1
|
Xu B, Zhang L, Li J, Xie Z, Li Y, Si H. Selenium Broussonetia papyrifera polysaccharide alleviated cyclophosphamide-induced immune suppression, growth inhibition, intestinal damage, and gut microbiota disorder in yellow-feather broilers. Poult Sci 2025; 104:104907. [PMID: 40031381 PMCID: PMC11919418 DOI: 10.1016/j.psj.2025.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
This study aims to investigate the effects of selenium Broussonetia papyrifera polysaccharide (Se-BPP) on growth performance, immune regulation, intestinal barrier function, and gut microbiota in cyclophosphamide (CTX)-induced immunosuppressed chicks. A total of 120 one-day-old male yellow-feathered broilers were randomly divided into five groups: normal control group (NC), model control group (MC), low-dose Se-BPP group (Se-L), high-dose Se-BPP group (Se-H), and Astragalus polysaccharide (APS) group The Se-L and Se-H groups were supplemented with 0.1 % or 0.2 % Se-BPP, respectively, while the APS group was supplemented with 0.2 % APS. On days 22, 24, and 26, the NC group received intramuscular injections of 80 mg/kg saline, while the other groups received the same dose of CTX to induce immunosuppression in the chicks. The results showed that CTX caused growth retardation, immunosuppression, intestinal damage, and alterations in gut microbiota structure. Supplementation with Se-BPP improved average daily gain and reduced feed-to-gain ratio, promoting growth in immunosuppressed chicks. Se-BPP increased the immune organ index and serum content of IgG, IgM, IgA, SOD, GSH-Px, CAT, IL-2, IL-4, IL-6, IL-10, and INF-γ, thus alleviating the immunosuppression and oxidative stress caused by CTX. Additionally, Se-BPP enhanced the mRNA expression levels of ZO-1, Claudin 1, and MUC2 and increased villus height in the jejunum, effectively mitigating intestinal damage induced by CTX. Although the effect of Se-BPP on alpha diversity of the gut microbiota was not significant, it increased the abundance of beneficial bacteria such as Ruminococcus and Lactobacillus. In brief, this study demonstrated that adding Se-BPP to the diet could improve immunosuppression, intestinal damage, and microbiota disturbances in yellow-feather broiler chickens challenged with CTX, enhancing their production performance.
Collapse
Affiliation(s)
- Baichang Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zonggu Xie
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yehong Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
2
|
Park JH, Son SU, Kim KH, Jung US, Shin KS. Immunostimulatory effects of rhamnogalacturonan-I fraction purified from Glycyrrhiza glabra roots on cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol 2025; 288:138687. [PMID: 39672444 DOI: 10.1016/j.ijbiomac.2024.138687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The present study aimed to investigate the immunostimulatory activities of polysaccharides purified from Glycyrrhiza glabra root. First, five polysaccharide fractions were separated from G. glabra through hot water extraction, ethanol precipitation, enzymatic hydrolysis, and size exclusion chromatography. Among them, G. glabra polysaccharide-enzyme (GRPE)-I showed the potent stimulation effect on cytokine secretion from peritoneal macrophage. Moreover, glycosidic linkage analysis indicated the GRPE-I mainly comprised 4-linked galacturonic acid, 2,4-linked rhamnose, 3,6-linked galactose, 4,6-linked galactose, and 5-linked arabinosef, which are characteristics of rhamnogalacturonan (RG)-I type polysaccharide. Immunostimulatory effect of GRPE-I in vivo was investigated in cyclophosphamide (CTX)-induced immunosuppressed mice model. As a results, the pre-administration of GRPE-I demonstrated significant benefits against reducing body weight and damaging lymphoid tissue. Additionally, GRPE-I affected regulation of various immunocytes population such as macrophage, natural killer cell, CD4+ T cell, CD8+ T cell. Serum and spleen tissue analysis results indicate improvement about immunoglobulin and cytokine levels by GRPE-I. These results are strongly correlated with the activation of the mitogen-activated protein kinase and nuclear factor-kappa B pathways. Furthermore, CTX-induced short chain fatty acid impairment was reversed by GRPE-I. In conclusion, GRPE-I, which is a RG-I type polysaccharide isolated from G. glabra, exhibits significant potential as a novel immunomodulator.
Collapse
Affiliation(s)
- Ju-Hyeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Ki Hyun Kim
- Hanbit Flavor & Fragrance Co. Ltd., Chungcheongbuk-do 27671, Republic of Korea.
| | - Uk Sun Jung
- Hanbit Flavor & Fragrance Co. Ltd., Chungcheongbuk-do 27671, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
3
|
Yang HJ, Kwon EB, Kim YS, Choi JG, Li W, Na M. Antiviral-effect of nitrogen-containing compounds isolated from Sarcodon imbricatus on influenza A virus through regulation of ZBP-1 mediated necroptosis. Biomed Pharmacother 2025; 182:117732. [PMID: 39671721 DOI: 10.1016/j.biopha.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
This study focuses on the elucidation of the structure and antiviral properties of six nitrogen-containing compounds including amino acid derivates (1 and 2) and heterocyclic compounds (3-6) isolated from the fruiting bodies of Sarcodon imbricatus, particularly Compound 2, an (S)-2-(hydroxyimino)-3-methylpentanoic acid ethyl ester. Their antiviral effects were tested against influenza A virus (IAV) in A549 cells. Particularly, Compound 2 exhibited significant antiviral activity in post-treatment assays, reducing viral protein expression and inhibiting viral replication with an IC50 of 14.9 μmol/L. Additionally, it demonstrated anti-inflammatory effects by reducing levels of cytokines such as TNF-α, IL-6 and IL-1β as well as the oxidative stress induced by IAV infection, while inhibiting necroptosis, a form of programmed cell death associated with inflammation. Thus, our findings demonstrate the antiviral and anti-inflammatory properties of Compound 2, making it a promising candidate for further research as an anti-influenza agent.
Collapse
Affiliation(s)
- Hye Jin Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Liu YY, Zhang M, Tang F, Wang HQ, Gao JM, Li M, Qi J. Exploring the molecular tapestry of Sarcodon secondary metabolites: chemical structures, activities, and biosynthesis. Mycology 2024; 16:158-179. [PMID: 40083417 PMCID: PMC11899242 DOI: 10.1080/21501203.2024.2380381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 03/16/2025] Open
Abstract
Sarcodon mushrooms are esteemed as a rare and highly valuable resource for both culinary and medicinal purposes. Ancient medical classics have documented their beneficial effects on conditions such as indigestion, loss of appetite, and neurological disorders. Modern phytochemical research into their secondary metabolites has led to the discovery of numerous bioactive compounds with significant biological activities. Despite notable achievements in the study of the chemical composition and bioactivity of Sarcodon mushrooms, a comprehensive understanding of these findings has been lacking. This review provides an exhaustive summary of the advancements in the phytochemistry of Sarcodon mushrooms, as well as the biological and pharmacological activities of the isolated compounds and crude extracts derived from Sarcodon over the past nine decades. A total of 100 secondary metabolites isolated from these mushrooms have been classified into five major categories based on their chemical structures, which exhibit bioactivities such as anti-tumour, neurotrophic, and neuroprotective, antioxidant, anti-inflammatory, antimicrobial, and hypoglycaemic properties. The aim of this study is to establish a scientific foundation for future research in drug discovery, biotechnological development, and the exploration of functional foods involving Sarcodon mushrooms.
Collapse
Affiliation(s)
- Yu-Ying Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Ming Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Fei Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Hai-Qiang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Minglei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Center of Edible Fungi, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Chen L, Jiang Q, Yao S, Jiang C, Lu H, Hu W, Yu S, Li M, Feng Y, Tan CP, Xiang X, Shen G. Sciadonic acid ameliorates cyclophosphamide-induced immunosuppression by modulating the immune response and altering the gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3902-3912. [PMID: 38264943 DOI: 10.1002/jsfa.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qihong Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofang Yu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongcai Feng
- Zhuji Lvkang Biotechnology Co., Ltd, Shaoxing, China
| | - Chin Ping Tan
- Zhuji Lvkang Biotechnology Co., Ltd, Shaoxing, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Lei YY, Ye YH, Liu Y, Xu JL, Zhang CL, Lyu CM, Feng CG, Jiang Y, Yang Y, Ke Y. Achyranthes bidentata polysaccharides improve cyclophosphamide-induced adverse reactions by regulating the balance of cytokines in helper T cells. Int J Biol Macromol 2024; 265:130736. [PMID: 38479672 DOI: 10.1016/j.ijbiomac.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/18/2024]
Abstract
The manuscript aimed to study the immune function maintenance effect of Achyranthes bidentata polysaccharides (ABPs). The mice were divided into the control group, cyclophosphamide-induced (CTX) group, and ABPs-treated (ABP) group. The results showed that, compared with the CTX group, ABPs could significantly improve the spleen index and alleviate the pathological changes in immune organs. Ex vivo study of whole spleen cells, the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were increased. The proliferation of lymphocytes and the proportion of CD3+CD4+ Th cells in peripheral blood mononuclear cells were increased. The transcription of GATA-3, Foxp3, and ROR γ t were decreased, while the transcription of T-bet was increased. The transcriptome sequencing analysis showed that the differentially expressed genes (DEGs) caused by ABPs-treated were mostly downregulated in CTX-induced mice. The Th2-related genes were significantly enriched in DEGs, with representative genes, including Il4, II13, Il9, etc., while increasing the expression of immune effector genes simultaneously, including Ccl3, Ccr5, and Il12rb2. It was suggested that ABPs possibly regulated the balance of cytokines in helper T cells to ameliorate the immune function of CTX-induced mice.
Collapse
Affiliation(s)
- Yuan-Yuan Lei
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yu-Han Ye
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Ying Liu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Jia-Ling Xu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Cheng-Lin Zhang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chun-Ming Lyu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chen-Guo Feng
- Shanghai University of Traditional Chinese Medicine Innovation Research Institute of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Jiang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry, 200032, China
| | - Yang Yang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yan Ke
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| |
Collapse
|
8
|
Jin Yang H, Kwon EB, Choi JG, Li W. Sarcodonol A-D from fruiting bodies of Sarcodon imbricatus inhibits HCoV-OC43 induced apoptosis in MRC-5 cells. Bioorg Chem 2023; 140:106824. [PMID: 37669581 DOI: 10.1016/j.bioorg.2023.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 μM; CC50 > 100 μM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.
Collapse
Affiliation(s)
- Hye Jin Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
9
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
10
|
Dong M, Li J, Yang D, Li M, Wei J. Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus. Molecules 2023; 28:5018. [PMID: 37446680 PMCID: PMC10343288 DOI: 10.3390/molecules28135018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.
Collapse
Affiliation(s)
- Miaoyin Dong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinjuan Li
- Institute of Agricultural Quality Standards and Testing Technology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
11
|
Tran THM, Mi XJ, Huh JE, Aditi Mitra P, Kim YJ. Cirsium japonicum var. maackii fermented with Pediococcus pentosaceus induces immunostimulatory activity in RAW 264.7 cells, splenocytes and CTX-immunosuppressed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
12
|
Chimonanthus nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6208680. [PMID: 36846714 PMCID: PMC9946750 DOI: 10.1155/2023/6208680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
To investigate the immunomodulatory activities of Chimonanthus nitens Oliv polysaccharides (COP1), an immunosuppressive mouse model was generated by cyclophosphamide (CY) administration and then treated with COP1. The results demonstrated that COP1 ameliorated the body weight and immune organ (spleen and thymus) index of mice and improved the pathological changes of the spleen and ileum induced by CY. COP1 strongly stimulated the production of inflammatory cytokines (IL-10, IL-12, IL-17, IL-1β, and TNF-α) of the spleen and ileum by promoting the mRNA expressions. Furthermore, COP1 had immunomodulatory activity by increasing several transcription factors (JNK, ERK, and P38) in the mitogen-activated protein kinase (MAPK) signaling pathway. Related to the above immune stimulatory effects, COP1 positively affected the production of short-chain fatty acids (SCFAs) and the expression of ileum tight junction (TJ) protein (ZO-1, Occludin-1, and Claudin-1), upregulated the level of secretory immunoglobulin A (SIgA) in the ileum and microbiota diversity and composition, and improved intestinal barrier function. This study suggests that COP1 may provide an alternative strategy for alleviating chemotherapy-induced immunosuppression.
Collapse
|
13
|
Wang X, Chen J, Yang F, Ali F, Mao Y, Hu A, Xu T, Yang Y, Wang F, Zhou G, Guo X, Cao H. Two kinds of traditional Chinese medicine prescriptions reduce thymic inflammation levels and improve humoral immunity of finishing pigs. Front Vet Sci 2022; 9:929112. [PMID: 36148471 PMCID: PMC9486467 DOI: 10.3389/fvets.2022.929112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
In animal husbandry, traditional Chinese medicine (TCM) as a reasonable alternative to antibiotics has attracted more and more concerns to reduce microbial resistance. This study was aimed to investigate the effects of dietary supplementation with TCM prescriptions on serum parameters and thymus inflammation responses in finishing pigs. Thirty finishing pigs were randomly divided into three groups, which included the Con group (basal diet), the TCM1 group (basal diet supplemented with Xiao Jian Zhong prescriptions), and the TCM2 group (basal diet supplemented with Jingsananli-sepsis). The results showed that the contents of C3 and C4 in the serum were significantly increased in both the TCM1 and TCM2 groups compared to the Con group on day 30. Similarly, the levels of IgA, IgG, and IgM were increased in the TCM2 group, and only the level of IgM in TCM1 was increased on day 30. Meanwhile, the levels of classical swine fever virus (CSFV) and respiratory syndrome virus (PRRSV) antibodies had a notable increase in the TCM1 and TCM2 groups. Both TCM1 and TCM2 inhibited the levels of TLR4/MyD88/NF-κB signaling pathway-related mRNA (TLR4, MyD88, NF-κB, IL6, IL8, and TNF-α) and protein (p-IκBα and p-P65) expression levels in the thymus. In conclusion, dietary supplementation with TCM could reduce thymic inflammation levels and improve humoral immunity of finishing pigs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Jiajia Chen
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan, Bahawalpur, Pakistan
| | - Yaqin Mao
- China Institute of Veterinary Drug Control, MOA Center for Veterinary Drug Evaluation, Beijing, China
| | - Aiming Hu
- Jian City Livestock and Veterinary Bureau, Jiangxi, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Feibing Wang
- Agricultural Technology Extension Center, Jinxi County Agriculture and Rural Bureau, Fuzhou, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huabin Cao
| |
Collapse
|
14
|
Dong YJ, Lin MQ, Fang X, Xie ZY, Luo R, Teng X, Li B, Li B, Li LZ, Jin HY, Yu QX, Lv GY, Chen SH. Modulating effects of a functional food containing Dendrobium officinale on immune response and gut microbiota in mice treated with cyclophosphamide. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
16
|
Immune-enhancing effects of postbiotic produced by Bacillus velezensis Kh2-2 isolated from Korea Foods. Food Res Int 2022; 152:110911. [DOI: 10.1016/j.foodres.2021.110911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
|
17
|
Zhang J, Gao S, Li H, Cao M, Li W, Liu X. Immunomodulatory effects of selenium-enriched peptides from soybean in cyclophosphamide-induced immunosuppressed mice. Food Sci Nutr 2021; 9:6322-6334. [PMID: 34760262 PMCID: PMC8565224 DOI: 10.1002/fsn3.2594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, selenium-enriched soybean peptides (<3 kDa, named Se-SPep) was isolated and purified from the selenium-enriched soybean protein (Se-SPro) hydrolysate by ultrafiltration. The in-vivo immunomodulatory effects of Se-SPep were investigated in cyclophosphamide-induced immunosuppressed mice. Se-SPep treatment could alleviate the atrophy of immune organs and weight loss observed in immunosuppressive mice. Besides, Se-SPep administration could dramatically improve total protein, albumin, white blood cell, immunoglobulin (Ig) M, IgG, and IgA levels in blood. Moreover, Se-SPep strongly stimulated interleukin-2 (IL-2), interferon-gamma (IFN-γ), nitric oxide (NO), and cyclic guanosine monophosphate productions by up-regulating mRNA expressions of IL-2, IFN-γ, and inducible NO synthase in spleen tissue. Furthermore, Se-SPep exhibits more effective immunomodulatory activity compared to Se-SPro and SPep. In conclusion, Se-SPep could effectively enhance the immune capacity of immunosuppressive mice. These findings confirm Se-SPep is an effective immunomodulator with potential application in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Siwei Gao
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - He Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Mengdi Cao
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
18
|
Zhang Z, Pan T, Liu C, Shan X, Xu Z, Hong H, Lin H, Chen J, Sun H. Cyclophosphamide induced physiological and biochemical changes in mice with an emphasis on sensitivity analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111889. [PMID: 33461014 DOI: 10.1016/j.ecoenv.2020.111889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The widespread use of cyclophosphamide (CP) in medical treatment had caused ubiquitous contamination in the environment. To data, many studies have been carried out on the toxic effect of CP. However, among these toxic effects of CP, which are the most sensitive remains unclear. Present study aimed to investigate the toxicity of CP on mice and evaluate the sensitivity of physiological-biochemical parameters upon exposure of mice to CP. Results showed that as compared with the control group, CP caused significant reduction in body weight (p < 0.01), spleen coefficient (p < 0.01), leukocyte density (p < 0.01) and alanine transaminase (ALT) in kidney (p < 0.01); However superoxide dismutase (SOD), malondialdehyde (MDA), ALT in liver and creatinine (Cr) in kidney significantly (p < 0.05) increased. Among the suppressed physiological and biochemical parameters, the sensitivity to CP toxicity was generally ranked as body weight > leukocyte density > ALT in kidney > spleen coefficient; while among the stimulated parameters, the sensitivity was ranked as MDA (liver) > Cr (kidney) > ALT (liver). Overall, the most sensitive parameters to CP toxicity may be associated with growth, immune system and the normal function of liver and kidney.
Collapse
Affiliation(s)
- Zhiying Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Ting Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Chunrong Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Xiaoyun Shan
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Zeqiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China; Jinhua Municipal Central Hospital, Jinhua, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
19
|
Zhang Z, Li H, Xu T, Xu H, He S, Li Z, Zhang Z. Jianqu fermentation with the isolated fungi significantly improves the immune response in immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113512. [PMID: 33223116 DOI: 10.1016/j.jep.2020.113512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianqu, a classical formula of traditional Chinese medicine, is used clinically to treat symptoms like chill and fever headache, diarrhea and loss of appetite and act on patients with low immunity. However, the quality control of Jianqu fermentation is not well established, and its function in regulating the body's immunity still remains unclear. AIM OF THE STUDY The present study firstly assesses the structure and diversity of fungal community during Jianqu fermentation and then investigates the immune regulating function of Jianqu extract in mouse model. MATERIALS AND METHOD The high-throughput sequencing is conducted to analyze the diversity and distribution of fungal community during the fermentation process of Jianqu, and then fungi with a high frequency and relative abundance are isolated. The immunosuppressed mice are induced by using cyclophosphamide (CTX) and used to evaluate the immune regulating function of Jianqu extract from natural fermentation or directed fermentation, respectively. RESULTS With the fermentation, the diversity and distribution of fungal community significantly changed. The number of OTU (operational taxonomic unit) was gradually decreased from 223 ± 1 in the early phase to 201 ± 11 in the middle phase and to 175 ± 32 in the later phase of Jianqu fermentation. Generally, in genus level, Millerozyma, Debaryomyces and Rhizomucor showed a significant increase and became dominant in the mid or later phase of fermentation, while the Aspergillus displayed a decrease following the fermentation. However, Saccharomycopsis is a dominate species in surveyed samples. Next, six fungi strains with a high frequency and relative abundance, including Saccharomycopsis fibuligera, Millerozyma farinose, Hyphopichia burtonii, Rhizomucor pusillus, Lichtheimia ramosa, and Monascus purpureus, are isolated successfully. Interestingly, directed fermentation for Jianqu with the six isolated fungi strains could achieve similar morphological characteristics with the natural fermentation. Consistently, Jianqu extract from directed fermentation demonstrated a similar therapeutic effect on immune response as that of naturally fermented Jianqu. CONCLUSIONS We firstly showed the significant change of structural profiles of fungal communities during Jianqu fermentation, and successfully isolated six dominate fungi strains in Jianqu. Interestingly, directed fermentation for Jianqu with these isolated strains could achieve a similar morphological characteristics and immune-modulating function as natural fermentation. It was suggested that Jianqu fermentation with functional fungi instead of natural microbes provide a new approach for the improvement of the production and quality control of the traditional Chinese medicine of Jianqu.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Hao Li
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ting Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Haowan Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Shaoting He
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Zaixin Li
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.
| | - Zhi Zhang
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China.
| |
Collapse
|
20
|
Huang K, Yan Y, Chen D, Zhao Y, Dong W, Zeng X, Cao Y. Ascorbic Acid Derivative 2- O-β-d-Glucopyranosyl-l-Ascorbic Acid from the Fruit of Lycium barbarum Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11128-11143. [PMID: 32825805 DOI: 10.1021/acs.jafc.0c04253] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
2-O-β-d-Glucopyranosyl-l-ascorbic acid (AA-2βG) is a natural and stable ascorbic acid derivative isolated from the fruits of Lycium barbarum. In our present study, cyclophosphamide (Cy) was used to make BALB/c mice immunosuppressive and AA-2βG was used to intervene immunosuppressive mice. It was found that Cy treatment resulted in a series of changes on basic immune indexes including a decrease of thymus and spleen indexes and levels of pro-inflammatory cytokines and destruction of leucocyte proportion balance, accompanied with weight loss, reduction in colon length, and changes of hepatic function markers. However, all these changes were reversed in varying degrees by AA-2βG intervention. Notably, AA-2βG could significantly change both mouse colonic and small-intestinal microbiota. The key responsive taxa found in a mouse colon were Muribaculaceae, Ruminococcaceae, Oscillibacter, Rikenella, Helicobacter, Negativibacillus, Alistipes, and Roseburia, and the key responsive taxa found in a mouse small intestine were Muribaculaceae, Anaerotruncus, and Paenibacillus. The results demonstrated that AA-2βG could modulate microbiota in the small intestine and colon and exert an immunomodulatory effect. Further studies should focus on the degradation pathways of AA-2βG and the interaction between AA-2βG and Muribaculaceae.
Collapse
Affiliation(s)
- Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| |
Collapse
|
21
|
Tan X, Chen W, Jiao C, Liang H, Yun H, He C, Chen J, Ma X, Xie Y. Anti-tumor and immunomodulatory activity of the aqueous extract of Sarcodon imbricatus in vitro and in vivo. Food Funct 2020; 11:1110-1121. [PMID: 31825431 DOI: 10.1039/c9fo01230c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sarcodon imbricatus (S. imbricatus), a well-known edible mushroom, is one of the most commonly consumed wild mushrooms in China because of its nutritional value. Previous studies have demonstrated that S. imbricatus has immunoregulatory activity. We previously described the potential anti-tumor activity of several types of mushrooms, including S. imbricatus. In this study, the results demonstrate that an aqueous extract of S. imbricatus (SIE) effectively inhibits the growth, migration, and invasion properties of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, the SIE increased serum concentrations of interleukin (IL)-2, IL-6 and tumor necrosis factor-α, natural killer cell activity and the viability of splenocytes and reduced the expression of programmed cell death-Ligand 1 (PD-L1) in 4T1 tumor-bearing mice. Collectively, these results are the first demonstration that the SIE has anti-tumor and immunomodulatory effects in the 4T1 mouse breast cancer model. These findings provide a scientific rationale for the potential therapeutic use of S. imbricatus in breast cancer patients.
Collapse
Affiliation(s)
- Xupeng Tan
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
TANG J, WEI X, LI Y, JIANG L, FENG T, ZHU H, LI M, CHEN G, YU X, ZHANG J, ZHANG X. Poplar bark lipids enhance mouse immunity by inducing T cell proliferation and differentiation. J Vet Med Sci 2020; 82:1187-1196. [PMID: 32669484 PMCID: PMC7468065 DOI: 10.1292/jvms.19-0571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/13/2020] [Indexed: 11/22/2022] Open
Abstract
Research on the composition and application of immune enhancers in livestock and poultry breeding has been gaining interest in recent years. Poplar bark lipids (PBLs), which are extracted from poplar tree bark, are natural substances known to efficiently enhance the immune response. To understand the chemical makeup of PBLs and their underlying mechanism for enhancing the immune system, we extracted PBLs from poplar bark using petroleum ether and subjected these extracts to chemical analysis. To evaluate PBLs effect on the immune system mice were treated with different doses of PBL via gavage and sacrificed 4 weeks later. PBLs were shown to be rich in vitamin E, unsaturated fatty acids, and other immune-potentiating compounds. Treatment with PBLs increased the spleen index and stimulated spleen and thymus development. In addition, PBLs increased the number of CD3+CD4+ cells in the peripheral blood and the ratio of CD4+/CD8+ cells while decreasing the number of CD3+CD8+ cells. Moreover, PBLs significantly increased IL-4 and IFN-γ levels in mouse serum and TLR4 mRNA and protein expression in the spleen. Taken together these results demonstrate that PBLs exert their immune-potentiating effects by promoting spleen and thymus development, T lymphocyte proliferation and differentiation, and immune factor expression. These immune-potentiating effects may be related to the activation of TLR4. This study provides a theoretical basis for the development of PBLs as an immune adjuvant or feed additive in the future.
Collapse
Affiliation(s)
- Jinxiu TANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Xiuli WEI
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Youzhi LI
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Linlin JIANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Tao FENG
- Shandong Provincial Key Laboratory of Quality Safety
Monitoring and Risk Assessment for Animal Products, Ji’nan 250022, Shandong, China
| | - Hongwei ZHU
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Meng LI
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Guozhong CHEN
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Xin YU
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
| | - Jianlong ZHANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology
and Immunology, Yantai 264000, Shandong, China
| | - Xingxiao ZHANG
- College of Life Science, Ludong University, Yantai 264000,
Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology
and Immunology, Yantai 264000, Shandong, China
| |
Collapse
|
23
|
Evaluation of the synergetic effect of Yupingfeng san and Flos Sophorae Immaturus based on free radical scavenging capacity. Biomed Pharmacother 2020; 128:110265. [PMID: 32425327 PMCID: PMC7233259 DOI: 10.1016/j.biopha.2020.110265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Decocting YPS and FSI together can better extract flavonoids and polysaccharides. DPPH assay confirmed that MYP had the synergistic antioxidant effect in vitro. Measuring the level of oxidation factors can determine the antioxidant ability of MYP. MYP had a better free radical scavenging effect in vivo than YPS.
Objective This study aimed to determine the optimal extraction process and examine whether the combination of Flos Sophorae Immaturus (FSI) and Yupingfeng san (YPS) has a synergistic effect on free radical scavenging capacity. Design and methods The time of immersion and extraction and the ratios (material/solvent) of the combination of YPS and FSI were optimized on the basis of polysaccharide and flavonoid yields via orthogonal design. The optimal result was used in the 1,1-diphenyl-1-picrylhydrazyl (DPPH) assay and animal experiments to test the antioxidant activity, which is reflected by superoxide dismutase, malondialdehyde, glutathione peroxidase, and total antioxidant capacity serum levels. The optimal extraction process was determined using various ingredients to obtain complex extracts with high active ingredient content and antioxidant activity. DPPH assay results showed that the optimized ingredients have antioxidant effects, and the combination had better antioxidation function than YPS in vitro. The combination also showed synergistic antioxidant activity compared with YPS in vivo. Conclusions The combination of YPS and FSI had a synergistic antioxidant effect in vitro. The optimized extracts had antioxidant effects in vivo. These results indicated that YPS could be used with FSI to improve its antioxidant capacity in the body on the basis of free radical scavenging capacity.
Collapse
|
24
|
Saba M, Falandysz J, Loganathan B. Accumulation Pattern of Inorganic Elements in Scaly Tooth Mushroom (Sarcodon imbricatus) from Northern Poland. Chem Biodivers 2020; 17:e2000167. [PMID: 32233068 DOI: 10.1002/cbdv.202000167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Several studies have documented contamination levels and daily intake of metallic elements from foodstuffs including rice, maize, pulses, vegetables, fruits, fish, meat, egg, milk etc., however, limited literature is available on metal contamination levels in wild growing mushrooms and possible human exposure via consumption of it. Sarcodon imbricatus is an edible mushroom, commonly consumed in many parts of the world. Very few studies have been conducted on inorganic elemental composition in fruiting bodies (edible part) of this fungus. In this study, elements such as silver (Ag), aluminum (Al), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co,) chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), phosphorous (P), lead (Pb), rubidium (Rb), strontium (Sr) and zinc (Zn) were measured in caps and stems of fruiting bodies of S. imbricatus collected from the Wdzydze forests in Central and the Augustowska Primeval forest in Eastern Poland. Results revealed that a wide variation in concentrations of various metals in caps and stems samples collected from the two forests. Toxic metallic elements such as Cd and Hg showed preferential accumulation in caps than stems samples from both the forests. However, the concentrations of Cd, Hg and Pb in the mushroom samples were below the established weekly intake tolerance limits.
Collapse
Affiliation(s)
- Martyna Saba
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 63 Wita Stwosza Str., PL 80-308, Gdańsk, Poland
| | - Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 63 Wita Stwosza Str., PL 80-308, Gdańsk, Poland.,Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia
| | - Bommanna Loganathan
- Department of Chemistry and Watershed Studies Institute, Murray State University, Murray, KY 42071, USA
| |
Collapse
|
25
|
Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020; 25:E1972. [PMID: 32340227 PMCID: PMC7221775 DOI: 10.3390/molecules25081972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Zaw Min Thu
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Ko Ko Myo
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Marco Clericuzio
- DISIT, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
26
|
Chen J, Zhang C, Xia Q, Liu D, Tan X, Li Y, Cao Y. Treatment with Subcritical Water-Hydrolyzed Citrus Pectin Ameliorated Cyclophosphamide-Induced Immunosuppression and Modulated Gut Microbiota Composition in ICR Mice. Molecules 2020; 25:molecules25061302. [PMID: 32178470 PMCID: PMC7144127 DOI: 10.3390/molecules25061302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Subcritical water can effectively hydrolyze pectin into smaller molecules while still maintaining its functional regions. Pectic heteropolysaccharide can mediate immune regulation; however, the possible effects of subcritical water-hydrolyzed citrus pectin (SCP) on the immune response remain unclear. Therefore, the effects of SCP on immunomodulatory functions and intestinal microbial dysbiosis were investigated using a cyclophosphamide-induced immunosuppressed mouse model. In this research, immunosuppressed ICR mice were administrated with SCP at dosages of 300/600/1200 mg/kg.bw by oral gavage, and body weight, immune organ indexes, cytokines, and gut microbiota were determined. The results showed that subcritical water treatment decreased the molecular mass and increased the content of galacturonic acid in citrus pectin hydrolysates. Meanwhile, the treatment with SCP improved immunoregulatory functional properties and bioactivities over the original citrus pectin. For example, SCP protected immune organs (accelerated recovery of immune organ indexes) and significantly enhanced the expression of immune-related cytokines (IL-2, IL-6, IFN-γ, and TNF-α). The results of the 16S rDNA sequencing analysis on an IlluminaMiSeq platform showed that SCP normalized Cy-induced gut dysbiosis. SCP ameliorated Cy-dependent changes in the relative abundance of several taxa, shifting the balance back to normal status (e.g., SCP increased beneficial Muribaculaceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae while decreasing pathogenic Brevundimonas and Streptococcus). The results of this study suggest an innovative application of citrus pectin as an immunomodulator.
Collapse
Affiliation(s)
- Jianbing Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| | - Chengcheng Zhang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| | - Qile Xia
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| | - Daqun Liu
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| | - Xinghe Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: ; Tel.: +86-135-0746-9635
| | - Yingdi Li
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| | - Yan Cao
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.Z.); (Q.X.); (D.L.); (Y.L.); (Y.C.)
| |
Collapse
|
27
|
Bai RB, Zhang YJ, Fan JM, Jia XS, Li D, Wang YP, Zhou J, Yan Q, Hu FD. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 2020; 11:3306-3315. [DOI: 10.1039/c9fo02969a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oligosaccharides are the main components of C. pilosula and show excellent immunomodulatory activities.
Collapse
Affiliation(s)
- Rui-Bin Bai
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ya-Jie Zhang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing-Min Fan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xu-Seng Jia
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Dai Li
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yan-Ping Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Qiao Yan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Fang-Di Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
28
|
Ding Y, Yan Y, Chen D, Ran L, Mi J, Lu L, Jing B, Li X, Zeng X, Cao Y. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice. Food Funct 2019; 10:3671-3683. [PMID: 31168539 DOI: 10.1039/c9fo00638a] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present study, the effects of Lycium barbarum polysaccharides (LBPS) on immunoregulation and gut microbiota dysbiosis in cyclophosphamide (CTX)-induced mice were investigated to elucidate whether the attenuation of immunosuppression is related to the modulation of the gut microbiota. The results showed that administration of LBPS could protect immune organs (enhancing immune organ indexes and alleviating immune organ damage), enhance the production of immune-related cytokines (IL-2, IL-6, IL-1β, TNF-α and IFN-γ) and prevent the hepatotoxicity in CTX-induced mice. Additionally, LBPS treatment could promote the production of short-chain fatty acids and modulate the composition of the gut microbiota, increasing the relative abundances of Bacteroidaceae, Lactobacillaceae, Prevotellaceae and Verrucomicrobiaceae, which were positively associated with immune traits. The present results indicated that LBPS might regulate the immune response depending on the modulation of the gut microbiota, suggesting that LBPS could be developed as special ingredients for immunoregulation in association with the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Yu Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chu Q, Zhang Y, Chen W, Jia R, Yu X, Wang Y, Li Y, Liu Y, Ye X, Yu L, Zheng X. Apios americana Medik flowers polysaccharide (AFP) alleviate Cyclophosphamide-induced immunosuppression in ICR mice. Int J Biol Macromol 2019; 144:829-836. [PMID: 31734373 DOI: 10.1016/j.ijbiomac.2019.10.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Immunosuppression refers to the suppression of the immune response. The immune function of immunocompromised people is not enough to resist bacterial, viral, fungal and other infections, leading to a series of diseases. A large number of experimental data show that polysaccharide compounds are immune modulators, which can enhance the body immunity with little toxic. Meanwhile, it can reduce the side effects of commonly used immunosuppressants, such as cytotoxicity, decreased ability of the body to fight infection, and inhibition of the reproduction of bone marrow hematopoietic cells. It can be used as oral or injectable drugs. In this study, a purified polysaccharide was primarily extracted from the flowers of Apios americana Medik (AAM), which can improve the immunosuppression induced by cyclophosphamide (CTX). The immunoenhancement effect of AFP was evaluated by measuring the body weight, immune organ index, cytokine secretion and antibody generated levels of CTX-induced mice. Our results showed that AFP could significantly improve the above immune indexes, which indicated AFP could alleviate immunosuppression induced by CTX. The study provided a theoretical basis for the promotion, development and application of AAM as a newly introduced food material.
Collapse
Affiliation(s)
- Qiang Chu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yiru Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lushuang Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Yang CM, Han QJ, Wang KL, Xu YL, Lan JH, Cao GT. Astragalus and Ginseng Polysaccharides Improve Developmental, Intestinal Morphological, and Immune Functional Characters of Weaned Piglets. Front Physiol 2019; 10:418. [PMID: 31031640 PMCID: PMC6473041 DOI: 10.3389/fphys.2019.00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance is a major issue in animal industries and antibiotic-free alternatives are needed to treat infectious diseases and improve performance of pigs. Plant extracts have been suggested as a potential solution. The present study was conducted to investigate the effects of Astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, intestinal morphology, immune function, volatile fatty acids (VFAs), and microfloral community in weaned piglets. A total of 180 weaned piglets were randomly divided into three treatment groups during a 28-days feeding experiment, including a basal diet (Con), basal diet supplemented with 800 mg/kg Aps (Aps), and basal diet supplemented with 800 mg/kg Gps (Gps). Results showed that both Aps and Gps increased body weight, average daily gain and feed conversion rate, and reduced the rate of diarrhea. Gps also decreased aspartate aminotransferase compared to the Con piglets after 14 days. No significant effects on alanine aminotransferase were observed. Both Aps and Gps piglets exhibited higher serum immunoglobulin M levels after 14 and 28 days, and also decreased jejunal crypt depth, increased jejunal villus length and villus height/crypt depth ratio, and increased expression of toll-like receptor 4, myeloid differentiation primary response 88, nuclear factor-kappa B proteins in the jejunum. Aps and Gps piglets also had higher concentrations of acetic acid, isobutyric acid, and butyrate in their colon. Data of high-throughput sequencing revealed that Aps and Gps affected bacterial quantity and diversity in the colon. Species richness and evenness were higher in both Aps and Gps piglets than the control piglets. Aps and Gps piglets also had a higher relative abundance of Lachnospiraceae and Anaerostipes, and the Aps piglets had a higher relative abundance of Lactobacillus gasseri and L. amylovorus. Therefore, dietary supplementation with Aps and Gps could be beneficial for optimizing the performance of industry pigs and reducing dependence on antibiotics. Furthermore, Plant polysaccharides play a great role in promoting the sustainable development of animal husbandry.
Collapse
Affiliation(s)
- C. M. Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Q. J. Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - K. L. Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Y. L. Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - J. H. Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - G. T. Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
31
|
Wang X, Wang Z, Wu H, Jia W, Teng L, Song J, Yang X, Wang D. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Int J Biol Macromol 2018; 120:736-744. [DOI: 10.1016/j.ijbiomac.2018.08.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
|
32
|
Zhou X, Dong Q, Kan X, Peng L, Xu X, Fang Y, Yang J. Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS One 2018; 13:e0204152. [PMID: 30296293 PMCID: PMC6175272 DOI: 10.1371/journal.pone.0204152] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Lonicera japonica is a typical Chinese herbal medicine. We previously reported a method to isolate polysaccharides from Lonicera japonica (LJP). In this study, we first performed a qualitative analysis of LJP using the Fourier Transform Infrared Spectrometer (FT-IR) and explored the monosaccharide composition of LJP using the pre-column derivatization high performance liquid chromatography (HPLC) method. We then investigated the immunomodulatory function of LJP in cyclophosphamide (CTX)-induced immunosuppressed mouse models. The results showed that LJP had the characteristic absorption of typical polysaccharides consisting of 6 types of monosaccharides. In addition, LJP can increase significantly the organ index, splenic lymphocyte proliferation, macrophage phagocytosis, and natural killer (NK) cell activity in CTX-treated mice. LJP could also restore the levels of serum cytokines interleukin (IL-2), tumor necrosis factor (TNF-α) and Interferon-γ (IFN-γ) in the CTX-treated mice. Finally, the results on measuring the T-lymphocytes subsets of spleen also confirmed LJP-induced immunomodulatory activity in immunosuppressed mice from another perspective. Therefore, LJP could be used as a potential immunomodulatory agent.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Key Laboratory of Polysaccharide Drug Engineering of Anhui, Wannan Medical College, Wuhu, Anhui, P. R. China
| | - Qun Dong
- Key Laboratory of Polysaccharide Drug Engineering of Anhui, Wannan Medical College, Wuhu, Anhui, P. R. China
| | - Xianzhao Kan
- College of Life Sciences, Anhui Normal University, Wuhu, P. R. China
| | - Lihong Peng
- College of Information Engineering, Changsha Medical University, Changsha, Hunan, P. R. China
| | - Xingyu Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Yun Fang
- Department of Mathematics, Shanghai Normal University, Shanghai, P. R. China
| | - Jialiang Yang
- College of Information Engineering, Changsha Medical University, Changsha, Hunan, P. R. China.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
33
|
Fu YP, Feng B, Zhu ZK, Feng X, Chen SF, Li LX, Yin ZQ, Huang C, Chen XF, Zhang BZ, Jia RY, Song X, Lv C, Yue GZ, Ye G, Liang XX, He CL, Yin LZ, Zou YF. The Polysaccharides from Codonopsis pilosula Modulates the Immunity and Intestinal Microbiota of Cyclophosphamide-Treated Immunosuppressed Mice. Molecules 2018; 23:1801. [PMID: 30037030 PMCID: PMC6100181 DOI: 10.3390/molecules23071801] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023] Open
Abstract
Based on previous studies about microflora regulation and immunity enhancement activities of polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (CPP), there is little study on intestinal mucosal immunity, which is a possible medium for contacting microflora and immunity. In the present study, the BALB/c mice were divided into five groups (eight mice in each group), including a normal group (Con), a model control group (Model), and model groups that were administered CPP (50, 100, 200 mg/kg/d) orally each day for seven days after intraperitoneal injection of 60 mg/kg BW/d cyclophosphamide (CP) for three days. CPP recovered the spleen index and restored the levels of IFN-γ, IL-2, IL-10, as well as serum IgG. In addition, it elevated ileum secretory immunoglobulin A (sIgA), the number of Lactobacillus and acetic acid content in cecum. These results indicated that CPP plays an important role in the protection against immunosuppression, especially mucosa immune damage, and the inhibition of pathogenic bacteria colonization, which could be considered a potential natural source of immunoregulator.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xin Feng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shu-Fan Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing-Zhao Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China.
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gui-Zhou Yue
- Department of Applied Chemistry, College of Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao-Xia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chang-Liang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
34
|
Antifatigue Potential Activity of Sarcodon imbricatus in Acute Excise-Treated and Chronic Fatigue Syndrome in Mice via Regulation of Nrf2-Mediated Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9140896. [PMID: 30050662 PMCID: PMC6046126 DOI: 10.1155/2018/9140896] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
Abstract
Sarcodon imbricatus (SI), a precious edible fungus, contains 35.22% of total sugar, 18.33% of total protein, 24 types of fatty acid, 16 types of amino acid, and 8 types of minerals. Encouragingly, it is rich in potential antioxidants such as total polyphenols (0.41%), total sterols (3.16%), and vitamins (0.44%). In the present study, the antifatigue properties of SI and its potential mechanisms of action were explored by the experiments on acute excise-treated mice and chronic fatigue syndrome (CFS) mice. SI (0.25, 0.5, and 1 g/kg) significantly enhanced exercise tolerance in the weight-loaded forced swimming test (FST) and rota-rod test (RRT) and reduced the immobility in the tail suspension test on CFS mice. SI markedly increased the levels of glycogen in the liver and adenosine triphosphate (ATP) in the liver and muscle and decreased the lactic acid (LD) and blood urea nitrogen (BUN) content in both acute swimming-treated mice and CFS mice. SI improved the endogenous cellular antioxidant enzyme contents in the two mouse models by improving the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels in serum, liver, and muscle, respectively. In CFS mice, the enhanced expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2), SOD1, SOD2, heme oxygenase-1 (HO-1), and catalase (CAT) in the liver were observed after a 32-day SI administration. Our data indicated that SI possessed antifatigue activity, which may be related to its ability to normalize energy metabolism and Nrf2-mediated oxidative stress. Consequently, SI can be expected to serve as a novel natural antifatigue supplement in health foods.
Collapse
|
35
|
Wang X, Chu Q, Jiang X, Yu Y, Wang L, Cui Y, Lu J, Teng L, Wang D. Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway. Cell Death Dis 2018; 9:578. [PMID: 29784961 PMCID: PMC5962553 DOI: 10.1038/s41419-018-0634-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Sarcodon imbricatus, a rare medicinal and edible fungus, has various pharmacological bioactivities. We investigated the effects of S. imbricatus polysaccharides (SIPS) on hematopoietic function and identified the underlying mechanisms using in vitro experiments with CHRF, K562, and bone marrow mononuclear cells (BMMNCs) and in vivo experiments with a mouse model of cyclophosphamide-induced hematopoietic dysfunction. We found that SIPS induced proliferation and differentiation of CHRF and K562 cells and upregulated the expression of hematopoietic-related proteins, including p90 ribosomal S6 kinases (RSK1p90), c-Myc, and ETS transcription factor, in the two cell lines. After 28 days of treatment, SIPS enhanced the bodyweight and thymus indices of the mice, alleviated enlargement of the spleen and liver, and contributed to the recovery of peripheral blood to normal levels. More importantly, the percentages of B lymphocytes and hematopoietic stem cells or hematopoietic progenitor cells were significantly elevated in bone marrow. Based on an antibody chip analysis and enzyme-linked immunosorbent assay, SIPS were found to successfully regulate 12 cytokines to healthy levels in serum and spleen. The cytokines included the following: interleukins 1Ra, 2, 3, 4, 5, and 6, tumor necrosis factor α, interferon−γ, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF), C-C motif chemokine1, and monocyte chemoattractant protein−1. Moreover, SIPS upregulated the phosphorylation levels of janus kinase 2 (JAK2) and the signal transducer and activator of transcription 3 (STAT3) in the spleen, and similar results were validated in CHRF cells, K562 cells, and BMMNCs. The data indicate that SIPS activated the JAK2/STAT3 pathway, possibly by interactions among multiple cytokines, particularly G-CSF. We found that SIPS was remarkably beneficial to the bone marrow hematopoietic system, and we anticipate that it could improve myelosuppression induced by long-term radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xue Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yue Yu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Libian Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yaqi Cui
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
36
|
Li W, Guo S, Xu D, Li B, Cao N, Tian Y, Jiang Q. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) Relieves Immunosuppression in Cyclophosphamide-Treated Geese by Maintaining a Humoral and Cellular Immune Balance. Molecules 2018; 23:molecules23040932. [PMID: 29673208 PMCID: PMC6017956 DOI: 10.3390/molecules23040932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide of Atractylodes macrocephala Koidz (PAMK) has been well recognized as an immune enhancer that can promote lymphocyte proliferation and activate immune cells. The purpose of this study was to evaluate the effects of PAMK on humoral and cellular immune functions in immunosuppressed geese. Geese of the Control group were provided with normal feed, the PAMK group was provided with 400 mg·(kg body weight)−1 PAMK, the cyclophosphamide (CTX) group was injected with 40 mg·(kg body weight)−1 cyclophosphamide, while the CTX+PAMK group received the combination of PAMK and CTX. Spleen development and percentages of leukocytes in peripheral blood were examined. Principal component analysis was conducted to analyze correlations among humoral and cellular immune indicators. The results showed that PAMK alleviated the damage to the spleen, the decrease in T- and B-cell proliferation, the imbalance of leukocytes, and the disturbances of humoral and cellular immunity caused by CTX. Principal component analysis revealed that the relevance of humoral-immunity-related indicators was greater, and the CTX+PAMK group manifested the largest difference from the CTX group but was close to the Control group. In conclusion, PAMK alleviates the immunosuppression caused by CTX in geese, and the protective effect on humoral immunity is more obvious and stable.
Collapse
Affiliation(s)
- Wanyan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| | - Sixuan Guo
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Nan Cao
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yunbo Tian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|