.662149] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon-based photosensitizers are more attractive than the other ones based on their low cost, high stability, broadband of light absorption, tunable emission spectra, high quantum yield, water solubility, high resistance to metabolic degradation, and selective delivery. These properties allow multiple applications in the field of biology and medicine. The present study evaluated in vitro and in vivo the antimicrobial photodynamic effect of a one-pot microwave produced C-DOTS based on citric acid. The in vitro assays assessed the effectiveness of illuminated C-DOTS (C-DOTS + light) against Staphylococcus aureus suspension and biofilm. The concentrations of 6.9 and 13.8 mg/mL of C-DOTS and light doses of 20 and 40 J/cm2 were able to reduce significantly the microorganisms. Based on these parameters and results, the in vivo experiments were conducted in mice, evaluating this treatment on wounds contaminated with S. aureus. The viability test showed that C-DOTS-mediated photodynamic inactivation reduced 104 log of the bacteria present on the skin lesions. These results, altogether, showed that antibacterial photodynamic therapy using C-DOTS is a promising and viable treatment for Gram-positive bacteria-infected wounds.
Collapse
Affiliation(s)
- María Paulina Romero
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Hilde Harb Buzzá
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Heloísa Ciol
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Hagler Fellow, Texas A&M University, College Station, TX, United States
| |
Collapse
|
46
|
Deng Y, Chen M, Chen G, Zou W, Zhao Y, Zhang H, Zhao Q. Visible-Ultraviolet Upconversion Carbon Quantum Dots for Enhancement of the Photocatalytic Activity of Titanium Dioxide. ACS OMEGA 2021; 6:4247-4254. [PMID: 33623839 PMCID: PMC7893638 DOI: 10.1021/acsomega.0c05182] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
Visible-ultraviolet upconversion carbon quantum dots (CQDs) are synthesized with a hydrothermal method using l-glutamic acid (l-Glu) and m-phenylenediamine (MPD) and then combined with commercial nano-TiO2 to prepare CQDs/TiO2 composites. The fluorescence spectra prove that the prepared CQDs can convert approximately 600 nm visible light into 350 nm ultraviolet light. In photocatalysis experiments, CT-1, a CQDs/TiO2 composite with 1:1 molar ratio of l-Glu to TiO2, has the best degradation efficiency for methyl orange (MO). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments confirm that CT-1 is composed of quasi-spherical nano-TiO2 and CQDs with a crystal plane of graphitic carbon. CT-1 can degrade 70.56% of MO (40 ppm) within 6 h under the irradiation of a 600 nm light source, which is close to its degradation rate of 78.75% under 365 nm ultraviolet light. The apparent rate constant of CT-1 degradation equation is 12.7 times that of TiO2. Free radical scavenging experiments and electron spin resonance (ESR) tests show that the degradation ability should be attributed to the existence of h+ and •OH under visible light. Therefore, we provide a simple and low-cost solution with heavy-metal-free products to improve the photocatalytic performance of TiO2.
Collapse
|
47
|
Nie X, Wu S, Huang F, Wang Q, Wei Q. Smart Textiles with Self-Disinfection and Photothermochromic Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2245-2255. [PMID: 33416320 DOI: 10.1021/acsami.0c18474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Self-disinfecting textile materials employing combined photodynamic/photothermal effects enable the prevention of microbial infections, a property that has great potential in healthcare applications. However, smart textiles with stimulus responses to ambient temperature are marvelous materials for enhancing their photothermal applications with additional functions. It is still challenging to realize vivid and contrasting color changes as temperature indicators. Herein, through the in situ growth of PCN-224 metal-organic frameworks (MOFs), the electrospraying of a Ti3C2 MXene colloid, and the screen printing of a thermochromic dye, a smart photothermochromic self-disinfecting textile has been fabricated. An antibacterial inactivation study revealed 99.9999% inactivation toward gram-negative (Escherichia coli ATCC 8099) and gram-positive (Staphylococcus aureus ATCC 6538) bacteria in 30 min. A mechanism study revealed that light-driven singlet oxygen and heat are the main reasons for bacterial inactivation. Interestingly, the fabrics presented photothermal effects not only under a handheld 780 nm NIR laser but also under visible Xe lamp (λ ≥ 420 nm) illumination. The color of the fabrics (S-CF@PCN0.08) changed completely from dark green to dark red when the temperature exceeded 45 °C under Xe lamp illumination. Furthermore, the photothermochromic effect occurred in just 1 s under a 780 nm laser. Taken together, this smart photothermochromic self-disinfecting textile permits a new way to feedback the timely signal of temperature by color change and provides novel insights into the development of self-disinfecting textiles.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
48
|
Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020; 132:110834. [PMID: 33035830 PMCID: PMC7537666 DOI: 10.1016/j.biopha.2020.110834] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Natural carbon based quantum dots (NCDs) are an emerging class of nanomaterials in the carbon family. NCDs have gained immense acclamation among researchers because of their abundance, eco-friendly nature, aqueous solubility, the diverse functionality and biocompatibility when compared to other conventional carbon quantum dots (CDs).The presence of different functional groups on the surface of NCDs such as thiol, carboxyl, hydroxyl, etc., provides improved quantum yield, physicochemical and optical properties which promote bioimaging, sensing, and drug delivery. This review provides comprehensive knowledge about NCDs for drug delivery applications by outlining the source and rationale behind NCDs, different routes of synthesis of NCDs and the merits of adopting each method. Detailed information regarding the mechanism behind the optical properties, toxicological profile including biosafety and biodistribution of NCDs that are favourable for drug delivery are discussed. The drug delivery applications of NCDs particularly as sensing and real-time tracing probe, antimicrobial, anticancer, neurodegenerative agents are reviewed. The clinical aspects of NCDs are also reviewed as an initiative to strengthen the case of NCDs as potent drug delivery agents.
Collapse
Affiliation(s)
- Akhila Nair
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jozef T Haponiuk
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Sreeraj Gopi
- Department of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
49
|
Sapkota KP, Hassan MM, Shrestha S, Hanif MA, Islam MA, Akter J, Abbas HG, Hahn JR. Heterojunction formation between copper(II) oxide nanoparticles and single-walled carbon nanotubes to enhance antibacterial performance. Int J Pharm 2020; 590:119937. [PMID: 33011252 DOI: 10.1016/j.ijpharm.2020.119937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
We delineate the excellent bactericidal efficacy of stable heterojunction nanocomposites composed of single-walled carbon nanotubes (SWCNTs) and copper(II) oxide (CuO) synthesized via facile recrystallization and calcination. The bactericidal effectiveness of the fabricated nanocomposites was examined using the standard broth-dilution method and the growth-inhibition-zone analysis method, in which bacteria cultured in an incubator in tryptic soy broth medium were subjected to the prepared samples. The bactericidal activity of all of the as-synthesized samples is evident in both methods, displaying a substantial decrease in bacterial colonies and resulting in clear inhibition zones, respectively. Among the CuO-SWCNT nanocomposites, the sample subjected to calcination at 500 °C for 5 h was found to exhibit the best performance against Staphylococcus aureus and Escherichia coli, forming inhibition zones 182% and 162% larger than those formed by pure CuO, respectively.
Collapse
Affiliation(s)
- Kamal Prasad Sapkota
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea; Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44618, Nepal
| | - Md Mehedi Hassan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University, Jeonju 54907, South Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Md Abu Hanif
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Md Akherul Islam
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jeasmin Akter
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hafiz Ghulam Abbas
- Department of Nanoscience and Nanotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jae Ryang Hahn
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea; Department of Nanoscience and Nanotechnology, Jeonbuk National University, Jeonju 54896, South Korea; Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Dr., Raleigh, NC 27695-8301, USA
| |
Collapse
|
50
|
Wei G, Yang G, Wang Y, Jiang H, Fu Y, Yue G, Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020; 10:12241-12262. [PMID: 33204340 PMCID: PMC7667673 DOI: 10.7150/thno.52729] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
The development of nanomedicine is expected to provide an innovative direction for addressing challenges associated with multidrug-resistant (MDR) bacteria. In the past decades, although nanotechnology-based phototherapy has been developed for antimicrobial treatment since it rarely causes bacterial resistance, the clinical application of single-mode phototherapy has been limited due to poor tissue penetration of light sources. Therefore, combinatorial strategies are being developed. In this review, we first summarized the current phototherapy agents, which were classified into two functional categories: organic phototherapy agents (e.g., small molecule photosensitizers, small molecule photosensitizer-loaded nanoparticles and polymer-based photosensitizers) and inorganic phototherapy agents (e.g., carbo-based nanomaterials, metal-based nanomaterials, composite nanomaterials and quantum dots). Then the development of emerging phototherapy-based combinatorial strategies, including combination with chemotherapy, combination with chemodynamic therapy, combination with gas therapy, and multiple combination therapy, are presented and future directions are further discussed. The purpose of this review is to highlight the potential of phototherapy to deal with bacterial infections and to propose that the combination therapy strategy is an effective way to solve the challenges of single-mode phototherapy.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiyong Fu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yue
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|