1
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
2
|
Pietrowicz M, Root-Bernstein R. Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers. Life (Basel) 2025; 15:208. [PMID: 40003617 PMCID: PMC11856108 DOI: 10.3390/life15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Capsaicin (CAP), the pain-inducing compound in chili peppers, exerts its effects mainly through the transient receptor potential vanilloid channel 1 (TRPV1), which mediates pain perception and some metabolic functions. CAP has also been demonstrated to improve performance in power sports (but not endurance sports) and does so mainly for females. CAP may also have anti-cancer effects. Many mechanisms have been explored to explain these phenomena, particularly the effects of TRPV1 activation for calcium influx, glucose transporter (GLUT) upregulation and inhibition of insulin (INS) production, but two important ones seem to have been missed. We demonstrate here that CAP binds to both INS and to the estrogen receptor (ESR1), enhancing estradiol binding. Other TRPV1 agonists, such as vanillin, vanillic acid and acetaminophen, have either no effect or inhibit estrogen binding. Notably, TRPV1, ESR1 and INS share significant regions of homology that may aid in identifying the CAP-binding site on the ESR1. Because activation of the estrogen receptor upregulates GLUT expression and thereby glucose transport, we propose that the observed enhancement of performance in power sports, particularly among women, may result, in part, from CAP enhancement of ESR1 function and prevent INS degradation. Chronic exposure to CAP, however, may result in downregulation and internalization of ESR1, as well as TRPV1 stimulation of glucagon-like peptide 1 (GLP-1) expression, both of which downregulate GLUT expression, thereby starving cancer cells of glucose. The binding of capsaicin to the ESR1 may also enhance ESR1 antagonists such as tamoxifen, benefiting some cancer patients.
Collapse
Affiliation(s)
- Maja Pietrowicz
- Independent Researcher, 37430 Tall Oak Dr., Clinton Township, MI 48036, USA;
| | | |
Collapse
|
3
|
Jeyabalan JB, Pathak S, Mariappan E, Mohanakumar KP, Dhanasekaran M. Validating the nutraceutical and neuroprotective pharmacodynamics of flavones. Neurochem Int 2024; 180:105829. [PMID: 39147202 DOI: 10.1016/j.neuint.2024.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Neurodegenerative disorders are generally characterized by progressive neuronal loss and cognitive decline, with underlying mechanisms involving oxidative stress, protein aggregation, neuroinflammation, and synaptic dysfunction. Currently, the available treatment options only improve the symptoms of the disease but do not stop disease progression; neurodegeneration. This underscores the urgent need for novel therapeutic strategies targeting multiple neurodegenerative pathways alongside the conventional therapeutic strategies available. Emerging evidence demonstrates that flavones a subgroup of flavonoids found abundantly in various dietary sources, have surfaced as promising candidates for neuroprotection due to their multifaceted pharmacological properties. Flavones possess the potency to modulate these pathophysiological processes through their antioxidant, anti-inflammatory, and neurotrophic activities. Additionally, flavones have been shown to interact with various cellular targets, including receptors and enzymes, to confer neuroprotection. Though there are ample evidence available, the nutraceutical and neuroprotective pharmacodynamics of flavones have not been very well established. Hence, the current review aims to explores the therapeutic potential of flavones as nutraceuticals with neuroprotective effects, focusing on their ability to modulate key pathways implicated in neurodegenerative diseases. The current article also aims to actuate supplementary research into flavones as potential agents for alleviating neurodegeneration and improving patient outcomes in neurodegenerative disorders globally.
Collapse
Affiliation(s)
- Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - Suhrud Pathak
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala, India
| | | |
Collapse
|
4
|
Wanionok NE, Colareda GA, Fernandez JM. In vitro effects and mechanisms of Humulus lupulus extract on bone marrow progenitor cells and endothelial cells. Mol Cell Endocrinol 2024; 592:112328. [PMID: 38996835 DOI: 10.1016/j.mce.2024.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Osteoporosis is the most common metabolic bone disorder and is associated with a high incidence of fractures. Angiogenesis and adequate blood flow are important during bone repair and maintenance. Estrogens play a key role in bone formation, in the prevention of bone resorption and vasculature maintenance. Hormone replacement therapy (HRT) has been used with great benefits for bone fracture prevention but has been linked to the development of serious important side effects, including cancer and stroke. Phytoestrogens are an attractive alternative to HRT because their chemical structure is similar to estradiol but, they could behave as selective modulators: acting as antagonists of estrogen receptors in the breast and endometrium and as agonists in the vascular endothelium and bone. Hops contain a wide variety of phytoestrogens that have individually been shown to possess estrogenic activity by either blocking or mimicking. In this study we have to evaluate the in vitro effects and mechanisms of action of hops extracts on the osteogenic and adipogenic capacity of bone marrow progenitor cells (BMPCs), and the angiogenic potential of EA.hy926 endothelial cells. We show that hops extracts increase the proliferative capacity of BMPCs and promote their osteogenic differentiation while decreasing their pro-osteoclastogenic capacity; and that these effects are mediated by the MAPK pathway. Additionally, hops extracts prevent the adipogenic differentiation of BMPCs and promote endothelial cell activity, by mechanisms also partially mediated by MAPK.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Investigaciones en Osteopatias y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-Centro de Investigaciones Científicas (CIC), Calle 47 y 115, La Plata, (1900), Argentina
| | - Germán A Colareda
- Farmacología-GFEYEC, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, La Plata, (1900), Argentina
| | - Juan M Fernandez
- Laboratorio de Investigaciones en Osteopatias y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-Centro de Investigaciones Científicas (CIC), Calle 47 y 115, La Plata, (1900), Argentina.
| |
Collapse
|
5
|
Lv T, Xue D, Wang P, Gong W, Wang K. Vanillic Acid Protects PC12 Cells from Corticosterone-Induced Neurotoxicity via Regulating Immune and Metabolic Dysregulation Based on Computational Metabolomics. ACS OMEGA 2024; 9:40456-40467. [PMID: 39372012 PMCID: PMC11447713 DOI: 10.1021/acsomega.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 10/08/2024]
Abstract
Vanillic acid is widely used in the food industry and exhibits an excellent neuroprotective effect. Nevertheless, the mechanisms underlying them are largely unexplored, especially the interactions between the neuroprotection effects of vanillic acid and inflammation-immunity-metabolism. A cell metabolomics-based mathematics algorithm was reported to interpret the potential mechanism of vanillic acid on corticosterone-induced PC12 cells by regulating immune and metabolic dysregulation. Our results showed that vanillic acid markedly inhibited the level of inflammatory factors in corticosterone-induced PC12 cells. Cell metabolomics results suggested that vanillic acid regulated the abnormality of corticosterone-induced PC12 cell metabolic profiles and markedly regulated 11 differential metabolites. Our designed scoring model base entropy weight algorithm showed that the core targets (IL2RB, IFNA13, etc.) and metabolites (lactate, ethanolamine, etc.) regulate the immunity-metabolism of vanillic acid. Furthermore, we demonstrated that vanillic acid inhibited IL2RB expression and modulated the related pathway, JAK1/STAT3 signaling. The JAK inhibitor ABT-494 was further applied to validate the effect of vanillic acid on the JAK/STAT pathway. Results indicate that vanillic acid regulates the abnormal interactions of inflammation-immunity-metabolism by repressing the IL2RB-JAK1-STAT3 pathway. Methodologically, this study contributes to the decoding of vanillic acid's antidepressive effect from the metabolism perspective combined with computer algorithms and mathematics models.
Collapse
Affiliation(s)
- Tianxing Lv
- Institute
of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Daojin Xue
- The
Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Peng Wang
- School
of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Wenxia Gong
- Modern
Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Abdelaziz AG, Nageh H, Abdalla MS, Abdo SM, Amer AA, Loutfy SA, Abdel Fattah NF, Alsalme A, Cornu D, Bechelany M, Barhoum A. Development of polyvinyl alcohol nanofiber scaffolds loaded with flaxseed extract for bone regeneration: phytochemicals, cell proliferation, adhesion, and osteogenic gene expression. Front Chem 2024; 12:1417407. [PMID: 39144698 PMCID: PMC11322085 DOI: 10.3389/fchem.2024.1417407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction: Bone tissue engineering seeks innovative materials that support cell growth and regeneration. Electrospun nanofibers, with their high surface area and tunable properties, serve as promising scaffolds. This study explores the incorporation of flaxseed extract, rich in polyphenolic compounds, into polyvinyl alcohol (PVA) nanofibers to improve their application in bone tissue engineering. Methods: High-performance liquid chromatography (HPLC) identified ten key compounds in flaxseed extract, including polyphenolic acids and flavonoids. PVA nanofibers were fabricated with 30 wt.% flaxseed extract (P70/E30) via electrospinning. We optimized characteristics like diameter, hydrophilicity, swelling behavior, and hydrolytic degradation. MG-63 osteoblast cultures were used to assess scaffold efficacy through cell adhesion, proliferation, viability (MTT assay), and differentiation. RT-qPCR measured expression of osteogenic genes RUNX2, COL1A1, and OCN. Results: Flaxseed extract increased nanofiber diameter from 252 nm (pure PVA) to 435 nm (P70/E30). P70/E30 nanofibers showed higher cell viability (102.6% vs. 74.5% for pure PVA), although adhesion decreased (151 vs. 206 cells/section). Notably, P70/E30 enhanced osteoblast differentiation, significantly upregulating RUNX2, COL1A1, and OCN genes. Discussion: Flaxseed extract incorporation into PVA nanofibers enhances bone tissue engineering by boosting osteoblast proliferation and differentiation, despite reduced adhesion. These properties suggest P70/E30's potential for regenerative medicine, emphasizing scaffold optimization for biomedical applications.
Collapse
Affiliation(s)
- Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hassan Nageh
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
| | - Mohga S. Abdalla
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara M. Abdo
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Asmaa A. Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Samah A. Loutfy
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Einabadi M, Izadyari Aghmiuni A, Foroutani L, Ai A, Namini MS, Farzin A, Nahanmoghadam A, Shirian S, Kargar Jahromi H, Ai J. Evaluation of the effect of co-transplantation of collagen-hydroxyapatite bio-scaffold containing nanolycopene and human endometrial mesenchymal stem cell derived exosomes to regenerate bone in rat critical size calvarial defect. Regen Ther 2024; 26:387-400. [PMID: 39045576 PMCID: PMC11263782 DOI: 10.1016/j.reth.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to evaluate the effect of nanoparticles based on the PLGA and biomolecule of lycopene (i.e. NLcp) and exosomes loaded on hydroxyapatite/collagen-based scaffolds (HA/Coll), on human endometrial MSCs (hEnMSCs) differentiation into osteoblast cells. To this end, after synthesizing NLcp and isolating hEnMSC-derived exosomes, and studying their characterizations, HA/Coll scaffold with/without NLcp and exosome was fabricated. In following, the rat skull-defect model was created on 54 male Sprague-Dawley rats (12 weeks old) which were classified into 6 groups [control group (4 healthy rats), negative control group: bone defect without grafting (10 rats), and experimental groups including bone defect grafted with HA/Coll scaffold (10 rats), HA/Coll/NLcp scaffold (10 rats), HA/Coll scaffold + exosome (10 rats), and HA/Coll-NLcp scaffold + exosome (10 rats)]. Finally, the grafted membrane along with its surrounding tissues was removed at 90 days after surgery, to assess the amount of defect repair by Hematoxylin and eosin staining. Moreover, immunohistochemical and X-ray Micro-Computed Tomography (Micro-CT) analyses were performed to assess osteocalcin and mean bone volume fraction (BVF). Based on the results, although, the existence of the exosome in the scaffold network can significantly increase mean BVF compared to HA/Coll scaffold and HA/Coll-NLcp scaffold (2.25-fold and 1.5-fold, respectively). However, the combination of NLcp and exosome indicated more effect on mean BVF; so that the HA/Coll-NLcp scaffold + exosome led to a 15.95 % increase in mean BVF than the HA/Coll scaffold + exosome. Hence, synthesized NLcp in this study can act as a suitable bioactive to stimulate the osteogenic, promotion of cell proliferation and its differentiation when used in the polymer scaffold structure or loaded into polymeric carriers containing the exosome.
Collapse
Affiliation(s)
- Masoumeh Einabadi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laleh Foroutani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ai
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzin
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nahanmoghadam
- Department of Chemical Engineering, Faculty of Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Pathology, Shahrekord University, Shahrekord, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yurteri A, Mercan N, Kilic M, Celik M, Dogar F, Yildirim A. Does vanillic acid affect fracture healing? An experimental study in a rat model of femur fracture. J Appl Biomed 2024; 22:67-73. [PMID: 38912861 DOI: 10.32725/jab.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We aimed to determine the effects of vanillic acid (VA) on fracture healing radiologically, histologically, immunohistochemically, and biomechanically using a rat femur open fracture injury model. METHODS 32 male Wistar-Albino rats were used and divided into two groups: the study group (VA) and the control group. From the time they were operated on until they were sacrificed, the rats in the study group were given 100 mg/kg/day VA by oral gavage. After sacrification, the femurs were analyzed. RESULTS It was observed that the Huo histological scoring was significantly higher in the VA group (p = 0.001), and the ratio of the amount of callus tissue compared to intact bone tissue was significantly higher. While no significant difference was observed in immunohistochemical H-scores in ColI antibody staining (p = 1.000), a borderline significant difference in favor of VA was observed in ColIII antibody staining (p = 0.078). In biomechanical analysis, failure load (N), total energy (J), maximum stress (MPa), and stiffness (N/mm) measurements were significantly higher in the VA group (p = 0.040, p = 0.021, p = 0.015, and p = 0.035, respectively). CONCLUSION It has been observed that VA, with its antioxidative properties, increases fracture healing in rats, in which an open fracture model was created. We are hopeful that such an antioxidant, which is common in nature, will increase fracture healing. Since this study is the first to examine the effect of VA on fracture healing, further studies are needed.
Collapse
Affiliation(s)
- Ahmet Yurteri
- Konya City Hospital, Department of Orthopaedics and Traumatology, Konya, Turkey
| | - Numan Mercan
- Kahramanmaras Necip Fazil City Hospital, Department of Orthopaedics and Traumatology, Kahramanmaras, Turkey
| | - Mehmet Kilic
- Konya City Hospital, Department of Orthopaedics and Traumatology, Konya, Turkey
| | - Murat Celik
- Selcuk University Faculty of Medicine, Department of Medical Pathology, Konya, Turkey
| | - Fatih Dogar
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kahramanmaras, Turkey
| | - Ahmet Yildirim
- Konya City Hospital, Department of Orthopaedics and Traumatology, Konya, Turkey
| |
Collapse
|
9
|
Lei X, Zhang Y, Wei X, Tang Y, Qu Q, Zhao X, Zhang X, Duan X, Song X. Sambucus williamsii Hance: A comprehensive review of traditional uses, processing specifications, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117940. [PMID: 38401662 DOI: 10.1016/j.jep.2024.117940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Sambucus williamsii Hance, belonging to the Sambucus L. family (Viburnaceae), possesses medicinal properties in its roots, stems, leaves, flowers, and fruits. It is recognized for its ability to facilitate bone reunion, enhance blood circulation, remove stasis, and dispel wind and dampness. This traditional Chinese medicine holds significant potential for development and practical use. Hence, this paper offers an in-depth review of S. williamsii, covering traditional uses, processing guidelines, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics, aiming to serve as a reference for its further development and utilization. MATERIALS AND METHODS Information for this study was gathered from various books, bibliographic databases, and literature sources such as Google Scholar, Web of Science, PubMed, Chinese National Knowledge Infrastructure, Baidu Scholar, VIP Database for Chinese Technical Periodicals, and Wanfang Data. RESULTS Phytochemical investigations have identified approximately 238 compounds within the root bark, stem branches, leaves, and fruits of S. williamsii. These compounds encompass flavonoids, sugars, glycosides, terpenoids, phenylpropanoids, alkaloids, phenols, phenolic glycosides, and other chemical constituents, with phenylpropanoids being the most prevalent. S. williamsii exhibits a wide range of pharmacological effects, particularly in promoting osteogenesis and fracture healing. CONCLUSION This comprehensive review delves into the traditional uses, processing guidelines, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics of S. williamsii. It provides valuable insights into this plant, which will prove beneficial for future research involving S. williamsii.
Collapse
Affiliation(s)
- Xuan Lei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xuan Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yingying Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xi Duan
- Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
10
|
Suzuki H, Fujiwara Y, Ariyani W, Amano I, Ishii S, Ninomiya AK, Sato S, Takaoka A, Koibuchi N. 17β-Estradiol (E2) Activates Matrix Mineralization through Genomic/Nongenomic Pathways in MC3T3-E1 Cells. Int J Mol Sci 2024; 25:4727. [PMID: 38731947 PMCID: PMC11083456 DOI: 10.3390/ijms25094727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17β-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERβ antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis.
Collapse
Affiliation(s)
- Hiraku Suzuki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Hokkaido, Japan; (S.S.); (A.T.)
| | - Yuki Fujiwara
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| | - Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| | - Ayane Kate Ninomiya
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Hokkaido, Japan; (S.S.); (A.T.)
- Molecular Medical Biochemistry Unit, Biological Chemistry and Engineering Course, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Hokkaido, Japan; (S.S.); (A.T.)
- Molecular Medical Biochemistry Unit, Biological Chemistry and Engineering Course, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan; (H.S.); (Y.F.); (W.A.); (I.A.); (S.I.); (A.K.N.)
| |
Collapse
|
11
|
Anish RJ, Mohanan B, Nair A, Radhakrishnan KV, Rauf AA. Protective effect of Pterospermum rubiginosum bark extract on bone mineral density and bone remodelling in estrogen deficient ovariectomized Sprague-Dawley (SD) rats. 3 Biotech 2024; 14:101. [PMID: 38464615 PMCID: PMC10917708 DOI: 10.1007/s13205-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Osteoporosis is a common metabolic old age disorder characterised by low bone mass content (BMC) and mineral density (BMD) with micro-architectural deterioration of the extracellular matrix, further increasing bone fragility risk. Several traditional remedies, including plant extracts and herbal formulations, are used worldwide by local healers to improve the overall bone health and metabolism as an excellent osteoregenerative agent. Pteropsermum rubiginosum is an underexplored medicinal plant used by tribal peoples of Western Ghats, India, to treat bone fractures and associated inflammation. The proposed study evaluates the elemental profiling and phytochemical characterisation of P. rubiginosum methanolic bark extract (PRME), along with detailed In vitro and In vivo biological investigation in MG-63 cells and Sprague-Dawley (SD) rats. AAS and ICP-MS analysis showed the presence of calcium, phosphorus, and magnesium and exceptional levels of strontium, chromium, and zinc in PRME. The NMR characterisation revealed the presence of vanillic acid, Ergost-4-ene-3-one and catechin. The molecular docking studies revealed the target pockets of isolated compounds and various marker proteins in the bone remodelling cycle. In vitro studies showed a significant hike in ALP and calcium content, along with upregulated mRNA expression of the ALP and COL1, which confirmed the osteoinductive activity of PRME in human osteoblast-like MG-63 cells. The in vivo evaluation in ovariectomised (OVX) rats showed remarkable recovery in ALP, collagen and osteocalcin protein after 3 months of PRME treatment. DEXA scanning reports in OVX rats supported the above in vitro and in vivo results, significantly enhancing the BMD and BMC. The results suggest that PRME can induce osteogenic activity and enhance bone formation with an excellent osteoprotective effect against bone loss in OVX animals due to estrogen deficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03942-7.
Collapse
Affiliation(s)
- Rajamohanan Jalaja Anish
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
| | - Biji Mohanan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aswathy Nair
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
- Kerala State Palmyrah Products Development and Workers’ Welfare Corporation Limited, Trivandrum, 695122 India
| | - K. V. Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arun A. Rauf
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 India
| |
Collapse
|
12
|
V Gadhave P, V Sutar G, Sajane SJ, Redasani VK, Das K, Prasad P D, Alobid S, Ibrahim Almoteer A, Imam Rabbani S, Yasmin F, Gilkaramenthi R, Abdulrazaq AlAnazi M, Jameel Alshamrani H, Asdaq SMB. Protective effects of vanillic acid on letrozole-induced polycystic ovarian syndrome: A comprehensive study in female wistar rats. Saudi Pharm J 2024; 32:101953. [PMID: 38288132 PMCID: PMC10823135 DOI: 10.1016/j.jsps.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is one of the known causes of anovulatory fertility in the world. Previous research has linked oxidative stress could contribute to PCOS, and vanillic acid has shown antioxidant potential. Hence, the present study evaluated the effect of vanillic acid on letrozole-induced polycystic ovarian syndrome in female rats. Materials and methods PCOS was induced in Wistar female rats with letrozole (1 mg/kg, orally) in carboxymethoxycellulose (1 % w/v), administered for 21 days. After induction, the standard group received clomiphene citrate (1 mg/kg, orally) while other treatment groups were administered with vanillic acid at doses 25, 50, and 100 mg/kg, orally for 15 days, and without treatment was considered a negative control group. Different parameters studied were body weight, ovary weight, blood glucose, lipid profile, hormonal levels [luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone], markers for oxidative stress (superoxide dismutase, reduced glutathione, catalase, and malonaldehyde), and histopathology of the ovary. Statistical analysis was done for the results and p < 0.05 was considered to indicate the significance. Results Vanillic acid-treated animals showed a concentration-dependent activity on the tested parameters. The highest tested dose (100 mg/kg) produced a more prominent effect in significantly (P < 0.001) decreasing the body weight, and ovary weight and improving the hormonal imbalance. Also, vanillic acid significantly (P < 0.01) reduced elevated blood sugar and lipid levels. Additionally, vanillic acid reduced oxidative stress significantly (P < 0.001) in the ovaries of female rats. Histopathological reports showed a reduction in cystic follicles and appearance of normal healthy follicles at different stages of development after the administration of vanillic acid. Furthermore, these effects were observed to be comparable with those recorded for standard drug, clomiphene. Conclusion The current study data suggests that vanillic acid has protected the letrozole-induced polycystic ovarian syndrome. In the event of several side effects associated with conventional treatments used for PCOS, the findings of this study suggest the promising role of vanillic acid. More research in this direction might identify the true potency of vanillic acid in the treatment of PCOS.
Collapse
Affiliation(s)
- Pradnya V Gadhave
- YSPM’s Yashoda Technical Campus, Faculty of Pharmacy, Satara-415011, Maharashtra, India
| | - Guruprasad V Sutar
- Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra 416 301, India
| | - Sachin J Sajane
- Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra 416 301, India
| | | | - Kuntal Das
- Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore 560090, India
| | - Dharani Prasad P
- Dept of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, Sree Sainath Nagar, Tirupati, Chittor AP-517102, India
| | - Saad Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Farhana Yasmin
- Department of Computer Science, College of Applied Sciences, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rafiulla Gilkaramenthi
- Department of Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, 13713 Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
13
|
Saleh SR, Saleh OM, El-Bessoumy AA, Sheta E, Ghareeb DA, Eweda SM. The Therapeutic Potential of Two Egyptian Plant Extracts for Mitigating Dexamethasone-Induced Osteoporosis in Rats: Nrf2/HO-1 and RANK/RANKL/OPG Signals. Antioxidants (Basel) 2024; 13:66. [PMID: 38247490 PMCID: PMC10812806 DOI: 10.3390/antiox13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The prolonged use of exogenous glucocorticoids, such as dexamethasone (Dex), is the most prevalent secondary cause of osteoporosis, known as glucocorticoid-induced osteoporosis (GIO). The current study examined the preventative and synergistic effect of aqueous chicory extract (ACE) and ethanolic purslane extract (EPE) on GIO compared with Alendronate (ALN). The phytochemical contents, elemental analysis, antioxidant scavenging activity, and ACE and EPE combination index were evaluated. Rats were randomly divided into control, ACE, EPE, and ACE/EPE MIX groups (100 mg/kg orally), Dex group (received 1.5 mg Dex/kg, Sc), and four treated groups received ACE, EPE, ACE/EPE MIX, and ALN with Dex. The bone mineral density and content, bone index, growth, turnover, and oxidative stress were measured. The molecular analysis of RANK/RANKL/OPG and Nrf2/HO-1 pathways were also evaluated. Dex causes osteoporosis by increasing oxidative stress, decreasing antioxidant markers, reducing bone growth markers (OPG and OCN), and increasing bone turnover and resorption markers (NFATc1, RANKL, ACP, ALP, IL-6, and TNF-α). In contrast, ACE, EPE, and ACE/EPE MIX showed a prophylactic effect against Dex-induced osteoporosis by modulating the measured parameters and the histopathological architecture. In conclusion, ACE/EPE MIX exerts a powerful synergistic effect against GIO by a mode of action different from ALN.
Collapse
Affiliation(s)
- Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Omnia M. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Ashraf A. El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21515, Egypt;
| | - Doaa A. Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Saber M. Eweda
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
14
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Jethwa JT. Alternative Medical Therapy. Indian J Orthop 2023; 57:245-259. [PMID: 38107794 PMCID: PMC10721595 DOI: 10.1007/s43465-023-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023]
Abstract
Background Complementary/alternative medicine" (CAM) is defined as a diverse range of medical treatments, largely non-allopathic, mostly traditional, and not integrated into the authoritarian healthcare system. Interestingly for some schools, allopathy is alternative/complementary therapy. Osteoporosis is an ever-known disease treated before the era of allopathic medicine. Even though the customary medical system of India is among the most well-known in the world, every continent has its own alternative therapies for various chronic diseases. Purpose This review of the scientific information is to help the readers understand how crucial the conceptual underpinnings of alternative medical therapy systems are to the advancement of conventional allopathic practices. Method Many older and recent articles about alternative medical therapy in the management of osteoporosis published in scientific journals are reviewed. Relevant information from cross-references on methods of evaluating the efficacy of different modalities and their scientific pathways is included. An effort has been made to summarise the treatment of osteoporosis by these systems. Opinions, impressions, and inferences are added while describing various aspects of these modalities. Result The National Library of Medicine has played an active role in publishing studies of the management of osteoporosis by alternative therapies. Many issues of management of osteoporosis still lack reliable treatment. However, good information is now available about choosing alternate medical therapy that has been studied scientifically and has shown promising results. Conclusion Medicinal plants and certain natural treatments can treat osteoporosis and its problems. The use of alternate medical therapy has been proven recently by clinical practice and conventional wisdom. This sharing may help the medical practitioner to understand and judiciously allow complementary therapy while treating osteoporosis.
Collapse
Affiliation(s)
- Jawahar Tulsidas Jethwa
- Department of Orthopaedics, Narendra Modi Medical College, Nr. Rambaug, Opp. Fire Station, Maninagar, Ahmedabad, 380 008 India
- Ahmedabad, Gujarat India
| |
Collapse
|
16
|
Shen YW, Cheng YA, Li Y, Li Z, Yang BY, Li X. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154607. [PMID: 36610352 DOI: 10.1016/j.phymed.2022.154607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China; Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yang-Ang Cheng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China
| | - Yi Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zuo Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bing-You Yang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Li
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
17
|
Mohammad Gholami, Tarverdi A, Gholami A. The Effect of Vanillic Acid on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Wistar Male Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Peng Z, Xu R, You Q. Role of Traditional Chinese Medicine in Bone Regeneration and Osteoporosis. Front Bioeng Biotechnol 2022; 10:911326. [PMID: 35711635 PMCID: PMC9194098 DOI: 10.3389/fbioe.2022.911326] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
According to World Health Organization (WHO), osteoporosis is a systematic bone disability marked by reduced bone mass and microarchitectural degeneration of osseous cells, which leads to increased bones feebleness and fractures vulnerability. It is a polygenetic, physiological bone deformity that frequently leads to osteoporotic fractures and raises the risk of fractures in minimal trauma. Additionally, the molecular changes that cause osteoporosis are linked to decreased fracture repair and delayed bone regeneration. Bones have the ability to regenerate as part of the healing mechanism after an accident or trauma, including musculoskeletal growth and ongoing remodeling throughout adulthood. The principal treatment approaches for bone loss illnesses, such as osteoporosis, are hormone replacement therapy (HRT) and bisphosphonates. In this review, we searched literature regarding the Traditional Chinese medicines (TCM) in osteoporosis and bone regeneration. The literature results are summarized in this review for osteoporosis and bone regeneration. Traditional Chinese medicines (TCM) have grown in popularity as a result of its success in curing ailments while causing minimal adverse effects. Natural Chinese medicine has already been utilized to cure various types of orthopedic illnesses, notably osteoporosis, bone fractures and rheumatism with great success. TCM is a discipline of conventional remedy that encompasses herbal medication, massage (tui na), acupuncture, food, and exercise (qigong) therapy. It is based on more than 2,500 years of Chinese healthcare profession. This article serves as a comprehensive review summarizing the osteoporosis, bone regeneration and the traditional Chinese medicines used since ancient times for the management of osteoporosis and bone regeneration.
Collapse
|
19
|
Phoenix dactilyfera L. Pits Extract Restored Bone Homeostasis in Glucocorticoid-Induced Osteoporotic Animal Model through the Antioxidant Effect and Wnt5a Non-Canonical Signaling. Antioxidants (Basel) 2022; 11:antiox11030508. [PMID: 35326158 PMCID: PMC8944842 DOI: 10.3390/antiox11030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress associated with long-term glucocorticoids administration is a route through which secondary osteoporosis can be developed. The therapeutic potential of Phoenix dactilyfera L. pits is offered by their balanced, valuable and diverse phytochemical composition providing protective potential against oxidative reactions, making it a good candidate to treat glucocorticoid-induced osteoporosis (GIO). This study evaluates the possible anti-osteoporotic effect of date pit extract (DPE) against dexamethasone (DEXA)-induced osteoporosis. Male rats were allocated into three control groups, which received saline, low and high doses of DPE (150 and 300 mg/kg/day), respectively. Osteoporosis-induced groups that received DEXA (1 mg/kg/day) were divided into DEXA only, DPE (2 doses) + DEXA, and ipriflavone + DEXA. Femoral bone minerals density and bone mineral content, bone oxidative stress markers, Wnt signaling, osteoblast and osteoclast differentiation markers, and femur histopathology were evaluated. DPE defeated the oxidative stress, resulting in ameliorative changes in Wnt signaling. DPE significantly reduced the adipogenicity and abolished the osteoclastogenic markers (RANKL/OPG ratio, ACP, TRAP) while enhancing the osteogenic differentiation markers (Runx2, Osx, COL1A1, OCN). In Conclusion DPE restored the balanced proliferation and differentiation of osteoclasts and osteoblasts precursors. DPE can be considered a promising remedy for GIO, especially at a low dose that had more potency.
Collapse
|
20
|
Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, Gupta S, Arshad MF, Porwal O, Jha NK, Chaitanya M, Chellappan DK, Gupta G, Gupta PK, Dua K, Khursheed R, Awasthi A, Corrie L. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Hemp Seeds in Post-Arthroplasty Rehabilitation: A Pilot Clinical Study and an In Vitro Investigation. Nutrients 2021; 13:nu13124330. [PMID: 34959882 PMCID: PMC8709006 DOI: 10.3390/nu13124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis is a type of degenerative joint disease that results from the breakdown of joint cartilage and underlying bone. Due to their antioxidants and anti-inflammatory action, the phytochemical constituents of many vegetable varieties could represent a new frontier for the treatment of patients with Osteoarthritis and are still being explored. The aim of this pilot human study was to investigate the effects of pasta enriched with hemp seed flour on osteoarticular pain and bone formation markers in patients in post-arthroplasty rehabilitation. Another purpose was to evaluate the effect of hemp seed extract on bone metabolism, in vitro. A pilot, controlled, clinical study was conducted to verify the feasibility of pain symptom reduction in patients with Osteoarthritis undergoing arthroplasty surgery. We also investigated the effect of hemp seed extract on the Wnt/β-catenin and ERK1/2 pathways, alkaline phosphatase, RANKL, RUNX-2, osteocalcin, and COL1A on Saos-2. After 6 weeks, the consumption of hemp seed pasta led to greater pain relief compared to the regular pasta control group (−2.9 ± 1.3 cm vs. −1.3 ± 1.3 cm; p = 0.02). A significant reduction in serum BALP was observed in the participants consuming the hemp seed pasta compared to control group (−2.8 ± 3.2 µg/L vs. 1.1 ± 4.3 µg/L; p = 0.04). In the Saos-2 cell line, hemp seed extract also upregulated Wnt/β-catenin and Erk1/2 pathways (p = 0.02 and p = 0.03) and osteoblast differentiation markers (e.g., ALP, OC, RUNX2, and COL1A) and downregulated RANKL (p = 0.02), compared to the control. Our study demonstrated that hemp seed can improve pain symptoms in patients with osteoarthritis undergoing arthroplasty surgery and also improves bone metabolism both in humans and in vitro. However, more clinical studies are needed to confirm our preliminary findings.
Collapse
|
22
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-derived secondary metabolites represent a reservoir of phytochemicals for regenerative medicine application because of their varied assortment of biological properties including anti-oxidant, anti-inflammatory, antibacterial, and tissue remodeling properties. In addition, bioactive phytochemicals can be easily available, are often more cost-effective in large-scale industrialization, and can be better tolerated compared to conventional treatments mitigating the long-lasting side effects of synthetic compounds. Unfortunately, their poor bioavailability and lack of long-term stability limit their clinical impact. Nanotechnology-based delivery systems can overcome these limitations increasing bioactive molecules’ local effectiveness with reduction of the possible side effects on healthy bone. This review explores new and promising strategies in the area of delivery systems with particular emphasis on solutions that enhance bioavailability and/or health effects of plant-derived phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and curcumin in bone tissue regeneration.
Collapse
|
24
|
Hou Y, Carne A, McConnell M, Mros S, Vasileva EA, Mishchenko NP, Burrow K, Wang K, Bekhit AA, Bekhit AEDA. PHNQ from Evechinus chloroticus Sea Urchin Supplemented with Calcium Promotes Mineralization in Saos-2 Human Bone Cell Line. Mar Drugs 2020; 18:E373. [PMID: 32707634 PMCID: PMC7404214 DOI: 10.3390/md18070373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.5 µg/mL). The PHNQ extract from New Zealand sea urchin Evechinus chloroticus did not induce any cytotoxicity within the same concentration range after 21 days of incubation. Adding calcium chloride (CaCl2) with echinochrome A increased the number of viable cells, but when CaCl2 was added with the PHNQs, cell viability decreased. The effect of PHNQs extracted on mineralized nodule formation in Saos-2 cells was investigated using xylenol orange and von Kossa staining methods. Echinochrome A decreased the mineralized nodule formation significantly (p < 0.05), while nodule formation was not affected in the PHNQ treatment group. A significant (p < 0.05) increase in mineralization was observed in the presence of PHNQs (62.5 µg/mL) supplemented with 1.5 mM CaCl2. In conclusion, the results indicate that PHNQs have the potential to improve the formation of bone mineral phase in vitro, and future research in an animal model is warranted.
Collapse
Affiliation(s)
- Yakun Hou
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (M.M.); (S.M.)
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (M.M.); (S.M.)
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.V.); (N.P.M.)
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.V.); (N.P.M.)
| | - Keegan Burrow
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Ke Wang
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, Sakheer P.O. Box 32 038, Bahrain
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| |
Collapse
|
25
|
Chuang HW, Wei IH, Lin FY, Li CT, Chen KT, Tsai MH, Huang CC. Roles of Akt and ERK in mTOR-Dependent Antidepressant Effects of Vanillic Acid. ACS OMEGA 2020; 5:3709-3716. [PMID: 32118186 PMCID: PMC7045503 DOI: 10.1021/acsomega.9b04271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Vanillic acid, an oxidized form of vanilla, is a flavoring agent with a creamy odor. Several studies have reported the neuroprotective effects of vanillic acid, which are predominantly associated with anti-inflammatory and antioxidative properties. The anti-inflammatory and antioxidative properties may result from Akt or ERK signaling activation. The activation of the mammalian target of rapamycin (mTOR), a key downstream target of Akt and ERK signaling, is a crucial therapeutic target for treating depression. However, the antidepressant effects of vanillic acid remain unknown. The present study applied the forced swim test (FST) to investigate the antidepressant effects of vanillic acid and its association with Akt, ERK, and mTOR signaling and upstream α-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptor (AMPAR) in the prefrontal cortex (PFC) of mice. Vanillic acid demonstrated antidepressant effects by significantly reducing behavioral despair in the FST. None of the treatments changed locomotor activity. Additionally, vanillic acid increased AMPAR throughput, Akt, and mTOR signaling but not ERK signaling in the PFC. NBQX (an AMPAR blocker), MK 2206 (an Akt blocker), and rapamycin (an mTOR blocker) used in pretreatment attenuated the antidepressant effects of vanillic acid, but SL327 (an ERK inhibitor) did not. The immunochemical results indicated that the antidepressant effects of vanillic acid depend on the AMPAR-Akt-mTOR signaling transduction pathway. Our findings reveal an Akt-dependent, but ERK-independent, the mechanism underlying the antidepressant effects of vanillic acid, which may be beneficial for some patients with depression.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Graduate Institute
of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung 40402, Taiwan
| | - Fang-Yi Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Chun-Te Li
- Department of Medicine, China
Medical University, Taichung 40402, Taiwan
| | - Kuang-Ti Chen
- Department
of Veterinary Medicine, National Chung Hsing
University, Taichung 40227, Taiwan
| | - Mang-Hung Tsai
- Department of Anatomy, China Medical University, Taichung 40402, Taiwan
| | - Chih-Chia Huang
- Graduate Institute
of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of
Psychiatry, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
- E-mail: . Tel: 886-4-22052121 ext 1015. Fax: 886-4-22361230
| |
Collapse
|
26
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
27
|
Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 2019; 60:3492-3505. [PMID: 31782326 DOI: 10.1080/10408398.2019.1696278] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate alcohol consumption has been associated with beneficial effects on human health. Specifically, consumption of red wine and beer has shown a J-shape relation with many important diseases. While a role of ethanol cannot be excluded, the high content of polyphenols in both beverages has been proposed to contribute to these effects, with beer having the advantage over wine that it is lower in alcohol. In addition to ethanol, beer contains a wide variety of compounds with known medicinal potential such as kaempferol, quercetin, tyrosol and phenolic acids, and it is the main dietary source for the flavones xanthohumol and 8-prenylnaringenin, and bitter acids such as humulones and lupulones. Clinical and pre-clinical evidence for the protective effects of moderate beer consumption against cardiovascular disease and other diseases has been accumulating since the 1990s, and the non-alcoholic compounds of beer likely exert most of the observed beneficial effects. In this review, we summarize and discuss the effects of beer consumption in health and disease as well as the clinical potential of its non-alcoholic compounds which may be promising candidates for new therapies against common chronic diseases.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
28
|
A nongenomic mechanism for "metalloestrogenic" effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch Toxicol 2019; 93:2773-2785. [PMID: 31468104 DOI: 10.1007/s00204-019-02544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.
Collapse
|
29
|
Bone Protective Effect of Extra-Virgin Olive Oil Phenolic Compounds by Modulating Osteoblast Gene Expression. Nutrients 2019; 11:nu11081722. [PMID: 31349732 PMCID: PMC6722737 DOI: 10.3390/nu11081722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
The phenolic compounds of extra-virgin olive oil can act at various levels to protect individuals against cardiovascular and neurodegenerative diseases, cancer, and osteoporosis, among others. Polyphenols in extra-virgin olive oil can stimulate the proliferation of osteoblasts, modify their antigen profile, and promote alkaline phosphatase synthesis. The objective of this work was to determine the effect of different extra-virgin olive oil phenolic compounds on the gene expression of osteoblast-related markers. The cells of the MG63 osteoblast line were cultured for 24 h with 10−6 M of the phenolic compounds ferulic acid, caffeic acid, coumaric acid, apigenin, or luteolin. The expression of studied markers was quantified using quantitative real-time polymerase chain reaction (q-RT-PCR). The expression by MG63 osteoblasts of growth and differentiation/maturation markers was modified after 24 h of treatment with 10−6 M of the phenolic compounds under study, most of which increased the gene expression of the transforming growth factor β1 (TGF-β1), TGF-β receptor 1,2 and 3 (TGF-βR1, TGF-βR2, TGF-βR3), bone morphogenetic protein 2 and 7 (BMP2, BMP7), run-related transcription factor 2 (RUNX-2), Alkaline phosphatase (ALP), Osteocalcin (OSC), Osterix (OSX), Collagen type I (Col-I) and osteoprotegerin (OPN). The extra-virgin olive oil phenolic compounds may have a beneficial effect on bone by modulating osteoblast physiology, which would support their protective effect against bone pathologies.
Collapse
|
30
|
The effect of vanillic acid on ligature-induced periodontal disease in Wistar rats. Arch Oral Biol 2019; 103:1-7. [DOI: 10.1016/j.archoralbio.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022]
|
31
|
Kiyama R. Estrogenic Activity of Coffee Constituents. Nutrients 2019; 11:E1401. [PMID: 31234352 PMCID: PMC6628280 DOI: 10.3390/nu11061401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Here, the constituents of coffee with estrogenic activity are summarized by a comprehensive literature search, and their mechanisms of action for their physiological effects are discussed at the molecular and cellular levels. The estrogenic activity of coffee constituents, such as acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids), and others, such as volatile compounds, was first evaluated by activity assays, such as animal tests, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay, and yeast two-hybrid assay. Second, the health benefits associated with the estrogenic coffee constituents, such as bone protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement of menopausal syndromes, were summarized, including their potential therapeutic/clinical applications. Inconsistent results regarding mixed estrogenic/anti-estrogenic/non-estrogenic or biphasic activity, and unbeneficial effects associated with the constituents, such as endocrine disruption, increase the complexity of the effects of estrogenic coffee constituents. However, as the increase of the knowledge about estrogenic cell signaling, such as the types of specific signaling pathways, selective modulations of cell signaling, signal crosstalk, and intercellular/intracellular networks, pathway-based assessment will become a more realistic means in the future to more reliably evaluate the beneficial applications of estrogenic coffee constituents.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| |
Collapse
|
32
|
Wong MS, Poon CCW, Zhou LP, Xiao HH. Natural Products as Potential Bone Therapies. Handb Exp Pharmacol 2019; 262:499-518. [PMID: 31792676 DOI: 10.1007/164_2019_322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Demands for natural products, in the form of botanicals, dietary supplements, and herbal medicine, for management of chronic diseases are increasing globally. Natural products might be an alternative for the management of bone health to meet the demands of a growing aging population. Different types of natural products, including Chinese herbal medicine decoctions, herbs, and isolated phytochemicals, have been demonstrated to exert bone protective effects. The most common types of bone protective bioactives are flavonoids, stilbene, triterpenoids, coumestans, lignans, and phenolic acid. The actions of natural products can be mediated by acting systemically on the hormonal axis or locally via their direct or indirect effects on osteogenesis, osteoclastogenesis, as well as adipogenesis. Furthermore, with the use of metabolomic and microbiome approaches to understand the actions of natural products, novel mechanisms that involve gut-brain-bone axis are also revealed. These studies provide evidence to support the use of natural products as bone therapeutics as well as identify new biological targets for novel drug development.
Collapse
Affiliation(s)
- Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China
| |
Collapse
|
33
|
Arumugam B, Balagangadharan K, Selvamurugan N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun Signal 2018; 12:561-573. [PMID: 29350343 PMCID: PMC6039342 DOI: 10.1007/s12079-018-0449-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/10/2018] [Indexed: 01/10/2023] Open
Abstract
Syringic acid (SA), a phenolic acid, has been used in Chinese and Indian medicine for treating diabetes but its role in osteogenesis has not yet been investigated. In the present study, at the molecular and cellular levels, we evaluated the effects of SA on osteoblast differentiation. At the cellular level, there was increased alkaline phosphatase (ALP) activity and calcium deposition by SA treatment in mouse mesenchymal stem cells (mMSCs). At the molecular level, SA treatment of these cells stimulated expression of Runx2, a bone transcription factor, and of osteoblast differentiation marker genes such as ALP, type I collagen, and osteocalcin. It is known that Smad7 is an antagonist of TGF-β/Smad signaling and is a negative regulator of Runx2. microRNAs (miRNAs) play a key role in the regulation of osteogenesis genes at the post-transcriptional level and studies have reported that Smad7 is one of the target genes of miR-21. We found that there was down regulation of Smad7 and up regulation of miR-21 in SA-treated mMSCs. We further identified that the 3'-untranslated region (UTR) of Smad7 was directly targeted by miR-21 in these cells. Thus, our results suggested that SA promotes osteoblast differentiation via increased expression of Runx2 by miR-21-mediated down regulation of Smad7. Hence, SA may have potential in orthopedic applications.
Collapse
Affiliation(s)
- B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
34
|
Xiao HH, Sham TT, Chan CO, Li MH, Chen X, Wu QC, Mok DKW, Yao XS, Wong MS. A Metabolomics Study on the Bone Protective Effects of a Lignan-Rich Fraction From Sambucus Williamsii Ramulus in Aged Rats. Front Pharmacol 2018; 9:932. [PMID: 30186170 PMCID: PMC6110923 DOI: 10.3389/fphar.2018.00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
The lignan-rich fraction (SWR) of Sambucus Williamsii Ramulus, a folk herbal medicine in China for treatment of bone diseases, has previously reported to exert protective effects on bone without exerting uterotrophic effects in ovariectomized (OVX) mice. The aim of the present study was to identify the potential metabolites and the associated metabolic pathways that contribute to the beneficial effects of SWR on bone in vivo. Aged female Sprague Dawley rats (9 months old) were either sham-operated or ovariectomized for 12 weeks, before receiving treatment for another 12 weeks with the following treatment groups (n = 12 each): vehicle (Sham), vehicle (OVX), Premarin (130 μg/kg) or low (57 mg/kg), medium (114 mg/kg), and high (228 mg/kg) doses of SWR. The results showed that SWRH significantly suppressed bone loss, improved bone micro-architecture and increased bone strength on tibia without stimulating uterus weight gain in OVX rats. Premarin exerted similar bone protective effects as SWRH but elicited uterotrophic effects in OVX rats. The metabolic profiles of serum samples were analyzed by using ultra-performance liquid chromatography quadrupole time-of flight mass spectrometry and gas chromatography time-of flight mass spectrometry, and the metabolites that were significantly altered were identified by multivariate statistical analysis. Our study indicated that SWRH effectively restored the changes of 26 metabolites induced by estrogen-deficiency in OVX rats, which related to lipids, amino acids, tryptophan metabolisms, and anti-oxidative system. A subsequent validation showed that the serum level of superoxide dismutase and catalase were indeed up-regulated, while the serotonin level in a tryptophan hydroxylase 1 (TPH1) high expressing cells (rats RBL-2H3 cells) was down regulated after treatment with SWR. The results also suggested that the gut-microbiota may play an important role on the bone protective effects of SWR. The current study provides insight for understanding the unique mechanism of actions of SWR that might be involved in achieving bone protective effects in vivo.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Tung-Ting Sham
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Meng-Heng Li
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Chen
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Qing-Chang Wu
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
35
|
Lin J, Zhu J, Wang Y, Zhang N, Gober HJ, Qiu X, Li D, Wang L. Chinese single herbs and active ingredients for postmenopausal osteoporosis: From preclinical evidence to action mechanism. Biosci Trends 2018; 11:496-506. [PMID: 29151553 DOI: 10.5582/bst.2017.01216] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal osteoporosis is a systemic metabolic skeletal disease generally ascribable to a dearth of estrogen. Whether traditional Chinese medicine is effective in management of postmenopausal osteoporosis remains unclear. This article reviews the experimental evidence of both in vitro and in vivo preclinical studies with the theme of the application of Chinese single herbs and active ingredients in postmenopausal osteoporosis. It includes three single herbs (Herba Epimedium, Rhizoma Drynariae, and Salvia miltiorrhiza) and eight active ingredients (saikosaponins, linarin, echinacoside, sweroside, psoralen, poncirin, vanillic acid, and osthole). The experimental studies indicated their potential use as treatment for postmenopausal osteoporosis and investigated the underlying mechanisms including osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL), extracellular-signal-regulated kinase/c-Jun N terminal kinase/mitogen-activated protein kinase (ERK/JNK/MAPK), estrogen receptor (ER), bone morphogenetic protein (BMP), transforming growth factor (TGF)-β, Wnt/β-catenin, and Notch signaling pathways. This review contributes to a better understanding of traditional Chinese medicine and provides useful information for the development of more effective anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Jing Lin
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Jun Zhu
- Department of Obstetrics and Gynecology, Wenling People's Hospital, Wenzhou Medical University
| | - Yan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | | | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| |
Collapse
|
36
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
37
|
Antiosteoporotic activity of a syringic acid diet in ovariectomized mice. J Nat Med 2017; 71:632-641. [DOI: 10.1007/s11418-017-1105-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
38
|
Shimotori Y, Hoshi M, Osawa Y, Miyakoshi T. Synthesis of various β-D-glucopyranosyl and β-D-xylopyranosyl hydroxybenzoates and evaluation of their antioxidant activities. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractVarious β-D-glucopyranosyl and β-D-xylopyranosyl hydroxybenzoates were efficiently prepared from 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (TAGB) or 2,3,4-tri-O-acetyl-α-D-xylopyranosyl bromide (TAXB), respectively, by amine-promoted glycosylation. Regioselective deacetylation of the resulting acetylated β-D-gluco- and β-D-xylopyranosyl hydroxybenzoates was investigated using Novozym 435 as a lipase catalyst. In the case of β-D-glucopyranosyl hydroxybenzoates, Novozym 435-catalyzed deacetylation is regioselective at C-4 and C-6 positions. On the other hand, β-D-xylopyranosyl hydroxybenzoates are deacetylated only at the C-4 position. Antioxidant activities of free hydroxybenzoic acids and the respective β-D-gluco- and β-D-xylopyranosyl hydroxybenzoates were evaluated by DPPH˙ radical scavenging as well as their inhibitory effect on autoxidation of bulk methyl linoleate. The β-D-xylopyranosyl protocatechoate, as well as quercetin and α-tochopherol, show high antioxidant activity for the radical scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH˙). In bulk methyl linoleate, the antioxidant activities of β-D-gluco- and β-D-xylopyranosyl protocatechoates are higher than that of α-tocopherol.
Collapse
Affiliation(s)
- Yasutaka Shimotori
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Masayuki Hoshi
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Yosuke Osawa
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Tetsuo Miyakoshi
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
39
|
Wang YG, Jiang LB, Gou B. PROTECTIVE EFFECT OF VANILLIC ACID ON OVARIECTOMY-INDUCED OSTEOPOROSIS IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638864 PMCID: PMC5471479 DOI: 10.21010/ajtcam.v14i4.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The need for an anti-osteoporotic agent is in high demand since osteoporosis contributes to high rates of disability or impairment (high osteoporotic fracture), morbidity and mortality. Hence, the present study is designed to evaluate the protective effects of vanillic acid (VA) against bilateral ovariectomy-induced osteoporosis in female Sprague-Dawley (SD) rats. Materials and Methods: Forty healthy female adult SD rats were separated in to four groups with sham-operated control with bilateral laprotomy (Sham; n = 10), bilateral overiectomy (OVX; n = 10) group, OVX rats were orallay administrated with 50 mg/kg b.wt of VA (OVX + 50 VA; n = 10) or 100 mg/kg b.wt of VA (OVX + 100 VA; n = 10) for 12 weeks (post-treatment) after 4 weeks of OVX. Results: A significant change in the body weight gain was noted in OVX group, while treatment with VA substantially reverted to normalcy. Meanwhile, the bone mineral density and content (BMD and BMC) were substantially improved on supplementation with VA. Also, the bone turnover markers like calcium (Ca), phosphorous (P), osteocalcin (OC), alkaline phosphatase (ALP) and deoxypyridinoline (DPD) and inflammatory markers (IL-1β, IL-6, and TNF-α) levels were markedly attenuated in VA-treated rats. Moreover, the biomechanical stability was greatly ameliorated with VA administration. Both the dose of VA showed potent anti-osteoporotic activity, but VA 100 mg showed highest protective effects as compared with 50 mg of VA. Conclusion: Based on the outcome, we concluded that VA 100 showed better anti-osteoporotic activity by improving BMD and BMC as well as biomechanical stability and therefore used as an alternative therapy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yong Gui Wang
- Department of Orthopaedics, Xiangyang No.1 People's Hospital affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Liang Bo Jiang
- Department of Microscopic Orthopaedics, Shiyan People's Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Bo Gou
- Department of Orthopaedics, Shiyan People's Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
40
|
Shi ZY, Zhang XG, Li CW, Liu K, Liang BC, Shi XL. Effect of Traditional Chinese Medicine Product, QiangGuYin, on Bone Mineral Density and Bone Turnover in Chinese Postmenopausal Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:6062707. [PMID: 28512501 PMCID: PMC5415859 DOI: 10.1155/2017/6062707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 12/03/2022]
Abstract
Introduction. The aim of this study was to investigate the efficacy of herbal formula QiangGuYin (QGY) in postmenopausal women. Materials and Methods. A total of 240 participants from six clinical centers were randomly to receive alendronate 70 mg/week, QGY granules 20 g/day, and placebo. Primary end points were BMD changes over 6 and 12 months; secondary end points were bone turnover markers changes at 3, 6, 9, and 12 months. Safety was monitored by clinical adverse events reported during the follow-up. Results. Of 240 women recruited, 218 completed the study. Significant BMD increases from baseline were observed over 6 and 12 months at each observed part both in QGY and alendronate compared with placebo (p < 0.01). Alendronate-treated subjects had significant decreases in β-CTX compared to QGY-treated subjects at each time point assessed (p < 0.01). Reduction in t-P1NP was only observed in the QGY group at 3 and 6 months (-23.81% and -3.07%, resp.). No significant difference was observed in the overall incidence of clinical adverse events among the alendronate group and the QGY group (5.0% versus 7.5%, p = 0.513). Conclusion. 1-Year treatment with QGY demonstrated a safe statistical increase in BMD and new balance may be rebuilt after 9 months. This trail is registered with ChiCTR-POC-16008026.
Collapse
Affiliation(s)
- Zhen-Yu Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xin-Gen Zhang
- Department of Orthopedics and Traumatology, Rongjun Hospital of Zhejiang, Jiaxing, Zhejiang 314001, China
| | - Chun-Wen Li
- Department of Diagnostics of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kang Liu
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310005, China
| | - Bo-Cheng Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiao-Lin Shi
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310005, China
| |
Collapse
|
41
|
Ge P, Sheng F, Jin Y, Tong L, Du L, Zhang L, Tian N, Li G. Magnetic resonance imaging of osteosarcoma using a bis(alendronate)-based bone-targeted contrast agent. Biomed Pharmacother 2016; 84:423-429. [PMID: 27682736 DOI: 10.1016/j.biopha.2016.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd2-diethylenetriaminepentaacetate-bis(alendronate) (Gd2-DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pKa, complex constant, and T1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd2-DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd2-DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r1) of 7.613mM-1s-1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd2-DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd2-DTPA-BA. The signal intensity of Gd2-DTPA-BA reached 120.3% at 50min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd2-DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd2-DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases.
Collapse
Affiliation(s)
- Pingju Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Fugeng Sheng
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China.
| | - Li Tong
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lei Zhang
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Ning Tian
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Gongjie Li
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
42
|
Xiao HH, Zhang Y, Cooper R, Yao XS, Wong MS. Phytochemicals and potential health effects of Sambucus williamsii Hance (Jiegumu). Chin Med 2016; 11:36. [PMID: 27478495 PMCID: PMC4965893 DOI: 10.1186/s13020-016-0106-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2016] [Indexed: 12/02/2022] Open
Abstract
Sambucus williamsii Hance (Jiegumu) is traditionally used in Chinese medicine to treat bone and joint diseases. The major phytochemicals in S. williamsii are lignans, terpenoids, and phenolic acids, together with trace amounts of essential oils, minerals, amino acids, and natural pigments. In this review, a database search for studies published from 1990 to November 2015 was conducted using PubMed, the China Academic Journals Full-Text Database, and Google Scholar with the keywords “Sambucus williamsii Hance”, “Sambucus williamsii”, “Sambucuswilliamsii + clinic”, “Sambucuswilliamsii + biology”, “Sambucuswilliamsii + chemicals”, and “Jiegumu”, which covered chemical studies, cell culture studies, animal experiments, and clinical studies. This article reviewed the compounds isolated from S. williamsii that may reduce the risk of cancer, and exert antifungal, antioxidant, anti-inflammatory, bone fracture healing, and antiosteoporotic effects.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057 China ; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yan Zhang
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057 China ; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
44
|
An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 2016; 147:46-58. [DOI: 10.1016/j.lfs.2016.01.024] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 01/03/2023]
|
45
|
Chingwaru W, Vidmar J, Kapewangolo PT, Mazimba O, Jackson J. Therapeutic and Prophylactic Potential of Morama (Tylosema esculentum): A Review. Phytother Res 2015. [PMID: 26206567 DOI: 10.1002/ptr.5419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tylosema esculentum (morama) is a highly valued traditional food and source of medicine for the San and other indigenous populations that inhabit the arid to semi-arid parts of Southern Africa. Morama beans are a rich source of phenolic acids, flavonoids, certain fatty acids, non-essential amino acids, certain phytosterols, tannins and minerals. The plant's tuber contains griffonilide, behenic acid and starch. Concoctions of extracts from morama bean, tuber and other local plants are frequently used to treat diarrhoea and digestive disorders by the San and other indigenous populations. Information on composition and bioactivity of phytochemical components of T. esculentum suggests that the polyphenol-rich extracts of the bean testae and cotyledons have great potential as sources of chemicals that inhibit infectious microorganisms (viral, bacterial and fungal, including drug-resistant strains), offer protection against certain non-communicable diseases and promote wound healing and gut health. The potential antinutritional properties of a few morama components are also highlighted. More research is necessary to reveal the full prophylactic and therapeutic potential of the plant against diseases of the current century. Research on domestication and conservation of the plant offers new hope for sustainable utilisation of the plant.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| | - Ofentse Mazimba
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| | - Jose Jackson
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| |
Collapse
|
46
|
Xiao HH, Gao QG, Ho MX, Zhang Y, Wong KC, Dai Y, Yao XS, Wong MS. An 8-O-4' norlignan exerts oestrogen-like actions in osteoblastic cells via rapid nongenomic ER signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:39-49. [PMID: 25978953 DOI: 10.1016/j.jep.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sambucus williamsii Hance (SWH), which belongs to the Caprifoliaceae family distributed in various regions of China, Korea and Japan, has been used as a folk medicine for treatment of bone and joint diseases in China for thousands of years. In previous studies, SWH was shown to possess anti-osteoporosis, healing fracture, anti-inflammatory and analgesic activities. Our previous studies showed that SWH extract effectively suppressed ovariectomy-induced increase in bone turnover and improved bone mineral density and bone biomechanical strength in rats as well as in mice. An 8-O-4' norlignan, (7R,8S)-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (PPD) was previously isolated and identified as the bioactive ingredient in SWH. The present study aimed to characterize the bone protective effects as well as its mechanism of actions in osteoblasts. MATERIALS AND METHODS Bone protective actions of PPD on different cells were determined by proliferation assay, alkaline phosphatase (ALP) activity assay, calcium deposition as well as real-time reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, estrogen receptor (ER) antagonist ICI182,780 and mitogen-activated protein kinase kinase (MEK) inhibitor U0126 blocking assays, competitive ER radioligand binding assay, ERE-dependent luciferase reporter assay and immunoblotting were used to determine if PPD activated ER and if the effects of PPD on osteoblastic functions were ER dependent. RESULTS PPD exerted anabolic effects in osteoblasts and its effects were abolished by co-incubation with ICI182,780 or U0126. PPD induced mRNA expressions of Runx2, ALP, osteocalcin, and increased the ratio of osteoprotegerin/receptor activator of nuclear factor κB (OPG/RANKL). PPD failed to bind to either ERα or ERβ and did not activate ERE-luciferase activity via ER. PPD induced the phosphorylation of extracellular regulated kinases (ERK) and its effect was completely abolished by U0126. It also induced the phosphorylation of ERα at serine 118. CONCLUSION These data show that PPD is a bioactive compound in SWH that exerts oestrogen-like actions in osteoblast-like cells via ligand-independent, estrogen response element (ERE)-independent and mitogen-activated protein (MAP) Kinase-mediated rapid nongenomic ER signaling pathway.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Quan-Gui Gao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Ming-Xian Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yan Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China; Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ka-Chun Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
47
|
17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway. Stem Cell Res Ther 2014; 5:125. [PMID: 25403930 PMCID: PMC4446088 DOI: 10.1186/scrt515] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. Methods SCAP was isolated and treated with 10-7 M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. Results MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. Conclusions The ondonto/osteogenic differentiation of SCAP is enhanced by 10-7 M 17beta-estradiol via the activation of MAPK signaling pathway.
Collapse
|