1
|
Liu H, Li T, Hou J, Yin X, Wang Y, Si X, Rehman SU, Zhuang L, Guo W, Hao C, Zhang X. TaWUS-like-5D affects grain weight and filling by inhibiting the expression of sucrose and trehalose metabolism-related genes in wheat grain endosperm. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2018-2033. [PMID: 40048350 PMCID: PMC12120876 DOI: 10.1111/pbi.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 05/31/2025]
Abstract
Plant-specific WUSCHEL-related homeobox (Wox) transcription factors (TFs) are crucial for plant growth and development. However, the molecular mechanism of Wox-mediated regulation of thousand kernel weight (TKW) in crops remains elusive. In this research, we identified a major TKW-associated quantitative trait locus (QTL) on wheat chromosome 5DS by performing a genome-wide association study (GWAS) of a Chinese wheat mini-core collection (MCC) in four environments combined by bulked segregant analysis (BSA) and bulked segregant RNA-sequencing (BSR-seq) of wheat grains exhibiting a wide range of TKWs. The candidate TaWUS-like-5D was highly expressed in developing grains and was found to strongly negative influence grain TKW and wheat yield. Meanwhile, the RNAi lines, CRISPR/Cas9-edited single and double knockout mutants (AABBdd and AAbbdd), as well as the stop-gained aaBB Kronos mutants, exhibited a significant increase in grain size and TKW (P < 0.05 or P < 0.01) and a 10.0% increase in yield (P < 0.01). Further analyses indicated that TaWUS-like-5D regulates TKW by inhibiting the transcription of sucrose, hormone and trehalose metabolism-related genes, subsequently sharply decreasing starch synthesis in wheat grains. The results of this study provide a fundamental molecular basis for further elucidating the mechanism of Wox-mediated regulation of grain development in crops.
Collapse
Affiliation(s)
- Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiaotong Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yuquan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xuemei Si
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Shoaib Ur Rehman
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lei Zhuang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
2
|
Huang T, Zheng T, Hong P, He J, Cheng Y, Yang J, Zhou Y, Wang B, Zhou S, Cheng G, Jia H. Sucrose synthase 3 improves fruit quality in grape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109590. [PMID: 39933429 DOI: 10.1016/j.plaphy.2025.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Sucrose synthase (SS) is one of the key functional enzymes involved in sugar metabolism in plants, and its activity can directly affect sugar accumulation, thereby influencing fruit quality. Our previous research found an interaction between VvSS3 and VvSnRK1β. In this study, we discovered that SS enzyme activity was mainly oriented towards decomposition, with the highest activity occurring before the veraison stage, and the overall trend of SS enzyme activity changes was positively correlated with exogenous ABA concentration. Site-directed mutagenesis revealed that VvSS3S176 and VvSS3S381 were crucial sites for the interaction between VvSS3 and VvSnRK1β. Subcellular localization results showed that VvSS3S176 and VvSS3S381, as well as VvSS3, were located on the cell membrane. VvSS3 was sensitive to ABA, promoting the accumulation of soluble sugars and anthocyanins in transgenic callus, increasing endogenous ABA content, and reducing organic acid components. VvSS3S176 and VvSS3S381 only altered the activity of SS in the synthesis direction, while the transcription level of VvSnRK1β in transgenic callus significantly decreased. After exogenous ABA treatment, Ser176 and Ser381 reduced the inhibition of VvSS3 on VvSnRK1β expression. Mutation of the binding sites of VvSS3 prevented the formation of complexes VvSnRK1β-VvSS3, thus interfering with downstream metabolism. This suggests that VvSnRK1β may form a protein complex by interacting with VvSS3, participating in the accumulation of soluble sugars in grape fruits mediated by ABA response.
Collapse
Affiliation(s)
- Ting Huang
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Pingjing Hong
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Rd., Nanjing, 210095, China
| | - Jianjun He
- Guangxi Academy of Special Crops/Laboratory of Germplasm Innovation and Utilization of Specialized Economic Crops in North Guangxi, Guilin, 541004, Guangxi, China
| | - Yuanxin Cheng
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Jungui Yang
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Yunzhi Zhou
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Bo Wang
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Sihong Zhou
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China
| | - Guo Cheng
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Haifeng Jia
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
He X, Su C, Zhang X, Shi Z, Wang Y, Peng H, Fang S, Chen X, Yin H, Zeng J, Mu P. Identification of crucial drought-tolerant genes of barley through comparative transcriptomic analysis and yeast-based stress assay. Front Genet 2024; 15:1524118. [PMID: 39717481 PMCID: PMC11664224 DOI: 10.3389/fgene.2024.1524118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance. In this study, two barley materials with different drought tolerance were subjected to soil drought treatment, including a variety with strong drought tolerance (Hindmarsh) and a genotype with weaker drought tolerance (XZ5). Transcriptomic sequencing data from the aboveground parts of these plants led to the identification of 1,206 differentially expressed genes associated with drought tolerance. These genes were upregulated in Hindmarsh following drought stress exposure but downregulated or unchanged in XZ5 under these same conditions, or were unchanged in Hindmarsh but downregulated in XZ5. Pathway enrichment analyses suggested that these genes are most closely associated with defense responses, signal recognition, photosynthesis, and the biosynthesis of various secondary metabolites. Using protein-protein interaction networks, the ankyrin repeat domain-containing protein 17-like isoform X2 was predicted to impact other drought tolerance-related protein targets in Hindmarsh. In MapMan metabolic pathway analyses, genes found to be associated with the maintenance of drought tolerance in Hindmarsh under adverse conditions were predicted to include genes involved in the abscisic acid, cytokinin, and gibberellin phytohormone signaling pathways, genes associated with redox homeostasis related to ascorbate and glutathione S-transferase, transporters including ABC and AAAP, transcription factors such as AP2/ERF and bHLH, the heat shock proteins HSP60 and HSP70, and the sucrose non-fermenting-1-related protein kinase. Heterologous HvSnRK2 (one of the identified genes, which encodes the sucrose non-fermenting-1-related protein kinase) gene expression in yeast conferred significant drought tolerance, highlighting the functional importance of this gene as one linked with drought tolerance. This study revealed the drought tolerance mechanism of Hindmarsh by comparing transcriptomes while also providing a set of candidate genes for genetic efforts to improve drought tolerance in this and other crop species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Zhao S, Wu X, Liang J, Wang Z, Fan S, Du H, Yu H, Xiao Y, Peng F. Genetic Analysis of the Peach SnRK1β3 Subunit and Its Function in Transgenic Tomato Plants. Genes (Basel) 2024; 15:1574. [PMID: 39766841 PMCID: PMC11675834 DOI: 10.3390/genes15121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The sucrose non-fermentation-related kinase 1 (SnRK1) protein complex in plants plays an important role in energy metabolism, anabolism, growth, and stress resistance. SnRK1 is a heterotrimeric complex. The SnRK1 complex is mainly composed of α, β, βγ, and γ subunits. Studies on plant SnRK1 have primarily focused on the functional α subunit, with the β regulatory subunit remaining relatively unexplored. The present study aimed to elucidate the evolutionary relationship, structural prediction, and interaction with the core α subunit of peach SnRK1β3 (PpSnRK1) subunit. METHODS Bioinformatics analysis of PpSnRK1 was performed through software and website. We produced transgenic tomato plants overexpressing PpSnRK1 (OEPpSnRK1). Transcriptome analysis was performed on OEPpSnRK1 tomatoes. We mainly tested the growth index and drought resistance of transgenic tomato plants. RESULTS The results showed that PpSnRK1 has a 354 bp encoded protein sequence (cds), which is mainly located in the nucleus and cell membrane. Phylogenetic tree analysis showed that PpSnRK1β3 has similar domains to other woody plants. Transcriptome analysis of OEPpSnRK1β3 showed that PpSnRK1β3 is widely involved in biosynthetic and metabolic processes. Functional analyses of these transgenic plants revealed prolonged growth periods, enhanced growth potential, improved photosynthetic activity, and superior drought stress tolerance. CONCLUSIONS The study findings provide insight into the function of the PpSnRK1 subunit and its potential role in regulating plant growth and drought responses. This comprehensive analysis of PpSnRK1 will contribute to further enhancing our understanding of the plant SnRK1 protein complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Z.)
| |
Collapse
|
5
|
Kumar P, Madhawan A, Sharma A, Sharma V, Das D, Parveen A, Fandade V, Sharma D, Roy J. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108407. [PMID: 38340690 DOI: 10.1016/j.plaphy.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akshya Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Deepak Das
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
6
|
Hu Y, Lin Y, Xia Y, Xu X, Wang Z, Cui X, Han L, Li J, Zhang R, Ding Y, Chen L. Overexpression of OsSnRK1a through a green tissue-specific promoter improves rice yield by accelerating sheath-to-panicle transport of nonstructural carbohydrates and increasing leaf photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108048. [PMID: 37757719 DOI: 10.1016/j.plaphy.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The redistribution of nonstructural carbohydrates (NSCs) in rice (Oryza sativa) sheaths contributes greatly to grain filling. Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) regulates sheath-to-panicle transport of NSCs during rice grain filling; however, it is unknown whether elevated activity of SnRK1 in sheaths improves NSC transport and grain filling. Expression of OsSnRK1a is mainly responsible for regulating SnRK1 activity in rice sheaths. Analysis of transgenic rice plants containing the OsSnRK1a promoter::GUS construct indicated that OsSnRK1a is widely expressed in rice. Notably, OsSnRK1a is highly expressed in mesophyll cells of sheaths. Therefore, a green tissue promoter specifically expressed in sheaths and leaf parenchyma cells and phloem tissue was used to over-express OsSnRK1a in japonica rice. The transgenic lines exhibited increased SnRK1a expression and SnRK1 activity in sheaths. The NSC and starch in the transgenic lines and WT all showed accumulation before heading and during the early-filling stage, and declining at the peak filling stage. But the starch and NSC content in transgenic lines was lower than that of WT. Moreover, the transgenic lines showed lower sucrose contents and higher sucrose efflux rates. The accelerated sheath NSC transport improved grain filling, and stimulated panicle development in transgenic lines. SnRK1a expression and SnRK1 activity were also increased in the leaves of transgenic lines, which improved leaf photosynthetic activity and contributed to optimal grain filling and panicle development. These results verify the promotion of high SnRK1 activity in sheath NSC transport, and also provide a new approach to improving sheath NSC transport and rice yield.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xiran Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaoyang Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rongtao Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
7
|
Yue Q, Yang X, Cheng P, He J, Shen W, Li Y, Ma F, Niu C, Guan Q. Heterologous Overexpression of Apple MdKING1 Promotes Fruit Ripening in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2848. [PMID: 37571003 PMCID: PMC10421076 DOI: 10.3390/plants12152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Fruit ripening is governed by a complex regulatory network, and ethylene plays an important role in this process. MdKING1 is a γ subunit of SNF1-related protein kinases (SnRKs), but the function was unclear. Here, we characterized the role of MdKING1 during fruit ripening, which can promote fruit ripening through the ethylene pathway. Our findings reveal that MdKING1 has higher expression in early-ripening cultivars than late-ripening during the early stage of apple fruit development, and its transcription level significantly increased during apple fruit ripening. Overexpression of MdKING1 (MdKING1 OE) in tomatoes could promote early ripening of fruits, with the increase in ethylene content and the loss of fruit firmness. Ethylene inhibitor treatment could delay the fruit ripening of both MdKING1 OE and WT fruits. However, MdKING1 OE fruits turned fruit ripe faster, with an increase in carotenoid content compared with WT. In addition, the expression of genes involved in ethylene biosynthesis (SlACO1, SlACS2, and SlACS4), carotenoid biosynthesis (SlPSY1 and SlGgpps2a), and fruit firmness regulation (SlPG2a, SlPL, and SlCEL2) was also increased in the fruits of MdKING1 OE plants. In conclusion, our results suggest that MdKING1 plays a key role in promoting tomato fruit ripening, thus providing a theoretical basis for apple fruit quality improvement by genetic engineering in the future.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Yixuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Chundong Niu
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Qingmei Guan
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| |
Collapse
|
8
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Huang J, Zhao J, Wang X, Ma L, Ma Z, Meng X, Fan H. SnRK1 signaling regulates cucumber growth and resistance to Corynespora cassiicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111716. [PMID: 37086974 DOI: 10.1016/j.plantsci.2023.111716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Energy metabolism is one of the key factors determining the growth and development of plants and the response to biotic and abiotic stresses. Sucrose non-fermentation 1 related protein kinase 1 (SnRK1) is an important energy-sensitive regulator that plays a key role in the overall control of carbohydrate metabolism. However, little is known about the function of SnRK1 in cucumber. In this study, metformin (an SnRK1 activator) and trehalose (an SnRK1 inhibitor) were used to investigate the role of SnRK1 signaling in cucumber. The results showed that SnRK1 activation could inhibit the growth of cucumber, slow down the net photosynthetic rate (Pn), reduce the contents of photosynthetic pigments and soluble sugars, and suppress the expression of genes related to sucrose metabolism. By contrast, SnRK1 inhibition yielded opposite results. Furthermore, SnRK1 activation and CsSnRK1 over-expression improved cucumber resistance to Corynespora cassiicola. While, SnRK1 inhibition and CsSnRK1 silencing reduced the resistance of cucumber to C. cassiicola. The results indicated that CsSnRK1 gene can positively regulate the resistance of cucumber to C. cassiicola. We conclude that CsSnRK1 signaling plays an important role in balancing the growth and immune response of cucumber. These results can be applied to the improvement of disease-resistant cucumber varieties.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Juyong Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
10
|
Rong Y, Liao L, Li S, Wei W, Bi X, Sun G, He S, Wang Z. Comparative Transcriptomic and Physiological Analyses Reveal Key Factors for Interstocks to Improve Grafted Seedling Growth in Tangor. Int J Mol Sci 2023; 24:6533. [PMID: 37047507 PMCID: PMC10095262 DOI: 10.3390/ijms24076533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Interstock is an important agronomic technique for regulating plant growth and fruit quality, and overcoming the incompatibility between rootstocks and scions; however, the underlying mechanisms remain largely unknown. In this study, the effects and regulatory mechanisms of tangor grafting, with and without interstocks, on the growth and development of scions were analyzed by combining morphology, physiology, anatomy and transcriptomics. Morphological and physiological analyses showed that interstocks ('Aiyuan 38' and 'Daya') significantly improved the growth of seedlings, effectively enhanced the foliar accumulation of chlorophyll and carotenoids, and increased the thickness of leaf tissues. Using 'Aiyuan 38' as the interstock, photosynthetic efficiency and starch content of citrus seedlings improved. Transcriptomics showed that genes related to photosynthesis and photosynthetic antenna proteins were upregulated in interstock-treated seedlings, with significant upregulation of photosystem PSI- and PSII-related genes. In addition, multiple key genes may be involved in plant hormone signaling, starch and sucrose metabolism, and transcriptional regulation. Taken together, these findings provide novel insights into the role of interstocks in regulating and contributing to the growth and development of grafted seedlings, and will further define and deploy candidate genes to explore the mechanisms of rootstock-interstock-scion interactions.
Collapse
Affiliation(s)
- Yi Rong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Wen Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyi Bi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Bioactive Substances and Biological Functions in Malus hupehensis: A Review. Molecules 2023; 28:molecules28020658. [PMID: 36677713 PMCID: PMC9866576 DOI: 10.3390/molecules28020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Malus hupehensis (MH), as a natural resource, contains various active ingredients such as polyphenols, polysaccharides, proteins, amino acids, volatile substances, and other components. Increasingly, studies have indicated that MH showed a variety of biological activities, including antioxidant, hypoglycemic, hypolipidemic, anti-cancer, anti-inflammatory activities, and other activities. Hence, MH has attracted wide interest because of its high medical and nutritional value. It is necessary to review the active components and biological activities of MH. This paper systematically reviewed the chemical substances, biological activities, and potential problems of MH to further promote the related research of MH and provide an important reference for its application and development in medicine and food.
Collapse
|
12
|
The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity. Int J Mol Sci 2023; 24:ijms24021225. [PMID: 36674741 PMCID: PMC9861110 DOI: 10.3390/ijms24021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
SnRK1 protein kinase plays hub roles in plant carbon and nitrogen metabolism. However, the function of SnRK1 in legume nodulation and symbiotic nitrogen fixation is still elusive. In this study, we identified GmNodH, a putative sulfotransferase, as an interacting protein of GmSnRK1 by yeast two-hybrid screen. The qRT-PCR assays indicate that GmNodH gene is highly expressed in soybean roots and could be induced by rhizobial infection and nitrate stress. Fluorescence microscopic analyses showed that GmNodH was colocalized with GsSnRK1 on plasma membrane. The physical interaction between GmNodH and GmSnRK1 was further verified by using split-luciferase complementary assay and pull-down approaches. In vitro phosphorylation assay showed that GmSnRK1 could phosphorylate GmNodH at Ser193. To dissect the function and genetic relationship of GmSnRK1 and GmNodH in soybean, we co-expressed the wild-type and mutated GmSnRK1 and GmNodH genes in soybean hairy roots and found that co-expression of GmSnRK1/GmNodH genes significantly promoted soybean nodulation rates and the expression levels of nodulation-related GmNF5α and GmNSP1 genes. Taken together, this study provides the first biological evidence that GmSnRK1 may interact with and phosphorylate GmNodH to synergistically regulate soybean nodulation.
Collapse
|
13
|
Ruiz-Gayosso A, Rodríguez-Cruz I, Martínez-Barajas E, Coello P. Phosphorylation of DPE2 at S786 partially regulates starch degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:70-77. [PMID: 36335878 DOI: 10.1016/j.plaphy.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In plants, transitory starch is synthetized during the day and degraded at night to provide the continuous carbon needed for growth and development. Starch metabolism is highly coordinated, as the starch degradation rate must be coupled to the amount of starch synthetized during the day. Maltose is one of the chloroplastic products obtained from starch degradation, and maltose is exported to the cytosol where disproportionating enzyme-2 (DPE2) is responsible for its metabolism. The amount of DPE2 remained unchanged throughout the day, but its activity notably increased at the end of the day (7 p.m.), suggesting that posttranslational modification drives the mechanism underlying the regulatory activity of this enzyme. Sucrose nonfermenting-related kinase-1 (SnRK1), a protein kinase that controls the activity of several metabolic enzymes, was able to interact and phosphorylate DPE2 at three different residues localized in the α-glucanotransferase domain. This phosphorylation acts as a positive regulator of DPE2, increasing its activity. Complementation of dpe2-deficient mutants with the wild-type (WT) and S786A forms of DPE2 showed that the nonphosphorylated form of DPE2 only partially restored starch degradation, suggesting that phosphorylation at S786 is involved in enzyme regulation.
Collapse
Affiliation(s)
- A Ruiz-Gayosso
- Departamento de Bioquímica, Facultad de Química, UNAM, Cd. Mx, 04510, Mexico
| | - I Rodríguez-Cruz
- Departamento de Bioquímica, Facultad de Química, UNAM, Cd. Mx, 04510, Mexico
| | - E Martínez-Barajas
- Departamento de Bioquímica, Facultad de Química, UNAM, Cd. Mx, 04510, Mexico
| | - P Coello
- Departamento de Bioquímica, Facultad de Química, UNAM, Cd. Mx, 04510, Mexico.
| |
Collapse
|
14
|
Yu J, Tseng Y, Pham K, Liu M, Beckles DM. Starch and sugars as determinants of postharvest shelf life and quality: some new and surprising roles. Curr Opin Biotechnol 2022; 78:102844. [PMID: 36410153 DOI: 10.1016/j.copbio.2022.102844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
Abstract
Starch and sugars account for most of the dry weight of horticultural crops and in many species, are known determinants of quality. However, we posit that these carbohydrates often have less-obvious roles in plant tissues with direct implications for the postharvest quality and produce shelf life. The latter has not been given as much attention, but with the recent interest in reducing the scale of postharvest waste and loss, we highlight how dynamic changes in the spatial-temporal accumulation of carbohydrates, can influence myriads of biological processes affecting postharvest attributes. Versatile roles, some surprising, that carbohydrates play in determining produce of high value to consumers, are highlighted, and gene targets for biotechnological improvement are specified.
Collapse
Affiliation(s)
- Jingwei Yu
- SUSTech-PKU Joint Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yute Tseng
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Kien Pham
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Margaret Liu
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA.
| |
Collapse
|
15
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
16
|
Kumar P, Mishra A, Rahim MS, Sharma V, Madhawan A, Parveen A, Fandade V, Sharma H, Roy J. Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat. 3 Biotech 2022; 12:295. [PMID: 36276458 PMCID: PMC9519823 DOI: 10.1007/s13205-022-03364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03364-3.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
17
|
Hu Y, Bai J, Xia Y, Lin Y, Ma L, Xu X, Ding Y, Chen L. Increasing SnRK1 activity with the AMPK activator A-769662 accelerates seed germination in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:155-166. [PMID: 35696890 DOI: 10.1016/j.plaphy.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) plays a key role in rice germination. The small molecule drug, A-769662, activates AMP-activated protein kinase, a mammalian homolog of SnRK1. However, it is unknown whether A-769662 activates SnRK1, thereby affecting germination. SnRK1 in desalted extracts from germinating rice seeds was strongly activated by adding A-769662 in vitro. Applying 50 or 100 μM A-769662 accelerated germination and increased the root length, shoot length, and seedling fresh weight. 50 μM A-769662 treatment increased the catalytic activity and phosphorylation of SnRK1 during germination. Transcriptome analysis and biochemical validation were performed to investigate the mechanism whereby A-769662 treatment promoted rice germination. A-769662 treatment promoted starch hydrolysis by increasing the expression and activity of amylase and inhibited starch biosynthesis by decreasing the expression of OsAGPL2, OsAGPS2a, Wx, and SSIIa. The abscisic acid (ABA) level and gene expression of ABA-induced transcription factors, including OsNF-YC9, OsNF-YC12, OsWRKY24, OsPYL8, OsMKKK62, and OsMKKK63, which reduced the inhibition of germination by ABA were decreased under 50 μM A-769662 treatment. The increased expression of the OsACO3 and OsACO5 genes and increased ethylene levels under A-769662 treatment, which counteracted the inhibition of ABA on germination and, thus, promoted germination. These results demonstrate the activation of A-769662 on SnRK1 and further reveal the regulatory mechanism of A-769662 in rice seed germination and nutrient remobilization.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Li Ma
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China; Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing, China.
| |
Collapse
|
18
|
Dey SS, Sharma PK, Munshi AD, Jaiswal S, Behera TK, Kumari K, G. B, Iquebal MA, Bhattacharya RC, Rai A, Kumar D. Genome wide identification of lncRNAs and circRNAs having regulatory role in fruit shelf life in health crop cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884476. [PMID: 35991462 PMCID: PMC9383263 DOI: 10.3389/fpls.2022.884476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Cucumber is an extremely perishable vegetable; however, under room conditions, the fruits become unfit for consumption 2-3 days after harvesting. One natural variant, DC-48 with an extended shelf-life was identified, fruits of which can be stored up to 10-15 days under room temperature. The genes involved in this economically important trait are regulated by non-coding RNAs. The study aims to identify the long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) by taking two contrasting genotypes, DC-48 and DC-83, at two different fruit developmental stages. The upper epidermis of the fruits was collected at 5 days and 10 days after pollination (DAP) for high throughput RNA sequencing. The differential expression analysis was performed to identify differentially expressed (DE) lncRNAs and circRNAs along with the network analysis of lncRNA, miRNA, circRNA, and mRNA interactions. A total of 97 DElncRNAs were identified where 18 were common under both the developmental stages (8 down regulated and 10 upregulated). Based on the back-spliced reads, 238 circRNAs were found to be distributed uniformly throughout the cucumber genomes with the highest numbers (71) in chromosome 4. The majority of the circRNAs (49%) were exonic in origin followed by inter-genic (47%) and intronic (4%) origin. The genes related to fruit firmness, namely, polygalacturonase, expansin, pectate lyase, and xyloglucan glycosyltransferase were present in the target sites and co-localized networks indicating the role of the lncRNA and circRNAs in their regulation. Genes related to fruit ripening, namely, trehalose-6-phosphate synthase, squamosa promoter binding protein, WRKY domain transcription factors, MADS box proteins, abscisic stress ripening inhibitors, and different classes of heat shock proteins (HSPs) were also found to be regulated by the identified lncRNA and circRNAs. Besides, ethylene biosynthesis and chlorophyll metabolisms were also found to be regulated by DElncRNAs and circRNAs. A total of 17 transcripts were also successfully validated through RT PCR data. These results would help the breeders to identify the complex molecular network and regulatory role of the lncRNAs and circRNAs in determining the shelf-life of cucumbers.
Collapse
Affiliation(s)
- Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T. K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Boopalakrishnan G.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
19
|
Jiang B, Liu Y, Niu H, He Y, Ma D, Li Y. Mining the Roles of Wheat ( Triticum aestivum) SnRK Genes in Biotic and Abiotic Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:934226. [PMID: 35845708 PMCID: PMC9280681 DOI: 10.3389/fpls.2022.934226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 05/27/2023]
Abstract
Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Hongli Niu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiqin He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Longgan Lake National Nature Reserve Authority of Hubei, Huanggang, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| |
Collapse
|
20
|
Hu Y, Liu J, Lin Y, Xu X, Xia Y, Bai J, Yu Y, Xiao F, Ding Y, Ding C, Chen L. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. PLANT PHYSIOLOGY 2022; 189:1694-1714. [PMID: 35294032 PMCID: PMC9237689 DOI: 10.1093/plphys/kiac124] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
The remobilization of nonstructural carbohydrates (NSCs) reserved in rice (Oryza sativa) sheaths is essential for grain filling. This assimilate distribution between plant tissues and organs is determined by sucrose non-fermenting-1-related protein kinase 1 (SnRK1). However, the SnRK1-mediated mechanism regulating the sheath-to-panicle transport of NSCs in rice remains unknown. In this study, leaf cutting treatment was used to accelerate NSC transport in the rice sheaths. Accelerated NSC transport was accompanied by increased levels of OsSnRK1a mRNA expression, SnRK1a protein expression, catalytic subunit phosphorylation of SnRK1, and SnRK1 activity, indicating that SnRK1 activity plays an important role in sheath NSC transport. We also discovered that trehalose-6-phosphate, a signal of sucrose availability, slightly reduced SnRK1 activity in vitro. Since SnRK1 activity is mostly regulated by OsSnRK1a transcription in response to low sucrose content, we constructed an snrk1a mutant to verify the function of SnRK1 in NSC transport. NSCs accumulated in the sheaths of snrk1a mutant plants and resulted in a low seed setting rate and grain weight, verifying that SnRK1 activity is essential for NSC remobilization. Using phosphoproteomics and parallel reaction monitoring, we identified 20 SnRK1-dependent phosphosites that are involved in NSC transport. In addition, the SnRK1-mediated phosphorylation of the phosphosites directly affected starch degradation, sucrose metabolism, phloem transport, sugar transport across the tonoplast, and glycolysis in rice sheaths to promote NSC transport. Therefore, our findings reveal the importance, function, and possible regulatory mechanism of SnRK1 in the sheath-to-panicle transport of NSCs in rice.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongchao Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Lin Chen
- Authors for correspondence: (L.C); (C.D.)
| |
Collapse
|
21
|
Overexpression of PpSnRK1α in Tomato Increased Autophagy Activity under Low Nutrient Stress. Int J Mol Sci 2022; 23:ijms23105464. [PMID: 35628273 PMCID: PMC9141306 DOI: 10.3390/ijms23105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Plants suffer from a variety of environmental stresses during their growth and development. The evolutionarily conserved sucrose nonfermenting kinase 1-related protein kinase 1 (SnRK1) plays a central role in the regulation of energy homeostasis in response to stresses. In plant cells, autophagy is a degradation process occurring during development or under stress, such as nutrient starvation. In recent years, SnRK1 signaling has been reported to be an upstream activator of autophagy. However, these studies all focused on the regulatory effect of SnRK1 on TOR signaling and the autophagy-related gene 1 (ATG1) complex. In this study, overexpression of the gene encoding the Prunus persica SnRK1 α subunit (PpSnRK1α) in tomato improved the photosynthetic rates and enhanced the resistance to low nutrient stress (LNS). Overexpression of PpSnRK1α increased autophagy activity and upregulated the expression of seven autophagy-related genes (ATGs). The transcriptional levels of SlSnRK2 family genes were altered significantly by PpSnRK1α, signifying that PpSnRK1α may be involved in the ABA signaling pathway. Further analysis showed that PpSnRK1α not only activated autophagy by inhibiting target of rapamycin (TOR) signaling but also enhanced ABA-induced autophagy. This indicates that PpSnRK1α regulates the photosynthetic rate and induces autophagy, and then responds to low nutrient stress.
Collapse
|
22
|
Shah AN, Javed T, Singhal RK, Shabbir R, Wang D, Hussain S, Anuragi H, Jinger D, Pandey H, Abdelsalam NR, Ghareeb RY, Jaremko M. Nitrogen use efficiency in cotton: Challenges and opportunities against environmental constraints. FRONTIERS IN PLANT SCIENCE 2022; 13:970339. [PMID: 36072312 PMCID: PMC9443504 DOI: 10.3389/fpls.2022.970339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Nitrogen is a vital nutrient for agricultural, and a defieciency of it causes stagnate cotton growth and yield penalty. Farmers rely heavily on N over-application to boost cotton output, which can result in decreased lint yield, quality, and N use efficiency (NUE). Therefore, improving NUE in cotton is most crucial for reducing environmental nitrate pollution and increasing farm profitability. Well-defined management practices, such as the type of sources, N-rate, application time, application method, crop growth stages, and genotypes, have a notable impact on NUE. Different N formulations, such as slow and controlled released fertilizers, have been shown to improve N uptake and, NUE. Increasing N rates are said to boost cotton yield, although high rates may potentially impair the yield depending on the soil and environmental conditions. This study comprehensively reviews various factors including agronomic and environmental constraints that influence N uptake, transport, accumulation, and ultimately NUE in cotton. Furthermore, we explore several agronomic and molecular approaches to enhance efficiency for better N uptake and utilization in cotton. Finally, this objective of this review to highlight a comprehensive view on enhancement of NUE in cotton and could be useful for understanding the physiological, biochemical and molecular mechanism of N in cotton.
Collapse
Affiliation(s)
- Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
- *Correspondence: Adnan Noor Shah,
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong, China
- Depeng Wang,
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hirdayesh Anuragi
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Dinesh Jinger
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Anand, Gujarat, India
| | | | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Science Research and Technological Applications, Alexandria, Egypt
| | - Mariusz Jaremko
- Smart Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
23
|
Liang J, Zhang S, Yu W, Wu X, Wang W, Peng F, Xiao Y. PpSnRK1α overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato. PHYSIOLOGIA PLANTARUM 2021; 173:1808-1823. [PMID: 34387863 DOI: 10.1111/ppl.13523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Sucrose nonfermentation 1 (SNF1) related kinase 1 (SnRK1) is a central energy sensor kinase in plants and a key switch regulating carbon and nitrogen metabolism. Fruit quality depends on leaf photosynthetic efficiency and carbohydrate accumulation, but the role of peach (Prunus persica) SnRK1 α subunit (PpSnRK1α) in regulating leaf carbon metabolism and the light signal response remains unclear. We studied the carbon metabolism of tomato leaves overexpressing PpSnRK1α and the responses of PpSnRK1α-overexpressing tomato leaves to light signals. Transcriptome, metabolome, and real-time quantitative polymerase chain reaction analyses revealed that uridine 5'-diphosphoglucose, glutamate, and glucose-6-phosphate accumulated in tomato leaves overexpressing PpSnRK1α. The expression of genes (e.g., GDH2, SuSy) encoding enzymes related to carbon metabolism (e.g., glutamate dehydrogenase (GDH2; EC: 1.4.1.3), sucrose synthase (SS; EC: 2.4.1.13)) and chlorophyllase (CLH) encoding chlorophyllase (EC: 3.1.1.14), which regulates photosynthetic pigments and photosynthesis, was significantly increased in PpSnRK1α-overexpressing plants. PpSnRK1α overexpression inhibited the growth of hypocotyls and primary roots in response to light. The chlorophyll content of the leaves was increased, the activity of SS and ADPG pyrophosphatase (AGPase; EC: 2.7.7.27) was increased, and photosynthesis was promoted in PpSnRK1α-overexpressing plants relative to wild-type plants. Under light stress, the net photosynthetic rate of plants was significantly higher in plants overexpressing PpSnRK1α than in wild-type plants. This indicates that PpSnRK1α promotes the accumulation of carbohydrates by regulating genes related to carbon metabolism, regulating genes related to chlorophyll synthesis, and then responding to light signals to increase the net photosynthetic rate of leaves.
Collapse
Affiliation(s)
- Jiahui Liang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Wenying Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Wenru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| |
Collapse
|
24
|
Duan W, Zhang H, Xie B, Wang B, Hou F, Li A, Dong S, Qin Z, Wang Q, Zhang L. Nitrogen utilization characteristics and early storage root development in nitrogen-tolerant and nitrogen-susceptible sweet potato. PHYSIOLOGIA PLANTARUM 2021; 173:1090-1104. [PMID: 34287931 DOI: 10.1111/ppl.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sweet potato has been cultivated not only in marginal lands but also in fertile plains in northern China. The fertile nitrogen (N)-rich soil may inhibit storage root formation. Cultivars with different N tolerances and split application of reduced N rates should be considered. To investigate the effects of N on the N utilization, root differentiation, and storage root formation of cultivars with different N tolerances, the cultivars Jishu26 (J26) and Xushu32 (X32) were treated with three N levels supplied by urea: 0 (N0), 200 (N1) and 400 mg kg-1 (N2). With increasing N rates, "X32" absorbed less N in plants and distributed more N to developing storage roots than "J26." The storage root development of "J26" was sensitive to both N1 and N2, while that of "X32" was only sensitive to N2. High N nutrition upregulated the expression of certain genes during storage root formation, such as PAL, CHI, F3H, C4 H, 4CL, CAD, α-amylase, and β-amylase. Under N1 and N2, "X32" led to an increased sugar supply in sink organs and downregulated the expression of genes related to lignin and flavonoid synthesis, which promoted the C flux toward starch metabolism, thus reducing lignification and promoting starch accumulation during storage root formation. These results provide evidence for the effects of N on the C distribution in different metabolic pathways by regulating the expression of related key genes. N-tolerant cultivars are suitable in fertile plain areas because of the earlier formation of storage roots under high N conditions.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Baoqing Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
25
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
26
|
Zhang Y, Luo J, Peng F, Xiao Y, Du A. Application of Bag-Controlled Release Fertilizer Facilitated New Root Formation, Delayed Leaf, and Root Senescence in Peach Trees and Improved Nitrogen Utilization Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 12:627313. [PMID: 33868330 PMCID: PMC8044461 DOI: 10.3389/fpls.2021.627313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
It is very important to promote root growth and delay root and leaf senescence, to improve nitrogen absorption and utilization efficiency, and to improve the storage nutrition level of the tree, so as to improve the fruit quality and yield of peach. In this experiment, we compared and analyzed the effects of traditional fertilization and bag-controlled release fertilizer (BCRF) on the growth of shoots and roots, senescence of leaves and roots, and fruit yield and quality. Moreover, the impacts of BCRF on ammonia volatilization, nitrogen utilization rate, fine root turnover, and plant storage nutrients were also investigated. Compared with conventional fertilizer use, the application of BCRF significantly promoted the shoot growth of young peach trees. Additionally, BCRF delayed leaf senescence and increased root activity in autumn. This increased the storage nutrients of the peach tree. Compared with traditional fertilizer, ammonia volatilization reduced to 54.36% under BCRF application situation. BCRF also promoted the occurrence of fine roots and decreased the annual turnover rate. A 15N tracer test showed that, compared with traditional fertilizer, BCRF nitrogen utilization efficiency increased by 37.73% in peach trees under BCRF treatment significantly. The results from 3 consecutive years showed that the application of BCRF increased the yield of individual plants by 21.35% on average compared to the yield from plants receiving equal amounts of fertilizer applied by spreading (FSA). Thus, BCRF can promote the occurrence of fine roots and decrease the root annual turnover rate in peach trees, and it also improves the utilization efficiency of fertilizer, reduces ammonia volatilization, delays leaf senescence, and enhances storage nutrition, fruit yield, and fruit quality in peach trees.
Collapse
|
27
|
Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH 2021; 2:226-239. [PMID: 34377580 PMCID: PMC8209778 DOI: 10.1007/s42994-021-00053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Being sessile, plants have evolved sophisticated mechanisms to balance between growth and defense to survive in the harsh environment. The transition from growth to defense is commonly achieved by factors, such as protein kinases (PKs) and transcription factors, that initiate signal transduction and regulate specialized metabolism. Plants produce an array of lineage-specific specialized metabolites for chemical defense and stress tolerance. Some of these molecules are also used by humans as drugs. However, many of these defense-responsive metabolites are toxic to plant cells and inhibitory to growth and development. Plants have, thus, evolved complex regulatory networks to balance the accumulation of the toxic metabolites. Perception of external stimuli is a vital part of the regulatory network. Protein kinase-mediated signaling activates a series of defense responses by phosphorylating the target proteins and translating the stimulus into downstream cellular signaling. As biosynthesis of specialized metabolites is triggered when plants perceive stimuli, a possible connection between PKs and specialized metabolism is well recognized. However, the roles of PKs in plant specialized metabolism have not received much attention until recently. Here, we summarize the recent advances in understanding PKs in plant specialized metabolism. We aim to highlight how the stimulatory signals are transduced, leading to the biosynthesis of corresponding metabolites. We discuss the post-translational regulation of specialized metabolism and provide insights into the mechanisms by which plants respond to the external signals. In addition, we propose possible strategies to increase the production of plant specialized metabolites in biotechnological applications using PKs.
Collapse
|
28
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
29
|
Luo J, Peng F, Zhang S, Xiao Y, Zhang Y. The protein kinase FaSnRK1α regulates sucrose accumulation in strawberry fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:369-377. [PMID: 32276220 DOI: 10.1016/j.plaphy.2020.03.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 05/14/2023]
Abstract
In strawberry, sucrose is the major form of carbohydrate translocated from the leaves to the fruits and plays an important role in fruit ripening. As a conserved energy sensor, sucrose nonfermenting-1 (SNF1)-related kinase 1 (SnRK1) plays an important role in plant carbon metabolism. However, evidence that SnRK1 regulates sucrose accumulation in fruits is lacking. In this study, we transiently expressed FaSnRK1α in strawberry fruits and found that overexpression (OE) of the FaSnRK1α gene significantly increased the sucrose content, whereas repression of FaSnRK1α by RNA interference (RNAi) decreased the sucrose content. Further analysis revealed that FaSnRK1α increased the expression of FaSUS1 and FaSUS3 as well as the activity of sucrose synthase (SUS; EC 2.4.1.13) and that FaSPS1 expression and sucrose phosphate synthase (SPS; EC 2.4.1.14) activity were strongly downregulated, which decreased the accumulation of sucrose. However, the expression of FaSPS3, which is reported to contribute to sucrose accumulation, was induced by FaSnRK1α, and FaNI expression and invertase (INV; EC 3.2.1.26) activity were upregulated by FaSnRK1α. In addition, FaSnRK1α positively upregulated the expression of the sucrose transporter (SUT) genes FaSUT1 and FaSUT5 and interacted with FaSUS1, FaSPS1 and FaSPS3 proteins but not with FaSUS3, FaNI, FaSUT1 or FaSUT5 proteins. Overall, FaSnRK1α systematically regulates the expression of the genes and activities of key enzymes involved in the sucrose metabolic pathway and promotes the long-distance transport of sucrose, thereby increasing sucrose accumulation and ultimately promoting fruit ripening. However, the mechanisms by which sucrose transport and degradation are regulated by SnRK1 warrant additional research.
Collapse
Affiliation(s)
- Jingjing Luo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Yafei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| |
Collapse
|
30
|
Lai T, Wang X, Ye B, Jin M, Chen W, Wang Y, Zhou Y, Blanks AM, Gu M, Zhang P, Zhang X, Li C, Wang H, Liu Y, Gallusci P, Tör M, Hong Y. Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2995-3011. [PMID: 32016417 PMCID: PMC7260717 DOI: 10.1093/jxb/eraa067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/01/2020] [Indexed: 05/19/2023]
Abstract
SlSPL-CNR, an SBP-box transcription factor (TF) gene residing at the epimutant Colourless non-ripening (Cnr) locus, is involved in tomato ripening. This epimutant provides a unique model to investigate the (epi)genetic basis of fruit ripening. Here we report that SlSPL-CNR is a nucleus-localized protein with a distinct monopartite nuclear localization signal (NLS). It consists of four consecutive residues ' 30KRKR33' at the N-terminus of the protein. Mutation of the NLS abolishes SlSPL-CNR's ability to localize in the nucleus. SlSPL-CNR comprises two zinc-finger motifs (ZFMs) within the C-terminal SBP-box domain. Both ZFMs contribute to zinc-binding activity. SlSPL-CNR can induce cell death in tomato and tobacco, dependent on its nuclear localization. However, the two ZFMs have differential impacts on SlSPL-CNR's induction of severe necrosis or mild necrotic ringspot. NLS and ZFM mutants cannot complement Cnr fruits to ripen. SlSPL-CNR interacts with SlSnRK1. Virus-induced SlSnRK1 silencing leads to reduction in expression of ripening-related genes and inhibits ripening in tomato. We conclude that SlSPL-CNR is a multifunctional protein that consists of a distinct monopartite NLS, binds to zinc, and interacts with SlSnRK1 to affect cell death and tomato fruit ripening.
Collapse
Affiliation(s)
- Tongfei Lai
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Wang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bishun Ye
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mingfei Jin
- School of Life Sciences, East China Normal University, Shanghai, China
- Warwick-Hangzhou Joint RNA Signaling Laboratory, School of Life Sciences, University of Warwick, Coventry, UK
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yingying Zhou
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Andrew M Blanks
- Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Mei Gu
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinlian Zhang
- Department of Family Medicine and Public Health, Division of Biostatistics & Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - Chunyang Li
- Warwick-Hangzhou Joint RNA Signaling Laboratory, School of Life Sciences, University of Warwick, Coventry, UK
| | - Huizhong Wang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Philippe Gallusci
- Laboratory of Grape Ecophysiology and Functional Biology, Bordeaux University, INRA, Bordeaux Science Agro, Villenave d’Ornon, France
| | - Mahmut Tör
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, School of Science and the Environment, University of Worcester, Worcester, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Warwick-Hangzhou Joint RNA Signaling Laboratory, School of Life Sciences, University of Warwick, Coventry, UK
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, School of Science and the Environment, University of Worcester, Worcester, UK
- Correspondence: , or
| |
Collapse
|
31
|
Genome-Wide Characterization of Snf1-Related Protein Kinases (SnRKs) and Expression Analysis of SnRK1.1 in Strawberry. Genes (Basel) 2020; 11:genes11040427. [PMID: 32316116 PMCID: PMC7230852 DOI: 10.3390/genes11040427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
The plant sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs) are key regulators in the interconnection of various signaling pathways. However, little is known about the SnRK family in strawberries. In this study, a total of 26 FvSnRKs including one FvSnRK1, nine FvSnRK2s and 16 FvSnRK3s were identified from the strawberry genome database. They were respectively designated as FvSnRK1.1, FvSnRK2.1 to FvSnRK2.9 and FvSnRK3.1 to FvSnRK3.16, according to the conserved domain of each subfamily and multiple sequence alignment with Arabidopsis. FvSnRK family members were unevenly distributed in seven chromosomes. The number of exons or introns varied among FvSnRK1s, FvSnRK2s and FvSnRK3s, but highly conserved in the same subfamily. The FvSnRK1.1 had 10 exons. Most of FvSnRK2s had nine exons or eight introns, except FvSnRK2.4, FvSnRK2.8 and FvSnRK2.9. FvSnRK3 genes were divided into intron-free and intron-harboring members, and the number of introns in intron-harboring group ranged from 11 to 15. Moreover, the phylogenetic analysis showed SnRK1, SnRK2 and SnRK3 subfamilies respectively clustered together in spite of the different species of strawberry and Arabidopsis, indicating the genes were established prior to the divergence of the corresponding taxonomic lineages. Meanwhile, conserved motif analysis showed that FvSnRK sequences that belonged to the same subgroup contained their own specific motifs. Cis-element in promoter and expression pattern analyses of FvSnRK1.1 suggested that FvSnRK1.1 was involved in cold responsiveness, light responsiveness and fruit ripening. Taken together, this comprehensive analysis will facilitate further studies of the FvSnRK family and provide a basis for the understanding of their function in strawberry.
Collapse
|
32
|
Liu Y, Ren X, Jeong BR. Night Temperature Affects the Growth, Metabolism, and Photosynthetic Gene Expression in Astragalus membranaceus and Codonopsis lanceolata Plug Seedlings. PLANTS (BASEL, SWITZERLAND) 2019; 8:E407. [PMID: 31658714 PMCID: PMC6843391 DOI: 10.3390/plants8100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus and Codonopsis lanceolata are two important medical herbs used in traditional Oriental medicine for preventing cancer, obesity, and inflammation. Night temperature is an important factor that influences the plug seedling quality. However, little research has focused on how the night temperature affects the growth and development of plug seedlings of these two medicinal species. In this study, uniform plug seedlings were cultivated in three environmentally controlled chambers for four weeks under three sets of day/night temperatures (25/10 °C, 25/15 °C, or 25/20 °C), the same relative humidity (75%), photoperiod (12 h), and light intensity (150 μmol·m-2·s-1 PPFD) provided by white LEDs. The results showed that night temperature had a marked influence on the growth and development of both species. The night temperature of 15 °C notably enhanced the quality of plug seedlings evidenced by the increased shoot, root, and leaf dry weights, stem diameter, and Dickson's quality index. Moreover, a night temperature of 15 °C also stimulated and increased contents of primary and secondary metabolites, including soluble sugar, starch, total phenols and flavonoids. Furthermore, the 15 °C night temperature increased the chlorophyll content and stomatal conductance and decreased the hydrogen peroxide content. Analysis of the gene expression showed that granule-bound starch synthase (GBSS), ribulose bisphosphate carboxylase large chain (RBCL), and ferredoxin (FDX) were up-regulated when the night temperature was 15 °C. Taken together, the results suggested that 15 °C is the optimal night temperature for the growth and development of plug seedlings of A. membranaceus and C. lanceolata.
Collapse
Affiliation(s)
- Ya Liu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea.
| | - Xiuxia Ren
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea.
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
33
|
Wang J, Guan H, Dong R, Liu C, Liu Q, Liu T, Wang L, He C. Overexpression of maize sucrose non-fermenting-1-related protein kinase 1 genes, ZmSnRK1s, causes alteration in carbon metabolism and leaf senescence in Arabidopsis thaliana. Gene 2019; 691:34-44. [DOI: 10.1016/j.gene.2018.12.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
|
34
|
Dong S, Beckles DM. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:80-93. [PMID: 30685652 DOI: 10.1016/j.jplph.2019.01.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/01/2019] [Accepted: 01/12/2019] [Indexed: 05/21/2023]
Abstract
Starch is a significant store of sugars, and the starch-sugar interconversion in source and sink tissues plays a profound physiological role in all plants. In this review, we discuss how changes in starch metabolism can facilitate adaptive changes in source-sink carbon allocation for protection against environmental stresses. The stress-related roles of starch are described, and published mechanisms by which starch metabolism responds to short- or long-term water deficit, salinity, or extreme temperatures are discussed. Numerous examples of starch metabolism as a stress response are also provided, focusing on studies where carbohydrates and cognate enzymes were assayed in source, sink, or both. We develop a model that integrates these findings with the theoretical and known roles of sugars and starch in various species, tissues, and developmental stages. In this model, localized starch degradation into sugars is vital to the plant cold stress response, with the sugars produced providing osmoprotection. In contrast, high starch accumulation is prominent under salinity stress, and is associated with higher assimilate allocation from source to sink. Our model explains how starch-sugar interconversion can be a convergent point for regulating carbon use in stress tolerance at the whole-plant level.
Collapse
Affiliation(s)
- Shaoyun Dong
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, Valledor L. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep 2019; 9:350. [PMID: 30674892 PMCID: PMC6344539 DOI: 10.1038/s41598-018-35625-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays an important role in energy sensing and stress-adaptive responses in plant systems. In this study, Chlamydomonas CKIN family (SnRK in Arabidopsis) was defined after a genome-wide analysis of all sequenced Chlorophytes. Twenty-two sequences were defined as plant SnRK orthologs in Chlamydomonas and classified into two subfamilies: CKIN1 and CKIN2. While CKIN1 subfamily is reduced to one conserved member and a close protein (CKIN1L), a large CKIN2 subfamily clusters both plant-like and algae specific CKIN2s. The responsiveness of these genes to abiotic stress situations was tested by RT-qPCR. Results showed that almost all elements were sensitive to osmotic stress while showing different degrees of sensibility to other abiotic stresses, as occurs in land plants, revealing their specialization and the family pleiotropy for some elements. The regulatory pathway of this family may differ from land plants since these sequences shows unique regulatory features and some of them are sensitive to ABA, despite conserved ABA receptors (PYR/PYL/RCAR) and regulatory domains are not present in this species. Core Chlorophytes and land plant showed divergent stress signalling, but SnRKs/CKINs share the same role in cell survival and stress response and adaption including the accumulation of specific biomolecules. This fact places the CKIN family as well-suited target for bioengineering-based studies in microalgae (accumulation of sugars, lipids, secondary metabolites), while promising new findings in stress biology and specially in the evolution of ABA-signalling mechanisms.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Joana Amaral
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Amadeu Soares
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain.
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
36
|
Ren Z, He S, Zhao N, Zhai H, Liu Q. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:21-32. [PMID: 29734529 PMCID: PMC6330544 DOI: 10.1111/pbi.12944] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 05/09/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) is an essential energy-sensing regulator and plays a key role in the global control of carbohydrate metabolism. The SnRK1 gene has been found to increase starch accumulation in several plant species. However, its roles in improving starch quality have not been reported to date. In this study, we found that the IbSnRK1 gene was highly expressed in the storage roots of sweet potato and strongly induced by exogenous sucrose. Its expression followed the circandian rhythm. Its overexpression not only increased starch content, but also decreased proportion of amylose, enlarged granule size and improved degree of crystallinity and gelatinization in transgenic sweet potato, which revealed, for the first time, the important roles of SnRK1 in improving starch quality of plants. The genes involved in starch biosynthesis pathway were systematically up-regulated, and the content of ADP-glucose as an important precursor for starch biosynthesis and the activities of key enzymes were significantly increased in transgenic sweet potato. These findings indicate that IbSnRK1 improves starch content and quality through systematical up-regulation of the genes and the increase in key enzyme activities involved in starch biosynthesis pathway in transgenic sweet potato. This gene has the potential to improve starch content and quality in sweet potato and other plants.
Collapse
Affiliation(s)
- Zhitong Ren
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
- College of AgronomyQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
37
|
Wang F, Ren G, Li F, Wang B, Yang Y, Ma X, Niu Y, Ye Y, Chen X, Fan S, Wang T, Zhou Q. Overexpression of GmSnRK1, a soybean sucrose non-fermenting-1 related protein kinase 1 gene, results in directional alteration of carbohydrate metabolism in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1469431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Gaolei Ren
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Fengsheng Li
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Bowen Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yulin Yang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xiaowei Ma
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuan Niu
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Song Fan
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Tailin Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Qing Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| |
Collapse
|
38
|
Wang YY, Cheng YH, Chen KE, Tsay YF. Nitrate Transport, Signaling, and Use Efficiency. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:85-122. [PMID: 29570365 DOI: 10.1146/annurev-arplant-042817-040056] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitrogen accounts for approximately 60% of the fertilizer consumed each year; thus, it represents one of the major input costs for most nonlegume crops. Nitrate is one of the two major forms of nitrogen that plants acquire from the soil. Mechanistic insights into nitrate transport and signaling have enabled new strategies for enhancing nitrogen utilization efficiency, for lowering input costs for farming, and, more importantly, for alleviating environmental impacts (e.g., eutrophication and production of the greenhouse gas N2O). Over the past decade, significant progress has been made in understanding how nitrate is acquired from the surroundings, how it is efficiently distributed into different plant tissues in response to environmental changes, how nitrate signaling is perceived and transmitted, and how shoot and root nitrogen status is communicated. Several key components of these processes have proven to be novel tools for enhancing nitrate- and nitrogen-use efficiency. In this review, we focus on the roles of NRT1 and NRT2 in nitrate uptake and nitrate allocation among different tissues; we describe the functions of the transceptor NRT1.1, transcription factors, and small signaling peptides in nitrate signaling and tissue communication; and we compile the new strategies for improving nitrogen-use efficiency.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Hsuan Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-En Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
39
|
Yu W, Peng F, Xiao Y, Wang G, Luo J. Overexpression of PpSnRK1α in Tomato Promotes Fruit Ripening by Enhancing RIPENING INHIBITOR Regulation Pathway. FRONTIERS IN PLANT SCIENCE 2018; 9:1856. [PMID: 30619421 PMCID: PMC6304366 DOI: 10.3389/fpls.2018.01856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/30/2018] [Indexed: 05/14/2023]
Abstract
As a conserved kinase complex, sucrose non-fermenting-1-related protein kinase 1 (SnRK1) is a major regulator of plant growth and development. In our previous study, overexpression of MhSnRK1 in tomato (Solanum lycopersicum L.) modified fruit maturation: the transgenic fruit ripened earlier than the wild type (WT). However, the mechanism by which fruit maturation is regulated by SnRK1 is not clear; therefore, the test materials used were the transgenic tomato lines (OE-1, OE-3, and OE-4) overexpressing the coding gene of peach [Prunus persica (L.) Batsch] SNF1-related kinase α subunit (PpSnRK1α). The activity of SnRK1 kinase in transgenic tomato lines OE-1, OE-3, and OE-4 was higher than that in the WT at different periods of fruit development; in the pink coloring period the SnRK1 kinase activity increased the most, with 23.5, 28.8, and 21.4% increases, respectively. The content of starch and soluble sugars in red ripe transgenic fruit significantly increased, while the soluble protein and titratable acid content decreased significantly. We also found that the tomatoes overexpressing PpSnRK1α matured approximately 10 days earlier than the WT. Moreover, the yeast-two-hybrid assay showed that PpSnRK1α interacted with the MADS-box transcription factor (TF) SIRIN, which acts as an essential regulator of tomato fruit ripening. The BiFC technology further validated the location of the PpSnRK1α interaction sites within the nucleus. The quantitative real-time PCR analysis showed that RIN expression was up-regulated by PpSnRK1α overexpression; the expression of RIN-targeted TF genes NOR and FUL1 increased during different stages of fruit development. The expression of key genes, ACS2, ACS4, and E8, in ethylene synthesis also changed accordingly, and the ethylene emitted by the red ripe fruit increased by 36.1-43.9% compared with the WT. These results suggest that PpSnRK1α interacts with SIRIN, increasing the expression of RIN, thereby regulating the expression of downstream ripening-related genes, finally promoting fruit ripening.
Collapse
Affiliation(s)
- Wen Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Futian Peng, Yuansong Xiao,
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Futian Peng, Yuansong Xiao,
| | | | - Jingjing Luo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
40
|
Wang F, Ye Y, Chen X, Wang J, Chen Z, Zhou Q. A sucrose non-fermenting-1-related protein kinase 1 gene from potato, StSnRK1, regulates carbohydrate metabolism in transgenic tobacco. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:933-943. [PMID: 29158640 PMCID: PMC5671455 DOI: 10.1007/s12298-017-0473-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been shown to play an essential role in regulating saccharide metabolism and starch biosynthesis of plant. The regulatory role of StSnRK1 from potato in regulating carbohydrate metabolism and starch accumulation has not been investigated. In this work, a cDNA encoding the SnRK1 protein, named StSnRK1, was isolated from potato. The open reading frame contained 1545 nucleotides encoding 514 amino acids. Subcellular localization analysis in onion epidermal cells indicated that StSnRK1 protein was localized to the nucleus. The coding region of StSnRK1 was cloned into a binary vector under the control of 35S promoter and then transformed into tobacco to obtain transgenic plants. Transgenic tobacco plants expressing StSnRK1 were shown to have a significant increased accumulation of starch content, as well as sucrose, glucose and fructose content. Real-time quantitative PCR analysis indicated that overexpression of StSnRK1 up-regulated the expression of sucrose synthase (NtSUS), ADP-glucose pyrophosphorylase (NtAGPase) and soluble starch synthase (NtSSS III) genes involved in starch biosynthesis in the transgenic plants. In contrast, the expression of sucrose phosphate synthase (NtSPS) gene was decreased in the transgenic plants. Meanwhile, enzymatic analyses indicated that the activities of major enzymes (SUS, AGPase and SSS) involved in the starch biosynthesis were enhanced, whereas SPS activity was decreased in the transgenic plants compared to the wild-type. These results suggest that the manipulation of StSnRK1 expression might be used for improving quality of plants in the future.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Jizhong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Zhiyuan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Qing Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| |
Collapse
|
41
|
Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ. An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity. PLANT & CELL PHYSIOLOGY 2017; 58:1631-1641. [PMID: 29016962 DOI: 10.1093/pcp/pcx096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/04/2017] [Indexed: 05/09/2023]
Abstract
ABA is a crucial phytohormone for development and stress responses in plants. Snf1-related protein kinase 1.1 (SnRK1.1) is involved in the ABA response. However, the molecular mechanism underlying the SnRK1.1 response to ABA is largely unknown. Here, it was found that overexpression of the apple MdSnRK1.1 gene enhanced ABA sensitivity in both transgenic apple calli and Arabidopsis seedlings. Subsequently, a yeast two-hybrid screen demonstrated that MdCAIP1 (C2-domain ABA Insensitive Protein1) interacted with MdSnRK1.1. Their interaction was further confirmed by pull-down and co-immunoprecipitation assays. Expression of the MdCAIP1 gene was positively induced by ABA. Its overexpression enhanced ABA sensitivity in transgenic apple calli. Furthermore, it was found that MdSnRK1.1 phosphorylated the MdCAIP1 protein in vivo and promoted its degradation in vitro and in vivo. As a result, MdSnRK1.1 inhibited MdCAIP1-mediated ABA sensitivity, and MdCAIP1 partially reduced MdSnRK1.1-mediated ABA sensitivity. Our findings indicate that MdSnRK1.1 plays an important role in the ABA response, partially by controlling the stability of the MdCAIP1 protein.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xin Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiu-Hong An
- China Research Institute of Pomology, CAAS, Xingcheng 125100, China
| | - Peng-Liang Han
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
42
|
Wang F, Kong W, Niu Y, Ye Y, Fan S, Wang Y, Chen X, Zhou Q. StTrxF, a potato plastidic thioredoxin F-type protein gene, is involved in starch accumulation in transgenic Arabidopsis thaliana. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1302360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuan Niu
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Song Fan
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Yongjun Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Qing Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| |
Collapse
|
43
|
Passricha N, Saifi S, Ansari MW, Tuteja N. Prediction and validation of cis-regulatory elements in 5' upstream regulatory regions of lectin receptor-like kinase gene family in rice. PROTOPLASMA 2017; 254:669-684. [PMID: 27193099 DOI: 10.1007/s00709-016-0979-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/29/2016] [Indexed: 05/10/2023]
Abstract
Lectin receptor-like kinases (LecRLKs) play crucial roles in regulating plant growth and developmental processes in response to stress. In transcriptional gene regulation for normal cellular functions, cis-acting regulatory elements (CREs) direct the temporal and spatial gene expression with respect to environmental stimuli. A complete insightful of the transcriptional gene regulation system relies on effective functional analysis of CREs. Here, we analyzed the potential putative CREs present in the promoters of rice LecRLKs genes by using PlantCARE database. The CREs in LecRLKs promoters are associated with plant growth/development, light response, plant hormonal regulation processes, various stress responses, hormonal response like ABA, root-specific expression responsive, drought responsive, and cell and organ specific regulatory elements. The effect of methylation on these cis-regulatory elements was also analyzed. Real-time analysis of rice seedling under various stress conditions showed the expression levels of selected LecRLK genes superimposing the number of different CREs present in 5' upstream region. The overall results showed that the possible CREs function in the selective expression/regulation of LecRLKs gene family and during rice plant development under stress.
Collapse
MESH Headings
- Base Sequence
- Computer Simulation
- CpG Islands/genetics
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant
- Light
- Models, Biological
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/drug effects
- Oryza/enzymology
- Oryza/genetics
- Oryza/radiation effects
- Plant Development/drug effects
- Plant Development/genetics
- Plant Development/radiation effects
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Reproducibility of Results
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Shabnam Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Mohammad W Ansari
- Zakir Husain Delhi College, University of Delhi, Jawahar Lal Nehru Marg, New Delhi, 110002, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India.
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
44
|
Zhao C, Hua LN, Liu XF, Li YZ, Shen YY, Guo JX. Sucrose synthase FaSS1 plays an important role in the regulation of strawberry fruit ripening. PLANT GROWTH REGULATION 2017. [PMID: 0 DOI: 10.1007/s10725-016-0189-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
45
|
Han M, Wong J, Su T, Beatty PH, Good AG. Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits. FRONTIERS IN PLANT SCIENCE 2016; 7:1587. [PMID: 27818673 PMCID: PMC5073129 DOI: 10.3389/fpls.2016.01587] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Over the past half century, the use of nitrogen (N) fertilizers has markedly increased crop yields, but with considerable negative effects on the environment and human health. Consequently, there has been a strong push to reduce the amount of N fertilizer used by maximizing the nitrogen use efficiency (NUE) of crops. One approach would be to use classical genetics to improve the NUE of a crop plant. This involves both conventional breeding and quantitative trait loci (QTL) mapping in combination with marker-assisted selection (MAS) to track key regions of the chromosome that segregate for NUE. To achieve this goal, one of initial steps is to characterize the NUE-associated genes, then use the profiles of specific genes to combine plant physiology and genetics to improve plant performance. In this study, on the basis of genetic homology and expression analysis, barley candidate genes from a variety of families that exhibited potential roles in enhancing NUE were identified and mapped. We then performed an analysis of QTLs associated with NUE in field trials and further analyzed their map-location data to narrow the search for these candidate genes. These results provide a novel insight on the identification of NUE genes and for the future prospects, will lead to a more thorough understanding of physiological significances of the diverse gene families that may be associated with NUE in barley.
Collapse
Affiliation(s)
- Mei Han
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Julia Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Tao Su
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Tao Su
| | - Perrin H. Beatty
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Allen G. Good
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
46
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Sci Rep 2015; 5:18155. [PMID: 26659305 PMCID: PMC4676064 DOI: 10.1038/srep18155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA.
Collapse
|
48
|
Fischer JJ, Beatty PH, Good AG, Muench DG. Manipulation of microRNA expression to improve nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:70-81. [PMID: 23849115 DOI: 10.1016/j.plantsci.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 05/02/2023]
Abstract
Nitrogen is the key limiting nutrient required for plant growth. The application of nitrogen-based fertilizers to crops has risen dramatically in recent years, resulting in significant yield increases. However, increased production has come at the cost of substantial negative environmental consequences. Higher crop production costs, increased consumption of food and fertilizer, and a growing global population have led to calls for a "second green revolution" using modern genetic manipulation techniques to improve the production, yield, and quality of crops. Considerable research is being directed toward the study and engineering of nitrogen use efficiency in crop plants. The end goal is to reduce the amount of nitrogen-based fertilizer used and thereby reduce production costs and environmental damage while increasing yields. In this review, we present an overview of recent advances in understanding the regulation of nitrogen metabolism by the action of microRNAs with a view toward engineering crops with increased nitrogen use efficiency.
Collapse
Affiliation(s)
- Jeffrey J Fischer
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
49
|
Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu YM. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:505-15. [PMID: 23276523 DOI: 10.1016/j.jplph.2012.11.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/13/2012] [Accepted: 11/17/2012] [Indexed: 05/23/2023]
Abstract
Receptor-like protein kinases (RLKs) play vital roles in sensing outside signals, yet little is known about RLKs functions and roles in stress signal perception and transduction in plants, especially in wild soybean. Through the microarray analysis, GsSRK was identified as an alkaline (NaHCO3)-responsive gene, and was subsequently isolated from Glycine soja by homologous cloning. GsSRK encodes a 93.22kDa protein with a highly conserved serine/threonine protein kinase catalytic domain, a G-type lectin region, and an S-locus region. Real-time PCR results showed that the expression levels of GsSRK were largely induced by ABA, salt, and drought stresses. Over expression of GsSRK in Arabidopsis promoted seed germination, as well as primary root and rosette leaf growth during the early stages of salt stress. Compared to the wild type Arabidopsis, GsSRK overexpressors exhibited enhanced salt tolerance and higher yields under salt stress, with higher chlorophyll content, lower ion leakage, higher plant height, and more siliques at the adult developmental stage. Our studies suggest that GsSRK plays a crucial role in plant response to salt stress.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Morandini P. Control limits for accumulation of plant metabolites: brute force is no substitute for understanding. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:253-267. [PMID: 23301840 DOI: 10.1111/pbi.12035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 06/01/2023]
Abstract
Which factors limit metabolite accumulation in plant cells? Are theories on flux control effective at explaining the results? Many biotechnologists cling to the idea that every pathway has a rate limiting enzyme and target such enzymes first in order to modulate fluxes. This often translates into large effects on metabolite concentration, but disappointing small increases in flux. Rate limiting enzymes do exist, but are rare and quite opposite to what predicted by biochemistry. In many cases however, flux control is shared among many enzymes. Flux control and concentration control can (and must) be distinguished and quantified for effective manipulation. Flux control for several 'building blocks' of metabolism is placed on the demand side, and therefore increasing demand can be very successful. Tampering with supply, particularly desensitizing supply enzymes, is usually not very effective, if not dangerous, because supply regulatory mechanisms function to control metabolite homeostasis. Some important, but usually unnoticed, metabolic constraints shape the responses of metabolic systems to manipulation: mass conservation, cellular resource allocation and, most prominently, energy supply, particularly in heterotrophic tissues. The theoretical basis for this view shall be explored with recent examples gathered from the manipulation of several metabolites (vitamins, carotenoids, amino acids, sugars, fatty acids, polyhydroxyalkanoates, fructans and sugar alcohols). Some guiding principles are suggested for an even more successful engineering of plant metabolism.
Collapse
Affiliation(s)
- Piero Morandini
- Department of Biosciences, University of Milan and CNR Institute of Biophysics, Milan, Italy.
| |
Collapse
|