1
|
Sal-Sarria S, González-Pardo H, Conejo NM. Synergistic impact of early-life stress and prenatal immune activation on spatial memory and oxidative metabolism in rat cortico-limbic networks. Neurobiol Learn Mem 2025; 219:108060. [PMID: 40318801 DOI: 10.1016/j.nlm.2025.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Early life exposure to immune activation and stress are critical factors involved in the development of mental and neurodevelopmental disorders in adulthood. This study explored the individual and combined effects of prenatal lipopolysaccharide-induced (LPS)-induced immune activation and postnatal maternal separation on cognitive performance and oxidative metabolism in male Wistar rats. Using a 2 × 2 factorial design, pregnant dams were exposed to LPS or saline on gestational day 15, and offspring underwent maternal separation from postnatal days 2-14. In adulthood, cognitive function was assessed using the Morris Water Maze, and regional brain energy metabolism was evaluated using quantitative histochemistry of cytochrome c oxidase (CCO) quantitative histochemistry in the prefrontal cortex, hippocampus, and retrosplenial cortex. Rats exposed to both stressors demonstrated significant impairments in spatial memory and cognitive flexibility, supporting the "two-hit" hypothesis of early adversity, which posits that early life exposure to an adverse environmental event (first hit) combined with subsequent exposure to stress during critical developmental periods (second hit) can significantly increase the risk of developing behavioral or neurodevelopmental disorders in adulthood. Accordingly, adult animals exposed to prenatal LPS and maternal separation showed prolonged escape latencies and decreased spatial memory retention during the behavioral tasks. Concurrently, CCO activity was markedly increased in all measured regions, reflecting heightened metabolic demands. These changes are consistent with impaired hippocampal-prefrontal-retrosplenial network integration and the underlying key processes involved in cognitive alterations such as memory or attention. This study underscores the synergistic effects of these environmental factors on cognitive and metabolic dysfunction, providing a translational model to better understand the etiology of neurodevelopmental disorders. The findings highlight the importance of addressing multiple interacting environmental factors in the context of early life adversity.
Collapse
Affiliation(s)
- Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
2
|
Nivins S, Padilla N, Kvanta H, Ådén U. Gestational Age and Cognitive Development in Childhood. JAMA Netw Open 2025; 8:e254580. [PMID: 40227687 PMCID: PMC11997729 DOI: 10.1001/jamanetworkopen.2025.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
Importance Preterm and early-term births are known risk factors for cognitive impairment, but studies that comprehensively include genetics, prenatal risk, and child-specific factors in high-risk populations are lacking. Objective To investigate the long-term cognitive outcomes of children born at various gestational ages, including very preterm (28-31 weeks), moderately preterm (32-33 weeks), late preterm (34-36 weeks), and early term (37-38 weeks), compared with full-term (≥39 weeks), accounting for genetics and other risk factors. Design, Setting, and Participants In this prospective, multicenter, longitudinal cross-sectional study, children aged 9 to 10 years were recruited from the Adolescent Brain and Cognitive Development Study between January 1, 2016, and December 31, 2018. Children underwent cognitive assessments using the National Institutes of Health Toolbox, Little Man Task, and Rey Auditory Verbal Learning Test. Polygenic scores for cognitive performance (cogPGS) were generated using results of a genome-wide association study from the genetic variants related to cognitive performance, educational attainment, and mathematical ability. Data analysis was performed from March to June 2024. Exposure Preterm (very preterm, moderately preterm, late preterm) and early-term birth status, with full-term birth status as the reference group. Main Outcomes and Measures The primary outcome of interest was the composite cognitive score, while secondary outcomes included individual cognitive domain scores. Hierarchical regression models were used to examine associations between gestational age and cognitive outcomes, adjusting for socioeconomic status (SES), cogPGS, prenatal risks, and child-specific factors. Results Among 5946 children included in the study (mean [SD] age, 9.9 [0.6] years; 3083 [51.8%] male), 55 (0.9%) were born very preterm, 110 (1.8%) were born moderately preterm, 454 (7.6%) were born late preterm, 261 (4.4%) were born early term, and 5066 (85.2%) were born full term. The cogPGS was positively associated with the composite cognitive score (β = 0.14; 95% CI, 0.12-0.17; P < .001) in the overall cohort. Compared with full-term children, those born moderately preterm had lower composite cognitive scores (β = -0.39; 95% CI, -0.55 to -0.22; P < .001) and lower scores in vocabulary (β = -0.36; 95% CI, -0.53 to -0.19; P < .001), working memory (β = -0.27; 95% CI, -0.45 to -0.09; P = .003), episodic memory (β = -0.32; 95% CI, -0.50 to -0.14; P < .001), and both short-delay recall (β = -0.36; 95% CI, -0.54 to -0.18; P < .001) and long-delay recall (β = -0.29; 95% CI, -0.48 to -0.11; P = .002). These associations were independent of SES, cogPGS, and other risk factors. Importantly, the lowest cognitive scores appeared among children born at 32 weeks or less. In contrast, late-preterm and early-term children performed similarly to full-term peers. Conclusions and Relevance In this cross-sectional study of children aged 9 to 10 years, moderately preterm birth was associated with long-term cognitive problems independent of SES, genetics, and other risk factors. These findings underscore the need for continued follow-up of all preterm children, with particular focus on those born before 34 weeks' gestational age, because they may face greater developmental challenges over time.
Collapse
Affiliation(s)
- Samson Nivins
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Nelly Padilla
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Kvanta
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Zhou J, Tong J, Liang C, Wu P, Ouyang J, Cai W, Cheng L, Teng Y, Sheng J, Gao G, Yan S, Tao F, Tong S, Huang K. Prenatal metals and offspring cognitive development: Insights from a large-scale placental bioassay study. ENVIRONMENTAL RESEARCH 2025; 267:120684. [PMID: 39716677 DOI: 10.1016/j.envres.2024.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The developing foetus is particularly sensitive to neurotoxic metals. The placenta is considered an ideal tissue for biomonitoring prenatal cumulative metal exposure. Based on the Ma'anshan Birth Cohort study (MABC) in China, this study investigated associations of non-essential metals and essential metals in placenta, including arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), cobalt (Co), selenium (Se) and zinc (Zn), with cognitive development in children among 1586 mother-child pairs. Also, we explored potential interactions between the metals and modifying role of the sex. Children's cognitive development was tested at preschool age using the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV). Analyses used multiple linear regression, Bayesian kernel machine regression (BKMR), the quantile g-computation (Qgcomp), interaction and marginal effects models, and restricted cubic spline in R and STATA. In this study, the geometric means [GMs (SD)] for placental metal concentrations were 8.10 (7.54) ng/g for As, 32.32 (29.20) ng/g for Cd, 11.89 (13.33) ng/g for Hg, 32.21 (28.24) ng/g for Pb, 15.05 (8.91) ng/g for Co, 508.82 (192.35) ng/g for Se, 18481.60 (14030.61) ng/g for Zn. In individual models, placental As levels were negatively associated with the Fluent Reasoning Index (FRI) in the overall sample. Cd levels were negatively associated with the full-scale intelligence quotient (FSIQ), the Verbal Comprehension Index (VCI) and the Visual Spatial Index (VSI). The four metal mixture (As, Cd, Hg and Pb) was negatively associated with FSIQ, VCI, VSI and FRI. Placental Cd and As were the largest contributors to the negative mixture association on the FSIQ. The negative associations of placental As, Cd and Hg with FSIQ in children were gradually attenuated with increasing Zn and Se. After stratifying by sex, the individual and mixture associations between elevated placental non-essential metal exposures and reduced cognitive scores were significant only in boys. Zn and Se were the major contributors to the positive mixture associations on the FSIQ. In summary, prenatal exposure to As, Cd and Hg has sex-specific adverse associations on children's cognitive development. A more accurate assessment of the necessity of prenatal supplementation of micronutrients including Zn and Se is needed.
Collapse
Affiliation(s)
- Jixing Zhou
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Juan Tong
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China
| | - Penggui Wu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Jiajun Ouyang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Wenjin Cai
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Lu Cheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Yuzhu Teng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guopeng Gao
- Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan, 243011, Anhui, China
| | - Shuangqin Yan
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan, 243011, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kun Huang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China.
| |
Collapse
|
4
|
Diez-Ahijado L, Cilleros-Portet A, Fernández-Jimenez N, Fernández MF, Guxens M, Julvez J, Llop S, Lopez-Espinosa MJ, Subiza-Pérez M, Lozano M, Ibarluzea J, Sunyer J, Bustamante M, Cosin-Tomas M. Evaluating the association between placenta DNA methylation and cognitive functions in the offspring. Transl Psychiatry 2024; 14:383. [PMID: 39304652 DOI: 10.1038/s41398-024-03094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10-4) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.
Collapse
Affiliation(s)
- Laia Diez-Ahijado
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- University of Granada, Biomedical Research Centre, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Monica Guxens
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jordi Julvez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Clinical and Epidemiological Neuroscience, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Mikel Subiza-Pérez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
5
|
Johnson DC, Bryan EE, Burris ES, Dilger RN, Harsh BN, Dilger AC. Effects of maternal inflammation on growth performance, carcass characteristics, and meat quality of offspring pigs. J Anim Sci 2024; 102:skae215. [PMID: 39066604 PMCID: PMC11336995 DOI: 10.1093/jas/skae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to determine the effects of mid-gestational maternal inflammation on performance, carcass characteristics, and meat quality of offspring. Pregnant gilts were administered either lipopolysaccharide (LPS; n = 7) or saline (CON, n = 7) from days 70 to 84 of gestation. Gilts assigned to the LPS treatment were administered an intravenous injection of reconstituted LPS every other day with a beginning dose of 10 μg LPS/kg body weight and subsequent doses increasing by 12%, while CON gilts received intravenous injections of comparable volumes of saline. Gilts farrowed naturally, and at day 66 of age, a total of 59 pigs, both barrows and gilts began a 3-phase feeding regimen designed to meet or exceed nutrient requirements for growing-finishing pigs. Pigs were weighed on days 0, 35, 70, and 105 of the finishing trial to determine average daily gain, average daily feed intake, and gain-to-feed ratio (G:F). On day 106, pigs were slaughtered under the supervision of the U.S. Department of Agriculture Food Safety Inspection Service. Ending live weight, hot carcass weight, and dressing percentage were determined. The left side of carcasses was weighed and fabricated to determine carcass cutting yields. The semitendinosus was collected for histological samples. Fresh belly characteristics and loin quality were measured. Two chops were collected for Warner-Bratzler shear force and proximate analysis. No differences (P ≥ 0.13) between LPS and CON pigs were observed for growth performance in phases 1, 2, 3, or overall (days 0 to 105) performance with the exception of overall G:F reduced in CON pigs compared with LPS pigs (P = 0.03). There was a tendency for carcass yield to be reduced (P = 0.06; 0.82% units) in LPS pigs compared with CON pigs. Additionally, longissimus muscle area tended to be reduced (P = 0.10) 2.27 cm2 in LPS compared with CON pigs. Loin chop quality traits including instrumental color, subjective color, marbling, firmness, pH, and drip loss were not different (P ≥ 0.09) between LPS and CON pigs. Fresh belly characteristics were not different (P ≥ 0.22) between LPS and CON pigs. There were no differences in primal and subprimal weights, except that LPS pigs tended to have a reduction (P ≥ 0.07) in tenderloin and Canadian back weights compared with CON pigs. Furthermore, LPS pigs had no differences (P ≥ 0.25) in muscle fiber composition or size; however, LPS pigs tended (P = 0.10) to have a 13% reduction in estimated muscle fibers number compared with CON pigs. In summary, mid-gestational inflammation did not result in reduced meat quality, growth performance, or carcass yields of offspring.
Collapse
Affiliation(s)
- Danielle C Johnson
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Erin E Bryan
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Bailey N Harsh
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
6
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
7
|
Academic performance in adolescent offspring of mothers with prenatal and perinatal psychiatric hospitalizations: A register-based, data linkage, cohort study. Psychiatry Res 2023; 319:114946. [PMID: 36463723 DOI: 10.1016/j.psychres.2022.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND This is the first study to investigate the longitudinal association between prenatal and perinatal psychiatric hospitalizations and academic achievements in adolescent offspring. METHODS We conducted an administrative health data-based cohort study of 168, 528 mother-offspring pairs using linked data obtained from health and educational registries in New South Wales, Australia. Prenatal and perinatal maternal psychiatric diagnosis was measured by using ICD-10. The National Assessment Program for Literacy and Numeracy (NAPLAN) was used to assess the educational performance of the offspring. Logistic regression model was used to explore the association. Multivariate models were adjusted for maternal sociodemographic characteristics such as age at birth, marital status, educational status, and occupational status, maternal diabetes and chronic hypertension, maternal smoking during pregnancy, birth weight, and language spoken at home. RESULTS The findings show that after adjusting for important covariates adolescent offspring of mothers with prenatal and perinatal psychiatric hospitalizations were more likely to perform below the national minimum standard in all domains of academic performance at age 14 years, when compared with the offspring of mothers without such hospitalizations, with the highest odds for numeracy (OR = 2.88; 95% CI: 2.50-3.31) followed by reading (OR = 2.08; 95% CI: 1.81-2.38), spelling (OR = 1.74; 95% CI: 1.51-2.01), and writing (OR = 1.56; 95% CI: 1.34-1.80). There was significant gender interaction such that males were more likely to experience lower rates of academic performance than females in all academic domains. Lower academic achievements were observed among offspring of mothers with all major groupings of psychiatric disorders, with a higher risk for severe psychiatric disorders followed by mental disorders due to substance use or medical conditions. CONCLUSION In sum, maternal prenatal and perinatal psychiatric hospitalizations are associated with lower academic achievements in adolescent offspring, with a stronger effect on the academic performance of male offspring. Early intervention strategies that aim to enhance educational performance in the exposed offspring are needed.
Collapse
|
8
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Sex differences in the vulnerability of the hippocampus to prenatal stress. Dev Psychobiol 2022; 64:e22305. [PMID: 36282753 DOI: 10.1002/dev.22305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
Distressing events during pregnancy that engage activity of the body's endocrine stress response have been linked with later life cognitive deficits in offspring and associated with developmental changes in cognitive-controlling neural regions. Interestingly, prenatal stress (PS)-induced alterations have shown some sex specificity. Here, we review the literature of animal studies examining sex-specific effect of physical PS on the function and structure of the hippocampus as hippocampal impairments likely underlie PS-associated deficits in learning and memory. Furthermore, the connectivity between the hypothalamic-pituitary-adrenal (HPA) axis and the hippocampus as well as the heavy presence of glucocorticoid receptors (GRs) in the hippocampus suggests this structure plays an important role in modulation of activity within stress circuitry in a sex-specific pattern. We hope that better understanding of sex-specific, PS-related hippocampal impairment will assist in uncovering the molecular mechanisms behind sex-based risk factors in PS populations across development, and perhaps contribute to greater precision in management of cognitive disturbances in this vulnerable population.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
10
|
Viñas-Noguera M, Csatlósová K, Šimončičová E, Bögi E, Ujházy E, Dubovický M, Belovičová K. Sex- and age- dependent effect of pre-gestational chronic stress and mirtazapine treatment on neurobehavioral development of Wistar rat offspring. PLoS One 2022; 17:e0255546. [PMID: 35113878 PMCID: PMC8812964 DOI: 10.1371/journal.pone.0255546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Hormonal fluctuations, such as the perinatal period, may increase susceptibility of women to depression, which in turn exert a negative impact on child's neurodevelopment, becoming a risk factor in development of neuropsychiatric disorders. Moreover, the use of antidepressants during this critical period presents a serious health concern for both the mother and the child, due to the consequences of treatment in terms of the reliability and safety for the proper neurodevelopment of the organism being not well known. Atypical antidepressants, such as mirtazapine, that targets both serotonergic and noradrenergic systems in the central nervous system (CNS), represent a novel focus of research due to its unique pharmacological profile. The aim of this work was to study the effects of maternal depression and/or perinatal antidepressant mirtazapine treatment on the neurobehavioral development of the offspring. Pre-gestationally chronically stressed or non-stressed Wistar rat dams were treated with either mirtazapine (10 mg/kg/day) or vehicle during pregnancy and lactation followed by analysis of offspring's behavior at juvenile and adolescent age. We found mirtazapine induced significant alterations of nursing behavior. In offspring, pregestational stress (PS) had an anxiogenic effect on adolescent males (p≤0.05) and increased their active behavior in forced swim test (p≤0.01). Interaction between pregestational stress and mirtazapine treatment variously induced anxiolytic changes of juvenile (p≤0.05) and adolescent (p≤0.05) females and impairment of spatial memory (p≤0.01) in adolescent females as well. Hippocampal density of synaptophysin, pre-synaptic protein marker, was decreased mainly by mirtazapine treatment. In conclusion, our results show mirtazapine induced significant alterations in maternal behavior and several sex- and age-dependent changes in neurobehavioral development of offspring caused by both prenatal mirtazapine treatment and/or chronic pregestational stress.
Collapse
Affiliation(s)
- Mireia Viñas-Noguera
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Csatlósová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
- Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ezster Bögi
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eduard Ujházy
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Dubovický
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristína Belovičová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
The in-utero experience of piglets born from sows with lameness shapes their life trajectory. Sci Rep 2021; 11:13052. [PMID: 34158529 PMCID: PMC8219680 DOI: 10.1038/s41598-021-92507-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Experiences during gestation can alter the mother's behavior and physiology, thereby potentially affecting the behavioral and physiological development of the offspring. In livestock, one common challenge for pregnant animals is lameness: a multifactorial condition that causes pain, stress, resulting in poor welfare outcomes. Since maternal pain can affect offspring development, we aimed to quantify the behavioral response in 142 piglets born from sows with different degrees of lameness during pregnancy. Gait scores of 22 pregnant group-housed sows were assessed six times at 2-week intervals. Lameness scores varied from 0 (no lameness) to 5 (most severe lameness score). Saliva samples and behavior were assessed in the sows throughout pregnancy. Sows were moved to individual farrowing pens and placental tissue was collected for glucocorticoid assessment. At 28 days of age, piglets were weaned, weighed, and regrouped by body size and sex. Skin lesions were counted for each piglet on days 28, 29, and 30 after birth. During open field and novel object tests on day 30, the vocalization and activity levels were evaluated. Piglet data were grouped by the lameness score of the sows as G1 (without lameness), G2 (moderate lameness), and G3 (severe lameness). Data analysis included ANOVA or Kruskal-Wallis tests and pairwise comparisons which were performed using Tukey and Kramer (Nemenyi) test with Tukey-Dist approximation for independent samples. G2 piglets were heavier than G3 at weaning. G1 piglets had fewer skin lesions at days 28 and 29 than G2 piglets. Moreover, G1 piglets vocalized more than G2 when they were subjected to the combined open field and novel object test. We did not identify differences among sows showing different lameness scores in the concentration of placental or salivary glucocorticoids. Lameness in pregnant sows altered the offspring's weight gain, number of skin lesions and vocalizations, together showing evidence that lameness in sows affect offspring performance and behavior.
Collapse
|
12
|
Cattane N, Räikkönen K, Anniverno R, Mencacci C, Riva MA, Pariante CM, Cattaneo A. Depression, obesity and their comorbidity during pregnancy: effects on the offspring's mental and physical health. Mol Psychiatry 2021; 26:462-481. [PMID: 32632208 PMCID: PMC7850968 DOI: 10.1038/s41380-020-0813-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Depression and obesity represent two of the most common complications during pregnancy and are associated with severe health risks for both the mother and the child. Although several studies have analysed the individual effects of depression or obesity on the mothers and their children, the effects associated with the co-occurrence of both disorders have so far been poorly investigated. The relationship between depression and obesity is very complex and it is still unclear whether maternal depression leads to obesity or vice versa. It is well known that the intrauterine environment plays an important role in mediating the effects of both depression and obesity in the mother on the fetal programming, increasing the child's risk to develop negative outcomes.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Roberta Anniverno
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
13
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
14
|
Abstract
(1) Background: High stress levels during pregnancy can affect the organogenesis and the foetus’ central nervous system maturation. The objective of this study was to determine whether a relationship between maternal stress during pregnancy and alterations in child neurodevelopment exists; (2) Methods: A bibliographical review was carried out following PRISMA Methodology and using Scopus, Web of Science and Cinahl databases. The research questions were made using PEO methodology (Participants, Exposition, Outcomes). Moreover, article quality was measured using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies; (3) Results: 22 articles that fit the inclusion criteria were selected. Different elements altered because of maternal stress during pregnancy could side with alterations in different areas of the neurodevelopment, such as cognitive development, motor development, behaviour, temperament, memory and learning abilities; (4) Conclusions: Although maternal stress can have an influence on children’s neurodevelopment, it is still unknown which are the specific elements related to this stress that can modify it negatively. Furthermore, future studies should evaluate whether a sex-specific association exists.
Collapse
|
15
|
Surzenko N, Pjetri E, Munson CA, Friday WB, Hauser J, Mitchell ES. Prenatal exposure to the probiotic Lactococcus lactis decreases anxiety-like behavior and modulates cortical cytoarchitecture in a sex specific manner. PLoS One 2020; 15:e0223395. [PMID: 32645024 PMCID: PMC7347133 DOI: 10.1371/journal.pone.0223395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Development of the cerebral cortex may be influenced by the composition of the maternal gut microbiota. To test this possibility, we administered probiotic Lactococcus lactis in drinking water to mouse dams from day 10.5 of gestation until pups reached postnatal day 1 (P1). Pups were assessed in a battery of behavioral tests starting at 10 weeks old. We found that females, but not males, exposed to probiotic during prenatal development spent more time in the center of the open field and displayed decreased freezing time in cue associated learning, compared to controls. Furthermore, we found that probiotic exposure changed the density of cortical neurons and increased the density of blood vessels in the cortical plate of P1 pups. Sex-specific differences were observed in the number of mitotic neural progenitor cells, which were increased in probiotic exposed female pups. In addition, we found that probiotic treatment in the latter half of pregnancy significantly increased plasma oxytocin levels in mouse dams, but not in the offspring. These results suggest that exposure of naïve, unstressed dams to probiotic may exert sex-specific long-term effects on cortical development and anxiety related behavior in the offspring.
Collapse
Affiliation(s)
- Natalia Surzenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Eneda Pjetri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Carolyn A. Munson
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Walter B. Friday
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Jonas Hauser
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | |
Collapse
|
16
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
18
|
Long-term impact of prenatal exposure to chemotherapy on executive functioning: An ERP study. Clin Neurophysiol 2019; 130:1655-1664. [PMID: 31330451 DOI: 10.1016/j.clinph.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study examines the long-term impact of prenatal exposure to chemotherapy on executive functioning and the contribution of late-prematurity to this effect, using event-related potentials. METHODS Mothers of the prenatal-exposed children (n = 20) were diagnosed with cancer and received chemotherapeutic treatment during pregnancy. We recruited healthy controls (n = 20) who were matched on a 1:1 ratio regarding prematurity, age and sex. We assessed executive functioning at the age of nine, using two event-related potential paradigms: a Go/Nogo paradigm to investigate processes of response inhibition and conflict monitoring, as well as a Posner paradigm to investigate spatial attention. RESULTS Lower potentials were found in prenatal-exposed children compared to controls in the Go/Nogo P3 and Posner positive slow wave. Moreover, prenatal-exposed children responded slower on the Posner paradigm compared to controls (p < .033), with more incorrect responses (p = .023). In the control group, the N2 Go/Nogo wave was more pronounced in children born after a longer gestation. CONCLUSIONS This is the first study that demonstrates an effect of prenatal exposure to chemotherapy on the development of executive functioning, not limited to the effect of late-prematurity. SIGNIFICANCE This study emphasizes the necessity of a long-term follow-up of prenatal-exposed children to re-inform clinical practice on the costs and benefits of late-premature induction over treatment during pregnancy.
Collapse
|
19
|
Dabbah-Assadi F, Alon D, Golani I, Doron R, Kremer I, Beloosesky R, Shamir A. The influence of immune activation at early vs late gestation on fetal NRG1-ErbB4 expression and behavior in juvenile and adult mice offspring. Brain Behav Immun 2019; 79:207-215. [PMID: 30738182 DOI: 10.1016/j.bbi.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Maternal inflammation during pregnancy is associated with a higher incidence of mental disorders (e.g. schizophrenia and autism) in the offspring. In our study, we investigate the involvement of the NRG-ErbB signaling pathway in rodent fetal brains four hours following maternal immune activation (MIA) insult at two different gestational days (i.e. early vs late). Furthermore, we test the long-term behavioral alteration of the exposed MIA mice at juvenile and adulthood. We demonstrate that MIA at late, but not at early gestation day, altered the expression of NRG1, its receptor ErbB4, and the dopamine D2 receptor four hours post injection of viral or bacterial mimic material in fetal brain. At the behavioral levels, adult late-MIA-exposed female offspring, but not juvenile, display lack preference to a novel object. While working memory alteration observed only in adult male MIA-exposed offspring at late gestation day. In addition, we found that adult females MIA-exposed mice spent more time in the center of the open field than female-saline groups. On the other hand, juvenile male offspring exposed to MIA at early, but not late, gestation day displayed a significant alteration in social interaction. Our results suggest that MIA during late gestation immediately influences the expression levels of the NRG1 and ErbB4 genes, and affects long-term behavioral changes at adulthood. These behavioral changes are time related and sex-specific. Thus, immune activation at late stages of the embryonic brain development initiates the activation of the NRG1-ErbB4 pathway and this disturbance might result in cognitive dysfunction in adulthood.
Collapse
Affiliation(s)
- F Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - D Alon
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - I Golani
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - R Doron
- Psychobiology Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Israel; Department of Education and Psychology, The Open University, Raanana, Israel
| | - I Kremer
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - R Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - A Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Cattaneo A, Begni V, Malpighi C, Cattane N, Luoni A, Pariante C, Riva MA. Transcriptional Signatures of Cognitive Impairment in Rat Exposed to Prenatal Stress. Mol Neurobiol 2019; 56:6251-6260. [DOI: 10.1007/s12035-019-1523-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022]
|
21
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
22
|
Early prenatal exposure to pandemic influenza A (H1N1) infection and child psychomotor development at 6 months - A population-based cohort study. Early Hum Dev 2018; 122:1-7. [PMID: 29803166 DOI: 10.1016/j.earlhumdev.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies investigating gestational influenza and child neurodevelopment are still scarce, particularly concerning timing of infection in pregnancy. This is the first study to investigate associations between gestational influenza and infant psychomotor development and temperament at 6 months. METHODS Data from The Norwegian Influenza Pregnancy Cohort, established during the 2009 swine flu pandemic, were utilized. Information on influenza infection, vaccination, maternal health and child health and development is available from questionnaires, national registry data and maternal blood samples drawn at delivery. Maternal influenza A H1N1 pdm09 infection was serologically confirmed. 609 children with complete data were identified. Children of exposed and non-exposed mothers were compared using generalized linear models. RESULTS Children exposed to influenza during gestational weeks (gw) 0-8 had adjusted general development scores indicating slightly delayed development compared to non-exposed children (0.28 standard deviations (SD) 95% confidence interval (CI): -0. 01; 0.58; p = 0.06). The temperamental scores of children exposed during gw 0-8 were slightly higher (0.31 SD; 95% CI: -0. 03; 0.64; p = 0.07) than non-exposed children indicating a more difficult temperament. In comparison, the developmental scores for children exposed in gw 9-40 were -0.31 SD (95% CI: -0. 65; 0.04; p = 0.09) better than non-exposed children, while the temperamental scores were 0.17 (95% CI: -0. 23; 0.56; p = 0.36) for the same period. CONCLUSION Modest associations were found between maternal influenza A (H1N1) pdm infection during gestational weeks 0-8 and psychomotor development at 6 months.
Collapse
|
23
|
Xu YJ, Sheng H, Wu TW, Bao QY, Zheng Y, Zhang YM, Gong YX, Lu JQ, You ZD, Xia Y, Ni X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations. FASEB J 2018. [PMID: 29543532 DOI: 10.1096/fj.201700948rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pregnant women at risk of preterm labor usually receive synthetic glucocorticoids (sGCs) to promote fetal lung development. Emerging evidence indicates that antenatal sGC increases the risk of affective disorders in offspring. Data from animal studies show that such disorders can be transmitted to the second generation. However, the molecular mechanisms underlying the intergenerational effects of prenatal sGC remain largely unknown. Here we show that prenatal dexamethasone (Dex) administration in late pregnancy induced depression-like behavior in first-generation (F1) offspring, which could be transmitted to second-generation (F2) offspring with maternal dependence. Moreover, corticotropin-releasing hormone (CRH) and CRH receptor type 1 (CRHR1) expression in the hippocampus was increased in F1 Dex offspring and F2 offspring from F1 Dex female rats. Administration of a CRHR1 antagonist to newborn F1 Dex offspring alleviated depression-like behavior in these rats at adult. Furthermore, we demonstrated that increased CRHR1 expression in F1 and F2 offspring was associated with hypomethylation of CpG islands in Crhr1 promoter. Our results revealed that prenatal sGC exposure could program Crh and Crhr1 gene expression in hippocampus across 2 generations, thereby leading to depression-like behavior. Our study indicates that prenatal sGC can cause epigenetic instability, which increases the risk of disease development in the offspring's later life.-Xu, Y.-J., Sheng, H., Wu, T.-W., Bao, Q.-Y., Zheng, Y., Zhang, Y.-M., Gong, Y.-X., Lu, J.-Q., You, Z.-D., Xia, Y., Ni, X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations.
Collapse
Affiliation(s)
- Yong-Jun Xu
- Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, Xiamen University School of Medicine, Fuzhou, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Tian-Wen Wu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Qing-Yue Bao
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - You Zheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yan-Min Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu-Xiang Gong
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jian-Qiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhen-Dong You
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Yang Xia
- Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA.,Institute of Molecular Metabolomics, Xiangya Hospital, Changsha, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China.,Institute of Molecular Metabolomics, Xiangya Hospital, Changsha, China
| |
Collapse
|
24
|
Murphy SK, Fineberg AM, Maxwell SD, Alloy LB, Zimmermann L, Krigbaum NY, Cohn BA, Drabick DAG, Ellman LM. Maternal infection and stress during pregnancy and depressive symptoms in adolescent offspring. Psychiatry Res 2017; 257:102-110. [PMID: 28750213 PMCID: PMC5823248 DOI: 10.1016/j.psychres.2017.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/26/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Maternal infection during pregnancy has been linked to increased risk of offspring depression. Additionally, maternal stress during pregnancy has been consistently linked with adverse offspring outcomes associated with depression. Relatedly, stress has been associated with increased risk of infection; however no study has investigated stress-infection interactions during pregnancy and risk for offspring depression. Participants were drawn from the Child Health and Development Studies (CHDS), a prospective, longitudinal study that enrolled pregnant women from 1959 to 1966. Maternal health and birth outcome information were collected, as well as open-ended interviews about worrisome events during pregnancy. The present study included participants from a subsample of women whose offspring (n = 1711) completed self-reports of depressive symptoms during adolescence. Results indicated that maternal infection during only the second trimester was associated with higher scores on adolescent offspring depressive symptoms, while controlling for maternal education at birth, adolescent age, and maternal depressive symptoms at adolescence. Maternal experiences of daily stress during pregnancy moderated this association, such that mothers diagnosed with second trimester infection and who experienced daily stress had offspring with significantly higher depression scores than mothers of adolescents diagnosed with an infection alone. Findings have potential implications for prevention and intervention strategies.
Collapse
Affiliation(s)
| | - Anna M. Fineberg
- Temple University, Department of Psychology, Philadelphia, PA, USA
| | - Seth D. Maxwell
- Temple University, Department of Psychology, Philadelphia, PA, USA
| | - Lauren B. Alloy
- Temple University, Department of Psychology, Philadelphia, PA, USA
| | - Lauren Zimmermann
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Nickilou Y. Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | | | - Lauren M. Ellman
- Temple University, Department of Psychology, Philadelphia, PA, USA,Corresponding author. Lauren M. Ellman, Ph.D., Temple University, Department of Psychology, Weiss Hall, 1701 North 13 Street, Philadelphia, PA, 19122,
| |
Collapse
|
25
|
Burke RD, Todd SW, Lumsden E, Mullins RJ, Mamczarz J, Fawcett WP, Gullapalli RP, Randall WR, Pereira EFR, Albuquerque EX. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem 2017; 142 Suppl 2:162-177. [PMID: 28791702 DOI: 10.1111/jnc.14077] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Richard D Burke
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric Lumsden
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roger J Mullins
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William R Randall
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Prenatal maternal stress in relation to the effects of prenatal lead exposure on toddler cognitive development. Neurotoxicology 2017; 59:71-78. [DOI: 10.1016/j.neuro.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
|
27
|
Luoni A, Richetto J, Longo L, Riva MA. Chronic lurasidone treatment normalizes GABAergic marker alterations in the dorsal hippocampus of mice exposed to prenatal immune activation. Eur Neuropsychopharmacol 2017; 27:170-179. [PMID: 27939135 DOI: 10.1016/j.euroneuro.2016.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
Prenatal maternal infection represents a risk factor for the development of psychopathologic conditions later in life. Clinical evidence is also supported by animal models in which the vulnerability to develop a schizophrenic-like phenotype likely originates from inflammatory processes as early as in the womb. Prenatal immune challenge, for example, induces a variety of long-term behavioral alterations in mice, such as deficits in recognition and spatial working memory, perseverative behaviors and social impairments, which are relevant to different symptom clusters of schizophrenia. Here, we investigated the modulation of GABAergic markers in the dorsal and ventral hippocampus of adult mice exposed to late prenatal immune challenge with the viral mimetic Poly(I:C) (polyriboinosinic-polyribocytidilic-acid) at gestational day 17, and we evaluated the ability of chronic treatment with the multi-receptor antipsychotic lurasidone to modulate the alterations produced by maternal infection. Poly(I:C) mice show a significant reduction of key GABAergic markers, such as GAD67 and parvalbumin, specifically in the dorsal hippocampus, which were normalized by chronic lurasidone administration. Moreover, chronic drug administration increases the expression of the pool of brain derived neurotrophic factor (BDNF) transcripts with the long 3'-UTR as well as the levels of mature BDNF protein in the synaptosomal compartment, selectively in dorsal hippocampus. All in all, our findings demonstrate that lurasidone is effective in ameliorating molecular abnormalities observed in Poly(I:C) mice, providing further support to the neuroplastic properties of this multi-receptor antipsychotic drug.
Collapse
Affiliation(s)
- A Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - J Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - L Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - M A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
28
|
Lee YA, Kim YJ, Goto Y. Cognitive and affective alterations by prenatal and postnatal stress interaction. Physiol Behav 2016; 165:146-53. [DOI: 10.1016/j.physbeh.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/20/2023]
|
29
|
Fokos S, Pavlidis M, Yiotis T, Tsalafouta A, Papandroulakis N, Dermon CR. Early life low intensity stress experience modifies acute stress effects on juvenile brain cell proliferation of European sea bass (D. Labrax). Behav Brain Res 2016; 317:109-121. [PMID: 27638037 DOI: 10.1016/j.bbr.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 02/06/2023]
Abstract
Early life adversity may be critical for the brain structural plasticity that in turn would influence juvenile behaviour. To address this, we questioned whether early life environment has an impact on stress responses latter in life, using European sea bass, Dicentrarchus labrax, as a model organism. Unpredictable chronic low intensity stress (UCLIS), using a variety of moderate intensity stressors, was applied during two early ontogenetic stages, flexion or formation all fins. At juvenile stage, fish were exposed to acute stress and plasma cortisol, brain mRNA expression of corticosteroid receptors' genes (gr1, gr2, mr) and brain cell proliferation (using BrdU immunohistochemistry) were determined in experimental and matched controls. UCLIS treatment specifically decreased brain gr1 expression in juveniles, but had no effect on the juvenile brain cell proliferation pattern within the major neurogenic zones studied of dorsal (Dm, Dld) and ventral (Vv) telencephalic, preoptic (NPO) areas, periventricular tectum gray zone (PGZ) and valvula cerebellum (VCe). In contrast, exposure to acute stress induced significant plasma cortisol rise, decreases of cerebral cell proliferation in juveniles, not previously exposed to UCLIS, but no effect detected on the expression levels of gr1, gr2 and mr in all groups of different early life history. Interestingly, juveniles with UCLIS history showed modified responses to acute stress, attenuating acute stress-induced cell proliferation decreases, indicating a long-lasting effect of early life treatment. Taken together, early life mild stress experience influences an acute stress plasticity end-point, cerebral cell proliferation, independently of the stress-axis activation, possibly leading to more effective coping styles.
Collapse
Affiliation(s)
- S Fokos
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - M Pavlidis
- Dept. of Biology, University of Crete, Greece
| | - T Yiotis
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1)
| | - A Tsalafouta
- Dept. of Biology, University of Crete, Greece; Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - N Papandroulakis
- Aquaculture Institute, Hellenic Centre Marine Research, Crete, Greece
| | - C R Dermon
- Dept. of Biology, Human and Animal Physiology Lab, University of Patras, Greece(1).
| |
Collapse
|
30
|
Montes P, Ruiz-Sánchez E, Calvillo M, Rojas P. Active coping of prenatally stressed rats in the forced swimming test: involvement of the Nurr1 gene. Stress 2016; 19:506-15. [PMID: 27219004 DOI: 10.1080/10253890.2016.1193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.
Collapse
MESH Headings
- Adaptation, Psychological/physiology
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Female
- Gene Expression
- Hippocampus/metabolism
- Hypothalamus/metabolism
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Prefrontal Cortex/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- Prenatal Exposure Delayed Effects/psychology
- Rats
- Rats, Wistar
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Restraint, Physical
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Swimming/psychology
Collapse
Affiliation(s)
- Pedro Montes
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Elizabeth Ruiz-Sánchez
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Minerva Calvillo
- b Experimental Laboratory of Neurodegenerative Diseases , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Patricia Rojas
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| |
Collapse
|
31
|
Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles. Exp Neurol 2016; 281:66-80. [DOI: 10.1016/j.expneurol.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
|
32
|
Parker SE, Lijewski VA, Janulewicz PA, Collett BR, Speltz ML, Werler MM. Upper respiratory infection during pregnancy and neurodevelopmental outcomes among offspring. Neurotoxicol Teratol 2016; 57:54-59. [PMID: 27343815 PMCID: PMC5056812 DOI: 10.1016/j.ntt.2016.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
Abstract
Objective Maternal infection during pregnancy is associated with psychiatric disorders among offspring. The aim of this study was to investigate associations between upper respiratory infection (URI) in pregnancy and measures of cognitive and behavioral outcomes in child offspring. Materials and methods A longitudinal study of 534 mother-child pairs with information regarding prenatal exposures collected through an interview conducted on average one year after delivery and subsequent participation in a childhood cognitive and psychosocial assessment between the ages 5–12 years. Childhood cognition was measured using the Peabody Picture Vocabulary Test (PPVT-III) and the Beery-Buktenica Test of Visual Motor Integration-Fifth Edition (VMI-5) and behavioral function measured using the Child Behavior Checklist (CBCL) and teacher-report using the Teacher Report Form (TRF). Adjusted mean differences (adjMD) in outcome measures were calculated between mothers reporting the presence or absence of a URI during pregnancy. Results URI during pregnancy was not associated with the two measures of cognition given to offspring, but was associated with modest increases in total behavioral problems reported by mothers (adjMD: 3.72; CI: 1.91–5.54) and teachers (adjMD: 2.74; CI: 0.97–4.50). We observed differences in CBCL and TRF scores based on timing of URI: infections in mid-pregnancy (lunar months 4–5) were associated with poorer scores than were infections in early pregnancy (lunar months 2–3). Conclusions In general, URI in pregnancy was not associated with decrements in childhood cognition, but may be associated with behavior problems. URI in early pregnancy was not associated with childhood cognitive outcomes. URI in pregnancy was associated with increases in behavior problems among offspring. Associations with behavior were varied by the timing and duration of reported URI. Both treated and untreated URI were associated with increases in behavior problems.
Collapse
Affiliation(s)
- Samantha E Parker
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States.
| | - Virginia A Lijewski
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States
| | - Patricia A Janulewicz
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States
| | - Brent R Collett
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States
| | - Matthew L Speltz
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States
| | - Martha M Werler
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States
| |
Collapse
|
33
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Negrón-Oyarzo I, Lara-Vásquez A, Palacios-García I, Fuentealba P, Aboitiz F. Schizophrenia and reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol Res 2016; 49:16. [PMID: 26968981 PMCID: PMC4787713 DOI: 10.1186/s40659-016-0076-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder that results in a significant disability for the patient. The disorder is characterized by impairment of the adaptive orchestration of actions, a cognitive function that is mainly dependent on the prefrontal cortex. This behavioral deficit, together with cellular and neurophysiological alterations in the prefrontal cortex, as well as reduced density of GABAergic cells and aberrant oscillatory activity, all indicate structural and functional deficits of the prefrontal cortex in schizophrenia. Among the several risk factors for the development of schizophrenia, stress during the prenatal period has been identified as crucial. Thus, it is proposed that prenatal stress induces neurodevelopmental alterations in the prefrontal cortex that are expressed as cognitive impairment observed in schizophrenia. However, the precise mechanisms that link prenatal stress with the impairment of prefrontal cortex function is largely unknown. Reelin is an extracellular matrix protein involved in the development of cortical neural connectivity at embryonic stages, and in synaptic plasticity at postnatal stages. Interestingly, down-regulation of reelin expression has been associated with epigenetic changes in the reelin gene of the prefrontal cortex of schizophrenic patients. We recently showed that, similar to schizophrenic patients, prenatal stress induces down-expression of reelin associated with the methylation of its promoter in the rodent prefrontal cortex. These alterations were paralleled with altered prefrontal cortex functional connectivity and impairment in prefrontal cortex-dependent behavioral tasks. Therefore, considering molecular, cellular, physiological and behavioral evidence, we propose a unifying framework that links prenatal stress and prefrontal malfunction through epigenetic alterations of the reelin gene.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Lara-Vásquez
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ismael Palacios-García
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Neurodevelopmental Plasticity in Pre- and Postnatal Environmental Interactions: Implications for Psychiatric Disorders from an Evolutionary Perspective. Neural Plast 2015; 2015:291476. [PMID: 26060583 PMCID: PMC4427813 DOI: 10.1155/2015/291476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/29/2015] [Accepted: 04/15/2015] [Indexed: 01/28/2023] Open
Abstract
Psychiatric disorders are disadvantageous behavioral phenotypes in humans. Accordingly, a recent epidemiological study has reported decreased fecundity in patients with psychiatric disorders, such as schizophrenia and autism spectrum disorders. Moreover, the fecundity of the relatives of these patients is not exceedingly higher compared to the fecundity of the relatives of normal subjects. Collectively, the prevalence of psychiatric disorders among humans is expected to decrease over generations. Nevertheless, in reality, the prevalence rates of psychiatric disorders in humans either have been constant over a long period of time or have even increased more recently. Several attempts to explain this fact have been made using biological mechanisms, such as de novo gene mutations or variants, although none of these explanations is fully comprehensive. Here, we propose a hypothesis towards understanding the biological mechanisms of psychiatric disorders from evolutionary perspectives. This hypothesis considers that behavioral phenotypes associated with psychiatric disorders might have emerged in the evolution of organisms as a neurodevelopmental adaptation against adverse environmental conditions associated with stress.
Collapse
|
36
|
What makes a good mother? Implication of inter-, and intrastrain strain "cross fostering" for emotional changes in mouse offspring. Behav Brain Res 2014; 274:270-81. [PMID: 25151929 DOI: 10.1016/j.bbr.2014.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 12/15/2022]
Abstract
Currently, the mouse represents the preferred model organism among mammals used for animal studies. Due to a great availability of mutant strains it represents a standard method to analyze in vivo the effects of targeted gene manipulations. While this - at least in theory - represents a valuable tool to elucidate the pathophysiology of certain human diseases, there are several caveats which need to be considered working with animals. In our study we aimed at elucidating, how a widely established breeding strategy, i.e. the use of "foster mothers" to save the survival of compromised mouse pups for ongoing experiments, per se, affects the emotional phenotype of the fostered offspring. Since it is a popular method to use outbred strains like NMRI to do this job, we sought to evaluate the potential effects of such an artificial postnatal condition and compare either offspring nurtured by their biological mothers or two different strains of foster mothers. Hence we analysed changes in maternal care and later on the emotional behaviour of male and female C57BL/6 mice reared by (i) their biological C57BL/6 mothers, (ii) C57BL/6 foster mothers and (iii) NMRI foster mothers in a behavioural test battery. In addition we assessed corticosterone levels as indicator for stress-physiological changes. Besides clear differences in maternal behaviour, our study indicates an altered emotional state (i.e. differences in anxiety and depressive-like features) in mice reared by different "categories" of mothers, which emphasizes the importance to embed such perinatal conditions in the evaluation of animal-deriving data.
Collapse
|