1
|
Zhu J, Wang T, Liu X, Lu T, Zhuo J, Li X, Yu Z, Cui G, Shen H. Overexpression of LSR suppresses glioma proliferation and invasion via regulating FOXO3a. J Neurooncol 2025; 173:179-192. [PMID: 39992572 DOI: 10.1007/s11060-025-04976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE Gliomas, the most prevalent type of central nervous system tumors, currently lack effective therapeutic options. Lipolysis-stimulated lipoprotein receptors (LSR) have been implicated in tumor development and progression. This study aims to investigate the influence of LSR on gliomas and elucidate the underlying mechanisms. METHODS We analyze LSR expression in gliomas and its association with patient prognosis using bioinformatics tools. Western blotting and immunohistochemistry revealed differential expression of LSR across different grades of glioma. The effects of LSR on glioma cell proliferation and invasion are evaluated through a series of cellular assays. Subcutaneous xenografts in nude mice are utilized to assess the impact of LSR on gliomas in vivo. Additionally, western blotting is employed to detect changes in protein levels related to the FOXO3a signaling pathway following LSR overexpression. RESULTS LSR expression is higher in tissues from low-grade gliomas compared to those from glioblastomas. Patients with low LSR expression exhibit poorer prognoses. Overexpression of LSR inhibit glioma cell proliferation and invasion. The protein levels of PCNA, Cyclin D1, MMP2, and MMP9 are significantly decreased in the OE-LSR group. Tumor volume is reduced in nude mice injected subcutaneously with LSR-overexpressing glioma cells. Overexpression of LSR increases nuclear FOXO3a level while reduces p-FOXO3a and p-14-3-3 levels. Knockdown of FOXO3a reverse the inhibitory effects of LSR overexpression on glioma cell proliferation and invasion. CONCLUSION Low LSR expression is associated with adverse prognosis in glioma patients. By modulating FOXO3a, LSR overexpression suppresses glioma cell proliferation and invasion.
Collapse
Affiliation(s)
- Jinlong Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, P.R. China
| | - Tong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xi Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Jianwei Zhuo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiangying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
2
|
Verschuere H, Kasmi S, Nuhn L, D'Almeida SM, Zhu Q, Zhong Z, Adjemian S, Louage B, De Vrieze J, Yu H, De Geest BG, Vandenabeele P. Enhancing anti-tumor immunity through intratumoral combination therapy with amphiphilic conjugates of oxaliplatin and imidazoquinoline TLR7/8 agonist. RSC Adv 2025; 15:11662-11674. [PMID: 40230629 PMCID: PMC11995270 DOI: 10.1039/d5ra00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
The efficacy of conventional chemotherapy does not only rely on the cytotoxic action of the drug compound itself. Indeed, proper drug-induced immunogenic cell death (ICD) can stimulate immunosurveillance and mount a systemic anti-tumor response. We aimed to further amplify the therapeutic activity of oxaliplatin (OxPt) chemotherapy-induced ICD by combining this with an imidazoquinoline (IMDQ) TLR7/8 agonist. We hypothesized that innate immune activation by TLR7/8 activation primes the immune system against tumor neoantigens, thereby mounting tumor-specific T cell responses that contribute to killing primary tumor cells and distal metastases. To this end, we initially synthesized a covalent conjugate of OxPt, an imidazoquinoline TLR7/8 agonist (i.e., IMDQ), and an alkyl lipid. We hypothesized that such a lipidated conjugate would, upon intratumoral injection, increase the residence time in the tumor and reduce systemic dissemination and, hence, off-target toxicity. Whereas combination therapy with OxPt and IMDQ in native form improved, relative to single treatment, the anti-tumor efficacy against the primary treated tumor and a secondary distal tumor, this was not the case for OxPt-IMDQ-lipid conjugate therapy. We then altered the molecular design of the combination therapy and synthesized amphiphilic OxPt and IMDQ conjugates, comprising a cholesteryl motif and a hydrophilic poly(ethylene glycol) (PEG) chain. Intratumoral combination therapy with OxPt-PEG-cholesteryl and IMDQ-PEG-cholesteryl reduced, compared to native drug compounds, systemic innate inflammatory responses, and more efficiently eradicated primary and distal tumors. Furthermore, we found that combination therapy with OxPt-PEG-cholesteryl and IMDQ-PEG-cholesteryl induced antigen-specific anti-tumor responses and high infiltration levels of CD8+ T cells into the tumor.
Collapse
Affiliation(s)
- Hanne Verschuere
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
| | - Sabah Kasmi
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Department of Pharmaceutics, Ghent University Ghent Belgium
| | - Lutz Nuhn
- Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg Würzburg Germany
| | - Sènan Mickaël D'Almeida
- CyTOF Flow Cytometry Core Facility, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Qiwen Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Zifu Zhong
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Department of Pharmaceutics, Ghent University Ghent Belgium
| | - Sandy Adjemian
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
| | - Benoit Louage
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Department of Pharmaceutics, Ghent University Ghent Belgium
| | - Jana De Vrieze
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Department of Pharmaceutics, Ghent University Ghent Belgium
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Department of Pharmaceutics, Ghent University Ghent Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Belgium
- Methusalem Program, Ghent University Belgium
| |
Collapse
|
3
|
Guo J, Zhang X, Dong F, Wang S, Wang D, Li Y, Zuo S, Wang Q, Li W, Sun J, He Z, Zhang T, Jiang Q, Sun B. Revealing the impact of modified modules flexibility on gemcitabine prodrug nanoassemblies for effective cancer therapy. J Colloid Interface Sci 2025; 677:941-952. [PMID: 39128288 DOI: 10.1016/j.jcis.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fudan Dong
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Simeng Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
4
|
Shin HS, Kim S, Jin SM, Yoo YJ, Heo JH, Lim YT. Molecular Masking of Synthetic Immunomodulator Evokes Antitumor Immunity With Reduced Immune Tolerance and Systemic Toxicity by Temporal Activity Recovery and Sustained Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309039. [PMID: 37903320 DOI: 10.1002/adma.202309039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Activation of the innate immune system counteracts tumor-induced immunosuppression. Hence, small molecule-based toll-like receptor 7/8 agonists (TLR7/8a), which can modulate immunosuppression in the tumor microenvironment along with the activation of innate immunity, are emerging as essential components of cancer immunotherapy. However, the clinical application of synthetic TLR7/8a therapies is limited by systemic immune-associated toxicity and immune tolerance induced by uncontrolled stimulatory activities and repeated treatments. To address these limitations, a dynamic immunomodulation strategy incorporating masking and temporal recovery of the activity of TLR7/8a through prodrug-like TLR7/8a (pro-TLR7/8a) at the molecular level and a sustained and controlled release of active TLR7/8a from nanoliposome (pro-TLR7/8a) (NL(pro-TLR7/8)) in a macroscale depot are designed. Immunization with cationic NL(pro-TLR7/8) and anionic antigens triggers robust activation of innate immune cells as well as antigen-specific T cell responses, eliciting reprogramming of immunosuppressive cells into tumor-suppressive cells, with decreased systemic adverse effects and immune tolerance. Combination treatment with NL(pro-TLR7/8a) and immune checkpoint inhibitors (anti-CTLA-4 plus anti-PD-L1) or nanoliposomes (Doxorubicin) has synergistic effects on antitumor immunity in various tumor models. The concept of pro-TLR7/8a suggested herein may facilitate the advancement of small-molecule-based immunomodulators for clinical translation and safe and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sohyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jang Hun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
5
|
Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res 2024; 14:433-454. [PMID: 37644299 PMCID: PMC10761494 DOI: 10.1007/s13346-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (˷100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-β1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
7
|
Dai L, Li S, Hao Q, Zhou R, Zhou H, Lei W, Kang H, Wu H, Li Y, Ma X. Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. NANOSCALE ADVANCES 2023; 5:1011-1022. [PMID: 36798503 PMCID: PMC9926902 DOI: 10.1039/d2na00883a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Low-density lipoprotein (LDL) is a small lipoprotein that plays a vital role in controlling lipid metabolism. LDL has a delicate nanostructure with unique physicochemical properties: superior payload capacity, long residence time in circulation, excellent biocompatibility, smaller size, and natural targeting. In recent decades, the superiority and feasibility of LDL particles as targeted delivery carriers have attracted much attention. In this review, we introduce the structure, composition, advantages, defects, and reconstruction of LDL delivery systems, summarize their research status and progress in targeted diagnosis and therapy, and finally look forward to the clinical application of LDL as an effective delivery vehicle.
Collapse
Affiliation(s)
- Luyao Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Hui Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Wenxi Lei
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Hao Wu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
8
|
Morla S, Ravikumar O, O’Hara C, Boothello R, Vera A, Abdelfadiel EI, Fayyad R, Afosah DK, Sharon C, Fernandez L, Shah SA, Patel BB, Desai UR. Designing Synthetic, Sulfated Glycosaminoglycan Mimetics That Are Orally Bioavailable and Exhibiting In Vivo Anticancer Activity. J Med Chem 2023; 66:1321-1338. [PMID: 36634271 PMCID: PMC9884082 DOI: 10.1021/acs.jmedchem.2c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Sulfated glycosaminoglycans (GAGs), or synthetic mimetics thereof, are not favorably viewed as orally bioavailable drugs owing to their high number of anionic sulfate groups. Devising an approach for oral delivery of such highly sulfated molecules would be very useful. This work presents the concept that conjugating cholesterol to synthetic sulfated GAG mimetics enables oral delivery. A focused library of sulfated GAG mimetics was synthesized and found to inhibit the growth of a colorectal cancer cell line under spheroid conditions with a wide range of potencies ( 0.8 to 46 μM). Specific analogues containing cholesterol, either alone or in combination with clinical utilized drugs, exhibited pronounced in vivo anticancer potential with intraperitoneal as well as oral administration, as assessed by ex vivo tertiary and quaternary spheroid growth, cancer stem cell (CSC) markers, and/or self-renewal factors. Overall, cholesterol derivatization of highly sulfated GAG mimetics affords an excellent approach for engineering oral activity.
Collapse
Affiliation(s)
- Shravan Morla
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ongolu Ravikumar
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Connor O’Hara
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rio Boothello
- Division
of Hematology, Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Alberto Vera
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Elsamani I. Abdelfadiel
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rawan Fayyad
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Chetna Sharon
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Leopoldo Fernandez
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
- Division
of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Syed Ammer Shah
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
- Division
of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Bhaumik B. Patel
- Division
of Hematology, Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
9
|
Bone-Targeted Dual Functional Lipid-coated Drug Delivery System for Osteosarcoma Therapy. Pharm Res 2023; 40:231-243. [PMID: 36380167 PMCID: PMC9666974 DOI: 10.1007/s11095-022-03430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE OR OBJECTIVE Osteosarcoma is well-known for its high incidence in children and adolescents and long-term bone pain, which seriously reduces the life quality of patients. Cisplatin (CDDP), as the first-line anti-osteosarcoma drug, has been used in many anticancer treatments. At the same time, the serious side effects of platinum (Pt) drugs have also attracted widespread attention. To accurately deliver Pt drugs to the lesion site and realize controlled release of Pt drugs, certain modified delivery systems have been extensively studied. METHODS Among them, liposomes have been approved for clinical cancer treatment due to their highly biocompatibility and superior modifiability. Here, we developed a bone-targeted dual functional lipid-coated drug delivery system, lipid-coated CDDP alendronate nanoparticles (LCA NPs) to target the bone and precisely deliver the drugs to the tumor site. Cell toxicity, apoptosis and cellular uptake were detected to evaluate the anticancer effect for LCA NPs. Furthermore, transwell assay and wound healing assay were conducted to estimate the osteosarcoma cell migration and invasion. Hemolysis assay was utilized to assess the biocapitibility of the kind of NPs. RESULTS With the aim of bone-targeted unit alendronate (ALD), LCA NPs serve as a rich bone homing Pt delivery system to exert efficient anticancer effects and synergistically reduce bone resorption and bone loss potentially. CONCLUSIONS By providing a highly biocompatible platform for osteosarcoma therapy, LCA NPs may help to significantly enhance the anticancer effect of Pt and greatly reduce the systemic toxicity and side effects of Pt towards osteosarcoma.
Collapse
|
10
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
11
|
Jaragh-Alhadad L, Behbehani H, Karnik S. Cancer targeted drug delivery using active low-density lipoprotein nanoparticles encapsulated pyrimidines heterocyclic anticancer agents as microtubule inhibitors. Drug Deliv 2022; 29:2759-2772. [PMID: 36029014 PMCID: PMC9427048 DOI: 10.1080/10717544.2022.2117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction. Therefore, loading nano-LDL particles’ core with pyrimidine heterocyclic anticancer agents will increase cancer cytotoxic activity targeting tubulin protein. First, by mimicking the native LDL particle's metabolic pathway, and second the agent’s chemical functional groups like the native amino acids cytosine and thymine structures will not be recognized as a foreign entity from the cell’s immune system. Nano-LDL particles will internalize through LDL-receptors endocytosis and transport the anticancer agent into the middle of the cancer cell, reducing its side effects on other healthy cells. Generally, the data revealed that pyrimidine heterocyclic anticancer agents’ size is at the nano level. Agents’ morphological examination showed nanofibers, thin sheets, clusters, and rod-like structures. LDL particles’ size became bigger after loading with pyrimidine heterocyclic anticancer agents and ranged between 121.6 and 1045 nm. Then, particles were tested for their cytotoxicity against breast (MDA468) and prostate (DU145) cancer cell lines as surrogate models with dose-response study 10, 5, 1 µM. The IC50 values of the agents against DU145 and MDA468 possessed cell growth inhibition even at the 1 µM concentration ranges of 3.88 ± 1.05 µM and 3.39 ± 0.97 µM, respectively. In sum, nano-LDL particles proved their efficiency as active drug delivery vehicles to target tubulin in cancer cells.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait.,Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022; 29:1959-1970. [PMID: 35762636 PMCID: PMC9246174 DOI: 10.1080/10717544.2022.2089296] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.
Collapse
Affiliation(s)
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hye-Mi Noh
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
13
|
Mourtas S, Papadia K, Kordopati GG, Ioannou PV, Antimisiaris SG, Tsivgoulis GM. Synthesis of Novel Arsonolipids and Development of Novel Arsonoliposome Types. Pharmaceutics 2022; 14:pharmaceutics14081649. [PMID: 36015274 PMCID: PMC9416600 DOI: 10.3390/pharmaceutics14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Arsonolipids represent a class of arsenic-containing compounds with interesting biological properties either as monomers or as nanostructure forming components, such as arsonoliposomes that possess selective anticancer activity as proven by in vitro and in vivo studies. In this work, we describe, for the first time, the synthesis of novel arsono-containing lipids where the alkyl groups are connected through stable ether bonds. It is expected that this class of arsonolipids, compared with the corresponding ester linked, will have higher chemical stability. To accomplish this task, a new methodology of general application was developed, where a small arsono compound, 2-hydroxyethylarsonic acid, when protected with thiophenol, can be used in an efficient and simple way as a building block for the synthesis of arsono-containing lipids as well as other arsono-containing biomolecules. Thus, besides the above-mentioned arsonolipid, an arsono cholesterol derivative was also obtained. Both ether arsonolipid and arsono cholesterol were able to form liposomes having similar physicochemical properties and integrity to conventional arsonoliposomes. Furthermore, a preliminary in vitro anticancer potential assessment of the novel ether arsonolipid containing liposomes against human prostate cancer (PC-3) and Lewis lung carcinoma (LLC) cells showed significant activity (dose- and time-dependent), which was similar to that of the conventional arsonoliposomes (studied before). Given the fact that novel arsonolipids may be more stable compared to the ones used in conventional arsonoliposomes, the current results justify further exploitation of the novel compounds by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
- Correspondence: (S.M.); (G.M.T.)
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
| | | | | | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), 26504 Rio Patras, Greece
| | - Gerasimos M. Tsivgoulis
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
- Correspondence: (S.M.); (G.M.T.)
| |
Collapse
|
14
|
Jafari M, Abolmaali SS, Borandeh S, Najafi H, Zareshahrabadi Z, Heidari R, Azarpira N, Zomorodian K, Tamaddon AM. Amphiphilic hyperbranched polyglycerol nanoarchitectures for Amphotericin B delivery in Candida infections. BIOMATERIALS ADVANCES 2022; 139:212996. [PMID: 35891600 DOI: 10.1016/j.bioadv.2022.212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Although Amphotericin B (AMB) is considered the most effective anti-mycotic agent for treating Candida infections, its clinical use is limited due to its high toxicity. To address this issue, we developed cholesterol-based dendritic micelles of hyperbranched polyglycerol (HPG), including cholesterol-cored HPG (Chol-HPG) and cholesterol end-capped HPG (HPG@Chol), for AMB delivery. The findings suggested that the presence of cholesterol moieties could control AMB loading and release properties. Dendritic micelles inhibited AMB hemolysis and cytotoxicity in HEK 293 and RAW 264.7 cell lines while increasing antifungal activity against C. albicans biofilm formation. Furthermore, significantly lower levels of renal and liver toxicity biomarkers compared to Fungizone® ensured AMB-incorporated dendritic micelle biosafety, which was confirmed by histopathological evaluations. Overall, the Chol-HPG and HPG@Chol dendritic micelles may be a viable alternative to commercially available AMB formulations as well as an effective delivery system for other poorly soluble antifungal agents.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, Shiraz, PO Box 7193711351, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran.
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran.
| |
Collapse
|
15
|
Shi L, Wu X, Li T, Wu Y, Song L, Zhang W, Yin L, Wu Y, Han W, Yang Y. An esterase-activatable prodrug formulated liposome strategy: potentiating the anticancer therapeutic efficacy and drug safety. NANOSCALE ADVANCES 2022; 4:952-966. [PMID: 36131817 PMCID: PMC9418717 DOI: 10.1039/d1na00838b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 05/27/2023]
Abstract
Liposomal nanomedicine represents a common and versatile carrier for the delivery of both lipophilic and hydrophilic drugs. However, the direct formulation of many chemotherapeutics into a liposomal system remains an enormous challenge. Using the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN38) as a model drug, we combined lipophilic prodrug construction with subsequent integration into an exogenous liposomal scaffold to assemble a prodrug-formulated liposome for systemic administration. Reconstructing SN38 with lipid cholesterol via the esterase-activatable bond endows the resulting prodrug with elevated miscibility with liposomal compositions and esterase-responsive drug release in cancerous cells. The systemic administration of the prodrug-based nanoassemblies (Chol-SN38@LP) exhibited preferential accumulation of therapeutic payloads in tumor lesions. Compared to the SN38 clinical counterpart irinotecan, our prodrug-based nanoassemblies with adaptive features showed elevated therapeutic efficacy (∼1.5 times increase of tumor inhibition) in a preclinical A549 lung carcinoma cell-derived mouse model and improved drug tolerability (i.e., alleviated bloody diarrhea and liver damage) in multiple mice models. These results may be ascribed to extended systemic circulation and preferential tumor accumulation of our nanodrugs. Hence, our findings demonstrate that rational engineering of therapeutic nanomedicine is a promising approach for effective and safe delivery of antitumor chemotherapeutics, especially to rescue drug candidates that have failed in clinical trials owing to poor PK properties or severe toxicity in patients.
Collapse
Affiliation(s)
- Linlin Shi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou Zhejiang PR China 310009
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Xinkai Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Tongyu Li
- Department of Hematology, Ningbo First Hospital Ningbo Zhejiang PR China 315010
| | - Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University Yiwu Zhejiang PR China 310014
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University Shanghai PR China 200030
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Yuhui Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Weidong Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou Zhejiang PR China 310009
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China 310016
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University Shanghai PR China 200030
| |
Collapse
|
16
|
Bashant MM, Mitchell SM, Hart LR, Lebedenko CG, Banerjee IA. In silico studies of interactions of peptide-conjugated cholesterol metabolites and betulinic acid with EGFR, LDR, and N-terminal fragment of CCKA receptors. J Mol Model 2021; 28:16. [PMID: 34961887 DOI: 10.1007/s00894-021-05007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
In this work, we designed three new ligands by conjugating cholesterol metabolites 3-hydroxy-5-cholestenoic acid (3-HC) and 3-oxo-4-cholestenoic acid (3-OC) and the natural tri-terpenoid betulinic acid with the tumor-targeting peptide YHWYGYTPQNVI. Molecular interactions with the unconjugated peptide and the conjugates were examined with three receptors that are commonly overexpressed in pancreatic adenocarcinoma cells using ligand docking and molecular dynamics. This study demonstrated the utility of the designed conjugates as a valuable scaffold for potentially targeting EGFR and LDLR receptors. Our results indicate that the conjugates showed strong binding affinities and formation of stable complexes with EGFR, while the unconjugated peptide, BT-peptide conjugate, an 3-HC-peptide conjugate showed the formation of fairly stable complexes with LDLR receptor. For EGFR, two receptor kinase domains were explored. Interactions with the N-terminal domain of CCKA-R were relatively weaker. For LDLR, binding occurred in the beta-propeller region. For the N-terminal fragment of CCKA-R, the conjugates induced significant conformational changes in the receptor. The molecular dynamic simulations for 100 ns demonstrate that BT-peptide conjugates and the unconjugated peptide had the highest binding and formed the most stable complexes with EGFR. RMSD and trajectory analyses indicate that these molecules transit to a dynamically stable configuration in most cases within 60 ns. NMA analysis indicated that amongst the conjugates that showed relatively higher interactions with the respective receptors, the highest potential for deformability was seen for the N-terminal-47 amino acid region of the CCKA-R receptor with and the lowest for the LDLR-receptor. Thus, the newly designed compounds may be evaluated in the future toward developing drug delivery materials for targeting tumor cells overexpressing LDLR or EGFR.
Collapse
Affiliation(s)
- Madeline M Bashant
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Saige M Mitchell
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Lucy R Hart
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
17
|
Srinath R, Manna A, Shee S, Pathi VB, Ghosh S, Khamaru K, Maiti NC, Banerji B. Synthesis of N-Fused Triazole-Piperazine-Quinazolinones via One-Pot Tandem Click Reaction and Cross-Dehydrogenative Coupling. Org Lett 2021; 23:9365-9370. [PMID: 34806384 DOI: 10.1021/acs.orglett.1c03435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, a one-pot protocol to synthesize tetracyclic triazole-piperazine-quinazolinone-fused N-heterocyclic scaffolds is reported. In this strategy, a tandem approach of two highly efficient synthetic reactions, click and cross-dehydrogentive coupling reactions, with high atom economy were employed to obtain the target N-fused scaffolds. Being highly functional group tolerable, this method has broad substrate scope. Interestingly, some of these derivatives showed strong white solid-state fluorescence.
Collapse
Affiliation(s)
- Ravuri Srinath
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India.,National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala, Kolkata 700054, India
| | - Arindam Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhankar Shee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Vijay Babu Pathi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Saswati Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnendu Khamaru
- Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nakul Chandra Maiti
- Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Biswadip Banerji
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
18
|
Cholesterol‐Based Conjugates: Synthesis, Characterization and In Vitro Biological Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Zahednezhad F, Shahbazi Mojarrad J, Zakeri-Milani P, Baradaran B, Mahmoudian M, Sarfraz M, Valizadeh H. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes. Int J Pharm 2021; 609:121148. [PMID: 34600054 DOI: 10.1016/j.ijpharm.2021.121148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
The present study aimed to synthesize cholesteryl acetyl carnitine (CAC), and surface modify the PEGylated liposomes with the intention of enhanced cancer cell uptake. For this, CAC synthesis was performed in amine-free esterification conditions and then four liposomal formulations of unmodified, CAC/PEG, and CAC + PEG-modified were prepared by ethanol injection method. Cytotoxicity of the liposomes was investigated in A549 cells, followed by cellular uptake assessments of coumarin 6 (C6)-loaded liposomes. The results of ATR-FTIR, 1HNMR, and 13CNMR demonstrated successful formation of CAC. A molecular docking study showed efficient binding affinities rather than carnitine to the active site of four carnitine transporters. Liposomal formulations possessed spherical morphology with a mean particle size range of 112-138 nm, narrow size distribution, and negative surface charge. All formulations had low cytotoxicity at 0.5 mg/ml, but high cytotoxicity at around 2.5 mg/ml. The lowest IC50 was obtained for CAC modified liposomes. CAC + PEG-modified liposomes had the highest cellular uptake. In conclusion, CAC + PEG modification of liposomes is an effective approach for increasing A549 cellular uptake, with low cytotoxicity at commonly applied liposome concentrations. The elevated uptake may be due to the involvement of the organic cation transporter, cationic structure, and the metabolic preference of CAC in cancer cells.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahmoudian
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
20
|
Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM.
Area covered
Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion
Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.
Collapse
|
21
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
22
|
Hong W, Liu CC, Zhang H, Chen Z, Xiao M, Xu L. Cancer Cell Preferential Penetration and pH-Responsive Drug Delivery of Oligorutin. Biomacromolecules 2021; 22:3679-3691. [PMID: 34383480 DOI: 10.1021/acs.biomac.1c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report herein a novel delivery system, derived from the facile enzymatic synthesis of oligorutin (OR), for cancer cell targeting and pH-responsive drug delivery. In this study, we demonstrate that OR could preferentially penetrate cancer cells via the lipid raft-mediated endocytosis pathway, and cell membrane cholesterol was critical to the internalization of OR. The accumulation of OR in the tumor region was further confirmed by an in vivo biodistribution study. Considering the tumor-targeting property of OR, a pH-responsive drug delivery system (OR-BTZ) was developed by covalent conjugation of the catechol groups on OR with antitumor drug bortezomib (BTZ) through a pH-sensitive borate ester bond. OR-BTZ exerted cytotoxicity as well as inhibition of the migration and invasion to hepatoma carcinoma cells and showed no apparent cytotoxicity with liver normal cells. The OR-BTZs also presented significant therapeutic efficacy and low systematic toxicity in the murine hepatocellular carcinoma model. To our knowledge, this study presents the first attempt to exploit the potential of oligoflavonoids for cancer cell-targeted drug delivery and will motivate the development of flavonoids and their derivatives as a new type of biomaterials for tumor-targeted therapy.
Collapse
Affiliation(s)
- Weiying Hong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
23
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Coppens E, Desmaële D, Mougin J, Tusseau-Nenez S, Couvreur P, Mura S. Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles. Bioconjug Chem 2021; 32:782-793. [PMID: 33797231 DOI: 10.1021/acs.bioconjchem.1c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A small library of amphiphilic prodrugs has been synthesized by conjugation of gemcitabine (Gem) (a hydrophilic nucleoside analogue) to a series of lipid moieties and investigated for their capacity to spontaneously self-assemble into nanosized objects by simple nanoprecipitation. Four of these conjugates formed stable nanoparticles (NPs), while with the others, immediate aggregation occurred, whatever the tested experimental conditions. Whether such capacity could have been predicted based on the prodrug physicochemical features was a matter of question. Among various parameters, the hydrophilic-lipophilic balance (HLB) value seemed to hold a predictive character. Indeed, we identified a threshold value which well correlated with the tendency (or not) of the synthesized prodrugs to form stable nanoparticles. Such a hypothesis was further confirmed by broadening the analysis to Gem and other nucleoside prodrugs already described in the literature. We also observed that, in the case of Gem prodrugs, the lipid moiety affected not only the colloidal properties but also the in vitro anticancer efficacy of the resulting nanoparticles. Overall, this study provides a useful demonstration of the predictive potential of the HLB value for lipid prodrug NP formulation and highlights the need of their opportune in vitro screening, as optimal drug loading does not always translate in an efficient biological activity.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| |
Collapse
|
25
|
Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 2021; 236:105053. [PMID: 33484709 DOI: 10.1016/j.chemphyslip.2021.105053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Instability, poor cellular uptake and unfavorable pharmacokinetics and biodistribution of many therapeutic molecules require modification in their physicochemical properties. The conjugation of these APIs with fatty acids has demonstrated an enhancement in their lipophilicity and stability. The improvement in the formulations that resulted from the conjugation of a drug with a fatty acid includes increased half-life, enhanced cellular uptake and retention, targeted tumor delivery, reduced chemoresistance in cancer, and improved blood-brain-barrier (BBB) penetration. In this review, various therapeutic molecules, including small molecules, peptides and oligonucleotides, that have been conjugated with fatty acid have been thoroughly discussed along with various conjugation strategies. The application of nano-system based delivery is gaining a lot of attention due to its ability to provide controlled drug release, targeting and reducing the extent of side effects. This review also covers various nano-carriers that have been utilized for the delivery of fatty acid drug conjugates. The enhanced lipophilicity of the drug-fatty acid conjugate has shown to enhance the affinity of the drug towards these carriers, thereby increasing the entrapment efficiency and formulation performance.
Collapse
|
26
|
Lan X, Zhu W, Huang X, Yu Y, Xiao H, Jin L, Pu JJ, Xie X, She J, Lui VWY, Chen HJ, Su YX. Microneedles loaded with anti-PD-1-cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. NANOSCALE 2020; 12:18885-18898. [PMID: 32902555 DOI: 10.1039/d0nr04213g] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Programmed cell death protein-1 (PD-1) on T-cells combined with programmed cell death ligand-1 (PD-L1) critically accounts for tumor immune evasion. Anti-PD-1 (aPD-1) blocks the binding of PD-1 to PD-L1, thus allowing T-cell activation for tumor cell eradication. Currently, the major challenges for cancer immunotherapy are how to improve the response rate and overcome drug resistance. Dermal administration turns out to be a promising route for immunotherapy since skin is a highly active immune organ containing a large population of resident antigen-presenting cells. Microneedle arrays can pierce the immune-cell-rich epidermis, leading to a robust T-cell response in the microenvironment of tumor cells. Herein, we successfully developed a microneedle patch loaded with pH-responsive tumor-targeted lipid nanoparticles (NPs), which allows local delivery of aPD-1 and cisplatin (CDDP) precisely to cancer tissues for cancer therapy. For in vivo studies, aPD-1/CDDP@NPs delivered through microneedles effectively boosted the immune response, thereby a remarkable effect on tumor regression was realized. Synergistic anticancer mechanisms were therefore activated through robust microneedle-induced T-cell response, blockage of PD-1 in T-cells by aPD-1, and an increase in direct cytotoxicity of CDDP in tumor cells. Strikingly, transdermal delivery using MNs increased the response rate in the animal model unresponsive to aPD-1 systemic therapy. This exhibited promise in the treatment of immunotherapy-unresponsive cancers. Taken together, microneedle-mediated local delivery of nano-encapsulated chemotherapeutic and immunotherapeutic agents at tumor skin sites provides a novel treatment strategy and insights into cancer therapy.
Collapse
Affiliation(s)
- Xinmiao Lan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The Efficacy of Cholesterol-Based Carriers in Drug Delivery. Molecules 2020; 25:molecules25184330. [PMID: 32971733 PMCID: PMC7570546 DOI: 10.3390/molecules25184330] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.
Collapse
|
28
|
Gharbavi M, Johari B, Eslami SS, Mousazadeh N, Sharafi A. Cholesterol-conjugated bovine serum albumin nanoparticles as a tamoxifen tumor-targeted delivery system. Cell Biol Int 2020; 44:2485-2498. [PMID: 32841441 DOI: 10.1002/cbin.11455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1). The results revealed that the BSA NPs system has a regular spherical shape and negative zeta-potential values. The drug release of BSA NPs system has shown controlled and pH-dependent drug release behavior. BSA NPs system was biocompatible but it was potentially toxic on the cancer cell line. The CLO-BSA-TAX NPs exhibited higher toxicity against cancer cell lines than other NPs formulation (BSA NPs and BSA-TAX NPs). It can be concluded that the CLO, as an indirect targeting agent, enhances the toxicity and specificity of NPs system on cancer cell lines. It could potentially be suitable approaches to targeting the tumors in clinical cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
29
|
Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int J Mol Sci 2020; 21:ijms21093248. [PMID: 32375338 PMCID: PMC7247327 DOI: 10.3390/ijms21093248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to analyze relevant endogenous lipid processing pathways, in the context of the impact that lipids have on drug absorption, their therapeutic use, and utilization in drug delivery. Lipids may serve as biomarkers of some diseases, but they can also provide endogenous therapeutic effects for certain pathological conditions. Current uses and possible clinical benefits of various lipids (fatty acids, steroids, triglycerides, and phospholipids) in cancer, infectious, inflammatory, and neurodegenerative diseases are presented. Lipids can also be conjugated to a drug molecule, accomplishing numerous potential benefits, one being the improved treatment effect, due to joined influence of the lipid carrier and the drug moiety. In addition, such conjugates have increased lipophilicity relative to the parent drug. This leads to improved drug pharmacokinetics and bioavailability, the ability to join endogenous lipid pathways and achieve drug targeting to the lymphatics, inflamed tissues in certain autoimmune diseases, or enable overcoming different barriers in the body. Altogether, novel mechanisms of the lipid role in diseases are constantly discovered, and new ways to exploit these mechanisms for the optimal drug design that would advance different drug delivery/therapy aspects are continuously emerging.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
30
|
Alhadad LJ, Harisa GI, Alanazi FK. Design and encapsulation of anticancer dual HSP27 and HER2 inhibitor into low density lipoprotein to target ovarian cancer cells. Saudi Pharm J 2020; 28:387-396. [PMID: 32273796 PMCID: PMC7132616 DOI: 10.1016/j.jsps.2020.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/29/2020] [Indexed: 01/13/2023] Open
Abstract
Tumor cells overexpress low-density lipoprotein (LDL) receptors (LDL-r). Hence, LDL is proposed as a targeting shuttle of anticancer drugs. Therefore, the objective of this study was to synthesize a dual inhibitor of heat shock protein 27 (HSP27) and human epidermal growth factor receptor 2 (HER2) conjugated with cholesterol and encapsulated into LDL for selective targeting of ovarian cancer cells. In the present study, the anticancer agent and its cholesterol conjugate were successfully prepared and characterized physically for color, shape, and melting point. Moreover, the compounds were chemically characterized for 1H NMR and 13C NMR spectra using FTIR and LCMS/MS. Our results revealed that the prepared anticancer agent and its cholesterol conjugate elicited dual HSP27 and HER2 inhibition, as confirmed using western blotting. The anticancer agent (compound D) entered cells and targeted the HSP27 function, thereby reducing HER2 expression. However, a cholesterol-conjugated anticancer agent (compound F) had high cellular uptake and inhibited the growth of SKOV3 cells after encapsulation into LDL. The obtained results concluded that the design of an LDL-encapsulated cholesterol-conjugated HSP27-HER2 dual inhibitor may be a promising approach to realize specific targeted achieve killing of ovarian cancer.
Collapse
Affiliation(s)
- Laila J Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat, Kuwait
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
The prospects of lipidic prodrugs: an old approach with an emerging future. Future Med Chem 2019; 11:2563-2571. [DOI: 10.4155/fmc-2019-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nowadays, prodrugs are no longer used as a last resort, rather, they are intentionally designed at the early stages of drug development. Lipidic prodrug strategy, where a drug moiety is covalently bound to a lipid carrier, was initially proposed half a century ago, yet, this approach still remains to be explored. Lipidic prodrugs can join physiological lipid metabolic pathways, and hence provide drug targeting via lymphatic transport or site-specific drug release, improve drugs’ pharmacokinetic profile, overcome obstacles originating from biological barriers and bypass hepatic first-pass metabolism. Physiological pathways of lipid processing, uses of different lipidic prodrugs and their clinical benefits are overviewed. Overall, lipidic prodrugs present a promising approach for overcoming different obstacles and fulfilling various unmet needs in drug delivery/targeting.
Collapse
|
32
|
Anusionwu CG, Aderibigbe BA, Mbianda XY. Hybrid Molecules Development: A Versatile Landscape for the Control of Antifungal Drug Resistance: A Review. Mini Rev Med Chem 2019; 19:450-464. [PMID: 30526457 DOI: 10.2174/1389557519666181210162003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/04/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Hybrid molecule approach of drug design has become popular due to advantages such as delayed resistance, reduced toxicity, ease of treatment of co-infection and lower cost of preclinical evaluation. Antifungal drugs currently available for the treatment of fungal diseases suffer a major side effect of drug resistance. Hybrid drugs development is one of the approaches that has been employed to control microbial resistance. Their antifungal activity is influenced by their design. This review is focused on hybrid molecules exhibiting antifungal properties to guide scientists in search of more efficient drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Chioma G Anusionwu
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | | | - Xavier Y Mbianda
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
33
|
Carvalho-de-Souza JL, Nag OK, Oh E, Huston AL, Vurgaftman I, Pepperberg DR, Bezanilla F, Delehanty JB. Cholesterol Functionalization of Gold Nanoparticles Enhances Photoactivation of Neural Activity. ACS Chem Neurosci 2019; 10:1478-1487. [PMID: 30589551 DOI: 10.1021/acschemneuro.8b00486] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) attached to the extracellular leaflet of the plasma membrane of neurons can enable the generation of action potentials (APs) in response to brief pulses of light. Recently described techniques to stably bind AuNP bioconjugates directly to membrane proteins (ion channels) in neurons enable robust AP generation mediated by the photoexcited conjugate. However, a strategy that binds the AuNP to the plasma membrane in a non protein-specific manner could represent a simple, single-step means of establishing light-responsiveness in multiple types of excitable neurons contained in the same tissue. On the basis of the ability of cholesterol to insert into the plasma membrane, here we test whether AuNP functionalization with linear dihydrolipoic acid-poly(ethylene) glycol (DHLA-PEG) chains that are distally terminated with cholesterol (AuNP-PEG-Chol) can enable light-induced AP generation in neurons. Dorsal root ganglion (DRG) neurons of rat were labeled with 20 nm diameter spherical AuNP-PEG-Chol conjugates wherein ∼30% of the surface ligands (DHLA-PEG-COOH) were conjugated to PEG-Chol. Voltage recordings under current-clamp conditions showed that DRG neurons labeled in this manner exhibited a capacity for AP generation in response to microsecond and millisecond pulses of 532 nm light, a property attributable to the close tethering of AuNP-PEG-Chol conjugates to the plasma membrane facilitated by the cholesterol moiety. Light-induced AP and subthreshold depolarizing responses of the DRG neurons were similar to those previously described for AuNP conjugates targeted to channel proteins using large, multicomponent immunoconjugates. This likely reflected the AuNP-PEG-Chol's ability, upon plasmonic light absorption and resultant slight and rapid heating of the plasma membrane, to induce a concomitant transmembrane depolarizing capacitive current. Notably, AuNP-PEG-Chol delivered to DRG neurons by inclusion in the buffer contained in the recording pipet/electrode enabled similar light-responsiveness, consistent with the activity of AuNP-PEG-Chol bound to the inner (cytofacial) leaflet of the plasma membrane. Our results demonstrate the ability of AuNP-PEG-Chol conjugates to confer timely stable and direct responsiveness to light in neurons. Further, this strategy represents a general approach for establishing excitable cell photosensitivity that could be of substantial advantage for exploring a given tissue's suitability for AuNP-mediated photocontrol of neural activity.
Collapse
Affiliation(s)
- Joao L. Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, DC 20375, United States
- Key W Corporation, Hanover, Maryland 21076, United States
| | - Alan L. Huston
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Igor Vurgaftman
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
34
|
Synthesis and Evaluation of Novel Cholestanoheterocyclic Steroids as Anticancer Agents. Appl Biochem Biotechnol 2019; 188:635-662. [DOI: 10.1007/s12010-018-02943-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
35
|
Date T, Paul K, Singh N, Jain S. Drug-Lipid Conjugates for Enhanced Oral Drug Delivery. AAPS PharmSciTech 2019; 20:41. [PMID: 30610658 DOI: 10.1208/s12249-018-1272-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery route is one of the most convenient and extensively utilised routes for drug administration. But there exists class of drugs which exhibit poor bioavailability on oral drug administration. Designing of drug-lipid conjugates (DLCs) is one of the rationale strategy utilised in overcoming this challenge. This review extensively covers the various dimensions of drug modification using lipids to attain improved oral drug delivery. DLCs help in improving oral delivery by providing benefits like improved permeability, stability in gastric environment, higher drug loading in carriers, formation of self-assembled nanostructures, etc. The clinical effectiveness of DLCs is highlighted from available marketed drug products along with many DLCs in phase of clinical trials. Conclusively, this drug modification strategy can potentially help in augmenting oral drug delivery in future.
Collapse
|
36
|
Markovic M, Ben‐Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug approach for improved oral drug delivery and therapy. Med Res Rev 2018; 39:579-607. [DOI: 10.1002/med.21533] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Milica Markovic
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| | - Shimon Ben‐Shabat
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| | | | - Aaron Aponick
- Department of ChemistryUniversity of FloridaGainesville Florida
| | - Ellen M. Zimmermann
- Department of MedicineDivision of Gastroenterology, University of FloridaGainesville Florida
| | - Arik Dahan
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| |
Collapse
|
37
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
38
|
Lan X, She J, Lin DA, Xu Y, Li X, Yang WF, Lui VWY, Jin L, Xie X, Su YX. Microneedle-Mediated Delivery of Lipid-Coated Cisplatin Nanoparticles for Efficient and Safe Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33060-33069. [PMID: 30204401 DOI: 10.1021/acsami.8b12926] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cisplatin is the first-line chemotherapeutic agent, but its systemic toxicity and side effects severely limit its clinical use. We report a microneedle technique to mediate the transdermal delivery of lipid-coated cisplatin nanoparticles (LCC-NPs) for efficient and safe cancer therapy. Cisplatin was encapsulated by tumor-targeting pH-responsive lipid nanoparticles with a high loading rate of 80%, and the encapsulation substantially increased the solubility of cisplatin and enhanced its antitumor efficiency in vitro. The LCC-NPs were embedded in dissolvable microneedles, and released from the microneedles after inserting into the skin. This enabled the nanoparticles to pass the stratum corneum for safe local delivery. An in vivo study with a xenograft tumor animal model demonstrated that microneedle arrays loaded with cisplatin nanoparticles significantly increased cytotoxicity and apoptosis in cancer cells with an apoptotic index of 58.6%, resulting in significantly reduced tumor volume and weight. Moreover, serum platinum, pulmonary toxicity, hepatotoxicity, and nephrotoxicity were not detected in vivo, indicating that this technique is biosafe. The cisplatin-nanoparticle microneedle system developed in this study may offer promising opportunities in cancer therapy for enhancing antitumor effects and reducing systemic toxicity and side effects.
Collapse
Affiliation(s)
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Di-An Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | | | | | | | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR 999077 , China
| | | | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology , Sun Yat-sen University , Guangzhou 510275 , China
- The First Affiliated Hospital of Sun Yat-sen University , Guangzhou 510080 , China
| | | |
Collapse
|
39
|
Li J, Liu T, Liu S, Li J, Huang G, Yang HH. Bifunctional magnetic nanoparticles for efficient cholesterol detection and elimination via host-guest chemistry in real samples. Biosens Bioelectron 2018; 120:137-143. [PMID: 30195087 DOI: 10.1016/j.bios.2018.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Cholesterol is an essential compound for maintaining cellular homeostasis and human healthy. Sensitive detection of cholesterol and efficient elimination of excess cholesterol have become the essential manipulations in clinical diagnosis and health management. To date, it is still quite challenging that cholesterol detection and elimination tasks are carried out simultaneously. In this study, bifunctional magnetic nanoparticles (Fe3O4@PDA-PBA-CD) are designed and fabricated to overcome this difficulty. Taking advantages of competitive host-guest interaction and magnetic separation, highly efficient, reusable and simultaneous cholesterol detection and elimination can be achieved. The limit of detection is determined to be 4.3 nM, which is comparable or even lower than existing methods. The distinguished performance may attribute to the high loading efficiency and magnetic enrichment of nanoparticles. Besides, this efficient strategy is resistant to interfering substances, thus realizing sensitive cholesterol detection in real sample. Simultaneously, the bifunctional magnetic nanoparticles also have up to 95% cholesterol elimination efficiency, which is higher than previous reported methods. Furthermore, the nanoparticles are turned out to be reusable within 5 times without noticeable loss in cholesterol elimination efficiency. Therefore, the bifunctional magnetic nanoparticles fabricated here could hold great potential for simultaneous cholesterol detection and elimination in practical applications.
Collapse
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Tong Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Shuya Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China.
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| |
Collapse
|
40
|
Bakker MH, Grillaud M, Wu DJ, Fransen PPKH, de Hingh IH, Dankers PYW. Cholesterol Modification of an Anticancer Drug for Efficient Incorporation into a Supramolecular Hydrogel System. Macromol Rapid Commun 2018; 39:e1800007. [PMID: 29806084 DOI: 10.1002/marc.201800007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Treatment of cancer in the peritoneal cavity may be improved with macroscale drug delivery systems that offer control over intraperitoneal concentration of chemotherapeutic agents. Currently, suitable drug carriers to facilitate a sustained release of small hydrophilic drugs such as mitomycin C are lacking. For this purpose, a pH-responsive supramolecular hydrogel based on ureido-pyrimidinone (UPy) chemistry is utilized here. In order to provide a sustained release profile, a lipophilicity-increasing cholesterol conjugation strategy is proposed that enhances affinity between the modified drug (mitomycin-PEG24 -cholesterol, MPC) and the hydrophobic compartments in the UPy gel. Additional advantages of cholesterol conjugation include improved chemical stability and potency of mitomycin C. In vitro the tunability of the system to obtain optimal effective concentrations over time is demonstrated with a combinatorial treatment of mitomycin C and MPC in one UPy hydrogel delivery system.
Collapse
Affiliation(s)
- Maarten H Bakker
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Maxime Grillaud
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Dan Jing Wu
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Ignace H de Hingh
- Department of Surgical Oncology, Catharina Cancer Institute, 5623, EJ, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
41
|
Monajati M, Tavakoli S, Abolmaali SS, Yousefi G, Tamaddon A. Effect of PEGylation on assembly morphology and cellular uptake of poly ethyleneimine-cholesterol conjugates for delivery of sorafenib tosylate in hepatocellular carcinoma. ACTA ACUST UNITED AC 2018; 8:241-252. [PMID: 30397579 PMCID: PMC6209830 DOI: 10.15171/bi.2018.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022]
Abstract
Introduction: Sorafenib (SFB) is an FDA-approved chemotherapeutic agent with a high partition coefficient (log P = 4.34) for monotherapy of hepatocellular carcinoma (HCC). The oral bioavailability is low and variable, so it was aimed to study the application of the polymeric nanoassembly of cholesterol conjugates of branched polyethyleneimine (PEI) for micellar solubilization of SFB and to investigate the impact of the polymer PEGylation on the physicochemical and cellular characteristics of the lipopolymeric dispersions. Methods: Successful synthesis of cholesterol-PEI lipopolymers, either native or PEGylated, was confirmed by FTIR, 1H-NMR, pyrene assay methods. The nanoassemblies were also characterized in terms of morphology, particle size distribution and zeta-potential by TEM and dynamic light scattering (DLS). The SFB loading was optimized using general factorial design. Finally, the effect of particle characteristics on cellular uptake and specific cytotoxicity was investigated by flow cytometry and MTT assay in HepG2 cells. Results: Transmission electron microscopy (TEM) showed that PEGylation of the lipopolymers reduces the size and changes the morphology of the nanoassembly from rod-like to spherical shape. However, PEGylation of the lipopolymer increased critical micelle concentration (CMC) and reduced the drug loading. Moreover, the particle shape changes from large rods to small spheres promoted the cellular uptake and SFB-related cytotoxicity. Conclusion: The combinatory effects of enhanced cellular uptake and reduced general cytotoxicity can present PEGylated PEI-cholesterol conjugates as a potential carrier for delivery of poorly soluble chemotherapeutic agents such as SFB in HCC that certainly requires further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
42
|
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. J Control Release 2018; 275:162-176. [DOI: 10.1016/j.jconrel.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 02/02/2023]
|
43
|
Marchal E, Figliola C, Thompson A. Prodigiosenes conjugated to tamoxifen and estradiol. Org Biomol Chem 2018. [PMID: 28628182 DOI: 10.1039/c7ob00943g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis of the first click-appended prodigiosene conjugates. Four prodigiosene conjugates of estradiol functionalised at the 7α-position were prepared, as were three prodigiosene conjugates of tamoxifen. The coupling between a prodigiosene and an 11-hydroxy estradiol derivative via an ether linkage was investigated, as was the 11- and 7-functionalisation of the estradiol core. The robustness of estradiol protecting groups was severely challenged by reactions typically used to equip such frameworks for 11- and 7-functionalisation. Specifically, and important to synthesis involving estradiol, TBS, TMS and THP are not useful protecting groups for the functionalisation of this core. When the chemical features of the therapeutic agent limit the choice of protecting group (in this case, prodigiosenes bearing aryl, NH, alkenyl and ester groups), click chemistry becomes an attractive synthetic strategy. The anti-cancer activity of the seven click prodigiosene conjugates was evaluated.
Collapse
Affiliation(s)
- Estelle Marchal
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
44
|
Self-assembling asymmetric peptide-dendrimer micelles - a platform for effective and versatile in vitro nucleic acid delivery. Sci Rep 2018; 8:4832. [PMID: 29556057 PMCID: PMC5859181 DOI: 10.1038/s41598-018-22902-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Despite advancements in the development of high generation cationic-dendrimer systems for delivery of nucleic acid-based therapeutics, commercially available chemical agents suffer from major drawbacks such as cytotoxicity while being laborious and costly to synthesize. To overcome the aforementioned limitations, low-generation cationic peptide asymmetric dendrimers with side arm lipid (cholic and decanoic acid) conjugation were designed, synthesized and systematically screened for their ability to self-assemble into micelles using dynamic light scattering. Cytotoxicity profiling revealed that our entire asymmetric peptide dendrimer library when trialled alone, or as asymmetric dendrimer micelle-nucleic acid complexes, were non-cytotoxic across a broad concentration range. Further, the delivery efficiency of asymmetric peptide dendrimers in H-4-II-E (rat hepatoma), H2K (mdx mouse myoblast), and DAOY (human medulloblastoma) cells demonstrated that cholic acid-conjugated asymmetric dendrimers possess far superior delivery efficiency when compared to the commercial standards, Lipofectamine 2000 or Lipofectin®.
Collapse
|
45
|
Osati S, Ali H, Guérin B, van Lier JE. Steroid-photosensitizer conjugates: Syntheses and applications. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s108842461730004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on progress in the development of different approaches to the design of steroid ([Formula: see text] estrogens, androgens, cholesterol) conjugates with coordination assemblies of metalloporphyrins, phthalocyanines and related complexes. Porphyrins and phthalocyanines have received considerable attention due to their novel composition, intriguing spectroscopic, photophysical, and redox properties, and potential application in light-harvesting and optoelectronic devices. With the development of more efficient imaging and therapeutic applications, these bio-conjugates are evaluated as multimodality agents (PET, fluorescence imaging) to monitor the mechanism of action of biologically active components in living systems and as agents for molecular recognition, oxygen atom transfer and catalysis. The tetrapyrrole components, which can be coupled via covalent and various non-covalent linkages, may exhibit strong interactions through efficient photo-induced electron and/or energy transfer processes.
Collapse
Affiliation(s)
- Samira Osati
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| | - Hasrat Ali
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| | - Brigitte Guérin
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| | - Johan E. van Lier
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| |
Collapse
|
46
|
Soto-Castro D, Lara Contreras RC, Pina-Canseco MDS, Santillán R, Hernández-Huerta MT, Negrón Silva GE, Pérez-Campos E, Rincón S. Solvent-free synthesis of 6β-phenylamino-cholestan-3β,5α-diol and (25R)-6β-phenylaminospirostan-3β,5α-diol as potential antiproliferative agents. Steroids 2017; 126:92-100. [PMID: 28827069 DOI: 10.1016/j.steroids.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/30/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
In this paper is described a synthetic route to 6β-phenylamino-cholestan-3β,5α-diol and (25R)-6β-phenylaminospirostan-3β,5α-diol, starting from cholesterol and diosgenin, respectively. The products were obtained in two steps by epoxidation followed by aminolysis, through an environmentally friendly and solvent-free method mediated by SZ (sulfated zirconia) as catalyst. The use of SZ allows chemo- and regioselective ring opening of the 5,6α-epoxide during the aminolysis reaction eliminating the required separation of the epoxide mixture. The products obtained were spectroscopically characterized by 1H, PENDANT 13C NMR and HETCOR experiments, and complemented with FTIR-ATR and HRMS. The antiproliferative effect of the β-aminoalcohols was evaluated on MCF-7 cells after 48h of incubation, by MTT and CVS assays. These methodologies showed that both compounds have antiproliferative activity, being more active the cholesterol analogue. Additionally, the cell images obtained by Harris' Hematoxylin and Eosin (H&E) staining protocol, evidenced formation of apoptotic bodies due to the presence of the obtained β-aminoalcohols in a dose-dependent manner.
Collapse
Affiliation(s)
- Delia Soto-Castro
- CONACyT-Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca C.P. 771230, Mexico
| | - Roberto Carlos Lara Contreras
- Departamento de Ingeniería Química-Bioquímica, Instituto Tecnológico de Mérida, Av. Tecnológico S/N, 97118 Mérida, Yucatán, Mexico
| | - Maria Del Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua, C.P. 68020 Oaxaca, Mexico
| | - Rosa Santillán
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F, Apdo. Postal 14-740, 07000, Mexico
| | - María Teresa Hernández-Huerta
- Unidad de Bioquímica e Inmunología, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja #125 esq, Clz. Tecnológico, C.P. 68030 Oaxaca, Mexico
| | - Guillermo E Negrón Silva
- Departamento de Ciencias Básicas y Departamento de Química, UAM, Av. San Pablo No 180, C.P. 02200 México D.F., Mexico
| | - Eduardo Pérez-Campos
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua, C.P. 68020 Oaxaca, Mexico; Unidad de Bioquímica e Inmunología, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja #125 esq, Clz. Tecnológico, C.P. 68030 Oaxaca, Mexico
| | - Susana Rincón
- Departamento de Ingeniería Química-Bioquímica, Instituto Tecnológico de Mérida, Av. Tecnológico S/N, 97118 Mérida, Yucatán, Mexico.
| |
Collapse
|
47
|
Thierry S, Jdey W, Alculumbre S, Soumelis V, Noguiez-Hellin P, Dutreix M. The DNA Repair Inhibitor Dbait Is Specific for Malignant Hematologic Cells in Blood. Mol Cancer Ther 2017; 16:2817-2827. [PMID: 28947503 DOI: 10.1158/1535-7163.mct-17-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/26/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways. Dbait have been shown to sensitize resistant solid tumors to radiotherapy and platinum salts. Here, we analyze the efficacy and lack of toxicity of AsiDNA, a cholesterol form of Dbait, in hematologic malignancies. We show that AsiDNA enters cells via LDL receptors and activates its molecular target, the DNA dependent protein kinase (DNA-PKcs) in 10 lymphoma and leukemia cell lines (Jurkat-E6.1, MT-4, MOLT-4, 174xCEM.T2, Sup-T1, HuT-78, Raji, IM-9, THP-1, and U-937) and in normal primary human PBMCs, resting or activated T cells, and CD34+ progenitors. The treatment with AsiDNA induced necrotic and mitotic cell death in most cancer cell lines and had no effect on blood or bone marrow cells, including immune activation, proliferation, or differentiation. Sensitivity to AsiDNA was independent of p53 status. Survival to combined treatment with conventional therapies (etoposide, cyclophosphamides, vincristine, or radiotherapy) was analyzed by isobolograms and combination index. AsiDNA synergized with all treatments, except vincristine, without increasing their toxicity to normal blood cells. AsiDNA is a novel, potent, and wide-range drug with the potential to specifically increase DNA-damaging treatment toxicity in tumor without adding toxicity in normal hematologic cells or inducing immune dysregulation. Mol Cancer Ther; 16(12); 2817-27. ©2017 AACR.
Collapse
Affiliation(s)
- Sylvain Thierry
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Wael Jdey
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.,DNA-Therapeutics, Onxeo, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Patricia Noguiez-Hellin
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.
| |
Collapse
|
48
|
Abstract
Lipid-drug conjugates (LDCs) are drug molecules that have been covalently modified with lipids. The conjugation of lipids to drug molecules increases lipophilicity and also changes other properties of drugs. The conjugates demonstrate several advantages including improved oral bioavailability, improved targeting to the lymphatic system, enhanced tumor targeting, and reduced toxicity. Based on the chemical nature of drugs and lipids, various conjugation strategies and chemical linkers can be utilized to synthesize LDCs. Linkers and/or conjugation methods determine how drugs are released from LDCs and are critical for the optimal performance of LDCs. In this review, different lipids used for preparing LDCs and various conjugation strategies are summarized. Although LDCs can be administered without a delivery carrier, most of them are loaded into appropriate delivery systems. The lipid moiety in the conjugates can significantly enhance drug loading into hydrophobic components of delivery carriers and thus generate formulations with high drug loading and superior stability. Different delivery carriers such as emulsions, liposomes, micelles, lipid nanoparticles, and polymer nanoparticles are also discussed in this review.
Collapse
Affiliation(s)
- Danielle Irby
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | - Chengan Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | - Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| |
Collapse
|
49
|
Chen X, Zhang X, Wang HY, Chen Z, Wu FG. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10126-10135. [PMID: 27597442 DOI: 10.1021/acs.langmuir.6b02288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cholesterol-containing molecules or nanoparticles play a significant role in achieving favorable plasma membrane imaging and efficient cellular uptake of drugs by the excellent membrane anchoring capability of the cholesterol moiety. By linking cholesterol to a water-soluble component (such as poly(ethylene glycol), PEG), the resulting cholesterol-PEG conjugate can form micelles in aqueous solution through self-assembly, and such a micellar structure represents an important drug delivery vehicle in which hydrophobic drugs can be encapsulated. However, the understanding of the subcellular fate and cytotoxicity of cholesterol-PEG conjugates themselves remains elusive. Herein, by using cholesterol-PEG2000-fluorescein isothiocyanate (Chol-PEG-FITC) as a model system, we found that the Chol-PEG-FITC molecules could attach to the plasma membranes of mammalian cells within 10 min and such a firm membrane attachment could last at least 1 h, displaying excellent plasma membrane staining performance that surpassed that of commonly used commercial membrane dyes such as DiD and CellMask. Besides, we systematically studied the endocytosis pathway and intracellular distribution of Chol-PEG-FITC and found that the cell surface adsorption and endocytosis processes of Chol-PEG-FITC molecules were lipid-raft-dependent. After internalization, the Chol-PEG-FITC molecules gradually reached many organelles with membrane structures. At 5 h, they were mainly distributed in lysosomes and the Golgi apparatus, with some in the endoplasmic reticulum (ER) and very few in the mitochondrion. At 12 h, the Chol-PEG-FITC molecules mostly aggregated in the Golgi apparatus and ER close to the nucleus. Finally, we demonstrated that Chol-PEG-FITC was toxic to mammalian cells only at concentrations above 50 μM. In summary, Chol-PEG-FITC can be a promising plasma membrane imaging reagent to avoid the fast cellular internalization and quick membrane detachment problems faced by commercial membrane dyes. We believe that the investigation of the dynamic subcellular fate of Chol-PEG-FITC can provide important knowledge to facilitate the use of cholesterol-PEG conjugates in fields such as cell surface engineering and drug delivery.
Collapse
Affiliation(s)
- Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109 United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| |
Collapse
|
50
|
Varan G, Öncül S, Ercan A, Benito JM, Ortiz Mellet C, Bilensoy E. Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles. J Pharm Sci 2016; 105:3172-3182. [DOI: 10.1016/j.xphs.2016.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
|