1
|
Xu J, Zuo G, Liu S, Shi H, Yin L, Wang S, Deng X. Xanthophyll cycle and photosynthetic electron transport enhanced by galactolipid modification alleviate drought-induced leaf senescence. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154499. [PMID: 40273711 DOI: 10.1016/j.jplph.2025.154499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Previous studies have demonstrated galactolipid modification was involved in drought-induced leaf senescence. Under drought stress, overactivation of the photosynthetic electron transfer chain leads to excessive light energy absorption, resulting in photooxidative damage to crops. The xanthophyll cycle, a key photoprotective mechanism, mitigates light-induced damage by dissipating excess energy as heat. However, the role of the xanthophyll cycle pigments and photosynthetic electron transport in the process of galactolipid modification alleviates drought-induced leaf senescence has not yet been clarified clearly. In this study, a comparative experiment was conducted to investigate changes in the xanthophyll cycle and photosynthetic electron transport during drought and re-watering in two maize varieties: a drought-tolerant variety (Liangyu66) and a senescent variety (Liangyu99). Drought stress induced more severely wilted and leaf senescence in Liangyu99, with lower shoot biomass, photosynthetic rate, chlorophyll a/b, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) content, corresponding gene expression level and DGDG/MGDG ratio compared to Liangyu66. Furthermore, PSII electron transport rate (ETRⅡ), the PSI electron transport rate (ETRⅠ), and cyclic electron flow (CEF) in Liangyu66 were 14 %, 47 %, and 83 % higher, respectively, than in Liangyu99 under drought stress. Notably, the de-epoxidation state of the xanthophyll cycle (A + Z)/(A + Z + V) was significantly higher in Liangyu66 than in Liangyu99. Non-photochemical quenching (NPQ) increased in both varieties under drought stress, Liangyu66 displayed a higher NPQ than Liangyu99. These findings suggest that galactolipid modification alleviates drought-induced leaf senescence by enhancing the xanthophyll cycle and optimizing photosynthetic electron transport.
Collapse
Affiliation(s)
- Jili Xu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Guanqiang Zuo
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Shuaikang Liu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Hao Shi
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Lina Yin
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Shiwen Wang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China.
| | - Xiping Deng
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Zarif H, Fan C, Yuan G, Zhou R, Chang Y, Sun J, Lu J, Liu J, Wang C. Drought Stress in Roses: A Comprehensive Review of Morphophysiological, Biochemical, and Molecular Responses. Int J Mol Sci 2025; 26:4272. [PMID: 40362508 PMCID: PMC12072323 DOI: 10.3390/ijms26094272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Climate change poses significant threats to agriculture globally, particularly in arid and semi-arid regions where drought stress (DS) is most severe, disrupting ecosystems and constraining progress in agriculture and horticulture. Roses, valued for their aesthetic appeal, are highly susceptible to abiotic stresses, especially DS, which markedly reduces flower quantity and quality. Under DS conditions, roses exhibit diverse morphological, physiological, biochemical, and molecular adaptations that vary across species. This review examines the effects of DS on rose growth, yield, and physiological traits, including gas exchange, photosynthesis, phytohormone dynamics, and water and nutrient relationships, alongside their biochemical and molecular responses. Furthermore, DS impacts the biosynthesis of secondary metabolites, notably reducing the yield and quality of essential oils in roses, which are critical for their commercial value in perfumery and aromatherapy. Additionally, the impact of DS on rose flower quality and post-harvest longevity is assessed. By elucidating these diverse responses, this review provides a framework for understanding DS effects on roses and offers insights to develop strategies for mitigating its adverse impacts.
Collapse
Affiliation(s)
- Hmmam Zarif
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- Horticulture Department, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Guozhen Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Rui Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Yufei Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (C.F.); (G.Y.); (R.Z.); (Y.C.); (J.S.); (J.L.); (J.L.)
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| |
Collapse
|
3
|
Luhua Y, Yu N, Chunjie C, Wangdan X, Qiaoqiao G, Xinfeng J, Shurong J, Jianfeng Y, Yanjun G. Unlocking the Synergy: ABA Seed Priming Enhances Drought Tolerance in Seedlings of Sweet Sorghum Through ABA-IAA Crosstalk. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269610 DOI: 10.1111/pce.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Abscisic acid (ABA) seed priming impacts plant growth and stress resistance, yet its precise physiological and molecular mechanisms remain elusive. This study explored the role of ABA-priming in enhancing drought acclimation in sweet sorghum (Sorghum bicolor Moench) using physiological assessments and comparative transcriptomics. Under drought stress, ABA-primed seedlings exhibited increased plant height, larger leaves, and higher leaf water content compared to non-primed plants. While drought negatively affected photosynthesis through the regulation of photosystem I and II, ABA-priming improved photosynthesis and WUE by involving in differential expression of photosystem II genes. ABA-priming promoted the accumulation of cuticular wax and cutin, effectively reducing leaf water loss. Drought triggered endogenous ABA production via ABA inactivation genes (UGT, BGLU), while ABA-priming activated auxin (IAA) biosynthesis via YUCCA, enhancing auxin-mediated responses and gibberellic acid (GA) signalling. The synergistic action of ABA and IAA culminated in enhanced drought tolerance. Additionally, ABA-priming and drought stress regulated NAC transcription factors, with SbNAC21-1 emerging as a pivotal transcriptional activator intricately linked to auxin signalling. Overexpression of SbNAC21-1 in Arabidopsis effectively enhanced drought tolerance. These findings offer valuable insights into the intricate mechanisms underpinning the beneficial effects of ABA-priming, ultimately enhancing plant adaptability to environmental stressors.
Collapse
Affiliation(s)
- Yao Luhua
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, China
| | - Ni Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chen Chunjie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiong Wangdan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Gan Qiaoqiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jia Xinfeng
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Jin Shurong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Jianfeng
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Guo Yanjun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Yang F, Ding X, Lv G. Quantitative proteomic analysis based on TMT reveals different responses of Haloxylon ammodendron and Haloxylon persicum to long-term drought. BMC PLANT BIOLOGY 2025; 25:480. [PMID: 40234745 PMCID: PMC11998144 DOI: 10.1186/s12870-025-06513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The essence of the plant drought tolerance mechanism lies in determining protein expression patterns, identifying key drought-tolerant proteins, and elucidating their association with specific functions within metabolic pathways. So far, there is limited information on the long-term drought tolerance of Haloxylon ammodendron and Haloxylon persicum grown in natural environments, as analyzed through proteomics. Therefore, this study conducted proteomic research on H. ammodendron and H. persicum grown in natural environments to identify their long-term drought-tolerant protein expression patterns. Totals of 71 and 348 differentially expressed proteins (DEPs) were identified in H. ammodendron and H. persicum, respectively. Bioinformatics analysis of DEPs reveals that H. ammodendron primarily generates a large amount of energy by overexpressing proteins related to carbohydrate metabolism pathways (pyruvate kinase, purple acid phosphatases and chitinase), and simultaneously encodes proteins capable of degrading misfolded/damaged proteins (tam3-transposase, enhancer of mRNA-decapping protein 4, and proteinase inhibitor I3), thus adapting to long-term drought environments. For H. persicum, most DEPs (enolase and UDP-xylose/xylose synthase) involved in metabolic pathways are up-regulated, indicating that it mainly adapts to long-term drought environments through mechanisms related to positive regulation of protein expression. These results offer crucial insights into how desert plants adapt to arid environments over the long term to maintain internal balance. In addition, the identified key drought-tolerant proteins can serve as candidate proteins for molecular breeding in the genus Haloxylon, aiming to develop new germplasm for desert ecosystem restoration.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Xuelian Ding
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China.
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China.
| |
Collapse
|
5
|
Xu L, Liu H, Mittler R, Shabala S. Useful or merely convenient: can enzymatic antioxidant activity be used as a proxy for abiotic stress tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1524-1533. [PMID: 39731752 DOI: 10.1093/jxb/erae524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024]
Abstract
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AOs have often been advocated as suitable proxies for stress tolerance as well as potential targets for improving tolerance traits. However, there are a growing number of reports showing either no changes or even down-regulation of AO systems in stressed plants. Moreover, ROS are recognized now as important second messengers operating in both local and systemic signalling, synergistically interacting with the primary stressor, to regulate gene expression needed for optimal acclimatization. This work critically assesses the suitability of using enzymatic AOs as a proxy for stress tolerance or as a target for crop genetic improvement. It is concluded that constitutively higher AO activity may interfere with stress-induced ROS signalling and be a disadvantage for plant stress tolerance.
Collapse
Affiliation(s)
- Le Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Huaqiong Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Sergey Shabala
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
6
|
Chimphango SBM, MacAlister D, Ogola JBO, Muasya AM. Growth-defence carbon allocation is complementary for enhanced crop yield under drought and heat stress in tolerant chickpea genotypes. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154473. [PMID: 40086341 DOI: 10.1016/j.jplph.2025.154473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Non-structural carbohydrates (NSC) are major substrates for primary and secondary plant metabolism with various functions including growth, storage of carbon (C) and energy, osmotic adjustment and synthesis of antioxidants for defence against biotic and abiotic stresses. The allocation of C to growth and defence molecules is labelled antagonistic because it is perceived that limited photosynthates produced under stress is allocated preferentially to defence molecules at the expense of growth, leading to the development of the growth-defence trade-off concept. Several studies and literature reviews have provided evidence both in support and against the growth-defence trade-off. Therefore, it remains unclear whether the allocation of NSC to storage and defence molecules is at the expense of plant growth, especially in annual or short-lived flowering plants. This article reviews literature on sugar and antioxidant metabolism in tolerant/desi and sensitive/kabuli genotypes of chickpea under drought and heat stress conditions. The results show that some of the desi genotypes and drought and heat stress tolerant genotypes accumulated greater NSC, proline or antioxidant enzymes and produced higher biomass and seed yield than kabuli and sensitive genotypes under stress. This is new evidence to support the view that plants accumulate NSC and secondary metabolites and grow at the same time under drought and heat stress conditions which implies complementary allocation of C to growth and defence metabolism. Understanding the growth-defence trade-off and its application is important as it affects plant growth, seed yield, and plant fitness in both natural ecosystems and crop improvement programmes in agriculture.
Collapse
Affiliation(s)
- Samson B M Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.
| | - Dunja MacAlister
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - John B O Ogola
- Department of Plant and Soil Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
7
|
Shirdel M, Eshghi S, Shahsavandi F, Fallahi E. Arbuscular mycorrhiza inoculation mitigates the adverse effects of heat stress on yield and physiological responses in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109629. [PMID: 39946910 DOI: 10.1016/j.plaphy.2025.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/11/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) form a beneficial symbiotic relationship with plant roots, providing them with ample water and nutrients, especially under stressful conditions. It is inevitable to experience heat stress (HS) due to climate changes. The objective of this study was to investigate the possible role of AMF (with AMF = +AMF and without AMF = -AMF) on the strawberry cvs. ('Paros' and 'Queen Eliza')-resilience to HS at temperatures (control (23), 30, 35, 40, and 45 °C). The experiment was completely randomised and designed as a factorial arrangement with four replicates. The findings indicated that as the temperature increased, there was an increase in electrolyte leakage, proline, soluble carbohydrate contents and the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). The presence of AMF at high temperatures improved the relative water content (RWC), maximum quantum efficiency yield of photosystem II (Fv/Fm), chlorophyll a, b, and total chlorophyll compared to the -AMF. AMF promoted root colonization and the content of phosphorus and potassium, which was more in the cv. 'Paros' than the cv. 'Queen Eliza'. Primary and secondary fruit weights and plant yield were reduced by HS; however, the AMF effectively increased average fruit weight and yield in comparison to plants without AMF. Yield was positively correlated with RWC and Fv/Fm, and root colonization was positively associated with phosphorus concentration. Adding AMF to rhizosphere improved plant growth and nutrient uptake and increased strawberry-resilience to HS. They have achieved this by increasing antioxidative activity, proline, soluble carbohydrates, and RWC. The symbiotic relationship with AMF greatly enhanced the strawberry's ability to tolerate HS.
Collapse
Affiliation(s)
- Mohsen Shirdel
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Fatemeh Shahsavandi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Liu S, Zhang F, Feng H, Wang X, Wang Q, Lai X, Yan L. StTCTP Positively Regulates StSN2 to Enhance Drought Stress Tolerance in Potato by Scavenging Reactive Oxygen Species. Int J Mol Sci 2025; 26:2796. [PMID: 40141438 PMCID: PMC11943270 DOI: 10.3390/ijms26062796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Drought is a negative agronomic effect that can lead to an increase in reactive oxygen species (ROS) levels. Excessive drought can severely alter cell membrane fluidity and permeability, significantly reducing cell viability. The Gibberellic acid-stimulated Arabidopsis (Snakin/GASA) gene family has an important role as antioxidants in inhibiting the accumulation of ROS and improving crop drought resistance. However, the regulatory mechanism of potato StSnakin-2 (StSN2) in response to drought, along with how StSN2 expression is regulated, is not well understood. In this study, we found that StSN2 was induced by drought. Overexpression of StSN2 significantly increased drought tolerance, whereas silencing StSN2 increased sensitivity to drought. Overexpression of StSN2 resulted in higher antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) activity, and lowered hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation during drought stress. Also, overexpression of StSN2 increased the relative water content (RWC) of leaves and reduced the water loss in leaves. We screened the upstream regulatory protein translation-controlled tumor protein (StTCTP) of StSN2 through DNA pull-down combined with mass spectrometry. Yeast one-hybrid (YIH), electrophoretic mobility shift assay (EMSA), and luciferase reporting assay (LUC) indicated that StTCTP binds the StSN2 promoter. Like StSN2, StTCTP was highly expressed in response to drought. Overexpression of StTCTP increased the photosynthetic rate and CAT enzyme activity, and lowered H2O2 and MDA accumulation during drought. Meanwhile, overexpression of StTCTP increased leaf RWC and reduced water loss. Our research strongly suggested that StSN2 effectively cleared ROS and significantly boosted the drought resistance of potatoes. Furthermore, as a transcriptional activator of StSN2, StTCTP, much like StSN2, also enhanced the potato's drought tolerance. The results provided a foundation for the further study of StSN2 regulatory mechanisms under drought stress.
Collapse
Affiliation(s)
- Shifeng Liu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| | - Feng Zhang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Haojie Feng
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Xiyao Wang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Qiang Wang
- Potato Research and Development Center, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.Z.); (H.F.); (X.W.); (Q.W.)
| | - Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615300, China;
| |
Collapse
|
9
|
Hao TB, Lai PY, Shu Z, Liang R, Chen ZY, Huang RL, Lu Y, Alimujiang A. Physiological and metabolic fluctuations of the diatom Phaeodactylum tricornutum under water scarcity. Front Microbiol 2025; 16:1555989. [PMID: 40177482 PMCID: PMC11962624 DOI: 10.3389/fmicb.2025.1555989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Water scarcity is an escalating environmental concern. The model diatom, Phaeodactylum tricornutum, holds promise as a potential cell factory for the production of high-value natural compounds. However, its dependence on saline water cultivation restricts its use in areas facing water shortages. Although numerous studies have delved into the metabolic mechanisms of plants under water stress, there is a limited understanding when it comes to microalgae. In our study, we employed polyethylene glycol (PEG) to simulate water scarcity conditions, and assessed a range of parameters to elucidate the metabolic responses of P. tricornutum. Water stress induced the generation of reactive oxygen species (ROS), curtailed the photosynthetic growth rate, and amplified lipid content. Our insights shed light on the physiology of P. tricornutum when subjected to water stress, setting the stage for potential applications of microalgae biotechnology in regions grappling with water scarcity.
Collapse
Affiliation(s)
- Ting-Bin Hao
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Synthetic Biology, Shanxi University, Taiyuan, China
| | - Peng-Yu Lai
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhan Shu
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ran Liang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Yun Chen
- Guangzhou Zhixin High School, Ersha Campus, Guangzhou, China
| | - Ren-Long Huang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Lu
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Adili Alimujiang
- School of Stomatology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Bao Q, Wu Y, Du H, Wang Y, Zhang Y. Phenotypic Physiological and Metabolomic Analyses Reveal Crucial Metabolic Pathways in Quinoa ( Chenopodium quinoa Willd.) in Response to PEG-6000 Induced Drought Stress. Int J Mol Sci 2025; 26:2599. [PMID: 40141239 PMCID: PMC11942229 DOI: 10.3390/ijms26062599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Drought stress seriously threatens human food security, and enhancing crops' drought tolerance is an urgent problem to be solved in breeding. Quinoa is known for its high nutritional value and strong drought tolerance, but its molecular mechanism in response to drought stress is still unclear. In this study, we used drought-tolerant (D2) and drought-sensitive (ZK1) quinoa varieties, and PEG-6000 was used to simulate drought stress in quinoa seedlings. Phenotypic and physiological biochemical indicators were measured during the seedling stage, and LC-MS was used for a metabolite analysis of drought stress to explore the drought tolerance mechanism of quinoa under drought stress. With the intensification of drought stress, chlorophyll content gradually increased, and D2 reached its maximum at W4, an increase of 49.85% compared with W1. The total chlorophyll content, photosynthesis rate, and stomatal conductance of ZK1 were significantly lower than D2 under moderate and severe drought stress. Metabolomic results showed that a total of 1295 positive ion mode (pos) metabolites and 914 negative ion mode (neg) metabolites were identified. Of these, 12(R)-HETE, phosphatidylcholine, monogalactose diester (MGDG), and stachyose up-regulated expression under drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that unsaturated fatty acid biosynthesis and glycerophospholipid metabolism pathways were significantly enriched. In summary, our results elucidate that quinoa responds to drought stress by accumulating chlorophyll and sugars, activating unsaturated fatty acid metabolism, and protecting the photosynthetic system. These findings provide new insights for the breeding of drought-tolerant quinoa varieties and the study of drought tolerance mechanisms.
Collapse
Affiliation(s)
- Qinghan Bao
- College of Life Sciences, Jilin Normal University, Siping 136000, China;
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Huishi Du
- College of Geographic Sciences and Tourism, Jilin Normal University, Siping 136000, China;
| | - Yang Wang
- College of Life Sciences, Jilin Normal University, Siping 136000, China;
| | - Yongping Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| |
Collapse
|
11
|
Chen F, Zhang K, Yan S, Wang R, Wang H, Zhao H, Zhao F, Qi Y, Yang Y, Wei X, Tang Y. Response of photosynthesis to light and CO 2 concentration in spring wheat under progressive drought stress. BMC PLANT BIOLOGY 2025; 25:324. [PMID: 40082751 PMCID: PMC11905466 DOI: 10.1186/s12870-025-06355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Global climate change significantly affects photosynthesis in spring wheat. However, the successive dynamic effects of multiple environmental interactions on photosynthesis in spring wheat have been inadequately investigated. This study conducted pot control experiments to determine photosynthesis characteristics, namely light and CO2 response curves, in spring wheat under progressive drought stress. RESULTS Progressive drought stress caused all parameters of the light response curve to decrease logistically and all parameters of the CO2 response curve to change exponentially. There were noticeable thresholds for these parameter changes. The ability of spring wheat to utilize light was weakened by progressive drought stress. Under all drought levels, the reduction in photosynthetic capacity was greater under strong light than under weak light. The effects on CO2 utilization and the corresponding photosynthetic capacity depended on the drought level and CO2 concentration. The optimal light intensity (Iopt) for spring wheat showed a logistic decreasing trend under progressive drought stress. Unexpectedly, the optimal atmospheric CO2 concentration (CO2opt) remained at 800 µmol·mol- 1 under drought stress, which was less severe than extreme drought. CONCLUSIONS Our results showed that progressive drought stress, combined with different environmental factors, had distinct impacts on the photosynthetic efficiency and carbon assimilation capacity of spring wheat, providing a basis for rational carbon and water resource utilization in spring wheat under climate change.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China.
| | - Kai Zhang
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Shuang Yan
- Beijing Miyun District Meteorological Bureau, Beijing, 101500, China
| | - Runyuan Wang
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Heling Wang
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China.
| | - Hong Zhao
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Funian Zhao
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Yue Qi
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Yang Yang
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Xingxing Wei
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| | - Yurui Tang
- Institute of Arid Meteorology, China Meteorological Administration / Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMA / Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Lanzhou, 730020, China
| |
Collapse
|
12
|
Abou Jaoudé R, Luziatelli F, Ficca AG, Ruzzi M. Soil microbiome transplantation to enhance the drought response of Salvia officinalis L. Front Microbiol 2025; 16:1553922. [PMID: 40143859 PMCID: PMC11937098 DOI: 10.3389/fmicb.2025.1553922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Soil microbiome transplantation is a promising technique for enhancing plant holobiont response to abiotic and biotic stresses. However, the rapid assessment of microbiome-plant functional integration in short-term experiments remains a challenge. Methods This study investigates the potential of three evergreen sclerophyll species, Pistacia lentiscus (PL), Rosmarinus officinalis (RO), and Juniperus phoenicea (JP), to serve as a reservoir for microbial communities able to confer enhanced tolerance to drought in Salvia officinalis cultivated under water shortage, by analyzing biomass production, plant phenotype, plant ecophysiological responses, and leaf metabolome. Results Our results showed that the inoculation with the three rhizomicrobiomes did not enhance total plant biomass, while it significantly influenced plant architecture, ecophysiology, and metabolic responses. The inoculation with the JP rhizomicrobiome led to a significant increase in root biomass, resulting in smaller leaves and a higher leaf number. These morphological changes suggest improved water acquisition and thermoregulation strategies. Furthermore, distinct stomatal conductance patterns were observed in plants inoculated with microbiomes from PJ and PL, indicating altered responses to drought stress. The metabolome analysis demonstrated that rhizomicrobiome transplantation significantly influenced the leaf metabolome of S. officinalis. All three rhizomicrobiomes promoted the accumulation of phenolic compounds, terpenoids, and alkaloids, known to play crucial roles in plant defense and stress response. Five molecules (genkwanin, beta-ionone, sumatrol, beta-peltatin-A-methyl ester, and cinnamoyl-beta-D-glucoside) were commonly accumulated in leaves of inoculated sage, independently of the microbiome. Furthermore, unique metabolic alterations were observed depending on the specific inoculated rhizomicrobiome, highlighting the specialized nature of plant-microbe interactions and the possible use of these specific molecules as biomarkers to monitor the recruitment of beneficial microorganisms. Discussion This study provides compelling evidence that microbiome transplantation can induce phenotypic and metabolic changes in recipient plants, potentially enhancing their resilience to water scarcity. Our findings emphasize the importance of considering multiple factors, including biomass, physiology, and metabolomics, when evaluating the effectiveness of microbiome engineering for improving plant stress tolerance.
Collapse
Affiliation(s)
- Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Amanullah, Khan JA, Yasir M. Improving soybean yield and oil productivity: an integrated nutrient management approach for sustainable soybean production. BMC PLANT BIOLOGY 2025; 25:293. [PMID: 40050734 PMCID: PMC11884161 DOI: 10.1186/s12870-025-06245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
The increasing demand for oilseed crops like soybeans requires sustainable cultivation practices that not only boost productivity but also maintain the long-term health of soil and the environment. This research aimed to investigate the impact of an integrated nutrient management strategy, which includes organic sources (compost types), phosphorus management, and inoculation with phosphate-solubilizing bacteria (PSB), on soybean productivity and profitability. Furthermore, the study examined the response of soybeans to varying potassium levels and different types of compost under both irrigated and dryland conditions. Two separate field experiments were conducted, with and without PSB seed inoculation, to evaluate various parameters including yield components, seed quality, protein and oil contents, grain yield, and growers' income. The results demonstrated that the application of sole poultry manure compost significantly improved yield components, grain yield (3064 kg ha-1), protein yield (771 kg ha-1), and oil yield (546 kg ha-1). Application of the highest P level (90 kg P ha-1) produced the maximum grain yield (3222 kg ha-1), protein yield (823 kg ha-1), and oil yield (588 kg ha-1). Furthermore, plots treated with PSB exhibited higher yield components, grain yield (3051 kg ha-1), protein yield (769 kg ha-1) and oil yield (550 kg ha-1). Moreover, increasing phosphorus levels in conjunction with poultry manure compost or a combination of poultry + cattle manure composts resulted in improved yield components, protein and oil yields, and grain yield. In another aspect of the study, the response of soybean to potassium levels and different compost types under irrigated and dryland conditions was assessed. The findings revealed that higher potassium level (90 kg K ha-1) significantly increased yield components and produced the maximum grain yield (3189 kg ha-1), protein yield (725 kg ha-1), and oil yield (574 kg ha-1). Additionally, the application of sole poultry manure compost increased all yield components, grain yield (3160 kg ha-1), protein yield (719 kg ha-1), and oil yield (569 kg ha-1). Moreover, the irrigated plots demonstrated higher yield components, grain yield (2981 kg ha-1), protein yield (680 kg ha-1) and oil yield (536 kg ha-1). In conclusion, this research emphasizes the significance of an integrated nutrient management approach, incorporating compost, potassium, phosphorus, and phosphate solubilizing bacteria in enhancing soybean productivity and profitability.
Collapse
Affiliation(s)
- Amanullah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Junaid Ali Khan
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Muhammad Yasir
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| |
Collapse
|
14
|
Modica G, Arcidiacono F, Puglisi I, Baglieri A, La Malfa S, Gentile A, Arbona V, Continella A. Response to Water Stress of Eight Novel and Widely Spread Citrus Rootstocks. PLANTS (BASEL, SWITZERLAND) 2025; 14:773. [PMID: 40094758 PMCID: PMC11901693 DOI: 10.3390/plants14050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Drought is a problematic abiotic stress affecting citrus crops in the Mediterranean basin and the rootstock plays a fundamental role in adopting adaptive mechanisms in response to water deficit. The aim of this study is to evaluate the response of eight rootstocks under three treatments imposed: control (100% of reference evapotranspiration, Et0), 66% Et0 and 50% Et0. The rootstock genotypes studied were C35 citrange, Bitters, Carpenter and Furr which have been recently spread and so far, little investigated, while others have been widely used especially in the Mediterranean citrus industry, i.e., Citrus macrophylla, C. volkameriana, Swingle citrumelo and Carrizo citrange. Morphological analyses, leaf chlorophyll content determination, physiological measurement, proline accumulation, malondialdehyde determination and antioxidant enzyme activities were measured. The results exhibited that Bitters and Furr showed an increment in leaf area to reduce the effects of drought conditions. A decrement in gas exchanges and xylem water potential was noticed in Carrizo and C35 citrange at both water shortage treatments. Carrizo exhibited a significant increase in malondialdehyde at both stresses (90.3 and 103.3%, for 66 and 50% Et0). Bitters and Furr performed better than the other rootstocks with regard to enzymatic and hormonal assays. Specifically, Bitters showed a significant reduction in CAT (-68.6%), SOD (-82.5%) and APX (-36.7%). Furthermore, Bitters and Furr were closely related to morphological parameters, e.g., leaf area and root length, and physiological measurements. C. volkameriana showed a decrease in xylem water potential, while overall Carrizo and C35 citranges showed a susceptible response to water stress reducing morphological and physiological measurements.
Collapse
Affiliation(s)
- Giulia Modica
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Fabio Arcidiacono
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Vicent Arbona
- Plant Ecophysiology and Biotechnology Laboratory, Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castellon de la Plana, Spain;
| | - Alberto Continella
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| |
Collapse
|
15
|
Aghdasi S, AghaAlikhani M, Mohammad Modarres-Sanavy SA, Kahrizi D. Phytochemical responses of camelina to brassinolide and boron foliar spray under irrigation regimes. Heliyon 2025; 11:e42630. [PMID: 40084035 PMCID: PMC11903797 DOI: 10.1016/j.heliyon.2025.e42630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
The high level of boron in dryland and semi-arid soils is an important issue that strongly affects growing and developing crops, especially under drought stress. Meanwhile, brassinosteroid (BR) as a noval stress hormone can improve resistance to abiotic stress in plants. To explore the appropriate foliar application of boron (0.5 and 1 %) and 24-Epi-brassinolide (0.5 and 1 μM) and their combinations on camelina (Camelina sativa L.) under irrigation regimes a field experiment was conducted during 2018-2020 years. Irrigation regime consisted of well irrigation from emergence until the end of the growing season (WI0), withholding irrigation from flowering to siligue formation (WI1), and withholding irrigation from siligue formation to harvest (WI2)]. Our finding revealed that boron had a destructive effect on phytochemical parameters of camelina while application of brassinolide mitigated the boron impacts and improved the parameters. Results showed the highest increase in chlorophyll a (26.8 and 23.8 %) at B0.5 + BR0.5 treatments under WI1 and WI2 conditions, respectively. Application of BR (0.5 and 1 μM) and low level of B (B0.5 %) combination alleviated drought stress by improving osmolyte accumulation (proline) (5-9% increase), antioxidant enzymes, superoxide dismutase (SOD) (5.35-5.72 % increase), catalase (CAT) capacity (4.10 % increase) and secondary metabolites (total phenol and flavonoid) (6.78-10.26 % and 4.60-5.27 % increase). Further, malondealdehide (MDA) decreased (8.73 %) at BR and B combination and increased with a high level of B (B1%) application under-withholding irrigation. All of these results confirmed that BR and B synergistically (mainly B0.5 + BR0.5 and B0.5 + BR1) regulate the phytochemical properties response in the camelina plant to drought stress.
Collapse
Affiliation(s)
- Sajjad Aghdasi
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - Majid AghaAlikhani
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | | | - Danial Kahrizi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Panozzo A, Bolla PK, Barion G, Botton A, Vamerali T. Phytohormonal Regulation of Abiotic Stress Tolerance, Leaf Senescence and Yield Response in Field Crops: A Comprehensive Review. BIOTECH 2025; 14:14. [PMID: 40227279 PMCID: PMC11939854 DOI: 10.3390/biotech14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal balance, thereby enhancing plant adaptation to adverse conditions. While several studies have advanced our understanding of the use of phytohormones in field crops, yield responses and species-specific application strategies remain inconsistent and rarely assessed under field conditions. The application of cytokinins (CKs), abscisic acid (ABA), and gibberellic acid (GA) has been shown to maintain prolonged photosynthetic activity, stabilize plasma membrane, and reduce lipid peroxidation and ion accumulation under salinity stress in wheat. Additionally, inhibitors of ethylene synthesis and receptors can mitigate stress symptoms under drought and heat stress, which typically accelerates senescence and shortens the grain-filling period in cereal crops. In this way, exogenous application of CKs, GA, and ethylene inhibitors can delay senescence by sustaining leaf photosynthetic activity and postponing nutrient remobilization. However, these benefits may not consistently translate into improvements in grain yield and quality. This review explores the molecular mechanisms of phytohormones in abiotic stress tolerance, delineates their specific functions and evaluates experimental findings from field applications. It also summarizes the potential of phytohormone applications in field crops, emphasizing the need for species-specific investigations on application timing and dosages under open-field conditions to optimize their agronomic potential.
Collapse
Affiliation(s)
- Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (P.K.B.); (G.B.); (A.B.); (T.V.)
| | | | | | | | | |
Collapse
|
17
|
Zhao Q, Zheng X, Wang C, Wang Q, Wei Q, Liu X, Liu Y, Chen A, Jiang J, Zhao X, He T, Qi J, Han Y, Qin H, Xie F, Chen Y. Exogenous Melatonin Improves Drought Tolerance by Regulating the Antioxidant Defense System and Photosynthetic Efficiency in Fodder Soybean Seedings. PLANTS (BASEL, SWITZERLAND) 2025; 14:460. [PMID: 39943023 PMCID: PMC11819762 DOI: 10.3390/plants14030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Fodder soybean (Glycine max L.) with high protein and yield is a popular forage grass in northeast China. Seasonal drought inhibits its growth and development during seedling stage. The objective of this study was to observe morpho-physiological changes in fodder soybean seedlings under melatonin (MT) treatments and identify appropriate concentration to alleviate the drought damage. Two varieties commonly used in northeast China were treated with 0, 50, 100, and 150 μM melatonin at soil water content of 30%. The results indicated that applying melatonin enhanced height, biomass and altered root morphology of fodder soybean seedlings under water-deficient conditions. The treatments with melatonin at different concentrations significantly reduced the contents of H2O2, O2- and MDA, while boosting the capacity of the antioxidant defense system and the content of osmotic adjustment substances. Meanwhile, increases in light energy capture and transmission efficiency were observed. Furthermore, treatment with melatonin regulated the expression levels of genes associated with photosynthesis and the antioxidant defense system. Notably, 100 μM melatonin treatment produced the most favorable effect in all treatments under drought conditions. These research results provide new information for enhancing the drought tolerance of fodder soybean using chemical measures.
Collapse
Affiliation(s)
- Qianhan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueling Zheng
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Chen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qinyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qiyun Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xiashun Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yujiao Liu
- Fujian Zhongke Biological Co., Ltd., Xiamen 361001, China
| | - Along Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jia Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueying Zhao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Tiantian He
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jiayi Qi
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Yuchen Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Haonan Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| |
Collapse
|
18
|
Luqman T, Hussain M, Khan MKR. Harnessing multivariate insights coupled with susceptibility indices to reveal morpho-physiological and biochemical traits in heat tolerance of cotton. BMC PLANT BIOLOGY 2025; 25:126. [PMID: 39881237 PMCID: PMC11780772 DOI: 10.1186/s12870-025-06141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment. Analysis of variance revealed significant differences among the genotypes for all the studied traits. Morphological traits, including root and shoot length, fresh and dry root, and shoot weights, were adversely affected by heat stress. Chlorophyll contents declined significantly, indicating impaired and compromised photosynthetic efficiency. Biochemical assays underlined the elevated activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), total free amino acids (TFA), total soluble sugars (TSS), proline content and declined production of total soluble proteins (TSP), which is indicative of oxidative stress. Physiological traits such as photosynthetic rate and cell membrane stability% decreased severely under stress conditions. The first five PCs under control and the first six PCs under stresses depicted eigenvalues > 1 and presented 72.96%, 76.11%, and 77.93% of total cumulative variability under control, T1 and T2, respectively. Cell membrane stability, a potential marker for heat tolerance, showed a strong positive correlation with total soluble sugars (TSS) and root length (RL) under extreme stress. Based on clustering, the genotypes were classified into four groups. Stress susceptibility indices indicated that NIAB-545 and FH-142 are promising genotypes for developing heat tolerance breeding strategies in cotton.
Collapse
Affiliation(s)
- Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan.
| | - Manzoor Hussain
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan.
| |
Collapse
|
19
|
Medina-Lozano I, Grimplet J, Díaz A. Harnessing the diversity of a lettuce wild relative to identify anthocyanin-related genes transcriptionally responsive to drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494339. [PMID: 39911652 PMCID: PMC11795315 DOI: 10.3389/fpls.2024.1494339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Lettuce is a crop particularly vulnerable to drought. A transcriptomic study in the variety 'Romired' and the wild relative Lactuca homblei was conducted to understand the increase in anthocyanins (only significant in L. homblei) in response to drought previously observed. RNA-seq revealed more differentially expressed genes (DEGs), especially upregulated, in the wild species, in which the most abundant and significant GO terms were involved in regulatory processes (including response to water). Anthocyanin synthesis was triggered in L. homblei in response to drought, with 17 genes activated out of the 36 mapped in the phenylpropanoid-flavonoid pathway compared to 7 in 'Romired'. Nineteen candidate DEGs with the strongest change in expression and correlation with both anthocyanin content and drought were selected and validated by qPCR, all being differentially expressed only in the wild species with the two techniques. Their functions were related to anthocyanins and/or stress response and they harboured 404 and 11 polymorphisms in the wild and cultivated species, respectively. Some wild variants had high or moderate predicted impacts on the respective protein function: a transcription factor that responds to abiotic stresses, a heat shock protein involved in stomatal closure, and a phospholipase participating in anthocyanin accumulation under abiotic stress. These genetic variants could explain the differences in the gene expression patterns between the wild (significantly up/downregulated) and the cultivated (no significant changes) species. The diversity of this crop wild relative for anthocyanin-related genes involved in the response to drought could be exploited to improve lettuce resilience against some adverse climate effects.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Jérôme Grimplet
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Aurora Díaz
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| |
Collapse
|
20
|
Wang R, Qin X, Pan H, Li D, Xiao X, Jin Y, Wang Y, Liang H. Assessing the effects of drought stress on photosynthetic performance and physiological resistance in camphor seedling leaves. PLoS One 2025; 20:e0313316. [PMID: 39775283 PMCID: PMC11709312 DOI: 10.1371/journal.pone.0313316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects. Treatments included normal water supply (CK), light drought (D1), moderate drought (D2), and severe drought (D3). Physiological indicators including net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci) were measured. Additionally, the stomatal limitation value (Ls) was calculated using the formula Ls = 1-Ci/Ca, and water use efficiency (WUE) was computed as Pn/Tr. Furthermore, parameters such as PIABS (Performance Index based on absorbed light energy), WK (the ratio of variable fluorescence FK at the K point to the amplitude FO-FJ), VJ (the ratio of variable fluorescence FJ at the J point to the amplitude FO-FP), ΔI/I0 (the relative amplitude of the 820 nm light absorption curve), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) were measured to evaluate the impact of drought stress on various physiological processes and antioxidant enzyme activities. Results showed significant decreases in base diameter growth (GD) and seedling height growth (GH) with increasing drought stress. Notably, moderate (D2) and severe (D3) drought treatments led to negative GD values. GD decreased by 23.79%, 114.85%, and 175.50% for D1, D2, and D3 treatments, respectively, while reductions of 40.00%, 73.33%, and 90.00% in GD were observed compared to the control (CK). Pn decreased significantly across treatments, with D1CK>D2>D3. Light energy transmission to PSI by the unit reaction center (REo/RC) initially increased then decreased, significantly smaller in D3 compared to D1. Conversely, heat dissipation absorbed by the unit reaction center (DIo/RC) increased notably in D3 compared to D1 and CK. PIABS, WK, VJ, and ΔI/I0 decreased over time, while Rubisco enzyme activity decreased, while proline (Pro) levels increased. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) levels significantly increased during D1 treatment but decreased with D2 and D3 treatments. Overall, drought severity had varying impacts on Cinnamomum camphora growth and photosynthetic structure, with D1 treatment maintaining normal growth and metabolic activities, while D2 and D3 treatments resulted in severe membrane damage, rendering seedlings essentially unable to survive. These findings provide a theoretical basis for implementing water management practices and conservation strategies for camphor seedlings.
Collapse
Affiliation(s)
- Renjie Wang
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Nanning, P. R. China
| | - Xingxing Qin
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Huibiao Pan
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou, P. R. China
| | - Dianyun Li
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou, P. R. China
| | - Xiao Xiao
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou, P. R. China
| | - Yuke Jin
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Yong Wang
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Nanning, P. R. China
| | - Huizi Liang
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Nanning, P. R. China
| |
Collapse
|
21
|
Shahzadi H, Khan S, Al-Hashimi A, Basra SMA, Mehmood K, Wahid MA, Nawaz M, Irshad S, Haseeb A, Rais A, Gul S, Ibrar D, Dwiningsih Y. Preliminary study on unlocking growth and yield potential of USDA foxtail millet (Setaria italica L.) lines with NPK fertilization. BMC PLANT BIOLOGY 2025; 25:22. [PMID: 39762729 PMCID: PMC11705894 DOI: 10.1186/s12870-024-05960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability. The planned research was carried out at the green house of the Department of Agronomy, University of Agriculture, Faisalabad, Pakistan, to investigate the impact of various levels of NPK fertilizer on the growth, development, and yield of foxtail millet lines from USDA germplasm. Eight lines of foxtail millet; U2, V19, V73, V93, V101, V106, V107, and V111, were under study along with NPK fertilizers' treatments; T1 = 000 NPK as a control, T2 = 20:15:15 NPK, T3 = 30:20:20 NPK, T4 = 40:25:25 NPK, and T5 = 50:30:30 NPK (kg ha- 1). NPK treatments were applied twice during the study periods: first dose was applied after one week of the emergence of seedlings and the second dose was applied at the age of four weeks of seedlings. The time to 50% emergence ranged from 4.33 (V111) to 5.92 (U2) days, and the emergence was highest in V111 (10.02), and V19 had the lowest emergence index of 4.95. Furthermore, all genotypes achieved a complete final emergence percentage of 100, except U2 (92.89%) and V19 (89.33%). The highest growth rate and assimilation rate were observed in V111 and V107 under the impact of treatment 5. Among the different treatments, T3 resulted in the maximum plant height, panicle length, and grain yield per panicle. The highest panicle weight and grain yield per panicle were observed in line V106. Line V107 synthesized the highest chlorophyll a while V93 produced highest chlorophyll b contents which is statistically similar toV19. Line V19 had the highest total chlorophyll and V93 produced the highest carotenoid contents. Application of NPK at the rate of 50:30:30 kg ha- 1 produced maximum chlorophyll a (23%), b (15.8%), total chlorophyll contents (14.2%), plant fresh biomass (2.06%), and grain yield (23.6%) as compared to control treatment. Overall, T3 (30:20:20) and T5 (50:30:30) were observed to be better as compared to other treatments. With respect to growth, yield, and chlorophyll contents, lines U2, V19, V93, V106, V107, and V111 were observed to be potentially superior.
Collapse
Affiliation(s)
- Hira Shahzadi
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Shahbaz Khan
- Colorado Water Center, Colorado State University, Fort Collins, CO, USA.
- Central Great Plains Resources Management Research Unit, USDA-Agricultural Research Service, Akron, CO, USA.
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahzad M A Basra
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Kashf Mehmood
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | | | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sohail Irshad
- Department of Agronomy, MNS-University of Agriculture, Multan, Pakistan
| | - Abdul Haseeb
- Department of Botany, The Islamia University of Bahawalpur, Bahawalnagar Campus, Bahawalnagar, Pakistan
| | - Afroz Rais
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Safia Gul
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Danish Ibrar
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Yheni Dwiningsih
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
22
|
Sobatinasab Z, Rahimmalek M, Etemadi N, Szumny A. Nano Silicon Modulates Chemical Composition and Antioxidant Capacities of Ajowan ( Trachyspermum ammi) Under Water Deficit Condition. Foods 2025; 14:124. [PMID: 39796414 PMCID: PMC11719498 DOI: 10.3390/foods14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Ajowan (Trachyspermum ammi) is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan. Based on the GC-MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were determined as the main components of the oil. The thymol content ranged from 34.16% in the Ardabil population (irrigation at 50% and nano silicon at 1.5 mM) to 65.71% in the Khorbir population (without nano silicon and irrigation at 50%). The highest phenolic content was in Khormo with irrigation at 90% and without nano silicon (172.3 mg TAE/g DW), while the lowest was found in Hamedan (irrigation at 50% and without nano silicon (7.2 mg TAE/g DW)). Irrigation at 50% and no nano silicon treatment led to an increase in total flavonoids in Ardabil (46.786 mg QUE/g DW). The antioxidant activity of ajowan was evaluated using the DPPH assay. Accordingly, the highest antioxidant capacity was observed in Khormo (irrigation at 90% without nano silicon; 4126 µg/mL). Moreover, the highest thymol content was observed in the Khorbir population with irrigation at 50% and without nano silicon treatment. Furthermore, correlation and principal component analysis (PCA) provide new insights into the production of ajowan from their substrates under nano silicon treatment and water deficit conditions. Finally, the results revealed information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.
Collapse
Affiliation(s)
- Zahra Sobatinasab
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
23
|
Checchio MV, Bacha AL, Carrega WC, da Silveira Sousa Júnior G, da Costa Aguiar Alves PL, Gratão PL. Modulatory responses of physiological and biochemical status are related to drought tolerance levels in peanut cultivars. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:116-124. [PMID: 39541144 DOI: 10.1111/plb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Peanut (Arachis hypogaea L.) is the fourth most cultivated oilseed in the world, but its cultivation is subject to fluctuations in water demand. Current studies of tolerance between cultivars and physiological mechanisms involved in plant recovery after drought are insufficient for selection of tolerant cultivars. We evaluated tolerance of different peanut cultivars to water deficit and subsequent rehydration, based on physiological and biochemical status. Gas exchange, photosynthetic pigments, Fv/Fm, MDA, H2O2 and antioxidant enzyme activity were analysed. Drought stress and rehydration triggered distinct changes in pigments, Fv/Fm, gas exchange, and H2O2 across genotypes, with increased MDA in all cultivars under stress. Based on multivariate analysis, 'IAC Sempre Verde' was identified as most drought sensitive, while 'IAC OL3', 'IAC 503', and 'IAC OL6' exhibited variations in physiological responses and antioxidant activity correlated to their respective tolerance levels. Notably, 'IAC OL3' had higher WUE and enhanced enzymatic defence and was classified as the most drought tolerant in this context. The above findings suggest that antioxidant metabolism is a important factor for plant recovery post-rehydration. Our study provides insights into antioxidant and physiological responses of peanut cultivars, which can support breeding programs for selection of drought-tolerant genotypes. Future field studies should be conducted for a better understanding of tolerance of these cultivars, particularly through correlation of these data with crop yield impact.
Collapse
Affiliation(s)
- M V Checchio
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - A L Bacha
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | | | | | - P L da Costa Aguiar Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - P L Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
24
|
Abdullaev F, Churikova D, Pirogova P, Lysov M, Vodeneev V, Sherstneva O. Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 14:91. [PMID: 39795351 PMCID: PMC11723397 DOI: 10.3390/plants14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions. The development of drought stress modelled in laboratory conditions by stopping irrigation caused changes in chlorophyll fluorescence parameters that corresponded to a decrease in photosynthetic activity. In particular, a decrease in the photochemical quantum yield of photosystem II (ΦPSII), which characterizes the rate of linear electron transport in the photosynthetic electron transport chain and is one of the most sensitive parameters responding at the early stages of drought stress, was observed. Along with the measurement of the photosynthetic activity, spectral characteristics of wheat plants were recorded using hyperspectral imaging. Normalized difference indices (NDIs) were calculated using the reflectance intensity of wheat shoots in the range from 400 to 1000 nm. Four NDIs that showed a strong correlation with the level of photosynthetic activity estimated by ΦPSII were selected from different wavelength ranges (NDI610/450, NDI572/545, NDI740/700, and NDI820/630). The indices NDI572/545 and NDI820/630 showed the best combination of sensitivity to soil moisture deficit and strong relationship with photosynthetic activity under drought stress. Possible molecular and physiological causes of this relationship are discussed. The use of the proposed indices will allow to monitor in detail the specific features of wheat plant response and can serve as one of the criteria for selection of the most promising genotypes in breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Firuz Abdullaev
- Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Daria Churikova
- Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Polina Pirogova
- Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42–44 Bolshaya Morskaya, 190000 Saint Petersburg, Russia
| | - Maxim Lysov
- Department of High-Performance Computing and System Programming, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Sugiura D, Mitsuya S, Takahashi H, Yamamoto R, Miyazawa Y. Microcontroller-based water control system for evaluating crop water use characteristics. PLANT METHODS 2024; 20:179. [PMID: 39582011 PMCID: PMC11585949 DOI: 10.1186/s13007-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Climate change and the growing demand for agricultural water threaten global food security. Understanding water use characteristics of major crops from leaf to field scale is critical, particularly for identifying crop varieties with enhanced water-use efficiency (WUE) and stress tolerance. Traditional methods to assess WUE are either by gas exchange measurements at the leaf level or labor-intensive manual pot weighing at the whole-plant level, both of which have limited throughput. RESULTS Here, we developed a microcontroller-based low-cost system that integrates pot weighing, automated water supply, and real-time monitoring of plant water consumption via Wi-Fi. We validated the system using major crops (rice soybean, maize) under diverse stress conditions (salt, waterlogging, drought). Salt-tolerant rice maintained higher water consumption and growth under salinity than salt-sensitive rice. Waterlogged soybean exhibited reduced water use and growth. Long-term experiments revealed significant WUE differences between rice varieties and morphological adaptations represented by altered shoot-to-root ratios under constant drought conditions in maize. CONCLUSIONS We demonstrate that the system can be used for varietal differences between major crops in their response to drought, waterlogging, and salinity stress. This system enables high-throughput, long-term evaluation of water use characteristics, facilitating the selection and development of water-saving and stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryo Yamamoto
- Graduate School of Engineering, Technical Office, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshiyuki Miyazawa
- Campus Planning Office, Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
26
|
Maslard C, Arkoun M, Leroy F, Girodet S, Salon C, Prudent M. Decoding the Double Stress Puzzle: Investigating Nutrient Uptake Efficiency and Root Architecture in Soybean Under Heat- and Water-Stresses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39558463 DOI: 10.1111/pce.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
In the context of climate change, associated with increasingly frequent water deficits and heat waves, there is an urgent need to maintain the performance of soybean, a leading legume crop worldwide, before its yield declines. The objective of this study was to explore which plant traits improve soybean tolerance to heat and/or water stress, with a focus on traits involved in plant architecture and nutrient uptake. For this purpose, two soybean genotypes were grown under controlled conditions in a high-throughput phenotyping platform where either optimal conditions, heat waves, water stress or both heat waves and water stresses were applied during the vegetative stage. By correlating architectural to functional traits, related to water, carbon allocation and nutrient absorption, we were able to explain the stress susceptibility level of the two genotypes. We have shown that water flow in the plant is central to the uptake and allocation of mineral elements in the plant, despite its modulation by stress and in a genotype-dependent manner. This cross-analysis of plant ecophysiology and plant nutrition under different stresses provides new information, especially on the importance of mineral elements in the different plant organs, and can inform future crop design, particularly under changing climatic conditions.
Collapse
Affiliation(s)
- Corentin Maslard
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Fanny Leroy
- Plateforme PLATIN', US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
27
|
Shirvani-Naghani S, Fallah S, Pokhrel LR, Rostamnejadi A. Drought stress mitigation and improved yield in Glycine max through foliar application of zinc oxide nanoparticles. Sci Rep 2024; 14:27898. [PMID: 39537733 PMCID: PMC11560926 DOI: 10.1038/s41598-024-78504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of climate change on agricultural production is apparent due to declining irrigation water availability vis-à-vis rising drought stress, particularly affecting summer crops. Growing evidence suggests that zinc (Zn) supplementation may serve as a potential drought stress management strategy in agriculture. Field studies were conducted using soybean (Glycine max var. Saba) as a model crop to test whether foliar application of zinc oxide nanoparticles (ZnO-NPs) or conventional Zn fertilizer (ZnSO4) would mitigate drought-related water stress and improve soybean yield. Each fertilizer was foliar applied twice at a two-week interval during the flowering stage. Experiments were concurrently conducted under non-drought conditions (70% field capacity) for comparison. Results showed drought significantly reduced relative water content, chlorophyll-a, and chlorophyll-b in untreated control plants by 35.7%, 47.7%, and 41.4%, respectively, compared to non-drought conditions (p < 0.05). Under drought conditions, ZnO-NPs (200 mg Zn/L) led to 33.1% and 20.7% increase in chlorophyll-a and chlorophyll-b levels, respectively, compared to ZnSO4 at 400 mg Zn/L. Likewise, catalase, peroxidase and superoxide dismutase activities increased by 62.6%, 39.5% and 28.5%, respectively, with ZnO-NPs (200 mg Zn/L) under drought compared to non-drought conditions. Proline was significantly increased under drought but was remarkably suppressed (~ 54% lower) with ZnO-NPs (200 mg Zn/L) treatment. More importantly, the highest seed yield was observed with ZnO-NPs (200 mg Zn/L) treatment under drought (39% higher than untreated control) and non-drought (79.4% higher than control) conditions. Overall, the findings suggest that ZnO-NPs could promote seed yield in soybean under drought stress via increased antioxidant activities, increased relative water content, decreased stress-related proline content, and increased photosynthetic pigments. It is recommended that foliar application of 200 mg Zn/L as ZnO-NPs could serve as an effective drought stress management strategy to improve soybean yield.
Collapse
Affiliation(s)
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Wang Y, Wu Y, Bao Q, Shi H, Zhang Y. Integrating Physiology, Transcriptome, and Metabolome Analyses Reveals the Drought Response in Two Quinoa Cultivars with Contrasting Drought Tolerance. Int J Mol Sci 2024; 25:12188. [PMID: 39596254 PMCID: PMC11594460 DOI: 10.3390/ijms252212188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is an annual broadleaf plant belonging to the Amaranthaceae family. It is a nutritious food crop and is considered to be drought-tolerant, but drought is still one of the most important abiotic stress factors limiting its yield. Quinoa responses to drought are related to drought intensity and genotype. This study used two different drought-responsive quinoa cultivars, LL1 (drought-tolerant) and ZK1 (drought-sensitive), to reveal the important mechanisms of drought response in quinoa by combining physiological, transcriptomic, and metabolomic analyses. The physiological analysis indicated that Chla/Chlb might be important for drought tolerance in quinoa. A total of 1756 and 764 differentially expressed genes (DEGs) were identified in LL1 and ZK1, respectively. GO (Gene Ontology) enrichment analysis identified 52 common GO terms, but response to abscisic acid (GO:0009737) and response to osmotic stress (GO:0006970) were only enriched in LL1. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that glycerophospholipid metabolism (ko00564) and cysteine and methionine metabolism (ko00270) ranked at the top of the list in both cultivars. A total of 1844 metabolites were identified by metabolomic analysis. "Lipids and lipid-like" molecules had the highest proportions. The DEMs in LL1 and ZK1 were mainly categorized 6 and 4 Human Metabolome Database (HMDB) superclasses, respectively. KEGG analysis revealed that the 'α-linolenic acid metabolism' was enriched in both LL1 and ZK1. Joint KEGG analysis also revealed that the 'α-linolenic acid metabolism' pathway was enriched by both the DEGs and DEMs of LL1. There were 17 DEGs and 8 DEMs enriched in this pathway, and methyl jasmonate (MeJA) may play an important role in the drought response of quinoa. This study will provide information for the identification of drought resistance in quinoa, research on the molecular mechanism of drought resistance, and genetic breeding for drought resistance in quinoa.
Collapse
Affiliation(s)
- Yang Wang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
- College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| | - Qinghan Bao
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
- College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Huimin Shi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| | - Yongping Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| |
Collapse
|
29
|
Georgieva K, Mihailova G. Acclimation of the Resurrection Plant Haberlea rhodopensis to Changing Light Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3147. [PMID: 39599356 PMCID: PMC11597834 DOI: 10.3390/plants13223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Resurrection plants present an attractive model for studying the mechanisms of desiccation tolerance. In addition to drought, the presence of light during desiccation is extremely dangerous. In the present study, we investigated the effect of light during the desiccation of shade and sun Haberlea rhodopensis from two different habitats by measuring the changes in electrolyte leakage, malondialdehyde and proline content, and photosynthetic and antioxidant activities. Moreover, the plasticity and acclimation ability of plants to changing light intensities were studied by desiccating shade plants under high light and sun plants under low light. The most significant differences between shade and sun plants were observed under moderate dehydration. Regardless of some decline in PSII activity in sun plants, it was much higher compared to shade plants. The lower PSII efficiency in the latter was accompanied by a higher extent of excitation pressure and consequently significant enhancement in non-photochemical quenching, Y(NPQ), and especially in the fraction of energy that is passively dissipated as heat and fluorescence, Y(NO). The activity of antioxidant enzymes remained high during the desiccation of H. rhodopensis, being higher in the sun compared to shade plants in an air-dried state. In addition, shade and sun plants showed high acclimation capacity when desiccated at opposite light intensities.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | | |
Collapse
|
30
|
Guo W, Lu Y, Du S, Li Q, Zou X, Zhang Z, Sui L. Endophytic Colonization of Beauveria bassiana Enhances Drought Stress Tolerance in Tomato via "Water Spender" Pathway. Int J Mol Sci 2024; 25:11949. [PMID: 39596021 PMCID: PMC11594164 DOI: 10.3390/ijms252211949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Drought stress is one of the most important climate-related factors affecting crop production. Tomatoes (Solanum lycopersicum L.) are economically important crops which are highly sensitive to drought. The entomopathogenic fungus Beauveria bassiana, a widely used biological insecticide, can form symbiotic relationships with plants via endophytic colonization, increasing plant biomass and the ability to resist biotic stress. Under simulated drought stress conditions, the biomass of tomato seedlings such as plant height, root length, stem diameter, fresh weight, and relative water content, as well as the density and size of stomata in tomato leaves were significantly increased after B. bassiana colonization via root irrigation (p < 0.05). Meanwhile, the physicochemical properties associated with drought resistance such as peroxidase activity and proline content increased significantly (p < 0.05), while malondialdehyde reduced significantly (p < 0.05), and the expression levels of key genes related to stomatal development and drought tolerance pathways increased significantly (p < 0.05). These results indicate that the colonization of B. bassiana enhances the water absorption capacity of tomato seedlings and the rate of transpiration significantly and increases drought tolerance in tomato via the "water spender" pathway, which provides a new strategy for improving crop resistance to drought stress.
Collapse
Affiliation(s)
- Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Song Du
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Agriculture, Jilin University of Agricultural Science and Technology, Jilin 132109, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| |
Collapse
|
31
|
Wei K, Sharifova S, Zhao X, Sinha N, Nakayama H, Tellier A, Silva-Arias GA. Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Mol Ecol 2024; 33:e17536. [PMID: 39360493 DOI: 10.1111/mec.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.
Collapse
Affiliation(s)
- Kai Wei
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Saida Sharifova
- Department of Life Sciences, Graduate School of Science, Arts and Technology, Khazar University, Baku, Azerbaijan
| | - Xiaoyun Zhao
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Neelima Sinha
- Department of Plant Biology, University of California Davis, Davis, California, USA
| | - Hokuto Nakayama
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Aurélien Tellier
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo A Silva-Arias
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
32
|
Yağcı A, Daler S, Kaya O. An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. PHYSIOLOGIA PLANTARUM 2024; 176:e14624. [PMID: 39537427 DOI: 10.1111/ppl.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.
Collapse
Affiliation(s)
- Adem Yağcı
- Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Türkiye
| | - Ozkan Kaya
- Republic of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Türkiye
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
33
|
Safdar A, Hameed A, Hassan HM. Biochemical and morpho-physiological insights revealed low moisture stress adaptation mechanisms in cotton (Gossypium hirsutum L.). Sci Rep 2024; 14:25942. [PMID: 39472516 PMCID: PMC11522388 DOI: 10.1038/s41598-024-77204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a multipurpose crop. Abiotic stresses, especially extreme heat and drought, limit crop growth and thus reduce cotton yield by about 50%. In this study, 30 cotton genotypes were tested against low moisture stress in a pot experiment in triplicates along with control under wire house conditions. At the 3-4 leaf stage, different morpho-physiological and biochemical parameters were measured in order to select the low moisture stress-tolerant genotypes. For the selection of the best performing genotypes, Multi-Trait Genotype-Ideotype Distance Index (MGIDI) was used for the ranking of genotypes on the basis of multiple indices. For biochemical traits, 09 (TPC, TF, TSP, MDA, SOD, POD, CAT, APX, and Proline) out of 24 showed significant genotypic effects and were used for MGIDI. Eight genotypes (N-812 N-1296 N-696 N-377 N-121-896 N-T86, and N-3496) were observed to be best performing than others at 25% selection pressure (SI = 25%). For morpho-physiological traits, 14 out of 15 showed significant genotypic effects and used for MGIDI. Ten genotypes (N-1237 N-812 N-1296 N-696 N-9078 N-377 N-512 N-121 N-375, and N-896) were observed to be best performing at 35% selection pressure (SI = 35%). Six genotypes, i.e. N-812-1296 N-696 N-377 N-121, and N-896 were found common in both MGIDI analysis. In conclusion, three genotypes, i.e. N-696, N-896, and N-T86 proved to be most resilient to low moisture stress. Develop protocols, identified genotypes and markers that can be used for development of climate-smart cotton genotypes.
Collapse
Affiliation(s)
- Ayesha Safdar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan.
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
34
|
Dong J, Ding C, Chen H, Fu H, Pei R, Shen F, Wang W. Functions of exogenous strigolactone application and strigolactone biosynthesis genes GhMAX3/GhMAX4b in response to drought tolerance in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2024; 24:1008. [PMID: 39455926 PMCID: PMC11515143 DOI: 10.1186/s12870-024-05726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated. RESULTS In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants. CONCLUSION These observations underscore that SLs significantly bolster cotton's resistance to drought stress.
Collapse
Affiliation(s)
- Jie Dong
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Cong Ding
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Huahui Chen
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Hailin Fu
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Renbo Pei
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fafu Shen
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
35
|
Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought Tolerance in Plants: Physiological and Molecular Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2962. [PMID: 39519881 PMCID: PMC11548289 DOI: 10.3390/plants13212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Drought, a significant environmental challenge, presents a substantial risk to worldwide agriculture and the security of food supplies. In response, plants can perceive stimuli from their environment and activate defense pathways via various modulating networks to cope with stress. Drought tolerance, a multifaceted attribute, can be dissected into distinct contributing mechanisms and factors. Osmotic stress, dehydration stress, dysfunction of plasma and endosome membranes, loss of cellular turgidity, inhibition of metabolite synthesis, cellular energy depletion, impaired chloroplast function, and oxidative stress are among the most critical consequences of drought on plant cells. Understanding the intricate interplay of these physiological and molecular responses provides insights into the adaptive strategies plants employ to navigate through drought stress. Plant cells express various mechanisms to withstand and reverse the cellular effects of drought stress. These mechanisms include osmotic adjustment to preserve cellular turgor, synthesis of protective proteins like dehydrins, and triggering antioxidant systems to counterbalance oxidative stress. A better understanding of drought tolerance is crucial for devising specific methods to improve crop resilience and promote sustainable agricultural practices in environments with limited water resources. This review explores the physiological and molecular responses employed by plants to address the challenges of drought stress.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, AREEO, Gachsaran 7589172050, Iran;
| | - Seyyedhamidreza Hashemipetroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari 4818166996, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
36
|
Chen F, Ha X, Ma T, Ma H. Comparative analysis of the physiological and transcriptomic profiles reveals alfalfa drought resistance mechanisms. BMC PLANT BIOLOGY 2024; 24:954. [PMID: 39394556 PMCID: PMC11470740 DOI: 10.1186/s12870-024-05671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Drought stress is a major limiting factor that affects forage yields, and understanding the drought resistance mechanism of plants is crucial for improving crop yields in arid areas. Alfalfa (Medicago sativa L.) is the most important legume plant, mainly planted in arid and semi-arid areas. However, the adaptability of alfalfa to drought stress and its physiological and molecular mechanisms of drought resistance remains unclear. RESULTS In this study, we analyzed the physiological and transcriptome responses of alfalfa cultivars with different drought resistances (drought-sensitive Gannong No. 3 (G3), drought-resistant Gannong No. 8 (G8), and strong drought-resistant Longdong (LD)) under drought stress at 0, 6, 12, and 24 h. LD had higher catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities and a higher soluble protein content, lower malondialdehyde (MDA) content, a lower O2·- production rate, and a lower H2O2 content than G8 and G3 (P < 0.05). The functional enrichment analysis, temporal expression pattern analysis, and weighted gene co-expression network analysis (WGCNA) of the differentially expressed genes (DEGs) showed phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, glycolysis/gluconeogenesis, glutathione metabolism, and biosynthesis of amino acid responses to drought stress in alfalfa. The differential expression of genes during phenylpropanoid biosynthesis, starch and sucrose metabolism, and the glutathione metabolism pathway was further studied, and it was speculated that PAL, COMT, 4CL, CCR, CAD, HXK, INV, SUS, WAXY, AGP, GST, and APX1 played important roles in the alfalfa drought stress response. CONCLUSIONS The aim of this study was to enhance alfalfa drought resistance by overexpressing positively regulated genes and knocking out negatively regulated genes, providing genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.
Collapse
Affiliation(s)
- Fenqi Chen
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Xue Ha
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
37
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
38
|
Abdullaev F, Pirogova P, Vodeneev V, Sherstneva O. Chlorophyll Fluorescence in Wheat Breeding for Heat and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2778. [PMID: 39409648 PMCID: PMC11478672 DOI: 10.3390/plants13192778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The constantly growing need to increase the production of agricultural products in changing climatic conditions makes it necessary to accelerate the development of new cultivars that meet the modern demands of agronomists. Currently, the breeding process includes the stages of genotyping and phenotyping to optimize the selection of promising genotypes. One of the most popular phenotypic methods is the pulse-amplitude modulated (PAM) fluorometry, due to its non-invasiveness and high information content. In this review, we focused on the opportunities of using chlorophyll fluorescence (ChlF) parameters recorded using PAM fluorometry to assess the state of plants in drought and heat stress conditions and predict the economically significant traits of wheat, as one of the most important agricultural crops, and also analyzed the relationship between the ChlF parameters and genetic markers.
Collapse
Affiliation(s)
| | | | | | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
39
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
40
|
Bolhassani Z, Feizian M, Sadegh Kasmaei L, Etesami H. Mitigating water deficit stress in lemon balm (Melissa officinalis L.) through integrated soil amendments: A pathway to sustainable agriculture. BMC PLANT BIOLOGY 2024; 24:900. [PMID: 39350003 PMCID: PMC11441069 DOI: 10.1186/s12870-024-05624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Lemon balm (Melissa officinalis L.) is a valuable medicinal plant, but its growth can be significantly impacted by drought stress. This study aimed to mitigate the adverse effects of water deficit stress on lemon balm biomass by integrating poultry manure compost, poultry manure biochar, NPK fertilizer, Trichoderma harzianum, Thiobacillus thioparus, and elemental sulfur as soil amendments. The experiment was conducted in a greenhouse using a completely randomized design with a factorial arrangement, consisting of three replicates. It included a water deficit stress factor at three levels (95-100%, 75-80%, and 55-60% of field capacity) and a soil amendment treatment factor with eleven different fertilizer levels. Treatments included control (no amendment), NPK fertilizer, poultry manure compost, poultry manure biochar, and combinations of these with T. harzianum, T. thioparus, and elemental sulfur under various water deficit levels. Water deficit stress significantly reduced photosynthetic pigments, gas exchange parameters, chlorophyll fluorescence, relative water content, and antioxidant enzyme activity, while increasing membrane permeability and lipid peroxidation in lemon balm plants. However, the integrated application of organic, biological, and chemical amendments mitigated these negative impacts. The combined treatment of poultry manure compost, poultry manure biochar, NPK fertilizer, T. harzianum, T. thioparus, and elemental sulfur was the most effective in improving the morpho-physiological properties (1.97-60%) and biomass (2.31-2.76 times) of lemon balm under water deficit stress. The results demonstrate the potential of this holistic approach to enhance the resilience of lemon balm cultivation in water-scarce environments. The integration of organic, biological, and chemical amendments can contribute to sustainable agricultural practices by improving plant morphological and physiological properties and plant performance under drought conditions.
Collapse
Affiliation(s)
- Zohreh Bolhassani
- Department of Soil Science and Engineering, Faculty of Agriculture, Lorestan University, Khoramabad, Iran
| | - Mohammad Feizian
- Department of Soil Science and Engineering, Faculty of Agriculture, Lorestan University, Khoramabad, Iran
| | | | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
41
|
Cao Q, Hao J, Zhang T, Liu L, Xu D, Wang C, Zhao Q, Zhang H, Zhang L. Isolation and functional analysis of the Larix olgensis LoNAC3 transcription factor gene. BMC PLANT BIOLOGY 2024; 24:881. [PMID: 39342102 PMCID: PMC11438299 DOI: 10.1186/s12870-024-05619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Larch is an important timber tree species. The traditional methods of tree genetic breeding have been progressing slowly. It is necessary to carry out gene function analysis and genetically modified breeding research. The NAC transcription factor family is a plant-specific transcription factor family with various biological functions, as shown in recent research. However, there are few studies on the NAC gene among gymnosperm coniferous species. RESULTS LoNAC3 with complete cds was identified and isolated from the cDNA of Larix olgensis based on transcriptome data. The cDNA length of LoNAC3 is 1185 bp, encoding 394 amino acids, with a conserved NAM domain located at the N-terminus, and subcellular localization in the nucleus. The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L. olgensis, the relative expression level of LoNAC3 was highest in the needles. After drought, salt, alkali stress and hormone treatment, expression was induced to different degrees. The expression level of LoNAC3 was significantly increased under drought and salt conditions. The relative expression level changed under methyl jasmonate (MeJA) and abscisic acid (ABA) treatment. By observing the phenotype of overexpressed LoNAC3 tobacco, it was found that overexpressed tobacco is shorter and blooms earlier than wild-type tobacco. Under abiotic stress, LoNAC3 overexpressed tobacco has lower germination rates and poorer growth status. Transgenic tobacco under stress treatment has a higher malondialdehyde (MDA) content than wild-type tobacco, while peroxidase (POD) activity is lower than wild-type tobacco. CONCLUSIONS Through the analysis of LoNAC3 sequence and promoter expression, it can be concluded that LoNAC3 is involved in the drought and salt stress response processes of L. olgensis, and is induced by ABA and MeJA expression. Overexpression of LoNAC3 leads to stunted tobacco growth and negatively regulates its tolerance to drought and salt stress through the reactive oxygen species pathway. The preliminary analysis of the expression pattern and function of the LoNAC3 can provide a theoretical basis and high-quality materials for genetic improvement of larch in later stages.
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Junfei Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Tiantian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Lu Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Daixi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Qingrong Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
42
|
Ming M, Zhang J, Zhang J, Tang J, Fu F, Cao F. Transcriptome Profiling Identifies Plant Hormone Signaling Pathway-Related Genes and Transcription Factors in the Drought and Re-Watering Response of Ginkgo biloba. PLANTS (BASEL, SWITZERLAND) 2024; 13:2685. [PMID: 39409555 PMCID: PMC11478988 DOI: 10.3390/plants13192685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024]
Abstract
Ginkgo biloba, usually referred to as a "living fossil," is widely planted in many countries because of its medicinal value and beautiful appearance. Owing to ginkgo's high resistance to drought stress, ginkgo seedlings can even survive withholding water for several days without exhibiting leaf wilting and desiccation. To assess the physiological and transcriptomic mechanisms involved in the drought stress and re-watering responses of Ginkgo biloba, ginkgo seedlings were subjected to drought treatment for 15 d (D_15 d) and 22 d (D_22 d) until they had severely wilted, followed by re-watering for 3 d (D_Re3 d) to restore normal growth. Variations in physiological characteristics (relative water content, malondialdehyde (MDA) content, stomatal aperture, and antioxidant enzyme activity) during drought and re-watering were assessed. In total, 1692, 2031, and 1038 differentially expressed genes (DEGs) were upregulated, while 1691, 2820, and 1910 were downregulated in D_15 d, D_22 d, and D_Re3 d, respectively, relative to the control. Three pathways, namely, plant hormone signal transduction, plant-pathogen interaction, and the plant MAPK signaling pathway, were enriched during drought stress and re-watering. The DEGs involved in plant hormone signal transduction pathways (those of IAA, CTK, GA, ABA, ETH, BR, SA, and JA) and the major differentially expressed transcription factors (TFs; MYB, bHLH, AP2/ERF, NAC, WRKY, and bZIP) were identified. Quantitative real-time PCR revealed six TFs as positive or negative regulators of drought stress response. These phenotype-related physiological characteristics, DEGs, pathways, and TFs provide valuable insights into the drought stress and re-watering responses in G. biloba.
Collapse
Affiliation(s)
| | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (M.M.); (J.Z.); (J.Z.); (J.T.)
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (M.M.); (J.Z.); (J.Z.); (J.T.)
| |
Collapse
|
43
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
44
|
Patwa N, Pandey V, Gupta OP, Yadav A, Meena MR, Ram S, Singh G. Unravelling wheat genotypic responses: insights into salinity stress tolerance in relation to oxidative stress, antioxidant mechanisms, osmolyte accumulation and grain quality parameters. BMC PLANT BIOLOGY 2024; 24:875. [PMID: 39304828 DOI: 10.1186/s12870-024-05508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Salt stress is a prominent abiotic stressor that imposes constraints on grain yield and quality across various crops, including wheat (Triticum aestivum). This study focused on assessing the genetic diversity of 20 wheat genotypes categorized as tolerant, moderately tolerant, and sensitive with three genotypes of unknown tolerance. To address salinity stress-related problems, different morpho-physiological, osmoprotectant, biochemical, yield, and grain quality-related parameters were analyzed under control (pH 8.0, EC 3.9) and saline-sodic (pH 9.4, EC 4.02) conditions in field. RESULTS Findings revealed noteworthy variations among the genotypes in response to salinity stress. Greater accumulation of Na+ and lower K+ content were observed in response to salt stress in the sensitive varieties HD1941 and K9162. Proline, a stress indicator, exhibited significantly (p ≤ 0.05) greater accumulation in response to salinity stress, particularly in the tolerant cultivars KRL210 and KH65. Salt stress induced the most significant decrease (p ≤ 0.05) in spike length, thousand-grain weight, and hectolitre weight coupled with increased protein content in sensitive varieties, resulting in diminished yield. CONCLUSION Correlation analysis of parameters under salinity stress showed that SOD, proline, and K+ contents can be used as the most efficient screening criteria for salinity stress during early developmental stages. Principal component analysis revealed that DBW187, DBW303, and DBW222 varieties were tolerant to salinity stress and exhibited an effective antioxidant system against salinity. This study will facilitate salt-tolerant wheat breeding in terms of the identification of tolerant lines by screening for limited traits in a wide range of germplasms.
Collapse
Affiliation(s)
- Neha Patwa
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
- Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119, India
| | - Vanita Pandey
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
| | - Om Prakash Gupta
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119, India
| | - Mintu Ram Meena
- ICAR-Sugarcane Breeding Institute, Regional Station, Karnal, 132001, India
| | - Sewa Ram
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Gyanendra Singh
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| |
Collapse
|
45
|
Chen J, Luo Y, Zhao X, Li Y, Mu J. Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats. PLANTS (BASEL, SWITZERLAND) 2024; 13:2601. [PMID: 39339577 PMCID: PMC11434847 DOI: 10.3390/plants13182601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Agriophyllum squarrosum (L.) Moq. is a highly prevalent xerophytic species found throughout northern China. It is suitable for cultivation in semi-arid sandy environments and may establish roots in arid desert locations. This species plays a pioneering and exploratory role in the colonization of desert plants. In this study, we selected A. squarrosum from the Urat desert steppe (UD) and Horqin sandy land (HS) to explore their adaptation mechanisms to drought and rehydration environments by using the pot weighing control method to simulate an arid environment. The findings showed that the control (watering to 60-65% of field capacity) exceeded its required amount and the leaves turned yellow. The chlorophyll content was lower than those under moderate and severe drought, and rehydration caused a decrease. However, the contents of malondialdehyde, soluble sugar, and proline in the drought treatment were higher than those in the control. Under moderate and severe drought, the chlorophyll content and the quantum efficiency of photosystem II (Fv/Fm) of A. squarrosum from UD were higher than those from HS. During drought and rehydration processes, the proline content was relatively lower, while the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the content of soluble sugar and soluble protein were higher. However, antioxidant enzymes and osmoregulators from UD were higher than those from HS. The results suggest that the stronger ability of A. squarrosum to endure drought environments in UD is due to the high level of antioxidant enzymes and osmoregulators, which are conducive to relieving cell membrane damage when subjected to drought and rehydration.
Collapse
Affiliation(s)
- Juanli Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yongqing Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
| | - Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
| |
Collapse
|
46
|
Aldaby ESE, Danial AW, Abdel-Basset R. Photosynthesizing carbonate/nitrate into Chlorococcum humicola biomass for biodiesel and Bacillus coagulans-based biohydrogen production. Microb Cell Fact 2024; 23:247. [PMID: 39261831 PMCID: PMC11391666 DOI: 10.1186/s12934-024-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Biofuel can be generated by different organisms using various substrates. The green alga Chlorococcum humicola OQ934050 exhibited the capability to photosynthesize carbonate carbon, maybe via the activity of carbonic anhydrase enzymes. The optimum treatment is C:N ratio of 1:1 (0.2 mmoles sodium carbonate and 0.2 mmoles sodium nitrate) as it induced the highest dry mass (more than 0.5 mg.mL-1). At this combination, biomass were about 0.2 mg/mL-1 carbohydrates, 0.085 mg/mL-1 proteins, and 0.16 mg/mL-1 oil of this dry weight. The C/N ratios of 1:1 or 10:1 induced up to 30% of the Chlorococcum humicola dry mass as oils. Growth and dry matter content were hindered at 50:1 C/N and oil content was reduced as a result. The fatty acid profile was strongly altered by the applied C.N ratios. The defatted leftovers of the grown alga, after oil extraction, were fermented by a newly isolated heterotrophic bacterium, identified as Bacillus coagulans OQ053202, to evolve hydrogen content as gas. The highest cumulative hydrogen production and reducing sugar (70 ml H2/g biomass and 0.128 mg/ml; respectively) were found at the C/N ratio of 10:1 with the highest hydrogen evolution efficiency (HEE) of 22.8 ml H2/ mg reducing sugar. The optimum treatment applied to the Chlorococcum humicola is C:N ratio of 1:1 for the highest dry mass, up to 30% dry mass as oils. Some fatty acids were induced while others disappeared, depending on the C/N ratios. The highest cumulative hydrogen production and reducing sugar were found at the C/N ratio of 10:1.
Collapse
Affiliation(s)
- Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - R Abdel-Basset
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
47
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
48
|
Lopes T, Costa P, Cardoso P, Figueira E. Bacterial Volatile Organic Compounds as a Strategy to Increase Drought Tolerance in Maize ( Zea mays L.): Influence on Plant Biochemistry. PLANTS (BASEL, SWITZERLAND) 2024; 13:2456. [PMID: 39273940 PMCID: PMC11397109 DOI: 10.3390/plants13172456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Maize is highly susceptible to drought, which affects growth and yield. This study investigated how bacterial volatile organic compounds (BVOCs) affect maize drought tolerance. Drought reduced shoot size but increased root length, an adaptation for accessing deeper soil moisture. BVOCs from strain D12 significantly increased root length and shoot growth under drought conditions. Drought also altered root biochemistry, decreasing enzyme activity, and increased osmolyte levels. BVOCs from strains F11 and FS4-14 further increased osmolyte levels but did not protect membranes from oxidative damage, while BVOCs from strains D12 and D7 strains reduced osmolyte levels and cell damage. In shoots, drought increased the levels of osmolytes and oxidative stress markers. BVOCs from FS4-14 had minimal effects on shoot biochemistry. BVOCs from D12 and F11 partially restored metabolic activity but did not reduce cell damage. BVOCs from D7 reduced metabolic activity and cell damage. These results suggest that BVOCs can modulate the biochemical response of maize to drought, with some strains evidencing the potential to enhance drought tolerance.
Collapse
Affiliation(s)
- Tiago Lopes
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Costa
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
49
|
Ling Y, Tan M, Xi Y, Li Z. Differential drought tolerance among dichondra (Dichondra repens) genotypes in relation to alterations in chlorophyll metabolism, osmotic adjustment, and accumulation of organic metabolites. PROTOPLASMA 2024; 261:897-909. [PMID: 38492055 DOI: 10.1007/s00709-024-01943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Dichondra (Dichondra repens) is an important ground cover plant for landscaping and establishment of green space, but adaptive mechanism of drought tolerance is not well understood in this species. This study was conducted to compare differential response to drought stress among three genotypes (Dr5, Duliujiang, and Dr29) based on integrated physiological, ultrastructural, and metabolic assays. Results showed that drought significantly inhibited photosynthesis, accelerated lipids peroxidation, and also disrupted water balance and cellular metabolism in dichondra plants. Dr5 showed better photochemical efficiency of photosystem II and water homeostasis, less oxidative damage, and more stable chlorophyll metabolism than Duliujinag or Dr29 in response to drought stress. In addition, Dr5 accumulated more amino acids, organic acids, and other metabolites, which was good for maintaining better antioxidant capacity, osmotic homeostasis, and energy metabolism under drought stress. Drought tolerance of Duliujiang was lower than Dr5, but better than Dr29, which could be positively correlated with accumulations of sucrose, maltitol, aconitic acid, isocitric acid, and shikimic acid due to critical roles of these metabolites in osmotic adjustment and metabolic homeostasis. Current findings provide insights into understanding of underlying mechanism of metabolic regulation in dichondra species. Dr5 could be used as an important drought-tolerant resource for cultivation and water-saving breeding.
Collapse
Affiliation(s)
- Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Xi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
50
|
Ru C, Hu X, Chen D, Wang W. Drought stimulus enhanced stress tolerance in winter wheat (Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108906. [PMID: 38986237 DOI: 10.1016/j.plaphy.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pn being 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
Collapse
Affiliation(s)
- Chen Ru
- School of Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|