1
|
Cauble EL, Reynolds P, Epeldegui M, Dassanayake PS, Magpantay L, Blyakher D, Regmi P, Von Behren J, Martinez-Maza O, Goldberg D, Spielfogel ES, Lacey JV, Wang SS. Associations between brominated flame retardants, including polybrominated diphenyl ethers, and immune responses among women in the California Teachers Study. FRONTIERS IN EPIDEMIOLOGY 2025; 5:1452934. [PMID: 40177061 PMCID: PMC11962006 DOI: 10.3389/fepid.2025.1452934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Objective To evaluate the associations between brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs), exposure and circulating immune markers in a subset of women from the California Teachers Study cohort. Methods In this cross-sectional study, serum from 813 female participants in the California Teachers Study collected in 2013-2016 were evaluated for 11 BFR congeners and 16 immune markers. Three BFR congeners [BDE153 [2,2',4,4',5,5'-Hexabromodiphenyl ether], BDE47 [2,2',4,4'-Tetrabromodiphenyl ether], PBB153 [2,2',4,4',5,5'-Hexabromobiphenyl]] had median levels that were above the level of detection and were further evaluated for associations with circulating immune markers. Odds ratios (OR) and 95% confidence intervals (CI) were calculated by a logistic regression model where BFR congeners (in quartiles) were associated with immune markers (dichotomized as above and below the respective median), adjusted for age and total lipids. Sensitivity analyses were also conducted evaluating BFR congeners as a continuous exposure (per pg/ml). Results All participants had at least one of the 11 measured BFR congeners detected in their serum. Increasing levels of BDE47 were associated with elevated levels of BAFF (B-cell activating factor; ORQuartile 4 = 1.67, 95% CI = 1.11-2.51), soluble CD27 (sCD27, cluster of differentiation 27; ORQuartile 4 = 1.69, 95% CI = 1.12-2.55) and IL6 (interleukin 6; ORQuartile 4 = 1.74, 95% CI = 1.13-2.66). Increasing levels of PBB153 were associated with elevated levels of CXCL13 (chemokine ligand 13; ORQuartile 4 = 1.55, 95% CI = 1.02-2.35) but inversely associated with sCD27 (ORQuartile 4 = 0.57, 95% CI = 0.38-0.87). Results from continuous models of BFR were largely consistent. No associations were observed between BDE153 and any of the immune markers assessed. Conclusions Two BFR congeners were statistically associated with altered levels of circulating immune markers involved in B cell activation pathways; replication and further evaluation of these novel associations are warranted. If confirmed, our results add to the current literature regarding possible immune mechanisms by which BFR exposures contribute to immune-related health endpoints and conditions where B cell activation is prominent, including autoimmune conditions.
Collapse
Affiliation(s)
- Emily L. Cauble
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Priyanthi S. Dassanayake
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Larry Magpantay
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Daniel Blyakher
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pratima Regmi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Otoniel Martinez-Maza
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Debbie Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Emma S. Spielfogel
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - James V. Lacey
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Sophia S. Wang
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
2
|
Chu C, Ran H, Zhou Y, Zhao K, Zhang YT, Fan YY, Wu LY, Liang LX, Huang JW, Guo LH, Zhou JX, Lin LZ, Ma JH, Zhang CF, Yu YJ, Dong GH, Zhao XM. Placental inflammatory injury induced by chlorinated polyfluorinated ether sulfonate (F-53B) through NLRP3 inflammasome activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116453. [PMID: 38772139 DOI: 10.1016/j.ecoenv.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate, commercially known as F-53B, has been associated with adverse birth outcomes. However, the reproductive toxicology of F-53B on the placenta remains poorly understood. To address this gap, we examined the impact of F-53B on placental injury and its underlying molecular mechanisms in vivo. Pregnant C57BL/6 J female mice were randomly allocated to three groups: the control group, F-53B 0.8 µg/kg/day group, and F-53B 8 µg/kg/day group. After F-53B exposure through free drinking water from gestational day (GD) 0.5-14.5, the F-53B 8 µg/kg/day group exhibited significant increases in placental weights and distinctive histopathological alterations, including inflammatory cell infiltration, heightened syncytiotrophoblast knots, and a loosened trophoblastic basement membrane. Within the F-53B 8 µg/kg/day group, placental tissue exhibited increased apoptosis, as indicated by increased caspase3 activation. Furthermore, F-53B potentially induced the NF-κB signaling pathway activation through IκB-α phosphorylation. Subsequently, this activation upregulated the expression of inflammatory cytokines and components of the NLRP3 inflammasome, including activated caspase1, IL-1β, IL-18, and cleaved gasdermin D (GSDMD), ultimately leading to pyroptosis in the mouse placenta. Our findings reveal a pronounced inflammatory injury in the placenta due to F-53B exposure, suggesting potential reproductive toxicity at concentrations relevant to the human population. Further toxicological and epidemiological investigations are warranted to conclusively assess the reproductive health risks posed by F-53B.
Collapse
Affiliation(s)
- Chu Chu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Myasthenia Gravis Clinical Specialized Study Centre, Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yang Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Heng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chao-Fan Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Miao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
3
|
Lim JJ, Goedken M, Jin Y, Gu H, Cui JY. Single-cell transcriptomics unveiled that early life BDE-99 exposure reprogrammed the gut-liver axis to promote a proinflammatory metabolic signature in male mice at late adulthood. Toxicol Sci 2024; 200:114-136. [PMID: 38648751 PMCID: PMC11199921 DOI: 10.1093/toxsci/kfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| |
Collapse
|
4
|
Vidal MS, Richardson LS, Kumar Kammala A, Kim S, Lam PY, Cherukuri R, Thomas TJ, Bettayeb M, Han A, Rusyn I, Menon R. Endocrine-disrupting compounds and their impact on human placental function: evidence from placenta organ-on-chip studies. LAB ON A CHIP 2024; 24:1727-1749. [PMID: 38334486 PMCID: PMC10998263 DOI: 10.1039/d3lc00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The effects of endocrine-disrupting compounds (EDCs) on the placenta, a critical gestational organ for xenobiotic protection, are well reported; however, models to determine the role of EDCs in placental disruption are limited. An advanced 2nd-trimester human placenta organ-on-chip model (2TPLA-OOC) was developed and validated, with six representative cells of the maternal and the fetal interface interconnected with microchannels. Various EDCs (150 ng mL-1 each of bisphenol A, bisphenol S, and polybrominated diphenyl ethers-47 and -99) were gradually propagated across the chip for 72 hours, and their various effects were determined. Cigarette smoke extract (CSE), an environmental risk factor, was used as a positive control. EDCs produced overall oxidative stress in the placental/decidual cells, induced cell-specific endocrine effects, caused limited (<10%) apoptosis/necrosis in trophoblasts and mesenchymal cells, induced localized inflammation but an overall anti-inflammatory shift, did not change immune cell migration from stroma to decidua, and did not affect placental nutrient transport. Overall, (1) the humanized 2TPLA-OOC recreated the placental organ and generated data distinct from the trophoblast and other cells studied in isolation, and (2) at doses associated with adverse pregnancies, EDCs produced limited and localized insults, and the whole organ compensated for the exposure.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA.
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Tilu Jain Thomas
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Mohammed Bettayeb
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA.
| |
Collapse
|
5
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
6
|
Eliesen GA, Fransen M, Kooijman N, van den Broek PH, Russel FG, Greupink R. Effects of tumor necrosis factor on undifferentiated and syncytialised placental choriocarcinoma BeWo cells. Toxicol In Vitro 2022; 80:105327. [DOI: 10.1016/j.tiv.2022.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
7
|
Kim S, Richardson L, Radnaa E, Chen Z, Rusyn I, Menon R, Han A. Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126759. [PMID: 34391970 PMCID: PMC8595660 DOI: 10.1016/j.jhazmat.2021.126759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
Human labor is associated with feto-maternal-derived signals that coordinate to initiate delivery. Exposure to environmental chemicals can prematurely trigger labor-initiating signals at the feto-maternal interface (FMi: decidua, amniochorion), leading to spontaneous preterm birth (PTB). Testing the association between environmental chemical exposure and PTB is difficult due to many limitations in vivo or in vitro. Physiological organ-on-chips (OOCs) are potential alternatives for studying mechanisms leading to PTB. The presented study tested the effect of maternal exposure to cadmium (Cd), an environmental toxin, using the FMi-OOC that incorporates maternal decidua cells and three different fetal cells (chorion, amnion mesenchymal, and amnion epithelial cells). Cd transport through the FMi and its impact on cell cycle, cell death, and inflammation were analyzed. Cd treatment resulted in significant cell death and a pro-inflammatory environment in the maternal decidua, but had minimal effect on the fetal chorion cells, and no effect in the fetal amnion cells compared to controls. The maternal response, but lack of fetal response, indicates that Cd-mediated adverse effects originate from maternal pathophysiology rather than fetal-derived triggers of preterm labor. This study demonstrates that the FMi-OOC can indeed predict the response of FMi upon exposure to chemicals, opening the possibility for using OOC models for environmental toxin screens.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren Richardson
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Arita Y, Kirk M, Gupta N, Antony R, Park HJ, Stecker MM, Peltier MR. Effect of 2,6-xylidine (DMA) on secretion of biomarkers for inflammation and neurodevelopment by the placenta. J Reprod Immunol 2021; 149:103458. [PMID: 34952372 DOI: 10.1016/j.jri.2021.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cigarette smoke enhances placental inflammation and interferes with steroidogenesis. However, the chemicals in the smoke responsible for these biological activities are unclear. 2,6 xylidine (also called 2,6 Dimethylaniline, DMA) is a component of cigarette smoke that has carcinogenic properties but its effects on the placenta are unknown. Therefore, we hypothesized that DMA may interfere with placental steroidogenesis or enhance placental inflammation. Placental explant cultures were treated with 0-50,000 nM DMA and concentrations of progesterone (P4), estradiol (E2), testosterone (T), IL-1β, TNF-α, IL-6, sgp130, HO-1, IL-10, 8-Isoprostane (8-IsoP), and BDNF in the conditioned medium were quantified. Since many environmental toxins enhance the proinflammatory host response to infection, we also performed experiments on placental cultures co-stimulated with 107 heat-killed E. coli. DMA alone significantly reduced P4 and T secretion but enhanced E2 secretion. The toxin also reduced placental secretion of IL-6, sgp130, and BDNF. For bacteria-stimulated cultures, DMA increased secretion of P4 and T, and proinflammatory cytokines (IL-1β, TNF-α) but had mixed effects on anti-inflammatory markers, increasing some (sgp130, IL-10) and reducing others (HO-1). However, DMA enhanced 8-IsoP levels by bacteria-stimulated placental cultures, suggesting that it increases oxidative stress by the tissues. These studies suggest that DMA affects secretion of biomarkers by the placenta and may promote inflammation. Further studies are needed to determine if these observed changes occur in vivo and the extent to which DMA exposure increases the risk of adverse pregnancy outcomes associated with smoking in pregnancy.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Michael Kirk
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Neha Gupta
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Ronny Antony
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Hyeon-Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Mark M Stecker
- Fresno Institute of Neuroscience, Fresno, CA, United States
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States; Department of Psychiatry, Jersey Shore University Medical Center, Neptune, NJ, 07753, United States.
| |
Collapse
|
9
|
Peltier MR, Fassett MJ, Arita Y, Chiu VY, Takhar HS, Getahun D. Exposure to polybrominated diphenyl ether-47 increases the risk of post-partum depression. J Matern Fetal Neonatal Med 2021; 35:8350-8354. [PMID: 34510997 DOI: 10.1080/14767058.2021.1974386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Post-partum depression (PPD) affects up to 19.1% of pregnancies and is associated with increased levels of proinflammatory cytokines, inflammation, and reductions in brain-derived neurotrophic factor (BDNF). Previous work by our team suggests that environmental toxins such as polybrominated diphenyl ethers (PBDEs) enhance placental inflammation and reduce BDNF production. Nearly, 100% of studied women in California have some level of exposure to these compounds due to extensive use of the flame retardants. High levels of exposure to PBDEs has been linked to increased risk of adverse pregnancy complications associated with placental inflammation such as preterm birth and gestational diabetes but their effects on risk of PPD is unclear. OBJECTIVE To determine if PPD is associated with higher levels of PBDE-47, the most common PBDE congener in maternal plasma. METHODS PBDE-47 was quantified in first trimester plasma samples collected from a cohort of 367 asymptomatic pregnant women that were routinely screened for depressive symptoms for 1 year post-partum. Data were analyzed using general linear models and multivariable logistic regression to determine if higher levels of PBDE-47 in the first trimester are associated with development of PPD. RESULTS Women who developed PPD (n = 22) had significantly higher PBDE-47 levels in their plasma (p=.031) relative to those in which PPD was not diagnosed. Logistic regression analysis suggested that each two-fold increase in PBDE-47 concentrations increased the risk of PPD by 22% (OR = 1.22, 95% CI: 1.03, 1.47). Groups were similar regarding PTB rate, race-ethnicity, parity, child's sex, maternal pre-pregnancy obesity status, maternal age, family income, and study center. Results remained significant after adjustment for these possible confounding factors. CONCLUSIONS These results suggest that PBDE-47 exposure in the first trimester is associated with increased risk of PPD.
Collapse
Affiliation(s)
- Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island University, Mineola, NY, USA
| | - Michael J Fassett
- Department of Obstetrics and Gynecology, West Los Angeles Medical Center, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island University, Mineola, NY, USA
| | - Vicki Y Chiu
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Harpreet S Takhar
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA.,Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
10
|
Alsubaie AM, Arita Y, Atwater M, Mahfuz A, Peltier MR. Enhancement of placental inflammation by Dibutyl Phthalate. J Reprod Immunol 2021; 147:103368. [PMID: 34461555 DOI: 10.1016/j.jri.2021.103368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that women with high exposures to dibutyl phthalate (DBP) are at increased risk for preterm birth, a condition associated with aberrant inflammation in the placenta often caused by subclinical infections. Placental inflammation is also a risk factor for neurodevelopmental disorders whose risk may also be enhanced by DBP. It is unclear, however, if DBP enhances placental inflammation. Therefore, we studied the effects of DBP on the production of biomarkers of placental inflammation and neurodevelopment under basal conditions and a setting of mild infection. Placental explant cultures established from women undergoing elective caesarean delivery were treated with DBP with and without co-stimulation by 107 CFU/mL heat-killed E. coli for 24 h at 37 °C. Conditioned medium was harvested and concentrations of IL-1β, TNF-α, IL-10, HO-1 and BDNF, a biomarker for neurodevelopment, were quantified. DBP significantly enhanced IL-6 production in basal cultures but had no significant on the other biomarkers quantified. Both TNF-α and IL-1β production was enhanced by DBP for cultures co-stimulated with E. coli. Although marginal enhancement of IL-6, and IL-10 were observed for bacteria co-treated cultures, results were either non-monotonic or only approached statistical significance. HO-1 production tended to be reduced at the highest concentration of DBP tested and BDNF production was reduced by DBP in a dose-dependent manner for bacteria-stimulated cultures. These results suggest that DBP enhances basal IL-6 production but has little or no effect on other biomarkers studied. However, DBP enhances IL-1β and TNF-α production but reduces BDNF production by bacteria-stimulated cultures.
Collapse
Affiliation(s)
- Aisha Manna Alsubaie
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; Department of Biology, Adelphi University, Garden City, NY, United States
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States
| | - Matthew Atwater
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; George Washington University, School of Medicine, Washington DC, United States
| | - Ali Mahfuz
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; Texas Christian University University of North Texas Health Science Center School of Medicine, Fort Worth, TX, United States
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States.
| |
Collapse
|
11
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Polybrominated diphenyl ethers in the environmental systems: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1229-1247. [PMID: 34150307 PMCID: PMC8172818 DOI: 10.1007/s40201-021-00656-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
PBDEs are human-influenced chemicals utilized massively as flame retardants. They are environmentally persistent, not easily degraded, bioaccumulate in the biological tissue of organisms, and bio-magnify across the food web. They can travel over a long distance, with air and water being their possible transport media. They can be transferred to non-target organisms by inhalation, oral ingestion, breastfeeding, or dermal contact. These pollutants adsorb easily to solid matrices due to their lipophilicity and hydrophobicity; thus, sediments from rivers, lakes, estuaries, and ocean are becoming their major reservoirs aquatic environments. They have low acute toxicity, but the effects of interfering with the thyroid hormone metabolism in the endocrine system are long term. Many congeners of PBDEs are considered to pose a danger to humans and the aquatic environment. They have shown the possibility of causing many undesirable effects, together with neurologic, immunological, and reproductive disruptions and possible carcinogenicity in humans. PBDEs have been detected in small amounts in biological samples, including hair, human semen, blood, urine, and breastmilk, and environmental samples such as sediment, soil, sewage sludge, air, biota, fish, mussels, surface water, and wastewater. The congeners prevailing in environmental samples, with soil being the essential matrix, are BDE 47, 99, and 100. BDE 28, 47, 99, 100, 153, 154, and 183 are more frequently detected in human tissues, whereas in sediment and soil, BDE 100 and 183 predominate. Generally, BDE 153 and 154 appear very often across different matrices. However, BDE 209 seems not frequently determined, owing to its tendency to quickly breakdown into smaller congeners. This paper carried out an overview of PBDEs in the environmental, human, and biota niches with their characteristics, physicochemical properties, and fate in the environment, human exposure, and health effects.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
12
|
Peltier MR, Fassett MJ, Arita Y, Chiu VY, Shi JM, Takhar HS, Mahfuz A, Garcia GS, Menon R, Getahun D. Women with high plasma levels of PBDE-47 are at increased risk of preterm birth. J Perinat Med 2021; 49:439-447. [PMID: 33554574 DOI: 10.1515/jpm-2020-0349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Nearly 100% of North American women have detectable levels of flame retardants such as polybrominated diphenyl ethers (PBDEs) in their plasma. These molecules have structural homology to thyroid hormones and may function as endocrine disruptors. Thyroid dysfunction has previously been associated with increased risk for preterm birth. Therefore, we conducted a multi-center, case-cohort study to evaluate if high plasma concentrations of a common PBDE congener in the first trimester increases the risk of preterm birth and its subtypes. METHODS Pregnant women were recruited at the onset of initiation of prenatal care at Kaiser-Permanente Southern California (KPSC)-West Los Angeles and KPSC-San Diego medical centers. Plasma samples from women whose pregnancies ended preterm and random subset of those delivering at term were assayed for PBDE-47 and thyroid-stimulating hormone (TSH) by immunoassay. Quartile cutoffs were calculated for the patients at term and used to determine if women with exposures in the 4th quartile are at increased risk for preterm birth using logistic regression. RESULTS We found that high concentrations of PBDE-47 in the first trimester significantly increased the odds of both indicated (adjusted odds ratio, adjOR=2.35, 95% confidence interval [CI]: 1.31, 4.21) and spontaneous (adjOR=1.76, 95% CI: 1.02, 3.03) preterm birth. Regardless of pregnancy outcome, TSH concentrations did not differ between women with high and low concentrations of PBDE-47. CONCLUSIONS These results suggest that high plasma concentrations of PBDE-47 in the first trimester, increases the risk of indicated and spontaneous preterm birth.
Collapse
Affiliation(s)
- Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetrics and Gynecology, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Michael J Fassett
- Department of Obstetrics and Gynecology, Kaiser-Permanente West Los Angeles Medical Center, Los Angeles, CA, USA
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Vicki Y Chiu
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Jiaxiao M Shi
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Harpreet S Takhar
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Ali Mahfuz
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Gildy S Garcia
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, School of Medicine, The University of Texas Medical Branch-Galveston, Galveston, TX, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA.,Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
13
|
Yu G, Luo F, Nian M, Li S, Liu B, Feng L, Zhang J. Exposure to Perfluoroalkyl Substances During Pregnancy and Fetal BDNF Level: A Prospective Cohort Study. Front Endocrinol (Lausanne) 2021; 12:653095. [PMID: 34140927 PMCID: PMC8204808 DOI: 10.3389/fendo.2021.653095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Humans are widely exposed to environmental perfluoroalkyl substances (PFAS), which may affect fetal neurodevelopment. Brain-derived neurotrophic factor (BDNF) is an important factor in neurodevelopment, but its role in PFAS-induced neurotoxicity is unclear. We investigated the association between prenatal PFAS exposure and fetal BDNF level in the umbilical cord blood in a large prospective cohort. METHODS A total of 725 pregnant women who participated in the Shanghai Birth Cohort were included. 10 PFAS were measured by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in the plasma samples of early pregnancy. The BDNF level was determined by ELISA. The concentration of total mercury (Hg) in the umbilical cord blood was tested by cold vapor atomic absorption spectrometry (AAS) and included as a main confounder, along with other covariates. Multiple linear regression was used to explore the associations between PFAS concentrations and BDNF level. Quantile-based g-computation was applied to explore the joint and independent effects of PFAS on BDNF level. RESULTS The mean BDNF level in the total population was 10797 (±4713) pg/ml. Male fetuses had a higher level than female fetuses (P<0.001). A significant positive association was observed between PFHxS and BDNF level after adjusting for potential confounders [β=1285 (95% CI: 453, 2118, P=0.003)]. No association was observed between other PFAS congeners and BDNF level. Results of the mixed exposure model showed that the joint effects of PFAS mixture were not associated with BDNF [β=447 (95% CI: -83, 978, P=0.10)], while the positive association with PFHxS exposure remained significant after controlling for other PFAS [β=592 (95% CI: 226, 958, P=0.002)]. The above associations were more prominent in male [β=773 (95% CI: 25, 1520, P= 0.04)] than female fetuses [β=105 (95% CI: -791, 1002, P= 0.82)] for the mixed effects. CONCLUSIONS Prenatal exposure to PFHxS was associated with an increased BDNF level in the umbilical blood, especially in male fetuses.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fei Luo
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
- *Correspondence: Jun Zhang, ; Liping Feng,
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Zhang, ; Liping Feng,
| |
Collapse
|
14
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
15
|
Varshavsky JR, Sen S, Robinson JF, Smith SC, Frankenfield J, Wang Y, Yeh G, Park JS, Fisher SJ, Woodruff TJ. Racial/ethnic and geographic differences in polybrominated diphenyl ether (PBDE) levels across maternal, placental, and fetal tissues during mid-gestation. Sci Rep 2020; 10:12247. [PMID: 32699379 PMCID: PMC7376153 DOI: 10.1038/s41598-020-69067-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
Prenatal polybrominated diphenyl ether (PBDE) exposures are a public health concern due to their persistence and potential for reproductive and developmental harm. However, we have little information about the extent of fetal exposures during critical developmental periods and the variation in exposures for groups that may be more highly exposed, such as communities of color and lower socioeconomic status (SES). To characterize maternal-fetal PBDE exposures among potentially vulnerable groups, PBDE levels were examined in the largest sample of matched maternal serum, placenta, and fetal liver tissues during mid-gestation among a geographically, racially/ethnically, and socially diverse population of pregnant women from Northern California and the Central Valley (n = 180; 2014-16). Maternal-fetal PBDE levels were compared to population characteristics using censored Kendall's tau correlation and linear regression. PBDEs were commonly detected in all biomatrices. Before lipid adjustment, wet-weight levels of all four PBDE congeners were highest in the fetal liver (p < 0.001), whereas median PBDE levels were significantly higher in maternal serum than in the fetal liver or placenta after lipid-adjustment (p < 0.001). We also found evidence of racial/ethnic disparities in PBDE exposures (Non-Hispanic Black > Latina/Hispanic > Non-Hispanic White > Asian/Pacific Islander/Other; p < 0.01), with higher levels of BDE-100 and BDE-153 among non-Hispanic Black women compared to the referent group (Latina/Hispanic women). In addition, participants living in Fresno/South Central Valley had 34% (95% CI: - 2.4 to 84%, p = 0.07) higher wet-weight levels of BDE-47 than residents living in the San Francisco Bay Area. PBDEs are widely detected and differentially distributed in maternal-fetal compartments. Non-Hispanic Black pregnant women and women from Southern Central Valley geographical populations may be more highly exposed to PBDEs. Further research is needed to identify sources that may be contributing to differential exposures and associated health risks among these vulnerable populations.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline St, Memphis, TN, 38163, USA
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sabrina Crispo Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Julie Frankenfield
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Greg Yeh
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Susan J Fisher
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
16
|
Varshavsky JR, Robinson JF, Zhou Y, Puckett KA, Kwan E, Buarpung S, Aburajab R, Gaw SL, Sen S, Smith SC, Frankenfield J, Park JS, Fisher SJ, Woodruff TJ. Association of polybrominated diphenyl ether (PBDE) levels with biomarkers of placental development and disease during mid-gestation. Environ Health 2020; 19:61. [PMID: 32493340 PMCID: PMC7268484 DOI: 10.1186/s12940-020-00617-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Polybrominated diphenyl ether (PBDE) exposures have been associated with adverse pregnancy outcomes. A hypothesized mechanism is via alterations in placental development and function. However, we lack biomarkers that can be used as early indicators of maternal/fetal response to PBDE exposures and/or perturbations in placental development or function. METHODS To evaluate the relationship between PBDE levels and placental biomarkers during mid-gestation of human pregnancy (n = 62), we immunolocalized three molecules that play key roles in cytotrophoblast (CTB) differentiation and interstitial/endovascular uterine invasion-integrin alpha-1 (ITGA1), vascular endothelial-cadherin (CDH5), and metalloproteinase-1 (MMP1)-and assessed three morphological parameters as potential indicators of pathological alterations using H&E-stained tissues-leukocyte infiltration, fibrinoid deposition, and CTB endovascular invasion. We evaluated associations between placental PBDE levels and of biomarkers of placental development and disease using censored Kendall's tau correlation and linear regression methods. RESULTS PBDEs were detected in all placental samples. We observed substantial variation in antigen expression and morphological endpoints across placental regions. We observed an association between PBDE concentrations and immunoreactivity of endovascular CTB staining with anti-ITGA1 (inverse) or interstitial CTBs staining with anti-CDH5 (positive). CONCLUSIONS We found several molecular markers that may be sensitive placental indicators of PBDE exposure. Further, this indicates that placental biomarkers of development and disease could be useful barometers of exposure to PBDEs, a paradigm that could be extended to other environmental chemicals and placental stage-specific antigens.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Program on Reproductive Health and the Environment, UCSF Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA.
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, UCSF Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Yan Zhou
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Kenisha A Puckett
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Elaine Kwan
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sirirak Buarpung
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Rayyan Aburajab
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Stephanie L Gaw
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
- Division of Maternal-Fetal Medicine and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline St, Memphis, TN, 38163, USA
| | - Sabrina Crispo Smith
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Julie Frankenfield
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - June-Soo Park
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Susan J Fisher
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, UCSF Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
Harris SM, Boldenow E, Domino SE, Loch-Caruso R. Toxicant Disruption of Immune Defenses: Potential Implications for Fetal Membranes and Pregnancy. Front Physiol 2020; 11:565. [PMID: 32547423 PMCID: PMC7272693 DOI: 10.3389/fphys.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022] Open
Abstract
In addition to providing a physical compartment for gestation, the fetal membranes (FM) are an active immunological barrier that provides defense against pathogenic microorganisms that ascend the gravid reproductive tract. Pathogenic infection of the gestational tissues (FM and placenta) is a leading known cause of preterm birth (PTB). Some environmental toxicants decrease the capacity for organisms to mount an immune defense against pathogens. For example, the immunosuppressive effects of the widespread environmental contaminant trichloroethylene (TCE) are documented for lung infection with Streptococcus zooepidemicus. Group B Streptococcus (GBS; Streptococcus agalactiae) is a bacterial pathogen that is frequently found in the female reproductive tract and can colonize the FM in pregnant women. Work in our laboratory has demonstrated that a bioactive TCE metabolite, S-(1, 2-dichlorovinyl)-L-cysteine (DCVC), potently inhibits innate immune responses to GBS in human FM in culture. Despite these provocative findings, little is known about how DCVC and other toxicants modify the risk for pathogenic infection of FM. Infection of the gestational tissues (FM and placenta) is a leading known cause of PTB, therefore toxicant compromise of FM ability to fight off infectious microorganisms could significantly contribute to PTB risk. This Perspective provides the current status of understanding of toxicant-pathogen interactions in FM, highlighting knowledge gaps, challenges, and opportunities for research that can advance protections for maternal and fetal health.
Collapse
Affiliation(s)
- Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erica Boldenow
- Department of Biology, Calvin College, Grand Rapids, MI, United States
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Park HR, Elkin ER, Castillo-Castrejon M, Loch-Caruso R. Brominated diphenyl ether-47 differentially regulates cellular migration and invasion in a human first trimester trophoblast cell line. Reprod Toxicol 2020; 93:191-198. [PMID: 32142752 DOI: 10.1016/j.reprotox.2020.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardant compounds detected in human placenta and linked to adverse pregnancy outcomes. Impaired trophoblast migration and invasion during early pregnancy have been implicated as potential mechanisms of pregnancy disorders. The present study investigated the effect of BDE-47, a prevalent PBDE congener, on cell migration, invasion, and matrix metalloproteinase (MMP) expression in a human first trimester extravillous trophoblast cell line, HTR-8/SVneo. BDE-47 stimulated cell migration in HTR-SV/neo cells while decreasing invasion of cells into Matrigel. In addition, BDE-47 led to differential expression of MMP-1, -2, -3, and -9 at protein and mRNA levels. In summary, BDE-47 differentially regulated cellular migration and invasion with divergent changes in MMP expression in trophoblasts. Because proper regulation of trophoblast migration and invasion is critical for placental development and function, further research is warranted to determine if exposure to PBDEs disrupts trophoblast functions with increased risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA.
| | - Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Marisol Castillo-Castrejon
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| |
Collapse
|
19
|
Sheller-Miller S, Radnaa E, Arita Y, Getahun D, Jones RJ, Peltier MR, Menon R. Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta 2019; 89:42-49. [PMID: 31675489 DOI: 10.1016/j.placenta.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Exosomes are intercellular signaling vesicles whose cargo reflects the physiological status of the cell of their origin and can regulate gene expression in other tissues. Polybrominated diphenyl ethers (PBDEs) and bisphenols (A [BPA], Tetrabromobisphenol A [TBBPA], and 2,4,6-Tribromophenol [TBP]) are common environmental pollutants known to increase the risk for spontaneous preterm birth (PTB). We hypothesized that placental exposure to these environmental pollutants causes exosome cargo changes that reflect exposure associated placental response. METHODS Full-term, C-section placenta explants were treated with PBDE congeners (47, 100, 153, 209), TBBPA, TBP or BPA for 24 h. Exosomes were isolated from media by sequential ultracentrifugation and purified by size exclusion chromatography. Exosomes were characterized by electron microscopy, nanoparticle tracking analysis and Western blot. Proteomics identified differentially expressed exosomal proteins and Ingenuity pathway analysis (IPA) determined biological functions and pathways represented by identified proteins. RESULTS Regardless of treatment, placental expressed exosomes markers (PLAP, CD9, CD63, 81 and ALIX), had a size distribution between 50 and 175 nm and were present in the conditioned medium at 5-8 x 1011 exosomes/mL. Proteomic analysis identified 2598 proteins which demonstrated that specific pollutants caused differential expression of specific proteins, including alarmin, High Mobility Group Box 1 (HMGB1), MAPK14 (p38 MAPK) and GSK3β. IPA revealed an inhibition of pathways associated with cell survival, tissue repair and proliferation, as well as activation of cell death pathways (e.g. necrosis). CONCLUSION Environmental exposure of placental explants did not change the quantity of exosomes or their characteristics. However, exosome cargo composition exposed to some environment pollutants may be involved in placental nuclear and cellular injury and inflammation.
Collapse
Affiliation(s)
| | - Enkhtuya Radnaa
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA
| | - Yuko Arita
- Department of Biomedical Research, NYU-Winthrop Hospital, Mineola, NY, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Richard J Jones
- Department of Lymphoma and Myeloma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Morgan R Peltier
- Department of Biomedical Research, NYU-Winthrop Hospital, Mineola, NY, USA; Department of Obstetrics and Gynecology, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA.
| |
Collapse
|
20
|
Arita Y, Park HJ, Cantillon A, Getahun D, Menon R, Peltier MR. Effect of bisphenol-A (BPA) on placental biomarkers for inflammation, neurodevelopment and oxidative stress. J Perinat Med 2019; 47:741-749. [PMID: 31339859 DOI: 10.1515/jpm-2019-0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Background Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta. Methods Placental explant cultures were treated with BPA (0-10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA). Results Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000-10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production. Conclusion BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Hyeon Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Aisling Cantillon
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetrics and Gynecology; NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetric and Gynecology, NYU-Winthrop Hospital, 101 Mineola Blvd Rm. 4-040, Mineola, NY, USA
| |
Collapse
|
21
|
Arita Y, Pressman M, Getahun D, Menon R, Peltier MR. Effect of Tetrabromobisphenol A on expression of biomarkers for inflammation and neurodevelopment by the placenta. Placenta 2018; 68:33-39. [DOI: 10.1016/j.placenta.2018.06.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
|