1
|
Jauregui I, Mitsui T, Gakière B, Mauve C, Gilard F, Aranjuelo I, Baslam M. Nitrogen fertilization form and energetic status as target points conditioning rice responsiveness to elevated [CO 2]. FRONTIERS IN PLANT SCIENCE 2025; 16:1517360. [PMID: 40134626 PMCID: PMC11933000 DOI: 10.3389/fpls.2025.1517360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
The nitrogen (N) fertilization form and plant energy status are known to significantly influence plant responses to elevated atmospheric carbon dioxide (CO2) concentrations. However, a close examination of the interplay between N sources under contrasting light intensity has been notably absent in the literature. In this study, we conducted a factorial experiment with rice plants involving two different light intensities (150 and 300 µmol m-2 s-1), inorganic N sources [nitrate (N-NO3) or ammonium nitrate (N-NH4NO3)] at varying CO2 levels (410 and 700 parts per million, ppm). The aim was to examine the individual and combined effects of these factors on the allocation of biomass in whole plants, as well as on leaf-level photosynthetic characteristics, chloroplast morphology and development, ATP content, ionomics, metabolomics, and hormone profiles. Our research hypothesis posits that mixed nutrition enhances plant responsiveness to elevated CO2 (eCO2) at both light levels compared to sole N-NO3 nutrition, due to its diminished energy demands for plant assimilation. Our findings indicate that N-NO3 nutrition does not promote the growth of rice, its photosynthetic capacity, or N content when exposed to ambient CO2 (aCO2), and is significantly reduced in low light (LL) conditions. Rice plants with N-NH4NO3 exhibited a higher carboxylation capacity, which resulted in larger biomass (total C, tiller number, and lower root-shoot ratio) supported by higher Calvin-cycle-related sugars. The lower leaf N content and overall amino acid levels at eCO2, particularly pronounced in N-NO3, combined with the lower ATP content (lowest at LL and N-NO3), may reflect the higher energy costs of N assimilation at eCO2. We also observed significant plasticity patterns in leaves under eCO2. Our findings highlight the importance of a thorough physiological understanding to inform innovative management practices aimed at mitigating the negative effects of climate change on plant N use efficiency.
Collapse
Affiliation(s)
- Ivan Jauregui
- Department of Sciences, Public University of Navarra (UPNA), Pamplona, Spain
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Institute for Social Innovation and Cooperation, Niigata University, Niigata, Japan
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Paris, France
| | - Caroline Mauve
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Paris, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Paris, France
| | - Iker Aranjuelo
- AgroBiotechnology Institute (IdAB), Centro Superior de Investigaciones Científicas (CSIC)-Government of Navarre, Mutilva, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Institute for Social Innovation and Cooperation, Niigata University, Niigata, Japan
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Université Cadi Ayyad, Marrakech, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- GrowSmart, Amsterdam, Netherlands
| |
Collapse
|
2
|
Bede JC, Blande JD. Effects of Elevated CO 2 and O 3 on Aboveground Brassicaceous Plant-Insect Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:205-227. [PMID: 39357072 DOI: 10.1146/annurev-ento-022024-015159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Atmospheric gases, such as carbon dioxide (CO2) and ozone (O3), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO2 (eCO2; 750-900 ppm) or elevated O3 (eO3; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO2 negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO2 or eO3. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO2. In general, eCO2 does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O3, affecting pollination and foraging natural enemy behavior. Thus, eCO2 and eO3 alter plant-insect interactions; however, many aspects remain poorly understood.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada;
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Vega-Mas I, Marino D, De la Peña M, Fuertes-Mendizábal T, González-Murua C, Estavillo JM, González-Moro MB. Enhanced photorespiratory and TCA pathways by elevated CO 2 to manage ammonium nutrition in tomato leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109216. [PMID: 39486222 DOI: 10.1016/j.plaphy.2024.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Plants grown under exclusive ammonium (NH4+) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO3-) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO2) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (Solanum lycopersicum L.) plants were grown under ammonium or nitrate nutrition in conditions of ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 800 ppm) atmosphere. Elevated CO2 increased photosynthesis rate and tomato shoot growth regardless of the N source. In the case of NH4+-fed leaves the positive effect of elevated CO2 occurred despite of the high tissue NH4+ accumulation. Under eCO2 ammonium nutrition triggered, among others, the modulation of genes related to C provision pathways (including carbonic anhydrase and glyoxylate cycle), antioxidant response and cell membranes protection. The enhanced photosynthate production at eCO2 facilitated C skeleton provision through the TCA cycle and anaplerotic pathways to promote amino acid synthesis. Moreover, photorespiratory activity was stimulated by eCO2 and contributed to yield serine as additional sink for NH4+ excess. Overall, these changes denote a connection between the respiratory and the photorespiratory pathways linked to ammonium nutrition. This metabolic strategy may allow crops to grow efficiently using ammonium as fertilizer in a future climate change scenario, while mitigating N losses.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | |
Collapse
|
4
|
Chang CY, Unda F, Mansfield SD, Ensminger I. Rapid response of nonstructural carbohydrate allocation and photosynthesis to short photoperiod, low temperature, or elevated CO 2 in Pinus strobus. PHYSIOLOGIA PLANTARUM 2023; 175:e14095. [PMID: 38148184 DOI: 10.1111/ppl.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
During autumn, decreasing photoperiod and temperature temporarily perturb the balance between carbon uptake and carbon demand in overwintering plants, requiring coordinated adjustments in photosynthesis and carbon allocation to re-establish homeostasis. Here we examined adjustments of photosynthesis and allocation of nonstructural carbohydrates (NSCs) following a sudden shift to short photoperiod, low temperature, and/or elevated CO2 in Pinus strobus seedlings. Seedlings were initially acclimated to 14 h photoperiod (22/15°C day/night) and ambient CO2 (400 ppm) or elevated CO2 (800 ppm). Seedlings were then shifted to 8 h photoperiod for one of three treatments: no temperature change at ambient CO2 (22/15°C, 400 ppm), low temperature at ambient CO2 (12/5°C, 400 ppm), or no temperature change at elevated CO2 (22/15°C, 800 ppm). Short photoperiod caused all seedlings to exhibit partial nighttime depletion of starch. Short photoperiod alone did not affect photosynthesis. Short photoperiod combined with low temperature caused hexose accumulation and repression of photosynthesis within 24 h, followed by a transient increase in nonphotochemical quenching (NPQ). Under long photoperiod, plants grown under elevated CO2 exhibited significantly higher NSCs and photosynthesis compared to ambient CO2 plants, but carbon uptake exceeded sink capacity, leading to elevated NPQ; carbon sink capacity was restored and NPQ relaxed within 24 h after shift to short photoperiod. Our findings indicate that P. strobus rapidly adjusts NSC allocation, not photosynthesis, to accommodate short photoperiod. However, the combination of short photoperiod and low temperature, or long photoperiod and elevated CO2 disrupts the balance between photosynthesis and carbon sink capacity, resulting in increased NPQ to alleviate excess energy.
Collapse
Affiliation(s)
- Christine Y Chang
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Graduate Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Graduate Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Cassan O, Pimparé LL, Dubos C, Gojon A, Bach L, Lèbre S, Martin A. A gene regulatory network in Arabidopsis roots reveals features and regulators of the plant response to elevated CO 2. THE NEW PHYTOLOGIST 2023. [PMID: 36727308 DOI: 10.1111/nph.18788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The elevation of CO2 in the atmosphere increases plant biomass but decreases their mineral content. The genetic and molecular bases of these effects remain mostly unknown, in particular in the root system, which is responsible for plant nutrient uptake. To gain knowledge about the effect of elevated CO2 on plant growth and physiology, and to identify its regulatory in the roots, we analyzed genome expression in Arabidopsis roots through a combinatorial design with contrasted levels of CO2 , nitrate, and iron. We demonstrated that elevated CO2 has a modest effect on root genome expression under nutrient sufficiency, but by contrast leads to massive expression changes under nitrate or iron deficiencies. We demonstrated that elevated CO2 negatively targets nitrate and iron starvation modules at the transcriptional level, associated with a reduction in high-affinity nitrate uptake. Finally, we inferred a gene regulatory network governing the root response to elevated CO2 . This network allowed us to identify candidate transcription factors including MYB15, WOX11, and EDF3 which we experimentally validated for their role in the stimulation of growth by elevated CO2 . Our approach identified key features and regulators of the plant response to elevated CO2 , with the objective of developing crops resilient to climate change.
Collapse
Affiliation(s)
- Océane Cassan
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Léa-Lou Pimparé
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Alain Gojon
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Liên Bach
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Sophie Lèbre
- IMAG, Univ. Montpellier, CNRS, 34000, Montpellier, France
- Université Paul-Valéry-Montpellier 3, 34000, Montpellier, France
| | - Antoine Martin
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| |
Collapse
|
6
|
Gojon A, Cassan O, Bach L, Lejay L, Martin A. The decline of plant mineral nutrition under rising CO 2: physiological and molecular aspects of a bad deal. TRENDS IN PLANT SCIENCE 2023; 28:185-198. [PMID: 36336557 DOI: 10.1016/j.tplants.2022.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The elevation of atmospheric CO2 concentration has a strong impact on the physiology of C3 plants, far beyond photosynthesis and C metabolism. In particular, it reduces the concentrations of most mineral nutrients in plant tissues, posing major threats on crop quality, nutrient cycles, and carbon sinks in terrestrial agro-ecosystems. The causes of the detrimental effect of high CO2 levels on plant mineral status are not understood. We provide an update on the main hypotheses and review the increasing evidence that, for nitrogen, this detrimental effect is associated with direct inhibition of key mechanisms of nitrogen uptake and assimilation. We also mention promising strategies for identifying genotypes that will maintain robust nutrient status in a future high-CO2 world.
Collapse
Affiliation(s)
- Alain Gojon
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Océane Cassan
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Liên Bach
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Laurence Lejay
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Antoine Martin
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Xu A, Zhang L, Wang X, Cao B. Nitrogen fertilization and CO 2 concentration synergistically affect the growth and protein content of Agropyron mongolicum. PeerJ 2022; 10:e14273. [PMID: 36340197 PMCID: PMC9632468 DOI: 10.7717/peerj.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background The nitrogen (N) and protein concentrations in plant tissues exposed to elevated CO2 (eCO2) generally decline , such declines in forage grass composition are expected to have negative implications for the nutritional and economic value of grass. Plants require N for the production of a photosynthetically active canopy and storage proteins in the tissues, whose functionality will strongly influence productivity and quality. The objective of this study was to investigate whether eCO2 plus N-fertilization increases growth and N nutrition of Agropyron mongolicum, and the dependence of this improvement on the coordination between root and leaf development. Methods We analyzed A. mongolicum from field-grown within the open-top chambers (OTCs) facility under two atmospheric CO2 (ambient, 400 ± 20 µmol mol-1, aCO2, and elevated, 800 ± 20 µmol mol-1, eCO2) and three N-fertigation treatments (control, low N-fertigation , and high N-fertigation) for two months. Results Elevated CO2 plus N-fertigation strongly increased shoot and root biomass, and the nitrogen and protein concentrations of A. mongolicum compared to those plants at aCO2 levels. Increased N content in leaves and reduced specific leaf area (SLA) at a high N supply could alleviate photosynthetic acclimation to eCO2 and drive the production of greater shoot biomass with the potential for higher photosynthesis, productivity, and nutritional quality. The increased root length (RL), the ratio of total aboveground N taken up per RL (TN/RL), stomatal conductance (Gs), and transpiration rate (Tr) contribute to the transpiration-driven mass flow of N, consequently increasing N uptake by roots. In addition, a smaller percentage of N remained as unassimilated nitrate ( NO 3 - ) under eCO2, indicating that assimilation of NO 3 - into proteins was not inhibited by eCO2. These findings imply that grass productivity and quality will enhance under anticipated elevated CO2 concentration when effective management measures of N-fertilization are employed.
Collapse
Affiliation(s)
- Aiyun Xu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Lihua Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojia Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Krämer K, Kepp G, Brock J, Stutz S, Heyer AG. Acclimation to elevated CO 2 affects the C/N balance by reducing de novo N-assimilation. PHYSIOLOGIA PLANTARUM 2022; 174:e13615. [PMID: 35014037 DOI: 10.1111/ppl.13615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants exposed to elevated atmospheric CO2 concentrations show an increased photosynthetic activity. However, after prolonged exposure, the activity declines. This acclimation to elevated CO2 is accompanied by a rise in the carbon-to-nitrogen ratio of the biomass. Hence, increased sugar accumulation and sequential downregulation of photosynthetic genes, as well as nitrogen depletion and reduced protein content, have been hypothesized as the cause of low photosynthetic performance. However, the reason for reduced nitrogen content in plants at high CO2 is unclear. Here, we show that reduced photorespiration at increased CO2 -to-O2 ratio leads to reduced de novo assimilation of nitrate, thus shifting the C/N balance. Metabolic modeling of acclimated and non-acclimated plants revealed the photorespiratory pathway to function as a sink for already assimilated nitrogen during the light period, providing carbon skeletons for de novo assimilation. At high CO2 , low photorespiratory activity resulted in diminished nitrogen assimilation and eventually resulted in reduced carbon assimilation. For the hpr1-1 mutant, defective in reduction of hydroxy-pyruvate, metabolic simulations show that turnover of photorespiratory metabolites is expanded into the night. Comparison of simulations for hpr1-1 with those for the wild type allowed investigating the effect of a perturbed photorespiration on N-assimilation.
Collapse
Affiliation(s)
- Konrad Krämer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Judith Brock
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Simon Stutz
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Arnd G Heyer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Murphy BK, Way DA. Warming and elevated CO2 alter tamarack C fluxes, growth and mortality: evidence for heat stress-related C starvation in the absence of water stress. TREE PHYSIOLOGY 2021; 41:2341-2358. [PMID: 34077546 DOI: 10.1093/treephys/tpab077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Climate warming is increasing the frequency of climate-induced tree mortality events. While drought combined with heat is considered the primary cause of this mortality, little is known about whether moderately high temperatures alone can induce mortality, or whether rising CO2 would prevent mortality at high growth temperatures. We grew tamarack (Larix laricina) under ambient (400 p.p.m.) and elevated (750 p.p.m.) CO2 concentrations combined with ambient, ambient +4 °C and ambient +8 °C growth temperatures to investigate whether high growth temperatures lead to carbon (C) limitations and mortality. Growth at +8 °C led to 40% mortality in the ambient CO2 (8TAC) treatment, but no mortality in the elevated CO2 treatment. Thermal acclimation of respiration led to similar leaf C balances across the warming treatments, despite a lack of photosynthetic acclimation. Photosynthesis was stimulated under elevated CO2, increasing seedling growth, but not leaf C concentrations. However, growth and foliar C concentrations were lowest in the +8 °C treatments, even with elevated CO2. Dying 8TAC seedlings had lower needle C concentrations and lower ratios of photosynthesis to respiration than healthy 8TAC seedlings, indicating that C limitations were likely the cause of seedling mortality under high growth temperatures.
Collapse
Affiliation(s)
- Bridget K Murphy
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Graduate Program in Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Danielle A Way
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
10
|
Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.). ENVIRONMENTS 2021. [DOI: 10.3390/environments8110122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is calcareous, leading to iron (Fe) deficiency chlorosis and lower Fe levels in plant tissues. We hypothesize that there will be combinatorial effects of eCO2 and Fe deficiency on the mineral dynamics of these crops at a morphological, biochemical and physiological level. To test this hypothesis, plants were grown hydroponically under Fe sufficiency (20 μM Fe-EDDHA) or deficiency (0 μM Fe-EDDHA) at ambient CO2 (aCO2, 400 ppm) or eCO2 (800 ppm). Plants of both species exposed to eCO2 and Fe deficiency showed the lowest biomass accumulation and the lowest root: shoot ratio. Soybean at eCO2 had significantly higher chlorophyll levels (81%, p < 0.0001) and common bean had significantly higher photosynthetic rates (60%, p < 0.05) but only under Fe sufficiency. In addition, eCO2 increased ferric chelate reductase acivity (FCR) in Fe-sufficient soybean by 4-fold (p < 0.1) and in Fe-deficient common bean plants by 10-fold (p < 0.0001). In common bean, an interactive effect of both environmental factors was observed, resulting in the lowest root Fe levels. The lowering of Fe accumulation in both crops under eCO2 may be linked to the low root citrate accumulation in these plants when grown with unrestricted Fe supply. No changes were observed for malate in soybean, but in common bean, shoot levels were significantly lower under Fe deficiency (77%, p < 0.05) and Fe sufficiency (98%, p < 0.001). These results suggest that the mechanisms involved in reduced Fe accumulation caused by eCO2 and Fe deficiency may not be independent, and an interaction of these factors may lead to further reduced Fe levels.
Collapse
|
11
|
Roy S, Mathur P. Delineating the mechanisms of elevated CO 2 mediated growth, stress tolerance and phytohormonal regulation in plants. PLANT CELL REPORTS 2021; 40:1345-1365. [PMID: 34169360 DOI: 10.1007/s00299-021-02738-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has drastically affected natural ecosystems and crop productivity. Among several factors of global climate change, CO2 is considered to be the dynamic parameter that will regulate the responses of all biological system on earth in the coming decade. A number of experimental studies in the past have demonstrated the positive effects of elevated CO2 on photosynthesis, growth and biomass, biochemical and physiological processes such as increased C:N ratio, secondary metabolite production, as well as phytohormone concentrations. On the other hand, elevated CO2 imparts an adverse effect on the nutritional quality of crop plants and seed quality. Investigations have also revealed effects of elevated CO2 both at cellular and molecular level altering expression of various genes involved in various metabolic processes and stress signaling pathways. Elevated CO2 is known to have mitigating effect on plants in presence of abiotic stresses such as drought, salinity, temperature etc., while contrasting effects in the presence of different biotic agents i.e. phytopathogens, insects and herbivores. However, a well-defined crosstalk is incited by elevated CO2 both under abiotic and biotic stresses in terms of phytohormones concentration and secondary metabolites production. With this background, the present review attempts to shed light on the major effects of elevated CO2 on plant growth, physiological and molecular responses and will highlight the interactive effects of elevated CO2 with other abiotic and biotic factors. The article will also provide deep insights into the phytohormones modulation under elevated CO2.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
12
|
Desrut A, Moumen B, Thibault F, Le Hir R, Coutos-Thévenot P, Vriet C. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7301-7315. [PMID: 32860502 DOI: 10.1093/jxb/eraa396] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/27/2020] [Indexed: 05/21/2023]
Abstract
Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.
Collapse
Affiliation(s)
- Antoine Desrut
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Florence Thibault
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Cécile Vriet
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
13
|
Venneman J, Vandermeersch L, Walgraeve C, Audenaert K, Ameye M, Verwaeren J, Steppe K, Van Langenhove H, Haesaert G, Vereecke D. Respiratory CO 2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:544435. [PMID: 32983211 PMCID: PMC7492573 DOI: 10.3389/fpls.2020.544435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/14/2020] [Indexed: 05/17/2023]
Abstract
Rhizospheric microorganisms can alter plant physiology and morphology in many different ways including through the emission of volatile organic compounds (VOCs). Here we demonstrate that VOCs from beneficial root endophytic Serendipita spp. are able to improve the performance of in vitro grown Arabidopsis seedlings, with an up to 9.3-fold increase in plant biomass. Additional changes in VOC-exposed plants comprised petiole elongation, epidermal cell and leaf area expansion, extension of the lateral root system, enhanced maximum quantum efficiency of photosystem II (Fv/Fm), and accumulation of high levels of anthocyanin. Notwithstanding that the magnitude of the effects was highly dependent on the test system and cultivation medium, the volatile blends of each of the examined strains, including the references S. indica and S. williamsii, exhibited comparable plant growth-promoting activities. By combining different approaches, we provide strong evidence that not only fungal respiratory CO2 accumulating in the headspace, but also other volatile compounds contribute to the observed plant responses. Volatile profiling identified methyl benzoate as the most abundant fungal VOC, released especially by Serendipita cultures that elicit plant growth promotion. However, under our experimental conditions, application of methyl benzoate as a sole volatile did not affect plant performance, suggesting that other compounds are involved or that the mixture of VOCs, rather than single molecules, accounts for the strong plant responses. Using Arabidopsis mutant and reporter lines in some of the major plant hormone signal transduction pathways further revealed the involvement of auxin and cytokinin signaling in Serendipita VOC-induced plant growth modulation. Although we are still far from translating the current knowledge into the implementation of Serendipita VOCs as biofertilizers and phytostimulants, volatile production is a novel mechanism by which sebacinoid fungi can trigger and control biological processes in plants, which might offer opportunities to address agricultural and environmental problems in the future.
Collapse
Affiliation(s)
- Jolien Venneman
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Danny Vereecke
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Li X, Zhao J, Shang M, Song H, Zhang J, Xu X, Zheng S, Hou L, Li M, Xing G. Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria ananassa Duch.) by CO2 enrichment. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xuan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhao
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Mengya Shang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Hongxia Song
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Xiaoyong Xu
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Shaowen Zheng
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Leiping Hou
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Meilan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Guoming Xing
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| |
Collapse
|
15
|
Johansson KSL, El-Soda M, Pagel E, Meyer RC, Tõldsepp K, Nilsson AK, Brosché M, Kollist H, Uddling J, Andersson MX. Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. ANNALS OF BOTANY 2020; 126:179-190. [PMID: 32296835 PMCID: PMC7304471 DOI: 10.1093/aob/mcaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. METHODS We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. KEY RESULTS Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. CONCLUSIONS We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.
Collapse
Affiliation(s)
- Karin S L Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ellen Pagel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Domiciano D, Nery FC, de Carvalho PA, Prudente DO, de Souza LB, Chalfun-Júnior A, Paiva R, Marchiori PER. Nitrogen sources and CO 2 concentration synergistically affect the growth and metabolism of tobacco plants. PHOTOSYNTHESIS RESEARCH 2020; 144:327-339. [PMID: 32291595 DOI: 10.1007/s11120-020-00743-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The initial stimulation of photosynthesis under elevated CO2 concentrations (eCO2) is often followed by a decline in photosynthesis, known as CO2 acclimation. Changes in N levels under eCO2 can have different effects in plants fertilized with nitrate (NO3-) or ammonium (NH4+) as the N source. NO3- assimilation consumes approximately 25% of the energy produced by an expanded leaf, whereas NH4+ requires less energy to be incorporated into organic compounds. Although plant-N interactions are important for the productivity and nutritional value of food crops worldwide, most studies have not compared the performance of plants supplied with different forms of N. Therefore, this study aims to go beyond treating N as the total N in the soil or the plant because the specific N compounds formed from the available N forms become highly engaged in all aspects of plant metabolism. To this end, plant N metabolism was analyzed through an experiment with eCO2 and fertigation with NO3- and/or NH4+ as N sources for tobacco (Nicotiana tabacum) plants. The results showed that the plants that received only NO3- as a source of N grew more slowly when exposed to a CO2 concentration of 760 μmol mol-1 than when they were exposed to ambient CO2 conditions. On the other hand, in plants fertigated with only NH4+, eCO2 enhanced photosynthesis. This was essential for the maintenance of the metabolic pathways responsible for N assimilation and distribution in growing tissues. These data show that the physiological performance of tobacco plants exposed to eCO2 depends on the form of inorganic N that is absorbed and assimilated.
Collapse
Affiliation(s)
- Débora Domiciano
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Fernanda Carlota Nery
- Biosystems Engineering Department, Federal University of Sao Joao del Rei, Sao Joao del Rei, Brazil
| | | | | | - Lucas Batista de Souza
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Antônio Chalfun-Júnior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Renato Paiva
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
17
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
18
|
Cohen I, Halpern M, Yermiyahu U, Bar-Tal A, Gendler T, Rachmilevitch S. CO 2 and nitrogen interaction alters root anatomy, morphology, nitrogen partitioning and photosynthetic acclimation of tomato plants. PLANTA 2019; 250:1423-1432. [PMID: 31290031 DOI: 10.1007/s00425-019-03232-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen and CO2 supply interactively regulate whole plant nitrogen partitioning and root anatomical and morphological development in tomato plants. Nitrogen (N) and carbon (C) are the key elements in plant growth and constitute the majority of plant dry matter. Growing at CO2 enrichment has the potential to stimulate the growth of C3 plants, however, growth is often limited by N availability. Thus, the interactive effects of CO2 under different N fertilization rates can affect growth, acclimation to elevated CO2, and yield. However, the majority of research in this field has focused on shoot traits, while neglecting plants' hidden half-the roots. We hypothesize that elevated CO2 and low N effects on transpiration will interactively affect root vascular development and plant N partitioning. Here we studied the effects of elevated CO2 and N concentrations on greenhouse-grown tomato plants, a C3 crop. Our main objective was to determine in what manner the N fertilization rate and elevated CO2 affected root development and nitrogen partitioning among plant organs. Our results indicate that N interacting with the CO2 level affects the development of the root system in terms of the length, anatomy, and partitioning of the N concentration between the roots and shoot. Both CO2 and N concentrations were found to affect xylem size in an opposite manner, elevated CO2 found to repressed, whereas ample N stimulated xylem development. We found that under limiting N and eCO2, the N% increase in the root, while it decreased in the shoot. Under eCO2, the root system size increased with a coordinated decrease in root xylem area. We suggest that tomato root response to elevated CO2 depends on N fertilization rates, and that a decrease in xylem size is a possible underlying response that limits nitrogen allocation from the root into the shoot. Additionally, the greater abundance of root amino acids suggests increased root nitrogen metabolism at eCO2 conditions with ample N.
Collapse
Affiliation(s)
- Itay Cohen
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Beersheba, Israel.
| | - Moshe Halpern
- Agricultural Research Organization, Gilat Research Center, Mobile Post Negev 2, 85280, Rishon Lezion, Israel
- The Hebrew University of Jerusalem, P.O. Box 12, 7610001, Rehovot, Israel
| | - Uri Yermiyahu
- Agricultural Research Organization, Gilat Research Center, Mobile Post Negev 2, 85280, Rishon Lezion, Israel
| | - Asher Bar-Tal
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water, and Environmental Sciences, Volcani Center, Agricultural Research Organization (ARO), 75359, Rishon Lezion, Israel
| | - Tanya Gendler
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Beersheba, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Beersheba, Israel
| |
Collapse
|
19
|
Zhou Y, Ge S, Jin L, Yao K, Wang Y, Wu X, Zhou J, Xia X, Shi K, Foyer CH, Yu J. A novel CO 2 -responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 224:106-116. [PMID: 31087385 DOI: 10.1111/nph.15917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/27/2019] [Indexed: 05/29/2023]
Abstract
Elevated atmospheric carbon dioxide (eCO2 ) concentrations promote symbiosis between roots and arbuscular mycorrhizal fungi (AMF), modifying plant nutrient acquisition and cycling of carbon, nitrogen and phosphate. However, the biological mechanisms by which plants transmit aerial eCO2 cues to roots, to alter the symbiotic associations remain unknown. We used a range of interdisciplinary approaches, including gene silencing, grafting, transmission electron microscopy, liquid chromatography tandem mass spectrometry (LC-MS/MS), biochemical methodologies and gene transcript analysis to explore the complexities of environmental signal transmission from the point of perception in the leaves at the apex to the roots. Here we show that eCO2 triggers apoplastic hydrogen peroxide (H2 O2 )-dependent auxin production in tomato shoots followed by systemic signaling that results in strigolactone biosynthesis in the roots. This redox-auxin-strigolactone systemic signaling cascade facilitates eCO2 -induced AMF symbiosis and phosphate utilization. Our results challenge the current paradigm of eCO2 effects on AMF and provide new insights into potential targets for manipulation of AMF symbiosis for high nutrient utilization under future climate change scenarios.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058,, China
| | - Shibei Ge
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Lijuan Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Kaiqian Yao
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Yu Wang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058,, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058,, China
| |
Collapse
|
20
|
Loladze I, Nolan JM, Ziska LH, Knobbe AR. Rising Atmospheric CO2Lowers Concentrations of Plant Carotenoids Essential to Human Health: A Meta‐Analysis. Mol Nutr Food Res 2019; 63:e1801047. [DOI: 10.1002/mnfr.201801047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/07/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Irakli Loladze
- Bryan College of Health SciencesBryan Medical Center Lincoln NE 68506 USA
- School of Mathematical and Statistical SciencesArizona State University Temple AZ 85281 USA
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore HouseWaterford Institute of Technology West Campus Waterford Ireland
| | - Lewis H. Ziska
- USDA‐ARSAdaptive Cropping Systems Laboratory Beltsville MD 20705 USA
- Mailman School of Public HealthColumbia University New York NY 10025 USA
| | - Amy R. Knobbe
- Bryan College of Health SciencesBryan Medical Center Lincoln NE 68506 USA
| |
Collapse
|
21
|
Torralbo F, González-Moro MB, Baroja-Fernández E, Aranjuelo I, González-Murua C. Differential Regulation of Stomatal Conductance as a Strategy to Cope With Ammonium Fertilizer Under Ambient Versus Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2019; 10:597. [PMID: 31178873 PMCID: PMC6542952 DOI: 10.3389/fpls.2019.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 05/08/2023]
Abstract
While nitrogen (N) derived from ammonium would be energetically less expensive than nitrate-derived N, the use of ammonium-based fertilizer is limited by the potential for toxicity symptoms. Nevertheless, previous studies have shown that exposure to elevated CO2 favors ammonium assimilation in plants. However, little is known about the impact of different forms of N fertilizer on stomatal opening and their consequent effects on CO2 and H2O diffusion in wheat plants exposed to ambient and elevated CO2. In this article, we have examined the response of the photosynthetic machinery of durum wheat (Triticum durum, var. Amilcar) grown with different types of N fertilizer (NO3 -, NH4 +, and NH4NO3) at 400 versus 700 ppm of CO2. Alongside gas exchange and photochemical parameters, the expression of genes involved in CO2 (PIP1.1 and PIP2.3) and H2O (TIP1) diffusion as well as key C and N primary metabolism enzymes and metabolites were studied. Our results show that at 400 ppm CO2, wheat plants fertilized with ammonium as the N source had stress symptoms and a strong reduction in stomatal conductance, which negatively affected photosynthetic rates. The higher levels of PIP1.1 and PIP2.3 expression in ammonium-fertilized plants at 400 ppm CO2 might reflect the need to overcome limitations to the CO2 supply to chloroplasts due to restrictions in stomatal conductance. This stomatal limitation might be associated with a strategy to reduce ammonium transport toward leaves. On the other hand, ammonium-fertilized plants at elevated CO2 did not show stress symptoms, and no differences were detected in stomatal opening or water use efficiency (WUE). Moreover, similar gene expression of the aquaporins TIP1, PIP1.1, and PIP2.3 in ammonium-fertilized plants grown at 700 ppm compared to nitrate and ammonium nitrate plants would suggest that an adjustment in CO2 and H2O diffusion is not required. Therefore, in the absence of a stress context triggered by elevated CO2, ammonium- and ammonium nitrate-fertilized plants were able to increase their photosynthetic rates, which were translated eventually into higher leaf protein content.
Collapse
Affiliation(s)
- Fernando Torralbo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB)-CSIC, Mutilva, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
22
|
Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front Physiol 2017; 8:578. [PMID: 28848452 PMCID: PMC5550704 DOI: 10.3389/fphys.2017.00578] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/26/2017] [Indexed: 01/14/2023] Open
Abstract
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2].
Collapse
Affiliation(s)
- Michael Thompson
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Dananjali Gamage
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Naoki Hirotsu
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
- Faculty of Life Sciences, Toyo UniversityItakura-machi, Japan
| | - Anke Martin
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Saman Seneweera
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| |
Collapse
|
23
|
Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2017; 8:1262. [PMID: 28785271 PMCID: PMC5519581 DOI: 10.3389/fpls.2017.01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/04/2017] [Indexed: 05/09/2023]
Abstract
Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen UniversityWageningen, Netherlands
| | - Kay Moisan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | | | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht UniversityUtrecht, Netherlands
| | - Roland Mumm
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University and ResearchWageningen, Netherlands
- Centre for Biosystems GenomicsWageningen, Netherlands
| | - Victor J. Carrion
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Institute of Biology, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
24
|
Vicente R, Pérez P, Martínez-Carrasco R, Morcuende R. Improved responses to elevated CO 2 in durum wheat at a low nitrate supply associated with the upregulation of photosynthetic genes and the activation of nitrate assimilation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:119-128. [PMID: 28554469 DOI: 10.1016/j.plantsci.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Elevated CO2 often leads to photosynthetic acclimation, and N availability may alter this response. We investigated whether the coordination of shoot-root N assimilation by elevated CO2 may help to optimize the whole-plant N allocation and maximize photosynthesis in hydroponically-grown durum wheat at two NO3- supplies in interaction with plant development. Transcriptional and biochemical analyses were performed on flag leaves and roots. At anthesis, the improved photosynthetic acclimation response to elevated CO2 at low N was associated with increased Rubisco, chlorophyll and amino acid contents, and upregulation of genes related to their biosynthesis, light reactions and Calvin-Benson cycle, while a decrease was recorded at high N. Despite the decrease in carbohydrates with elevated CO2 at low N and the increase at high N, a stronger upward trend in leaf NR activity was found at low rather than high N. The induction of N recycling-related genes was accompanied by an amino acids decline at high N. At the grain-filling stage, the photosynthetic acclimation to elevated CO2 at high N was associated with the downregulation of both N assimilation, mainly in roots, and photosynthetic genes. At low N, enhanced root N assimilation partly compensated for slower shoot N assimilation and maximized photosynthetic capacity.
Collapse
Affiliation(s)
- Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain; Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| | - Pilar Pérez
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rafael Martínez-Carrasco
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
25
|
Rubio-Asensio JS, Bloom AJ. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2611-2625. [PMID: 28011716 DOI: 10.1093/jxb/erw465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3-) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3- nutrition because elevated CO2 inhibits the assimilation of NO3- in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.
Collapse
Affiliation(s)
- José S Rubio-Asensio
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura, Espinardo, Murcia, Spain
| | - Arnold J Bloom
- Department of Plant Sciences, Mailstop 3, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Jauregui I, Aparicio-Tejo PM, Avila C, Cañas R, Sakalauskiene S, Aranjuelo I. Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions. PHYSIOLOGIA PLANTARUM 2016; 158:65-79. [PMID: 26801348 DOI: 10.1111/ppl.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 05/10/2023]
Abstract
Although shoot N depletion in plants exposed to elevated [CO2 ] has already been reported on several occasions, some uncertainty remains about the mechanisms involved. This study illustrates (1) the importance of characterizing root-shoot interactions and (2) the physiological, biochemical and gene expression mechanisms adopted by nitrate-fed Arabidopsis thaliana plants grown under elevated [CO2 ]. Elevated [CO2 ] increases biomass and photosynthetic rates; nevertheless, the decline in total soluble protein, Rubisco and leaf N concentrations revealed a general decrease in leaf N availability. A transcriptomic approach (conducted at the root and shoot level) revealed that exposure to 800 ppm [CO2 ] induced the expression of genes involved in the transport of nitrate and mineral elements. Leaf N and mineral status revealed that N assimilation into proteins was constrained under elevated [CO2 ]. Moreover, this study also highlights how elevated [CO2 ] induced the reorganization of nitrate assimilation between tissues; root nitrogen assimilation was favored over leaf assimilation to offset the decline in nitrogen metabolism in the leaves of plants exposed to elevated [CO2 ].
Collapse
Affiliation(s)
- Ivan Jauregui
- Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de Arrosadía, E-31192, Mutilva Baja, Spain
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192, Mutilva Baja, Spain
| | - Pedro M Aparicio-Tejo
- Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de Arrosadía, E-31192, Mutilva Baja, Spain
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192, Mutilva Baja, Spain
| | - Concepción Avila
- Biología Molecular y Bioquímica, Instituto Andaluz de Biotencología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitairo de Teatinos, E-29071, Málaga, Spain
| | - Rafael Cañas
- Biología Molecular y Bioquímica, Instituto Andaluz de Biotencología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitairo de Teatinos, E-29071, Málaga, Spain
| | - Sandra Sakalauskiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, LT-54333, Kaunas, Lithuania
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192, Mutilva Baja, Spain
- Dpto. Biología Vegetal y Ecología, Universidad del País Vasco, Barrio Sarriena, s/n, E-48940, Bizkaia, Spain
| |
Collapse
|