1
|
Hu X, Lai S, Liao A. Immune checkpoint for pregnancy. Semin Immunopathol 2025; 47:26. [PMID: 40314833 DOI: 10.1007/s00281-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
A successful pregnancy relies on the precise regulation of the maternal immune system to recognize and tolerate the allogeneic fetus, while simultaneously preventing infection. Immune checkpoint molecules (ICMs), such as programmed death receptor 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin, and mucin-domain containing-3 (Tim-3), play critical roles in regulating the immune response during pregnancy. Emerging research highlights the therapeutic potential of targeting these molecules to restore the immune balance in complicated pregnancies. Understanding the dynamic regulation of ICMs during pregnancy may provide new insights into the pathogenesis of these conditions and offer novel approaches for clinical interventions. Here, we review the expression patterns and functions of key ICMs at the maternal-fetal interface, and their involvement in maintaining immune tolerance throughout gestation. Additionally, we describe the current understanding of immune checkpoint pathways in the pathogenesis of complicated pregnancies and discuss the potential for therapeutic targeting of these pathways in this setting.
Collapse
Affiliation(s)
- Xiaohui Hu
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Lai
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Fu Z, Tian Y, Zhou X, Lan H, Wu S, Lou Y. Effects of quercetin on immune regulation at the maternal-fetal interface. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:68-76. [PMID: 37283120 DOI: 10.3724/zdxbyxb-2022-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The imbalance of immune homeostasis at the maternal-fetal interface is closely related to adverse pregnancy outcomes, so it has become one of the hot research topics in the reproductive field. Quercetin is rich in common TCM kidney-tonifying herbs such as dodder and lorathlorace, and has shown pregnancy protection function. As a common flavonoid, quercetin has powerful anti-inflammatory, antioxidant, estrogen-like effects; and it can regulate the functions of maternal-fetal interface immune cells (such as decidual natural killer cells, decidual macrophages, T cells, dendritic cells and myeloid-derived suppressor cells), exovillous trophoblast cells, decidual stromal cells, and the activities of their cytokines. Quercetin maintains the dynamic balance of maternal and fetal immunity by attenuating cytotoxicity, reducing excessive apoptosis of the tissue cells and inhibiting excessive inflammatory reactions. In this article, the role and molecular mechanism of quercetin in the immunomodulatory process of the maternal and fetal interface are reviewed to provide reference for the treatment of recurrent spontaneous abortion and other adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Zhujing Fu
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China.
| | - Ye Tian
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuanle Zhou
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Huizhen Lan
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Shuangyu Wu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyun Lou
- Department of TCM Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China.
| |
Collapse
|
4
|
Zhao SJ, Muyayalo KP, Luo J, Huang D, Mor G, Liao AH. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev 2022; 308:40-54. [PMID: 35234305 DOI: 10.1111/imr.13073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Successful pregnancy is a unique situation requires the maternal immune system to recognize and tolerate a semi-identical fetus and allow normal invasion of trophoblast cells. Although efforts have been made, the deep mechanisms of the maternal-fetal crosstalk have not yet been fully deciphered. Immune checkpoint molecules (ICMs) are a group of negative modulators of the immune response that avoid immune damage. They have been extensively studied in the fields of oncology and transplantation, while the latest evidence suggests that they are closely associated with pregnancy outcomes via multiple inhibitory mechanisms. Although studies have mostly demonstrated the regulatory role of the well-known PD-1, CTLA-4 at the maternal-fetal interface, what is unique about the newly discovered multiple ICMs remains a mystery. Here, we review the latest knowledge on ICMs, focusing on the first generation of checkpoints (PD-1, CTLA-4) and the next generation (Tim-3, Tigit, Lag-3, VISTA) highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. The content covers three aspects: the characteristics they possess, the dynamic expression profile of their expression at the maternal-fetal interface, and their involvement in pathological pregnancy. In immunotherapy strategies for pregnancy complications, upregulation of immune checkpoints may play a role. Meanwhile, the impact on pregnancy outcomes when using ICMs in clinical cancer treatment during pregnancy is a topic worth exploring. These may serve as a guide for future basic research and clinical applications of maternal-fetal immunity.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Mach P, Köninger A, Reisch B, Kimmig R, Gellhaus A. Soluble PD-L1 and B7-H4 serum levels during the course of physiological pregnancy. Am J Reprod Immunol 2022; 87:e13519. [PMID: 34974633 DOI: 10.1111/aji.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The aim of this study was to evaluate the soluble programmed death-ligand (sPD-L1) and soluble B7-H4 (sB7-H4) serum concentration levels longitudinal throughout the three trimesters of uncomplicated pregnancies. METHOD OF THE STUDY: sPD-L1 and sB7-H4 levels were determined with enzyme-linked immunosorbent assay (ELISA). The patients (n = 26) were divided into three groups according to the pregnancy trimester. Among 26 women involved in the study 14 had longitudinal sB7-H4 and sPD-L1 measurements in each trimester of pregnancy. RESULTS During the course of pregnancy, the sB7-H4 blood serum levels were significant higher in second trimester than in first and third trimester, whereas sPD-L1 levels increased significantly over the course of pregnancy. CONCLUSION The highest serum levels of sPD-L1 in the third trimester suggest increasing suppression of maternal immunity throughout pregnancy, whereas elevated sB7-H4 concentration levels in second trimester suggests different profile of T-cell regulation in physiological pregnancy.
Collapse
Affiliation(s)
- Pawel Mach
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, Hospital of the Barmherzige Brueder, Clinic St Hedwig, Regensburg, Germany
| | - Beatrix Reisch
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
6
|
Mohamad Zainal NH, Mohd Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum Immunol 2022; 83:437-446. [DOI: 10.1016/j.humimm.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
7
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Aghajanpour S, Hosseini E, Amirchaghmaghi E, Zandieh Z, Amjadi F, Yahyaei A, Zolfaghari Z, Aflatoonian K, Ashrafi M, Aflatoonian R. Differential expression of innate/adaptive immunity genes induced by endometrial scratching as a hopeful approach for implantation boosting in unexplained, repeated implantation failure: An RCT. J Reprod Immunol 2021; 148:103426. [PMID: 34653814 DOI: 10.1016/j.jri.2021.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endometrial scratching (ES) has been proposed as a potential treatment for implantation improvement in unexplained repeated implantation failure (uRIF) patients, however, little is known about its exact molecular mechanisms. OBJECTIVE This randomized controlled trial (RCT) was conducted on twenty uRIF patients to investigate the expression of innate and adaptive immune signaling genes after ES. METHODS Ten uRIF patients in the intervention (twice endometrial sampling in follicular and luteal phases) and 10 uRIF patients in the control group (only luteal phase sampling) were randomly enrolled. Gene expression analysis with innate and adaptive immune response PCR-array kit between intervention and control groups were performed. RESULTS Among innate immune-associated genes, a significant decrease was observed in the expression of APCS, CPR, CCL2, NLRP3, HLA-A, TLR3 and TLR4 in the intervention group. In adaptive immune-related genes, the expression level of CD80, CD86, CXCR3, IFNγ, IFNα1, IFNβ, MBL2, CCR6, CCR8 and IL17A were decreased and CSF2, GATA3, and IL4 increased significantly in the intervention group (P < 0.05). Of 14 uRIF patients, five live birth (35.71 %) was achieved. CONCLUSION ES in uRIF patients may exert positive effects on the endometrial preparation which increases its receptivity for embryo implantation by modulating the expression of an array of immune signaling pathway genes.
Collapse
Affiliation(s)
- Samaneh Aghajanpour
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Amirchaghmaghi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azar Yahyaei
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zolfaghari
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mahnaz Ashrafi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Obstetrics and Gynecology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
CD91 Derived Treg Epitope Modulates Regulatory T Lymphocyte Response, Regulates Expression of Costimulatory Molecules on Antigen-Presenting Cells, and Rescues Pregnancy in Mouse Pregnancy Loss Model. Int J Mol Sci 2021; 22:ijms22147296. [PMID: 34298914 PMCID: PMC8304956 DOI: 10.3390/ijms22147296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The loss of immune tolerance to fetal antigens may result in reproductive failure. The downregulated number and activity of T regulatory lymphocytes, which are critical for the establishment of immune tolerance to fetal antigens, during pregnancy may lead to miscarriage. The adoptive transfer of Tregs prevents fetal loss in abortion-prone mice. Recently, we demonstrated that the administration of tregitopes, which are short peptides found in human and mouse immunoglobulins (IgGs), decreased the incidence of abortions in female CBA/J mice mated with DBA/2J mice. Here, two non-IgG source peptides (SGS and LKD) that can potentially bind to the major histocompatibility complex II (MHC II) with high affinity and induce Treg expansion were designed in silico. The immune dysregulation-induced pregnancy failure mouse model was used to evaluate the effect of SGS and LKD on immune response and pregnancy outcome. The fetal death rate in the SGS-treated group was lower than that in the phosphate-buffered saline-treated group. SGS and LKD upregulated the splenic pool of Tregs and modulated the T-helper cell (Th1)/Th2-related cytokine response at the preimplantation stage. Additionally, SGS and LKD downregulated the expression of CD80 and MHC class II molecules in splenic CD11c+ antigen-presenting cells. Thus, SGS treatment can result in beneficial pregnancy outcomes. Additionally, SGS peptide-mediated immunomodulation can be a potential therapeutic strategy for immune dysregulation-induced pregnancy failure.
Collapse
|
10
|
Kedzierska AE, Lorek D, Slawek A, Chelmonska-Soyta A. Tregitopes regulate the tolerogenic immune response and decrease the foetal death rate in abortion-prone mouse matings. Sci Rep 2020; 10:10531. [PMID: 32601347 PMCID: PMC7324366 DOI: 10.1038/s41598-020-66957-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
The imbalance in immune tolerance may cause the variety of reproductive failures. An intravenous immunoglobulin infusion (IVIg) therapy is used to improve the live birth rate in women suffering from recurrent pregnancy loss, recurrent spontaneous abortions and recurrent implantation failures. However, the results of IVIg studies are still inconclusive as IVIg infusion in women suffering from pregnancy loss is sometimes ineffective. One of the mechanisms of action of this treatment is inhibition of B cells differentiation and expansion of Tregs and secretion of interleukin 10. It was proposed that immunomodulatory effects of IVIg may be attributed to tregitopes - self-IgG-derived epitopes present in the structure of immunoglobulins. Similarly to IVIg, tregitopes cause the expansion of Tregs and secretion of antigen-specific effector cytokine response. Here, we studied whether the administration of mouse tregitope 167 and/or 289 can prevent abortions in mouse abortion-prone mouse matings. We revealed that tregitopes reduce the foetal death rate. This may be driven by observed higher pool of peripheral Tregs, increased production of IL-10 by Tregs and Bregs and/or maintaining the tolerogenic phenotype of antigen-presenting cells. We believe that our findings may indicate a potential alternative to IVIg for therapeutic intervention in case of pregnancy failures.
Collapse
Affiliation(s)
- Anna Ewa Kedzierska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland. .,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stablowicka 147 Str., Wroclaw, Poland.
| | - Daria Lorek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Slawek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Chelmonska-Soyta
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
11
|
Lorek D, Kedzierska AE, Slawek A, Chelmonska-Soyta A. Expression of Toll-like receptors and costimulatory molecules in splenic B cells in a normal and abortion-prone murine pregnancy model. Am J Reprod Immunol 2019; 82:e13148. [PMID: 31134706 DOI: 10.1111/aji.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
PROBLEM The regulatory role of B lymphocytes in the pregnancy-induced maternal immune response is not well recognized. B lymphocytes function as antigen-presenting cells (APCs) and regulate Toll-like receptors and costimulatory molecule expression in response to intrinsic and extrinsic signals. Therefore, the aim of this study was to determine the expression of TLR2, TLR4, TLR9, and MHC class II and the costimulatory molecules CD80, CD86, and CD40 in splenic B cells in a normal and abortion-prone murine pregnancy model. METHODS OF STUDY The expression level of these molecules on female splenic B cells was investigated using real-time PCR and flow cytometry. The analysis was performed on the 3rd and 14th day of normal (CBA/JxBALB/c) and abortion-prone (CBA/JxDBA/2J) murine pregnancy. RESULTS The expression of Tlr9, Cd86, and H2-Ab1 in splenic B cells on the 3rd day after mating was upregulated, whereas Tlr2 was downregulated in abortion-prone females. On day 14, we observed lower expression levels of Tlr4 and Cd80 and higher expression levels of Cd86 in CBA/J females mated with DBA/2J males. At the protein level, the differences were observed only on day 3 of pregnancy. TLR4 and CD40 molecules were upregulated in splenic B cells, while TLR9 and CD86 were downregulated in abortion-prone mice. CONCLUSION Differential expression of TLRs and costimulatory molecules in splenic B cells in abortion-prone and normal pregnancies suggests the involvement of these cells in the regulation of the immune response at the periphery in pregnant females.
Collapse
Affiliation(s)
- Daria Lorek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Ewa Kedzierska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Anna Slawek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Chelmonska-Soyta
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
12
|
Wang S, Li M, Sun F, Chen C, Ye J, Li D, Qian J, Du M. Altered frequency and function of spleen CTLA-4+Tim-3+ T cells are associated with miscarriage†. Biol Reprod 2019; 104:410-417. [PMID: 31329823 DOI: 10.1093/biolre/ioz076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/31/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with several immune adaptations in both systemic and local maternal-fetal interface to allow the growth of semi-allogeneic conceptus. A failure in maternal immune tolerance to the fetus may result in abnormal pregnancies, such as recurrent spontaneous abortion. The regulation of T-cell homeostasis during pregnancy has important implications for maternal tolerance and immunity. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and T-cell immunoglobulin mucin-3 (Tim-3) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here we described the lower frequency of splenic T cells co-expressing CTLA-4 and Tim-3 accompanied by higher levels of proinflammatory but lower anti-inflammatory cytokines production in abortion-prone mouse model. Blockade of CTLA-4 and Tim-3 pathways leaded to the dysfunction of splenic T cells. By the higher expression during normal pregnancy, CTLA-4 and Tim-3 co-expression on splenic T cells linked to immunosuppressive phenotype. As the spleen is an important site for peripheral immune activation, our data suggest potential noninvasive biomarkers and therapeutic targets for miscarriage.
Collapse
Affiliation(s)
- Songcun Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Mengdie Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Fengrun Sun
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Chunqin Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - JiangFeng Ye
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Jinfeng Qian
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| |
Collapse
|
13
|
Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Immune Checkpoint Molecules in Reproductive Immunology. Front Immunol 2019; 10:846. [PMID: 31057559 PMCID: PMC6482223 DOI: 10.3389/fimmu.2019.00846] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint molecules, like CTLA-4, TIM-3, PD-1, are negative regulators of immune responses to avoid immune injury. Checkpoint regulators are thought to actively participate in the immune defense of infections, prevention of autoimmunity, transplantation, and tumor immune evasion. Maternal-fetal immunotolerance represents a real immunological challenge for the immune system of the mother: beside acceptance of the semiallogeneic fetus, the maternal immune system has to be prepared for immune defense mostly against infections. In this particular situation, the role of immune checkpoint molecules could be of special interest. In this review, we describe current knowledge on the role of immune checkpoint molecules in reproductive immunology.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Katalin Doba
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| |
Collapse
|
14
|
Decidual macrophage M1 polarization contributes to adverse pregnancy induced by Toxoplasma gondii PRU strain infection. Microb Pathog 2018; 124:183-190. [PMID: 30142466 DOI: 10.1016/j.micpath.2018.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
Recent evidence indicates that macrophages at the maternal-fetal interface adapt to a phenotype characterized by alternative activation (M2 polarization) and exhibit immunosuppressive functions that favor the maintenance of pregnancy. The bias of M2 decidual macrophages toward M1 has been clinically linked to pregnancy-related complications, such as preeclampsia and preterm delivery. The aim of this study was to investigate the effect of Toxoplasma gondii PRU strain infection on the bias of decidual macrophage polarization and its contribution to adverse pregnancy outcomes. A mouse model with adverse pregnancy outcome was established by infection with T. gondii PRU strain and the expression levels of functional molecules in decidual macrophages of mice were measured. The results showed that T. gondii infection caused seriously adverse pregnancy outcome in mice. The placentae of infected mice showed obvious congestion and inflammatory cell infiltration. The expression of CD206, MHC-II, and arginase-1 considered as M2 markers was decreased in decidual macrophages after T. gondii infection, whereas the expression of CD80, CD86, iNOS, and cytokines TNF-α and IL-12 considered as M1 markers was increased. Furthermore, iNOS-positive expression was observed in the decidua basalis of infected mice. Our results indicated that T. gondii infection was responsible for the bias of M2 decidual macrophages toward M1, which changes the immunosuppressive microenvironment at the maternal-fetal interface and contributes to adverse pregnancy outcomes.
Collapse
|
15
|
Shimada S, Ebina Y, Iijima N, Deguchi M, Yamada H. Decidual CD68+
HLA-DR+
CD163−
M1 macrophages increase in miscarriages with normal fetal chromosome. Am J Reprod Immunol 2017; 79. [DOI: 10.1111/aji.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Yasuhiko Ebina
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Norifumi Iijima
- Department of Immunobiology; Yale University School of Medicine; New Haven CT USA
| | - Masashi Deguchi
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hideto Yamada
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
16
|
Co-Signaling Molecules in Maternal-Fetal Immunity. Trends Mol Med 2016; 23:46-58. [PMID: 27914866 DOI: 10.1016/j.molmed.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Physiologically, a successful pregnancy requires the maternal immune system to recognize and tolerate the semiallogeneic fetus, and allow for normal invasion of trophoblasts. Thus, pregnancy complications are considered to be associated with dysfunctional maternal-fetal crosstalk. Co-signaling molecules are a group of cell surface molecules that positively or negatively modulate the immune response. Well studied in the fields of oncology and transplantation, they are also suggested to be involved in maternal-fetal crosstalk. Here, we review the latest knowledge on the expression and function of such co-signaling molecules, highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. This review may instruct future basic research on, and clinical applications for, maternal-fetal immunity.
Collapse
|
17
|
Huang C, Zhang H, Chen X, Diao L, Lian R, Zhang X, Hu L, Zeng Y. Association of peripheral blood dendritic cells with recurrent pregnancy loss: a case-controlled study. Am J Reprod Immunol 2016; 76:326-32. [PMID: 27545493 DOI: 10.1111/aji.12550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/21/2016] [Indexed: 12/01/2022] Open
Abstract
PROBLEM Dendritic cells (DCs) have been reported to play an important role in pregnancy. However, the role of DCs in recurrent pregnancy loss (RPL) has not been investigated well. METHOD OF STUDY Forty-three women affected by RPL and 16 fertile controls were recruited from June 2013 to December 2014. The peripheral blood DCs subsets, including myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), the levels (%) of CD80(+) , CD86(+) , and CD200(+) DCs were analyzed using flow cytometry. RESULTS The levels of total DCs, mDCs, and CD86(+) DCs were significantly higher (all P<.05); however, the level of CD200(+) DCs in the RPL group was significantly lower than that of the control group (P<.05). The logistical regression analyses showed that the elevated level of mDCs was significantly associated with RPL after adjustment for age (OR: 1.14, 95% CI, 1.01-1.29, P<.05). CONCLUSION The elevated level of mDCs was significantly associated with RPL, which might lead to the intervention of targeted immunosuppression in women with RPL.
Collapse
Affiliation(s)
- Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China
| | - Hongzhan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China
| | - Xu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China. .,Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen, China.
| |
Collapse
|
18
|
Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J Immunol Res 2014; 2014:210241. [PMID: 24987708 PMCID: PMC4060291 DOI: 10.1155/2014/210241] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023] Open
Abstract
Maternofetal immune tolerance is essential to maintain pregnancy. The maternal immunological tolerance to the semiallogeneic fetus becomes greater in egg donation pregnancies with unrelated donors as the complete fetal genome is allogeneic to the mother. Instead of being rejected, the allogeneic fetus is tolerated by the pregnant woman in egg donation pregnancies. It has been reported that maternal morbidity during egg donation pregnancies is higher as compared with spontaneous or in vitro fertilization pregnancies. Particularly, egg donation pregnancies are associated with a higher incidence of pregnancy-induced hypertension and placental pathology. Preeclampsia, a pregnancy-specific disease characterized by the development of both hypertension and proteinuria, remains the leading cause of maternal and perinatal mortality and morbidity. The aim of this review is to characterize and relate the maternofetal immunological tolerance phenomenon during pregnancies with a semiallogenic fetus, which are the spontaneously conceived pregnancies and in vitro fertilization pregnancies, and those with an allogeneic fetus or egg donation pregnancies. Maternofetal immune tolerance in uncomplicated pregnancies and pathological pregnancies, such as those with preeclampsia, has also been assessed. Moreover, whether an inadequate maternal immunological response to the allogenic fetus could lead to a higher prevalence of preeclampsia in egg donation pregnancies has been addressed.
Collapse
|
19
|
Bonney EA, Brown SA. To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 2014; 147:R153-67. [PMID: 24472815 DOI: 10.1530/rep-13-0583] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is an example of the use of an animal model to try to understand the immune biology of pregnancy. A well-known model of recurrent spontaneous pregnancy loss is put in clinical, historical, and theoretical context, with emphasis on T cell biology.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, Vermont 05404, USA
| | | |
Collapse
|
20
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
21
|
Schumacher A, Zenclussen AC. Regulatory T cells: regulators of life. Am J Reprod Immunol 2014; 72:158-70. [PMID: 24661545 DOI: 10.1111/aji.12238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Pregnancy still represents one of the most fascinating paradoxical phenomena in science. Immediately after conception, the maternal immune system is challenged by the presence of foreign paternal antigens in the semen. This triggers mechanisms of recognition and tolerance that all together allow the embryo to implant and later the fetus to develop. Tolerance mechanisms to maintain pregnancy are of special interest as they defy the classical immunology rules. Several cell types, soluble factors, and immune regulatory molecules have been proposed to contribute to fetal tolerance. Within these, regulatory T cells (Treg) are one of the most studied immune cell populations lately. They are reportedly involved in fetal acceptance. Here, we summarize several aspects of Treg biology in normal and pathologic pregnancies focusing on Treg frequencies, subtypes, antigen specificity, and activity as well as on factors influencing Treg generation, recruitment, and function. This review also highlights the contribution of fetal Treg in tolerance induction and addresses the role of Treg in autoimmune diseases and infections during gestation. Finally, the potential of Treg as a predictive marker for the success of assisted reproductive techniques and for therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics & Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
22
|
CD80 and CD86 costimulatory molecules differentially regulate OT-II CD4⁺ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. Mediators Inflamm 2014; 2014:769239. [PMID: 24771983 PMCID: PMC3977523 DOI: 10.1155/2014/769239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022] Open
Abstract
Immune phenomena during the preimplantation period of pregnancy are poorly understood. The aim of our study was to assess the capacity for antigen presentation of splenic antigen-presenting cells (APCs) derived from pregnant and pseudopregnant mice in in vitro conditions. Therefore, sorted CD11c+ dendritic cells and macrophages F4/80+ and CD11b+ presenting ovalbumin (OVA) were cocultured with CD4+ T cells derived from OT-II mice's (C57BL6/J-Tg(TcraTcrb)1100Mjb/J) spleen. After 132 hours of cell culture, proliferation of lymphocytes (ELISA-BrdU), activation of these cells (flow cytometry), cytokine profile (ELISA), and influence of costimulatory molecules blocking on these parameters were measured. We did not detect any differences in regulation of Th1/Th2 cytokine balance. CD86 seems to be the main costimulatory molecule involved in the proliferation response but CD80 is the main costimulatory molecule influencing cytokine secretion in pregnant mice. In conclusion, this study showed that CD80 and CD86 costimulatory molecules regulate OT-II CD4+ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. The implications of these changes still remain unclear.
Collapse
|
23
|
Li W, Li B, Li S. Adenovirus mediated CTLA4Ig transgene therapy alleviates abortion by inhibiting spleen lymphocyte proliferation and regulating apoptosis in the feto-placental unit. J Reprod Immunol 2013; 97:167-74. [PMID: 23433910 DOI: 10.1016/j.jri.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/28/2022]
Abstract
Pregnancy is thought to be a state of immunological tolerance. The mechanisms underlying this phenomenon are still poorly understood. In our previous study, adenovirus mediated CTLA4Ig transgene (Ad-CTLA4Ig) therapy was demonstrated to improve pregnancy outcome in an abortion-prone mouse model by skewing the Th2/Th1 cytokine balance, expanding peripheral CD4(+) CD25(+) regulatory T cell populations and inducing indoleamine 2,3 dioxygenase (IDO) mRNA expression at the maternal-fetal interface. However, it is still not clear whether other mechanisms are involved in the protective effect of CTLA-4 on pregnancy outcome in abortion-prone matings. In this study, we focused on the effect of CTLA4Ig on spleen lymphocyte proliferation and apoptosis at the maternal-fetal interface. We demonstrated that Ad-CTLA4Ig therapy inhibited the proliferation of CBA/J splenocytes and IL-2 secretion in response to DBA/2 stimulator cells in the abortion-prone mice model. Ad-CTLA4Ig therapy also skewed cytokine production toward a Th2 bias and regulated the expression of anti-apoptosis factor Bcl-2 and pro-apoptosis factor Bax at the maternal-fetal interface. However, it did not influence the apoptosis and cell cycles of splenocytes in pregnant CBA/J mice. On the whole, these findings indicated that Ad-CTLA4Ig therapy could ameliorate the outcome of spontaneous abortion by inhibiting proliferation of maternal spleen lymphocytes and regulating apoptosis in the feto-placental unit.
Collapse
Affiliation(s)
- Weihong Li
- Assisted Reproductive Center, The First affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
24
|
Teles A, Zenclussen AC, Schumacher A. Regulatory T cells are baby's best friends. Am J Reprod Immunol 2013; 69:331-9. [PMID: 23289369 DOI: 10.1111/aji.12067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (Treg) are one of the most and best studied immune cell population during human and murine pregnancy, and there is a general consent about their expansion during pregnancy. However, the identification of new and more reliable Treg markers during the last years resulted in some controversies about the kinetics of various Treg subsets at different pregnancy stages. No doubt exists regarding the importance of Treg for a normal pregnancy as pregnancy complications like spontaneous abortion and preeclampsia could be associated with a reduced Treg number and activity. In future, more attention should be paid to bring established data from the bench to the bedside to force the development of adequate therapies for treatment of pregnancy complications. In this article, we summarize previous and recent data on several aspects of Treg biology during human and murine pregnancy.
Collapse
Affiliation(s)
- Ana Teles
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
25
|
Abumaree MH, Chamley LW, Badri M, El-Muzaini MF. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol 2012; 94:131-41. [PMID: 22542910 DOI: 10.1016/j.jri.2012.03.488] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Interactions between maternal immune cells and the placenta are of substantial interest since diseases of pregnancy, such as recurrent miscarriage, villitis of unknown etiology and preeclampsia may arise due to inadequate adaptation of the maternal immune system. During normal pregnancy trophoblast debris is shed from the placenta into the maternal blood in large quantities. This trophoblast debris is then rapidly cleared from the maternal circulation. In this study, we exposed trophoblast debris generated from an in vitro placental explant model to peripheral blood-derived macrophages and quantified a variety of molecules that are important in immune responses by ELISA or flow cytometry. Phagocytosis of trophoblast debris resulted in reduced cell-surface expression of MHC-II molecules, the costimulatory molecules (CD80, CD86, CD40 and B7H3), monocyte chemoattractant protein-1 (MCP-1), inter-cellular adhesion molecule 1 (ICAM-1) and IL-8 receptors in macrophages while the expression of programmed death-1 ligand 1 (PD-L1) was upregulated. In addition, phagocytosis of trophoblast debris induced the secretion of the anti-inflammatory cytokines IL-10, IL6 and IL1Ra and decreased the secretion of pro-inflammatory cytokines IL-1β, IL12p70 and IL-8 by macrophages. Phagocytosis of trophoblast debris also increased macrophage expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO). We have shown that phagocytosis of trophoblast debris from normal placentae alters the phenotype of macrophages such that they are likely to deviate maternal immune responses towards tolerance and away from inflammation. This may be one of the mechanisms that allow the human fetal allograft to survive in direct contact with the maternal immune system.
Collapse
Affiliation(s)
- M H Abumaree
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Mail Code 1515, Saudi Arabia.
| | | | | | | |
Collapse
|
26
|
Pham T, Bachelez H, Berthelot JM, Blacher J, Claudepierre P, Constantin A, Fautrel B, Gaujoux-Viala C, Goëb V, Gossec L, Goupille P, Guillaume-Czitrom S, Hachulla E, Lequerré T, Marolleau JP, Martinez V, Masson C, Mouthon L, Puéchal X, Richette P, Saraux A, Schaeverbeke T, Soubrier M, Viguier M, Vittecoq O, Wendling D, Mariette X, Sibilia J. Abatacept therapy and safety management. Joint Bone Spine 2012; 79 Suppl 1:3-84. [DOI: 10.1016/s1297-319x(12)70011-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Berencsi III G. Fetal and Neonatal Illnesses Caused or Influenced by Maternal Transplacental IgG and/or Therapeutic Antibodies Applied During Pregnancy. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121401 DOI: 10.1007/978-94-007-4216-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human fetus is protected by the mother’s antibodies. At the end of the pregnancy, the concentration of maternal antibodies is higher in the cord blood, than in the maternal circulation. Simultaneously, the immune system of the fetus begins to work and from the second trimester, fetal IgM is produced by the fetal immune system specific to microorganisms and antigens passing the maternal-fetal barrier. The same time the fetal immune system has to cope and develop tolerance and TREG cells to the maternal microchimeric cells, latent virus-carrier maternal cells and microorganisms transported through the maternal-fetal barrier. The maternal phenotypic inheritance may hide risks for the newborn, too. Antibody mediated enhancement results in dengue shock syndrome in the first 8 month of age of the baby. A series of pathologic maternal antibodies may elicit neonatal illnesses upon birth usually recovering during the first months of the life of the offspring. Certain antibodies, however, may impair the fetal or neonatal tissues or organs resulting prolonged recovery or initiating prolonged pathological processes of the children. The importance of maternal anti-idiotypic antibodies are believed to prime the fetal immune system with epitopes of etiologic agents infected the mother during her whole life before pregnancy and delivery. The chemotherapeutical and biological substances used for the therapy of the mother will be transcytosed into the fetal body during the last two trimesters of pregnancy. The long series of the therapeutic monoclonal antibodies and conjugates has not been tested systematically yet. The available data are summarised in this chapter. The innate immunity plays an important role in fetal defence. The concentration of interferon is relative high in the placenta. This is probably one reason, why the therapeutic interferon treatment of the mother does not impair the fetal development.
Collapse
Affiliation(s)
- György Berencsi III
- , Division of Virology, National Center for Epidemiology, Gyáli Street 2-6, Budapest, 1096 Hungary
| |
Collapse
|
28
|
Wang WJ, Hao CF, Lin QD. Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients. J Reprod Immunol 2011; 92:97-102. [PMID: 22015003 DOI: 10.1016/j.jri.2011.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/04/2011] [Accepted: 08/11/2011] [Indexed: 10/16/2022]
Abstract
CD4(+)CD25(+) T cells (Treg cells) and macrophages play roles in the maintenance of maternal-fetal immunological tolerance. Treg cells suppress the function of macrophages via mechanisms mediated by cell-cell contact and production of soluble factors. The purpose of this study was to investigate regulation of macrophages by Treg cells within decidua from patients with unexplained recurrent miscarriage (RM) and normal control women during early pregnancy. Treg cells and macrophages were isolated from deciduas of unexplained RM (n=15) and control women (n=15) by magnetic cell separation and co-cultured for six days. Regulation of macrophages by Treg cells was assessed in the presence and absence of neutralizing anti-TGFβ antibodies and in transwell experiments. Expression of CD80, CD86, IL10, and IFNγ by macrophages was measured by flow cytometry or ELISA. Macrophage expression of CD80 and CD86 was higher in deciduas of unexplained RM patients compared with controls whereas the expression of IL10 was lower. There was no difference in the expression of IFNγ by macrophages between the two groups. Treg cells inhibited macrophage expression of CD80, CD86 and IFNγ and increased the expression of IL10. The regulatory effects of Treg cells were abrogated in the presence of neutralizing anti-TGFβ antibodies or by transwell culture. The phenotype of macrophages therefore differed in unexplained RM patients compared with normal early pregnant subjects. Macrophage regulation by Treg cells was shown to be mediated by cell-cell contact and TGFβ and this capacity was decreased in unexplained RM patients.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Reproduction Medical Center, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, China.
| | | | | |
Collapse
|
29
|
Jin LP, Fan DX, Zhang T, Guo PF, Li DJ. The costimulatory signal upregulation is associated with Th1 bias at the maternal-fetal interface in human miscarriage. Am J Reprod Immunol 2011; 66:270-8. [PMID: 21481059 DOI: 10.1111/j.1600-0897.2011.00997.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PROBLEM To evaluate whether the association of the costimulatory signal regulation with T helper 1/T helper 2 (Th1/Th2) bias at maternal-fetal interface in human pregnancy loss. METHOD OF STUDY The expression of CD80 and CD86 in decidual tissues and CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in the decidual T cells was compared between normal early pregnancy and miscarriage by qPCR and Western blot. The cytokine production in decidual T cells was performed by flow cytometry. The correlation of costimulatory molecule expression with Th1/Th2 cytokines was analyzed. RESULTS The CD80 mRNA and protein expression showed no significant difference between normal pregnancy and miscarriage. An increase in the expression of CD28 and CD86 was accompanied by a decrease in the expression of CTLA-4 in miscarriage in comparison with the early pregnancy. The higher expression of interleukin (IL)-2 and interferon-γ (IFN-γ), and lower expression of IL-4 and IL-10 in the decidual T cells were present in miscarriage. A correlation analysis showed a significant positive correlation of CD86 and CD28 expression with the Th1 cytokine production (IL-2 and IFN-γ), a significant negative correlation of CTLA-4 expression with the Th1 cytokine production. CONCLUSION The upregualtion of costimulatory signals on T cells might form an abnormal immune microenvironment, a shift to Th1 responses, at maternal-fetal interface, which leads to human miscarriage.
Collapse
Affiliation(s)
- Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, China
| | | | | | | | | |
Collapse
|
30
|
Friebe A, Douglas AJ, Solano E, Blois SM, Hagen E, Klapp BF, Clark DA, Arck PC. Neutralization of LPS or blockage of TLR4 signaling prevents stress-triggered fetal loss in murine pregnancy. J Mol Med (Berl) 2011; 89:689-99. [PMID: 21387177 DOI: 10.1007/s00109-011-0743-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/26/2022]
Abstract
Maternal stress can cause loss of both histocompatible (syngeneic) and histoincompatible (semiallogeneic) embryos in pregnant mice. Stress increases abortogenic Th1 cytokines and reduces levels of anti-abortogenic Th2 cytokines, progesterone levels, and T regulatory cell activity. While physiological levels of interferon-γ promote vascular remodeling at the feto-maternal interface, an overshooting Th1 cytokine response requires a Toll-like receptor (TLR)-mediated "danger signal" such as lipopolysaccharide (LPS). Interestingly, stress can enhance permeability of mucosal membranes to entry of bacterial products and promote transmucosal migration of commensal bacteria. We hypothesized that bacterial component such as LPS may provide the danger signal through which stress triggers maternal immune activation, subsequently resulting in fetal rejection. Blocking the TLR4 receptor for LPS or neutralization of LPS using bactericidal permeability increasing protein abrogate fetal loss due to sonic stress challenge in DBA/2J-mated CBA/J mice. These treatments prevented stress-triggered immune responses in the decidua, upregulated Treg cells, and reduced the frequency of mature dendritic cells in uterine-draining lymph nodes but not in the uterus. Interestingly, anti-TLR4 treatment only partly ameliorated stress-induced endocrine responses, such as increased hypothalamic corticotropin releasing hormone and vasopressin mRNA expression but not decrease of serum progesterone. Galectin-1 knock-out mice were more susceptible to stress-triggered complete implantation failure rather than fetal loss, which was also abolished by LPS neutralization. Insights provided in this paper shed new light on the mechanisms by which stress affects pregnancy outcome and introduce microbial-derived LPS as a mediator within the cascade of stress-triggered immune and endocrine events during pregnancy.
Collapse
Affiliation(s)
- Astrid Friebe
- Department of Psychiatry, Ruhr-University Bochum, Alexandrinenstraße, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Infertility and recurrent spontaneous abortion (RSA) are heterogeneous conditions that have been frequently explained with an immunological pathomechanism. A deeper insight into apparently unexplained infertility and RSA shows increasing evidences supporting both alloimmune and autoimmune mechanisms, in which natural killer (NK) cells and autoantibodies seem to play a relevant role. Successful pregnancy is considered as Th1-Th2 cooperation phenomenon, with a predominantly Th2-type lymphocytes response, together with the emerging role of interleukin (IL)-12, IL-15, and IL-18 and of other unidentified soluble factors dependent on NK cells. Uterine NK cells comprise the largest population at implantation site, and their activity, characteristics, and abundance suggest that they participate at the "decidualization" process that, vice versa, induces NK activation and recruitment in each menstrual cycle. However, NK cell alteration may be associated with impaired pregnancy, and the modulation in the number of circulating NK cells is most likely to be a primary event rather than an active inflammation/drug administration consequence during an inflammatory/autoimmune process, thus playing an important role in the pathogenesis of immunological infertility. Relationships within immunological infertility, recurrent spontaneous abortion, autoantibodies, and NK cells will be reviewed herein.
Collapse
|
32
|
Jin LP, Fan DX, Li DJ. Regulation of costimulatory signal in maternal-fetal immune tolerance. Am J Reprod Immunol 2011; 66:76-83. [PMID: 21276120 DOI: 10.1111/j.1600-0897.2010.00982.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A pregnancy is associated with modifications in the immune status of the mother, but the mechanisms are not well understood. Several observations have indicated that CD28/CTLA-4 and B7-1/B7-2 are involved in the maternal-fetal immune regulation. This review aims to recapitulate our current knowledge concerning the role of CD28/CTLA-4 and B7-1/B7-2 in maternal-fetal immune regulation. Several studies suggest that up-regulation of B7-2 and/or CD28 and/or down-regulation of CTLA-4 are correlated with the occurrence of pregnancy loss. Therefore, an accurate expression of costimulatory molecules at the maternal-fetal interface may ensure that the decidual cells do not elicit a 'danger' signal to the maternal immune system, perhaps instead contributing to the establishment of immune tolerance in vivo. It is showed that costimulation blockade with anti-B7 mAbs results in altered allogeneic T-cell response and overcomes increased maternal rejection to the fetus, which improves fetus growth in the abortion-prone system. These findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells but also exert immunoregulatory effect on the maternal T cells. This procedure might be potentially useful to immunotherapy for human recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | |
Collapse
|
33
|
Abstract
Placental and fetal growth and development are associated with chronic exposure of the maternal immune system to fetally derived, paternally inherited antigens. Because maternal lymphocytes are aware of fetal antigens, active tolerance mechanisms are required to ensure unperturbed progression of pregnancy and delivery of a healthy newborn. These mechanisms of tolerance may include deletion, receptor downregulation, and anergy of fetal antigen-specific cells in lymphoid tissues, as well as regulation at the maternal-fetal interface by a variety of locally expressed immunoregulatory molecules. The B7 family of costimulatory molecules comprises one group of immunoregulatory molecules present in the decidua and placenta. B7 family members mediate both inhibitory and stimulatory effects on T-cell activation and effector functions and may play a critical role in maintaining tolerance to the fetus. Here, we review the known functions of the B7 family proteins in pregnancy.
Collapse
Affiliation(s)
- Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
34
|
Karimi K, Arck PC. Natural Killer cells: keepers of pregnancy in the turnstile of the environment. Brain Behav Immun 2010; 24:339-47. [PMID: 19800965 DOI: 10.1016/j.bbi.2009.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022] Open
Abstract
During early pregnancy, an orchestrated endocrine-immunological scenario of maternal adaptation toward tolerance of the semiallogeneic fetus is required. Mechanisms preventing fetal loss by protecting the immune privilege of the gravid uterus, i.e. Galectin-1 or regulatory T cells, have recently been identified. Further, the presence of a unique population of Natural Killer (NK) cells, in humans identified by their CD56(+++)Galectin (Gal)-1(+)CD16(-) phenotype in the uterine lining (decidua), has been proposed to be a pivotal aspect of maternal adaptation to pregnancy. Decidual NK (dNK) cells comprise the largest population of immune cells during the first trimester in human decidua and control trophoblast invasion and vascular remodeling through their ability to secrete an array of angiogenesis-regulating molecules, chemokines and cytokines. A wealth of environmental factors, such as smoking, altered nutrition, pollution or stress has been proposed to peril not only pregnancy, but also fetal development. Further, published evidence supports that NK cells act as sentinel cells and environmental challenges can change their phenotype, e.g. via epigenetic pathways. We here review the effect of environmental factors, largely stress perception, on NK cells and its implication for pregnancy, fetal development and general health. As NK cells may not only be passive responders to the environment, but can also be 'educated and licensed', we propose novel strategies aiming to take advantage of the versatility of NK cells in maintaining immunosurveillance and tissue homeostasis.
Collapse
Affiliation(s)
- Khalil Karimi
- Department of Medicine, Brain Body Institute, McMaster University, Hamilton, Canada L8N4A6.
| | | |
Collapse
|
35
|
The CD4+CD25bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol 2009; 133:402-10. [DOI: 10.1016/j.clim.2009.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/20/2022]
|
36
|
|
37
|
Abstract
PURPOSE OF REVIEW To describe the mechanisms of action of abatacept (CTLA4-Ig) and summarize the evidence of its efficacy and safety in rheumatoid arthritis (RA) and other rheumatic diseases such as juvenile idiopathic arthritis (JIA). RECENT FINDINGS Several studies have demonstrated the clinical efficacy (disease activity, quality of life, prevention of structural damage) of abatacept in patients with RA who have failed to respond to standard disease-modifying antirheumatic drugs (DMARDs) and antitumour necrosis factor-alpha biologic agents. Selective modulation of T-cell costimulation may also be an alternative therapy for children with JIA who are resitant to conventional DMARDs or biologics. SUMMARY T-cell activation is critical to the onset and maintenance of RA. Abatacept (CTLA4-Ig), the first selective T-cell costimulation modulator has shown to be effective in RA and JIA. Recent 2-year data from the 'AIM' trial suggests an increased and sustained effect of blocking of T cell signalling on the inhibition of RA structural damage progression over time. Abatacept's safety profile in combination with DMARDs also seems to be favourable but should be avoided in combination with other biologics.
Collapse
Affiliation(s)
- Vincent Goëb
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS7 4SA, UK
| | | | | | | |
Collapse
|
38
|
|
39
|
Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. THE JOURNAL OF IMMUNOLOGY 2007; 178:3345-51. [PMID: 17339426 DOI: 10.4049/jimmunol.178.6.3345] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Induction and maintenance of immunologic tolerance in humans remains a desirable but elusive goal. Therefore, understanding the physiologic mechanisms of regulation of immune responses is highly clinically relevant for immune-mediated diseases (e.g., autoimmunity and asthma/allergy) and for cell and organ transplantation. Acceptance of the fetus, which expresses paternally inherited alloantigens, by the mother during pregnancy is a unique example of how the immune system reshapes a destructive alloimmune response to a state of tolerance. Understanding the complex mechanisms of fetomaternal tolerance has important implications for developing novel strategies to induce immunologic tolerance in humans in general and for prevention of spontaneous abortion in at-risk populations in particular.
Collapse
Affiliation(s)
- Indira Guleria
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Jin LP, Zhou YH, Zhu XY, Wang MY, Li DJ. Adoptive Transfer of Paternal Antigen-Hyporesponsive T Cells Facilitates a Th2 Bias in Peripheral Lymphocytes and at Materno-Fetal Interface in Murine Abortion-prone Matings. Am J Reprod Immunol 2006; 56:258-66. [PMID: 16938115 DOI: 10.1111/j.1600-0897.2006.00425.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM To investigate the Th1/Th2 cytokine changes in abortion-prone recipient mice adoptively transferred by the paternal antigen-hyporesponsive T cells. METHOD OF STUDY The paternal antigen-hyporesponsive T cells were generated by the anti-B7 monoclonal antibody (mAb) treatment and adoptively transferred into pregnant CBA/J mice of abortion-prone matings on day 4 of gestation. The intracellular expressions of Th1 cell-derived cytokine, tumor necrosis factor-alpha, gamma-interferon and interleukin-2 (IL-2) and Th2 cell-derived cytokine, IL-4 and IL-10 in the maternal spleen were analyzed by flow cytometry, and secretions of the Th1 and Th2 cytokines in supernatant of the feto-placental unit culture were analyzed by an enzyme-linked immunosorbent assay. RESULTS Our findings showed the increased secretion of Th1 cytokines and the decreased secretion of Th2 cytokines in abortion-prone matings. Treatment with anti-B7 mAbs on day 4 of gestation enhanced Th2 and reduced Th1 cytokine production in abortion-prone matings. Similarly, adoptive transfer of paternal antigen-hyporesponsive T cells induced maternal tolerance to the fetus and displayed a Th2 bias both in the peripheral lymphocytes and at the materno-fetal interface of the abortion-prone matings. CONCLUSIONS These findings indicate that the Th2 cytokine bias and an increase in fetal viability induced by the anti-B7 mAb treatment can be transferred to other pregnant mice of the abortion-prone matings.
Collapse
Affiliation(s)
- Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics & Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, China
| | | | | | | | | |
Collapse
|