1
|
Tahir H, Rashid F, Ali S, Summer M, Afzal M. Synthesis, Characterization, Phytochemistry, and Therapeutic Potential of Azadirachta indica Conjugated Silver Nanoparticles: A Comprehensive Study on Antidiabetic and Antioxidant Properties. Biol Trace Elem Res 2025; 203:2170-2185. [PMID: 38985237 DOI: 10.1007/s12011-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Nanotechnology has become a major topic of study, particularly in the medical and health domains. Because nanomedicine has a higher recovery rate than other conventional drugs, it has attracted more attention. Green synthesis is the most efficient and sustainable method of creating nanoparticles. The current work used ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction to thoroughly characterize the synthesized silver nanoparticles (AgNPs) from Azadirachta indica leaf extract. Characterization confirmed the synthesis of the AgNPs along with the possible linkage of the phytochemicals with the silver as well as the quantitative analysis and nature of NPs. The antioxidant activity of AgNPs and neem extract was measured by the 2,2-diphenyl-1-picrylhydrazyl assay using various concentrations (20, 40, 60, 80, and 100 µg/ml). Additionally, using diabetic mice that had been given alloxan, the in vivo antidiabetic potential of biosynthesized AgNPs was assessed. Eight groups of mice were used to assess the antidiabetic activity: one control group and seven experimental groups (untreated, extract-treated, AgNPs at low and high doses, standard drug, low dose of AgNPs + drug, and high dose of AgNPs + drug). At days 0, 7, 14, 21, and 28, blood glucose levels and body weight were measured. After 28 days, the mice were dissected, and the liver, kidney, and pancreas were examined histologically. The results depicted that the AgNPs showed higher (significant) radical scavenging activity (IC50 = 35.2 µg/ml) than extract (IC50 = 93.0 µg/ml) and ascorbic acid (IC50 = 64.6 µg/ml). The outcomes demonstrated that biosynthesized AgNPs had a great deal of promise as an antidiabetic agent and exhibited remarkable effects in diabetic mice given AgNPs, extract, and drug. Remarkable improvement in the body weight and blood glucose level of mice treated with high doses of AgNPs and drug was observed. The body weight and blood glucose level of diabetic mice treated with a high dose of AgNPs + standard drug showed significant improvement, going from 28.7 ± 0.2 to 35.6 ± 0.3 g and 248 ± 0.3 to 109 ± 0.1 mg/dl, respectively. Significant regeneration was also observed in the histomorphology of the kidney, liver's central vein, and islets of Langerhans after treatment with biosynthesized AgNPs. Diabetic mice given a high dose of AgNPs and drug displayed architecture of the kidney, liver, and pancreas that was nearly identical to that of the control group. According to the current research, biosynthesized AgNPs have strong antioxidant and antidiabetic potential and may eventually provide a less expensive option for the treatment of diabetes.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Misha Afzal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Qian D, Zha D, Sang Y, Tao J, Cheng Y. Moringa oleifera mediated green synthesis of gold nanoparticles and their anti-cancer activity against A549 cell line of lung cancer through ROS/ mitochondrial damage. Front Chem 2025; 13:1521089. [PMID: 40109902 PMCID: PMC11920177 DOI: 10.3389/fchem.2025.1521089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Gold nanoparticles (Au-NPs) hold significant promise in lung cancer treatment due to their unique physicochemical properties, enabling targeted drug delivery, enhanced therapeutic efficacy, and reduced systemic toxicity. This study is aimed to produce the Au-NPs utilising Moringa oleifera and evaluate their effectiveness in the treatment of lung cancer, with a specific focus on A549 cell lines. Methods The synthesis of Au-NPs was carried out by combining 10 mL of an aqueous extract of M. oleifera with 190 mL of a 1 mM HAuCl4 solution. The synthesized Au-NPs were characterised using several microscopic and spectroscopic techniques. The evaluation of the median inhibitory concentration (IC50) of Au-NPs and its impact on apoptosis was conducted through the measurement of caspase activation and the formation of reactive oxygen species (ROS). Anti-cancer characteristics was conducted by employing DAPI staining. Furthermore, the influence on ROS production and mitochondrial membrane potential was evaluated at the IC50 concentration using fluorescence microscopy, employing DCFH-DA and Rhodamine 123 dyes. Results The synthesis of Au-NPs was confirmed through UV-Vis spectroscopy, with an absorbance peak at 540 nm. FTIR, TEM results showed that the M. oleifera mediated Au-NPs had a spherical morphology, and their mean size was approximately 30 nm, as determined by DLS. The Au-NPs exhibited an IC50 value of 50 μg/mL against the A549 lung cancer cells. The DAPI staining results revealed that both concentrations of AuNP, 25 μg/mL and 50 μg/mL, exhibited noteworthy anti-cancer and apoptotic properties. Discussion The study demonstrates that M. oleifera-mediated Au-NPs exhibit significant cytotoxic and apoptotic effects on A549 lung cancer cells, with an IC50 value of 50 μg/mL. Both tested concentrations showed substantial anti-cancer properties, as confirmed by DAPI staining. The unique focus on lung cancer, specifically the A549 cell line, sets this study apart from others that address a broader spectrum of cancer types. These findings suggest that M. oleifera-mediated Au-NPs hold promise for clinical applications in lung cancer treatment, providing a potential new therapeutic application.
Collapse
Affiliation(s)
- Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Dongsheng Zha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Yuanyao Sang
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Jiangquan Tao
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Youshuang Cheng
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Gu X, Li Y, Yang L, Wang Q, Jia H, Ruan D, El-Kott AF, Alkhathami AG, Morsy K. Cydonia oblonga extract mediated biosynthesis of gold nanoparticles: Analysis of its anti-oral cancer and antioxidant properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125268. [PMID: 39413609 DOI: 10.1016/j.saa.2024.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Here, using natural and biological macromolecules derived from Cydonia oblonga extract, we have developed a green protocol for the biogenic made Au NPs. Under ultrasonic activated conditions, the Cydonia oblonga phytomolecules were employed as an efficient green reducing agent for the Au3+ ions to the Au0 NPs. Additionally, by encapsulating or capping, they allowed the Au NPs to stabilize on their own. Several physicochemical techniques, such as elemental mapping, TEM, FE-SEM, UV-Vis spectroscopy, EDS, and ICP-OES, were used to analyze the structure of the Au NPs/Cydonia oblonga bio-nanocomposite. The field of medicinal therapeutics pertaining to human health includes cancer treatment as a major component. Subsequently, the as prepared Au NPs/Cydonia oblonga bio-nanocomposite was investigated for antioxidant and human anti-oral cancer assays. In such studies a number of cell lines, viz., HSC-3, HSC-2, and Ca9-22 were used in determining the cytotoxicity. Notably, Au NPs/Cydonia oblonga exhibit significant anti-oral cancer properties against HSC-3, HSC-2, and Ca9-22 cancer cell lines following time and dose-dependent manner. The corresponding IC50 values were determined as 201, 192, and 246 µg/mL respectively. DPPH radical scavenging method was used to determine the antioxidant activity of Au NPs/Cydonia oblonga bio-nanocomposite. The significant IC50 value suggested the material having very good antioxidant potential. The anti-human oral cancer effect of our material is believed to be due to its antioxidant effects.
Collapse
Affiliation(s)
- Xiaoxia Gu
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Yekan Li
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Lei Yang
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Qinyi Wang
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Huijie Jia
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Danping Ruan
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Trejo-Teniente I, Jaramillo-Loranca BE, Vargas-Hernández G, Villanueva-Ibáñez M, Tovar-Jiménez X, Olvera-Venegas PN, Tapia-Ramírez J. Synthesis and toxicity assessment of Coffea arabica extract-derived gold nanoparticles loaded with doxorubicin in lung cancer cell cultures. Front Bioeng Biotechnol 2024; 12:1378601. [PMID: 38737534 PMCID: PMC11082400 DOI: 10.3389/fbioe.2024.1378601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cancer is the second leading cause of death worldwide, despite the many treatments available, cancer patients face side effects that reduce their quality of life. Therefore, there is a need to develop novel strategies to increase the efficacy of treatments. In this study, gold nanoparticles obtained by green synthesis with Coffea arabica green bean extract were loaded with Doxorubicin, (a highly effective but non-specific drug) by direct interaction and using commercial organic ligands that allow colloidal dispersion at physiological and tumor pH. Conjugation of these components resulted in stable nanohybrids at physiological pH and a tumor pH release dependent, with a particle size less than 40 nm despite having the ligands and Doxorubicin loaded on their surface, which gave them greater specificity and cytotoxicity in H69 tumor cells.
Collapse
Affiliation(s)
- Isaí Trejo-Teniente
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Blanca Estela Jaramillo-Loranca
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Genaro Vargas-Hernández
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Maricela Villanueva-Ibáñez
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Xochitl Tovar-Jiménez
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | | | - José Tapia-Ramírez
- Department of Genetics and Molecular Biology, Centro de Investigaciones y de Estudios Avanzados IPN, Mexico City, Mexico
| |
Collapse
|
8
|
Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, Wei Y, Guo X. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023; 15:1868. [PMID: 37514054 PMCID: PMC10383270 DOI: 10.3390/pharmaceutics15071868] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is an innovative treatment strategy to enhance the ability of the immune system to recognize and eliminate cancer cells. However, dose limitations, low response rates, and adverse immune events pose significant challenges. To address these limitations, gold nanoparticles (AuNPs) have been explored as immunotherapeutic drug carriers owing to their stability, surface versatility, and excellent optical properties. This review provides an overview of the advanced synthesis routes for AuNPs and their utilization as drug carriers to improve precision therapies. The review also emphasises various aspects of AuNP-based immunotherapy, including drug loading, targeting strategies, and drug release mechanisms. The application of AuNPs combined with cancer immunotherapy and their therapeutic efficacy are briefly discussed. Overall, we aimed to provide a recent understanding of the advances, challenges, and prospects of AuNPs for anticancer applications.
Collapse
Affiliation(s)
- Huiqun Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen 518000, China
| | - Jie Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jing Dai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yubo Wei
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
9
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
10
|
Hussain A, Attique F, Naqvi SAR, Ali A, Ibrahim M, Hussain H, Zafar F, Iqbal RS, Ayub MA, Assiri MA, Imran M, Ullah S. Nanoformulation of Curcuma longa Root Extract and Evaluation of Its Dissolution Potential. ACS OMEGA 2023; 8:1088-1096. [PMID: 36643543 PMCID: PMC9835792 DOI: 10.1021/acsomega.2c06258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants have been widely used for therapeutic purposes for a long time, but they have been found to have some major issues such as low water solubility and bioavailability. In the present study, the nanoformulation of Curcuma longa L. plant extract was prepared to enhance its dissolution potential and biological activities. For the formulation of the nanosuspension, an ethanolic extract of C. longa was prepared through Soxhlet extraction using the nanoformulation technique. The nanosuspensions were formulated using four different stabilizers, namely sodium lauryl sulfate (SLS), hydroxy propyl methyl cellulose (HPMC), poly(vinyl alcohol) (PVA), and polysorbate-80 (P-80). The scanning electron microscopy (SEM), polydispersity index, and ζ potential were used for characterization of the nanoformulation. Among all of these, the surfactant stabilizer SLS was found to be the best. The average particle size of the selected optimized nanosuspension was found to be 308.2 nm with a polydispersity index (PDI) value of 0.330. The ζ potential value of the optimized nanosuspension was recorded at -33.3 mV. The SEM image indicated that the particles were slightly agglomerated, which may have occurred during lyophilization of the nanosuspension. The highest dissolution rate recorded at pH = 7 was 192.32 μg/mL, which indicates pH = 7 as the most appropriate condition for the dissolution of the C. longa nanosuspension. The antioxidant, antimicrobial, and antifungal activities of the optimized nanosuspension were also determined with regard to the coarse plant extract. The study findings suggested that the nanoprecipitation approach helps in enhancing the dissolution potential and biological activities of C. longa root extract.
Collapse
Affiliation(s)
- Amjad Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Faisal Attique
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Syed Ali Raza Naqvi
- Department
of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Punjab, Pakistan
| | - Hidayat Hussain
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Fatiqa Zafar
- Department
of Chemistry, University of Sahiwal, Sahiwal 54000, Punjab, Pakistan
| | - Rana Saqib Iqbal
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Muhammad Adnan Ayub
- Department
of Chemistry, University of Sahiwal, Sahiwal 54000, Punjab, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shaheed Ullah
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| |
Collapse
|
11
|
ELhabal SF, Elwy HM, Hassanin S, El-Rashedy AA, Hamza AA, Khasawneh MA. Biosynthesis and Characterization of Gold and Copper Nanoparticles from Salvadora persica Fruit Extracts and Their Biological Properties. Int J Nanomedicine 2022; 17:6095-6112. [PMID: 36514376 PMCID: PMC9741820 DOI: 10.2147/ijn.s385543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Metal nanoparticle synthesis using plant has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Methods The fruit extract of Salvadora persica (SP) was utilized as a reducing and stabilizing agent in the synthesis of gold (AuNPs) and copper (CuNPs) nanoparticles. Results UV-Vis spectra of the AuNPs and CuNPs showed peaks at the wavelengths of 530 nm and 440 nm, respectively. Transmission electron microscopy showed that nanoparticles exhibited a mainly spherical form, with a distribution range of 100 to 113 nm in diameter for AuNPs and of 130 to 135 nm in diameter for CuNPs. While energy-dispersive X-ray spectroscopy was able to confirm the existence of AuNPs and CuNPs. The alcoholic extract of the fruit SP was analyzed by GC-MS in order to identify whether or not it contained any active phytochemicals. Fourier-transform infrared spectra confirmed the presence capping functional biomolecules of SP on the surface of nanoparticles that acts as stabilizers. Analysis of the zeta potential revealed that NPs with high degree of stability, as demonstrated by a strong negative potential value in the range of 25.2 to 28.7 mV. Results showed that both green AuNPs and CuNPs have potential antimicrobial activity against human pathogens such gram-negative bacteria and gram-positive bacteria, with CuNPs having antimicrobial activity higher than AuNPs. In addition, AuNPs and CuNPs have promising antioxidant and anticancer properties when applied to MCF-7 and MDA-MB-231 breast cancer cells. Studies of molecular docking of SP bioactive compounds were conducted against methenyl tetrahydrofolate synthetase. Among all of them, Beta - Sitosterol was the most prominent. Conclusion These AuNPs and CuNPs are particularly appealing in a variety of applications in the pharmaceutical and medicinal industries due to their economical and environmentally friendly production.
Collapse
Affiliation(s)
- Sammar Fathy ELhabal
- Department of Pharmaceutics and Industrial Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hanan Mohamed Elwy
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Soha Hassanin
- Biochemistry Department, Modern University for Technology and information, Cairo, Egypt
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza, Egypt
| | - Alaaeldin Ahmed Hamza
- Biology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates,Correspondence: Mohammad Ahmad Khasawneh; Alaaeldin Ahmed Hamza, Email ;
| |
Collapse
|
12
|
Microwave Assisted Green Synthesis of Silver Nanoparticles and Its Application: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
14
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
15
|
Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: Beginning a new era in cancer theragnostic. BIOTECHNOLOGY REPORTS 2022; 34:e00714. [PMID: 35686001 PMCID: PMC9171450 DOI: 10.1016/j.btre.2022.e00714] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The American Cancer Society estimated around 61,090 new cases of leukemia were diagnosed, and around 23,660 people died from this disease in the United States alone in 2021. Due to its burden on society, there is an unmet need to explore innovative approaches to overcome leukemia. Among different strategies that have been explored, nanotechnology appears to be a promising and effective approach for therapeutics. Specifically, biogenic silver and gold nanoparticles (NPs) have attracted significant attention for their antineoplastic activity toward leukemia cancer cells due to their unique physicochemical properties. Indeed, these nanostructures have emerged as useful approaches in anti-leukemic applications, either as carriers to enhance drug bioavailability and its targeted delivery to a specific organ or as a novel therapeutic agent. This review explores recent advances in green synthesized nanomaterials and their potential use against leukemia, especially focusing on silver (Ag) and gold (Au) nanostructures. In detail, we have reviewed various eco-friendly methods of bio-synthesized NPs, their analytical properties, and toxicity effects against leukemic models. This overview confirms the satisfactory potency of biogenic NPs toward leukemic cells and desirable safety profiles against human native cells, which opens a promising door toward commercializing these types of nontherapeutic agents if challenges involve clinical validations, reproducibility, and scalability could be resolved.
Collapse
|
16
|
Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, Qureshi KA, Jaremko M. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15040455. [PMID: 35455452 PMCID: PMC9024851 DOI: 10.3390/ph15040455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles (NPs) are elements derived from a cluster of atoms with one or more dimensions in the nanometer scale in the range of 1–100 nm. The bio nanofabrication of metallic NPs is now an important dynamic area of research, with major significance in applied research. Biogenic synthesis of NPs is more desirable than physical and chemical synthesis due to its eco-friendliness, non-toxicity, lower energy consumption, and multifunctional nature. Plants outperform microorganisms as reducing agents as they contain large secondary biomolecules that accelerate the reduction and stability of the NPs. The produced NPs can then be studied spectroscopically (UV-Visible, XRD, Raman, IR, etc.) and microscopically (SEM, TEM, AFM, etc.). The biological reduction of a metallic ion or its oxide to a nanoparticle is quick, simple, and may be scaled up at room temperature and pressure. The rise in multi-drug resistant (MDR) microbes due to the immoderate use of antibiotics in non-infected patients is a major cause of morbidity and mortality in humans. The contemporary development of a new class of antibiotics with different mechanisms of action to kill microbes is crucial. Metals and their oxides are extremely toxic to microbes at unprecedentedly low concentrations. In addition, prevailing infections in plants and animals are raising significant concerns across the globe. NPs’ wide range of bioactivity makes them ideal antimicrobial agents in agricultural and medical fields. The present review outlines the synthesis of metallic NPs from botanicals, which enables the metals to be in a stabilized form even after ionization. It also presents a valuable database on the biofunctionalization of synthesized NPs for further drug development.
Collapse
Affiliation(s)
- Shabaaz J. P. Begum
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - S. Pratibha
- Department of Physics, BMS Institute of Technology and Management, Bengaluru 560064, India
- Correspondence:
| | - Janhvi M. Rawat
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Divya Venugopal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, India; (S.J.P.B.); (J.M.R.); (D.V.)
| | - Prashant Sahu
- Babulal Tara Bhai Institute of Pharmaceutical Sciences, Sagar 470228, India;
| | - Abhilash Gowda
- Bangalore Medical College and Research Institute, Bengaluru 560002, India;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah 23955, Saudi Arabia;
| |
Collapse
|
17
|
Veeramani S, Narayanan AP, Yuvaraj K, Sivaramakrishnan R, Pugazhendhi A, Rishivarathan I, Jose SP, Ilangovan R. Nigella sativa flavonoids surface coated gold NPs (Au-NPs) enhancing antioxidant and anti-diabetic activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Long L, Pei R, Liu Y, Rao X, Wang Y, Zhou SF, Zhan G. 3D printing of recombinant Escherichia coli/Au nanocomposites as agitating paddles towards robust catalytic reduction of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126983. [PMID: 34464864 DOI: 10.1016/j.jhazmat.2021.126983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) printing technology has received remarkable attention in manufacturing catalysts with tailored shapes and high precision, particularly facilitating catalyst recovery, maximizing heat/mass transfer, as well as enhancing catalytic performance. Herein, an engineered recombinant Escherichia coli strain (denoted as e-E. coli) with overexpressing metallothionein (a metal-binding protein) was explored to synthesize Au nanoparticles serving as both reducing and stabilizing agents. Then, the mixed inks containing e-E. coli/Au composite and biocompatible polymers (sodium alginate and gelatin) were extruded based on a direct ink writing method followed by chemical crosslinking to form robust 3D grids with square symmetry. To boost the mass transfer and minimize pressure drop, the monolith catalysts were assembled into agitating paddles and used for liquid-phase batch reactions (volume: 1 L). As such, the reaction solutions were mixed internally via the powered "catalytic paddles" with high mechanical strength, excellent reactivity, and easy recyclability, which could be reused at least 7 cycles without performance loss. Our work provides a novel strategy for the fabrication of supported Au catalysts, and the proof-of-concept "catalytic paddles" by 3D printing technology can be applied to other industrial solution-based reactions.
Collapse
Affiliation(s)
- Lu Long
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China
| | - Rui Pei
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China
| | - Ya Liu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China
| | - Xiaoping Rao
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
19
|
Gao L, Mei S, Ma H, Chen X. Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity. ULTRASONICS SONOCHEMISTRY 2022; 83:105940. [PMID: 35149377 PMCID: PMC8841883 DOI: 10.1016/j.ultsonch.2022.105940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV-Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
Collapse
Affiliation(s)
- Ling Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
20
|
Mi XJ, Xu XY, Choi HS, Kim H, Cho IH, Yi TH, Kim YJ. The Immune-Enhancing Properties of Hwanglyeonhaedok-Tang-Mediated Biosynthesized Gold Nanoparticles in Macrophages and Splenocytes. Int J Nanomedicine 2022; 17:477-494. [PMID: 35125869 PMCID: PMC8812323 DOI: 10.2147/ijn.s338334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Despite great advances in the field of immunotherapy, there is still a need for novel and effective immunostimulants to overcome challenges, such as instability and autoinflammatory toxicity, associated with conventional immunostimulants. Nanotechnology provides the possibility to overcome these challenges. The well-known classical Chinese formula, Hwanglyeonhaedok-tang (HHT) has been widely used to treat immune-related diseases in clinical practice. Methods We developed novel gold nanoparticles (AuNPs) utilizing one-pot synthesis with the herbal formula-HHT. The optimal conditions for HHT-AuNP biosynthesis were established, and physicochemical properties of the optimized HHT-AuNPs were identified using various spectrometric and microscopic techniques. Bio-TEM analysis revealed that HHT-AuNPs were highly engulfed within RAW264.7 cells without inducing cytotoxicity. The effect of HHT-AuNPs on immunostimulatory activity was evaluated in innate and adaptive immune cells (RAW264.7 macrophages and ICR mice splenocytes) using qRT-PCR, immunoblotting, and ELISA. Results The HHT-AuNPs remarkably increased the nitric oxide (NO) and immune-related cytokines production by activating the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways in RAW264.7 cells. Furthermore, HHT-AuNPs exerted immunostimulatory effects on mouse splenocytes by priming T/B-cells and macrophages. Discussion The present study is the first to demonstrate that HHT-AuNPs could be utilized as immunostimulators to activate both innate and adaptive immune systems. These results provide a foundation for the application of traditional Chinese medicinal formulae in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Xing Yue Xu
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Han Sol Choi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Hoon Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Ik Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
- Correspondence: Yeon-Ju Kim; Ik Hyun Cho Tel +82-31-201-5634Fax +82-31-204-8116 Email ;
| |
Collapse
|
21
|
Anjana VN, Joseph M, Francis S, Joseph A, Koshy EP, Mathew B. Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:438-449. [PMID: 34009083 DOI: 10.1080/21691401.2021.1925678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Plant-derived nanoparticles have multi-functionalities owing to their ecological origin and biocompatible nature. A novel and stable silver nanoparticle (AgNP) was reported here using Cyanthillium cinereum (C. cinereum) as a reducing as well as capping agent by rapid microwave-assisted green method. The synthesized nanoparticles revealed their crystalline and spherical nature with an average size of 19.25 ± 0.44 nm in HR-TEM analysis. The excitation of electrons from occupied d-bands to states above the Fermi level while employing photoluminescence studies of AgNP indicated their awesome optical properties. Rapid decomposition of dangerous organic dyes like methylene blue and fuchsine in the catalytic presence of AgNP was evidenced from simple UV-visible spectral analysis. In vitro antioxidant potential assessed by DPPH assay indicated an IC50 value of 40.80 ± 0.14 μg/mL for the new AgNP. A substantial control on the growth of pathogenic bacteria such as Staphylococcus aureus and Klebsiella pneumonia can be achieved by synthesized nanoparticles as demonstrated by the well diffusion method. AgNP was also functioned as a non-enzymatic electrochemical sensor with a sharp oxidation peak with peak potentials at 0.366 V and it has a wide application as a bio sensor in neurobiology especially in the detection of neurotransmitters like dopamine with high sensitivity.
Collapse
Affiliation(s)
- V N Anjana
- Department of Chemistry, St. Joseph's College, Arakulam, India
- Department of Chemistry, Sree Sankara Vidyapeetom College, Valayanchirangara, Irapuram, India
| | - Majo Joseph
- Department of Chemistry, St. Joseph's College, Arakulam, India
| | - Sijo Francis
- Department of Chemistry, St. Joseph's College, Arakulam, India
| | - Alex Joseph
- Department of Chemistry, Newman College Thodupuzha, Thodupuzha, India
| | - Ebey P Koshy
- Department of Chemistry, St. Joseph's College, Arakulam, India
| | - Beena Mathew
- School of Chemical Science, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
22
|
Karpushkin EA, Karakchieva AO, Kirsanova MA, Zaborova OV, Sergeyev VG. Formation of Gold Nanoparticles in the Presence of Carbon Nanoparticles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221120173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Jassim AY, Wang J, Chung KW, Loosli F, Chanda A, Scott GI, Baalousha M. Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams. Colloids Surf B Biointerfaces 2021; 209:112173. [PMID: 34749192 DOI: 10.1016/j.colsurfb.2021.112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Nanoparticles (NPs) can be produced via physical, chemical, or biological approaches. Yet, the impact of the synthesis approaches on the environmental fate and effects of NPs is poorly understood. Here, we synthesized AgNPs through chemical and biological approaches (cit-AgNPs and bio-AgNPs), characterized their properties, and toxicities relative to commercially available Ag nanopowder (np-AgNPs) to the clam Mercenaria mercenaria. The chemical synthesis is based on the reduction of ionic silver using sodium borohydride as a reducing agent and trisodium citrate as a capping agent. The biological synthesis is based on the reduction of ionic silver using biomolecules extracted from an atoxigenic strain of a filamentous fungus Aspergillus parasiticus. The properties of AgNPs were determined using UV-vis, dynamic light scattering, laser Doppler electrophoresis, (single particle)-inductively coupled plasma-mass spectroscopy, transmission electron microscopy, and asymmetric flow-field flow fractionation. Both chemical and biological synthesis approaches generated spherical AgNPs. The chemical synthesis produced AgNPs with narrower size distributions than those generated through biological synthesis. The polydispersity of bio-AgNPs decreased with increases in cell free extract (CFE):Ag ratios. The magnitude of the zeta potential of the cit-AgNPs was higher than those of bio-AgNPs. All AgNPs formed aggregates in the test media i.e., natural seawater. Based on the same total Ag concentrations, all AgNPs were less toxic than AgNO3. The toxicity of AgNPs toward the juvenile clam, Mercenaria mercenaria, decreased following the order np-AgNPs > cit-AgNPs > bio-AgNPs. Expressed as a function of dissolved Ag concentrations, the toxicity of Ag decreased following the order cit-AgNPs > bio-AgNPs > AgNO3 ~ np-AgNPs. Therefore, the toxicity of AgNP suspensions can be attributed to a combined effect of dissolved and particulate Ag forms. These results indicate that AgNP synthesis methods determine their environmental and biological behaviors and should be considered for a more comprehensive environmental risk assessment of AgNPs.
Collapse
Affiliation(s)
- Amar Yasser Jassim
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Department of Marine Vertebrates, Marine Science Center, University of Basrah, Iraq
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Katy W Chung
- NOAA/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA
| | - Frédéric Loosli
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Anindya Chanda
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Mycologics LLC, Alexandria, VA 22306, USA
| | - Geoffrey I Scott
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| |
Collapse
|
24
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
25
|
Minocycline-Derived Silver Nanoparticles for Assessment of Their Antidiabetic Potential against Alloxan-Induced Diabetic Mice. Pharmaceutics 2021; 13:pharmaceutics13101678. [PMID: 34683970 PMCID: PMC8541160 DOI: 10.3390/pharmaceutics13101678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.
Collapse
|
26
|
Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM, Jiang L. Fabrication of Silver Nanoparticles Against Fungal Pathogens. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.679358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of silver nanoparticles (AgNPs) against various pathogens is now being well recognized in the agriculture and health sector. Nanoparticles have been shown to exhibit various novel properties and these properties, on other hand, rely upon the size, shape, and morphology of these particles. Moreover, these physical characteristics enable them to interact with microbes, plants, and animals. Smaller-sized particles have shown more toxicity than larger-sized nanoparticles. AgNPs have shown growth inhibition of many fungi like Aspergillus fumigates, A. niger, A. flavus, Trichophyton rubrum, Candida albicans, and Penicillium species. According to the current hypothesis, AgNPs act by producing reactive oxygen species and free radicals, which cause protein denaturation, nucleic acid and proton pump damage, lipid peroxidation, and cell wall damage. Therefore, they alter the cell membrane permeability, causing cell death. This mini-review summarizes the use of silver nanoparticles against fungal pathogens and fungal biofilm in the agricultural sector.
Collapse
|
27
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
28
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
29
|
Khan MA, Moghul NB, Butt MA, Kiyani MM, Zafar I, Bukhari AI. Assessment of antibacterial and antifungal potential of Curcuma longa and synthesized nanoparticles: A comparative study. J Basic Microbiol 2021; 61:603-611. [PMID: 33983661 DOI: 10.1002/jobm.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/06/2022]
Abstract
Curcumin nanoparticles were most recently considered in medical research because of their antibacterial properties. The main objective of the study was to develop the green synthesis and antibacterial activity of curcumin nanoparticles using Curcuma longa. The processing of curcumin nanoparticles was carried out after the collection, identification, and extraction of curcumin. The effect of a sample on the synthesis of nanoparticles, such as curcumin aqueous concentrations (5, 10, and 20 mg/ml) and curcumin nanoparticles (5, 10, and 20 mg/ml), and the antibacterial effect of these nanoparticles on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the fungal strain Aspergillus niger. For examining antibacterial and anti-fungal activity disc diffusion method was performed, followed by the zone of inhibition. According to X-ray diffraction and scanning electron microscope analysis, nanoparticles have spherical shapes and size of 42.64 nm. Results showed that a high dose of 20 mg/ml curcumin nanoparticles have more antibacterial activity than curcumin extracts in E. coli as it showed the largest diameter of zone of inhibition as compared to other doses. Other bacterial and fungal strains also showed significant results but E. coli was most prominent. The biosynthesis of curcumin nanoparticles using an aqueous extract of C. longa is a clean, inexpensive, and safe method that has not been used any toxic substance and consequently does not have side effects. Since several pathogenic species have acquired antibiotic resistance, the combination of curcumin with various nanoparticles would be beneficial in the cure of pathogenic diseases.
Collapse
Affiliation(s)
- Mansoor Ahmed Khan
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Nurain Baig Moghul
- Department of Biochemistry, Rawal Institute of Health Sciences, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Maisra Azhar Butt
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ibraheem Zafar
- Department of Rehabilitation Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ali Imran Bukhari
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
30
|
Nobahar A, Carlier JD, Miguel MG, Costa MC. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. Biometals 2021; 34:761-793. [PMID: 33961184 DOI: 10.1007/s10534-021-00315-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/28/2021] [Indexed: 01/20/2023]
Abstract
Rapid industrial development is responsible for severe problems related to environmental pollution. Many human and industrial activities require different metals and, as a result, great amounts of metals/heavy metals are discharged into the water and soil making them dangerous for both human and ecosystems and this is being aggravated by intensive demand and utilization. In addition, compounds with metal binding capacities are needed to be used for several purposes including in activities related to the removal and/or recovery of metals from effluents and soils, as metals' corrosion inhibitors, in the synthesis of metallic nanoparticles and as metal related pharmaceuticals, preferably a with minimum risks associated to the environment. Plants are able to synthesize an uncountable number of compounds with numerous functions, including compounds with metal binding capabilities. In fact, some of the plants' secondary metabolites can bind to various metals through different mechanisms, as such they are excellent sources of such compounds due to their high availability and vast diversity. In addition, the use of plant-based compounds is desirable from an environmental and economical point of view, thus being potential candidates for utilization in different industrial activities, replacing conventional physiochemical methods. This review focuses on the ability of some classes of compounds that can be found in relatively high concentrations in plants, having good metal binding capacities and thus with potential utilization in metal based industrial activities and that can be involved in the progressive development of new environmentally friendly strategies.
Collapse
Affiliation(s)
- Amir Nobahar
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal. .,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
| |
Collapse
|
31
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
32
|
Biogenic Nanoparticles: Synthesis, Characterisation and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062598] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanotechnology plays a big part in our modern daily lives, ranging from the biomedical sector to the energy sector. There are different physicochemical and biological methods to synthesise nanoparticles towards multiple applications. Biogenic production of nanoparticles through the utilisation of microorganisms provides great advantages over other techniques and is increasingly being explored. This review examines the process of the biogenic synthesis of nanoparticles mediated by microorganisms such as bacteria, fungi and algae, and their applications. Microorganisms offer a disparate environment for nanoparticle synthesis. Optimum production and minimum time to obtain the desired size and shape, to improve the stability of nanoparticles and to optimise specific microorganisms for specific applications are the challenges to address, however. Numerous applications of biogenic nanoparticles in medicine, environment, drug delivery and biochemical sensors are discussed.
Collapse
|
33
|
Qiao J, Qi L. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 2021; 223:121396. [PMID: 33298252 DOI: 10.1016/j.talanta.2020.121396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
The preparation of gold nanoparticles via green routes applying plant extracts as the reducing agents and stabilizers has received broad interest in the last decades. Plant-gold nanoparticles have been well-developed and applied in biochemical and medical research, but there are still challenges that must be overcome. The main challenges include the construction of chemically-robust plant-gold nanoparticles, the precise design of biomimetic surfaces to fabricate nanozymes with high catalytic activities, and the development of approaches to construct biosensors with high selectivities and sensitivities. The cores and surfaces of plant-gold nanoparticles must be considered, as well as their catalytic activities and biosensing mechanisms. This review highlights the latest achievements in plant-gold nanoparticle preparation, heterogeneous nucleation, and surface functionalization, while also focusing on their optical properties and various biological and catalytic activities. Moreover, their antioxidant and cell apoptosis mechanisms, and biological activities are described. Plant-gold nanoparticles have shown great potential in high-performance analytical assays, high-activity catalysts, effective intracellular imaging, and clinical treatment.
Collapse
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Wele A, De S, Dalvi M, Devi N, Pandit V. Nanoparticles of biotite mica as KrishnaVajraAbhraka Bhasma: synthesis and characterization. J Ayurveda Integr Med 2021; 12:269-282. [PMID: 33402266 PMCID: PMC8185977 DOI: 10.1016/j.jaim.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background Bio-inorganic nanoparticles or metal nanoparticles are used in medicine for diagnostic and treatment purposes. The nanomedicines from traditional Ayurvedic system are termed as bhasma. Rasashastra, the branch of inorganic medicines of Ayurveda, has documented monographs of metal-mineral bhasmas as potent drugs. However there is lack of scientific analytical data of the end products. Objectives Present study was aimed at finding out the morphological, structural, elemental and chemical composition of the Krishna vajra abhraka bhasma (KVB). Materials and methods Bhasma of KVB (Biotite Mica) was prepared in our laboratory using biotite mica sheets befitting selection criteria and carrying out further processes with strict SOPs as per AFI. Results The bhasma complied with the confirmatory tests from Rasashastra. The physical and physicochemical tests correlate with the results obtained by instrumental analytical methods. SEM revealed square shaped nanoparticles of mean size of 92.3 nm. EDAX showed presence of Si, Mg, O, Fe, Ca, Na, C, K and Al. XRD revealed the crystalline nature of bhasma with mixture of various individual oxides and spinel shape of the crystal. DLS showed that the nanoparticles are unimodal in nature. FTIR and NMR showed the organic functional groups obtained from cow milk and selected herbs, indicating unique bio-inorganic nature of the KVB. Conclusion The therapeutic potential imparted to the formulation could be due to the cow milk and specific herbs utilized during the manufacturing process.
Collapse
Affiliation(s)
- Asmita Wele
- BVDU College of Ayurved, Pune-Satara Road, Pune, 411043, India.
| | - Sourav De
- University of Debrecen, Department of Physical Chemistry, Debrecen, H-4002, Hungary
| | - Madhuri Dalvi
- BVDU College of Ayurved, Pune-Satara Road, Pune, 411043, India
| | - Nandini Devi
- National Chemical Laboratory, Pashan, Pune, 411008, India
| | - Vijaya Pandit
- BVDU Medical College, Pune-Satara Road, Pune, 411043, India
| |
Collapse
|
35
|
|
36
|
Meena M, Yadav G, Sonigra P, Nagda A. Bacteriogenic synthesis of gold nanoparticles: mechanisms and applications. NANOBIOTECHNOLOGY 2021:75-90. [DOI: 10.1016/b978-0-12-822878-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
37
|
Amina SJ, Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int J Nanomedicine 2020; 15:9823-9857. [PMID: 33324054 PMCID: PMC7732174 DOI: 10.2147/ijn.s279094] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metal nanoparticles are being extensively used in biomedical fields due to their small size-to-volume ratio and extensive thermal stability. Gold nanoparticles (AuNPs) are an obvious choice for biomedical applications due to their amenability of synthesis, stabilization, and functionalization, low toxicity, and ease of detection. In the past few decades, various chemical methods have been used for the synthesis of AuNPs, but recently, newer environment friendly green approaches for the synthesis of AuNPs have gained attention. AuNPs can be conjugated with a number of functionalizing moieties including ligands, therapeutic agents, DNA, amino acids, proteins, peptides, and oligonucleotides. Recently, studies have shown that gold nanoparticles not only infiltrate the blood vessels to reach the site of tumor but also enter inside the organelles, suggesting that they can be employed as effective drug carriers. Moreover, after reaching their target site, gold nanoparticles can release their payload upon an external or internal stimulus. This review focuses on recent advances in various methods of synthesis of AuNPs. In addition, strategies of functionalization and mechanisms of application of AuNPs in drug and bio-macromolecule delivery and release of payloads at target site are comprehensively discussed.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX77204, USA
| |
Collapse
|
38
|
Ghareeb RY, Alfy H, Fahmy AA, Ali HM, Abdelsalam NR. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci Rep 2020; 10:19968. [PMID: 33203960 PMCID: PMC7672092 DOI: 10.1038/s41598-020-77005-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Tomato (Solanum Lycopersicum L.) is an important vegetable crop that belongs to the family Solanaceae. Root-knot nematodes reflect the highly critical economically damaging genera of phytoparasitic nematodes on tomato plants. In this study, the eco-nematicide activity of freshwater green macroalga Cladophora glomerata aqueous extract and their synthesized silver nanoparticles (Ag-NPs) against root-knot nematodes Meloidogyne javanica was investigated on tomato plants. The formation and chemical structure of Ag-NPs was examined. The aqueous extract from C. glomerata was applied against the root-knot nematodes besides the biosynthesized green silver nanoparticles with 100, 75, 50, and 25% (S, S/2, S/3, S/4) concentrations. To investigate the plant response toward the Green Synthesized Silver Nanoparticles (GSNPs) treatment, expression profiling of Phenylalanine Ammonia-Lyase (PAL), Poly Phenol Oxidase (PPO), and Peroxidase (POX) in tomato were examined using Quantitative Real-Time PCR (Q-PCR). The results indicated that GSNPs from C. glomerata exhibited the highest eco-nematicide activity in the laboratory bioassay on egg hatchability and juveniles (J2S) mortality of M. javanica compared with the chemical commercial nematicide Rugby 60%. Also, results showed a significant reduction in galls number, egg masses, females per root system/plant, and mortality of juveniles. The results of PAL and PPO enzyme expression for the control plants remained relatively stable, while the plant inoculated with nematode M. javanica as well as the activity of genes in scope was increased from 14 to 28 Days after Nematode Inoculation (DANI). These activities were improved in inoculated plants and treated with C. glomerata extract and their green syntheses of Ag-NPs and the other plants treated with Rugby 60% (4 mL/L). The greatest activities of the three enzymes were evident after 14 days after the nematode inoculation. It can be concluded that the green synthesized nanoparticles using C. glomerata could be used as potent nematicides against M. javanica which induces the immune system to defend against nematode infection.
Collapse
Affiliation(s)
- Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Hanan Alfy
- Plant Protection Research Institute, Field Crop Pests Department, Agricultural Research Center, Giza, 12627, Egypt
| | - Antwan A Fahmy
- Biotechnology Dep, Faculty of Agriculture, Ain Shams University, Ain Shams, 13766, Egypt
| | - Hayssam M Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Timber Trees Research Department, Agriculture Research Center, Sabahia Horticulture Research Station, Horticulture Research Institute, Alexandria, 21526, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
39
|
Singh Y, Kaushal S, Sodhi RS. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. NANOSCALE ADVANCES 2020; 2:3972-3982. [PMID: 36132754 PMCID: PMC9417164 DOI: 10.1039/d0na00357c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2020] [Indexed: 05/06/2023]
Abstract
The biogenic synthesis of metal nanoparticles (NPs) is of great significance, as it renders clean, biocompatible, innocuous and worthwhile production. Here, we present a clean and sustainable route for the synthesis of silver nanoparticles (Ag NPs) using the cell-free aqueous extract of the cyanobacterium Leptolyngbya sp. WUC 59, isolated from polluted water and identified using a polyphasic approach. The conformation and characterisation of the as-synthesized biogenic Ag NPs was carried out using various sophisticated techniques like UV-visible (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared (FTIR), energy dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM). The sharp colour change and emergence of a characteristic peak at 430 nm in the UV-Vis spectrum confirm the formation of the Ag NPs. The morphological and physical appearance indicated that the synthesized Ag NPs are crystalline with a typical size of 20-35 nm. Furthermore, the bio-reduced nanoparticles were explored for their antibacterial activity against Bacillus subtilis and Escherichia coli bacteria, seed germination effects and early seedling growth of wheat (Triticum aestivum L.). The Ag NPs significantly suppressed the growth of both Bacillus subtilis and Escherichia coli bacteria with the treatment of 10 mg L-1 concentration within the initial 3 hours. The lower concentration (25 mg L-1) of the synthesized Ag NPs significantly enhanced the seed germination and early seedling growth of wheat in comparison to the control on the 4th and 8th day. The present investigations show that the use of the cyanobacterium Leptolyngbya sp. WUC 59 provides a simple, cost-effective and eco-friendly tool for the synthesis of Ag NPs. Moreover, it could have great potential for use as an alternative to chemical-based bactericides not only in pharmaceutical industries, but also to control bacterial diseases in agricultural crops.
Collapse
Affiliation(s)
- Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University Fatehgarh Sahib-140406 Punjab India
| | - Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University Fatehgarh Sahib-140406 Punjab India
| | - Ramandeep Singh Sodhi
- Department of Chemistry, Patel Memorial National College (affiliated to Punjabi University, Patiala) Rajpura-140401 Punjab India
| |
Collapse
|
40
|
Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020; 8:4109-4128. [PMID: 32638706 PMCID: PMC7439575 DOI: 10.1039/d0bm00809e] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With an aging population that has been increasing in recent years, the need for the development of therapeutic approaches for treatment of neurodegenerative disorders (ND) has increased. ND, which are characterized by the progressive loss of the structure or function of neurons, are often associated with neuronal death. In spite of screening numerous drugs, currently there is no specific treatment that can cure these diseases or slow down their progression. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Huntington's disease, and prion diseases belong to ND which affect enormous numbers of people globally. There are some main possible reasons for failure in the treatment of neurodegenerative diseases such as limitations introduced by the Blood-Brain Barrier (BBB), the Blood-Cerebrospinal Fluid Barrier (BCFB) and P-glycoproteins. Current advances in nanotechnology present opportunities to overcome the mentioned limitations by using nanotechnology and designing nanomaterials improving the delivery of active drug candidates. Some of the basic and developing strategies to overcome drug delivery impediments are the local delivery of drugs, receptor-mediated transcytosis, physicochemical disruption of the BBB, cell-penetrating peptides and magnetic disruption. Recently, the application of nanoparticles has been developed to improve the efficiency of drug delivery. Nanoengineered particles as nanodrugs possess the capacity to cross the BBB and also show decreased invasiveness. Examples include inorganic, magnetic, polymeric and carbonic nanoparticles that have been developed to improve drug delivery efficiency. Despite numerous papers published in this filed, there are some unsolved issues that need to be addressed for successful treatment of neurodegenerative diseases. These are discussed herein.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Department of Environmental Science & Engineering, The University of Texas at El Paso, USA
| | - Jyoti Ahlawat
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| | | | - Mahesh Narayan
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| |
Collapse
|
41
|
Park SY, Kim B, Cui Z, Park G, Choi YW. Anti-Metastatic Effect of Gold Nanoparticle-Conjugated Maclura tricuspidata Extract on Human Hepatocellular Carcinoma Cells. Int J Nanomedicine 2020; 15:5317-5331. [PMID: 32904434 PMCID: PMC7455757 DOI: 10.2147/ijn.s246724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose We aimed to study green-synthesized gold nanoparticles (GNPs) from Maclura tricuspidata (MT) root (MTR), stem (MTS), leaf (MTL), and fruit (MTF) extracts and evaluate their anti-metastatic properties in hepatocellular carcinoma cells. Maclura tricuspidata belongs to the Moraceae family and is widely used as a traditional medicinal plant given its biological activities. Methods We quantified the phenolic and flavonoid contents, reducing capacity, and antioxidant activity of all four extracts. The facile and optimum synthesis of MT-GNPs was visualized using UV-vis spectra and dynamic light scattering (DLS). Surface morphology, selected area electron diffraction (SAED), and fast Fourier transform (FFT) pattern of MT-GNPs were assessed using high-resolution transmission electron microscopy (HR-TEM). The crystallized gold pattern of MT-GNPs was evaluated using energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The functionalizing ligands of MT-extracts and MT-GNPs were determined using Fourier-transform infrared spectroscopy (FT-IR). The photocatalytic capabilities of MT-GNPs were assessed by measuring the reduction of rhodamine B and methylene blue. Cell viability assay was detected using Cell Counting Kit-8 solution. Anti-migratory and anti-invasive effects were assessed using cell migration and invasion assays. Matrix metalloproteinase (MMP)-9 and phospholipase D (PLD) enzymatic activities were measured using gelatin zymography and Amplex Red PLD assay, respectively. Western blotting and luciferase assay were used to detect protein expression. Results All extracts had high phenolic and flavonoid contents and strong antioxidant and reducing capacities. Results from UV-Vis spectra, DLS, HR-TEM, EDS, XRD, and FT-IR showed the successful formation of MT-GNP with surface morphology, crystallinity, reduction capacity, capsulation, and stabilization. MTR-GNPs and MTS-GNPs had better catalytic activities than MTL-GNPs and MTF-GNPs for reduction of methylene blue and rhodamine B. Moreover, MTS-GNPs and MTR-GNPs exhibited the highest anti-migratory and anti-invasive potential and seemed to be more biologically active than the MTS and MTR extracts. Treatment with MT-GNPs decreased the enzymatic activity, translation levels of MMP-9 and PLD1. Our results showed that MTS-GNPs and MTR-GNPs could dramatically reverse transforming growth factor-β-induced vimentin and N-cadherin upregulation and E-cadherin downregulation. Conclusion The application of GNPs as a potential treatment approach for hepatocellular carcinoma can improve therapeutic efficiency.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea
| | - Beomjin Kim
- Department of Nanomaterials Engineering, Pusan National University, Busan 609-735, Korea
| | - Zhengwei Cui
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea
| | - Geuntae Park
- Department of Nanofusion Technology, Graduate School, Pusan National University, Busan, 609-735, Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea
| |
Collapse
|
42
|
Siddiqi KS, Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res 2020; 24:11. [PMID: 32514371 PMCID: PMC7268245 DOI: 10.1186/s40824-020-00188-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Since green mode of nanoparticles (NPs) synthesis is simple, advantageous and environment friendly relative to chemical and physical procedures, various plant species have been used to fabricate copper and copper oxide nanoparticles (Cu/CuO-NPs) owing to the presence of phytochemicals which often act as capping as well as stabilizing agent. These Cu/CuO-NPs are highly stable and used in the degradation of organic dyes like methylene blue and reduction of organic compounds such as phenols. They are also used as antibacterial, antioxidant and antifungal agent due to their cytotoxicity. They are also examined for agricultural crops growth and productivity. Cu-NPs increased the root and shoot growth of mung bean. In wheat plants, these particles reduced shoot growth; and enhanced the grain yield and stress tolerance through starch degradation. Similarly, CuO-NPs treated seedlings have shown reduced chlorophyll, carotenoid and sugar content, whereas proline and anthocyanins were increased in Brassica rapa seedlings. Overall, this review presents the recent understanding of plant-mediated Cu and CuO-NPs fabrication and their application in biomedicine, environmental remediation and agricultural practices. A comparison of the traditional/conventional method of fabrication of NPs with those of green protocols has also been made. Some misconception of copper chemistry has also been critically discussed in terms of oxidation and reduction reactions.
Collapse
Affiliation(s)
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
43
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 2020; 8:341. [PMID: 32509720 PMCID: PMC7248377 DOI: 10.3389/fchem.2020.00341] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Hilal Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqbal M. I. Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda A. Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
44
|
Wang Y, Xu J, Shi L, Yang H. Recent advances in the antilung cancer activity of biosynthesized gold nanoparticles. J Cell Physiol 2020; 235:8951-8957. [DOI: 10.1002/jcp.29789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yadong Wang
- Department of Toxicology Henan Center for Disease Control and Prevention Zhengzhou China
| | - Jie Xu
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| | - Li Shi
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| | - Haiyan Yang
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| |
Collapse
|
45
|
Brainina KZ, Bukharinova MA, Stozhko NY, Sokolkov SV, Tarasov AV, Vidrevich MB. Electrochemical Sensor Based on a Carbon Veil Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid. SENSORS 2020; 20:s20061800. [PMID: 32214016 PMCID: PMC7146419 DOI: 10.3390/s20061800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
An original voltammetric sensor (Au-gr/CVE) based on a carbon veil (CV) and phytosynthesized gold nanoparticles (Au-gr) was developed for ascorbic acid (AA) determination. Extract from strawberry leaves was used as source of antioxidants (reducers) for Au-gr phytosynthesis. The sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and electrochemical methods. Optimal parameters of AA determination were chosen. The sensor exhibits a linear response to AA in a wide concentration range (1 μM–5.75 mM) and a limit of detection of 0.05 μM. The developed sensor demonstrated a high intra-day repeatability of 1 μM AA response (RSD = 1.4%) and its stability during six weeks, selectivity of AA determination toward glucose, sucrose, fructose, citric, tartaric and malic acids. The proposed sensor based on Au-gr provides a higher sensitivity and a lower limit of AA detection in comparison with the sensor based on gold nanoparticles synthesized by the Turkevich method. The sensor was successfully applied for the determination of AA content in fruit juices without samples preparation. The recovery of 99%–111% and RSD no more than 6.8% confirm the good reproducibility of the juice analysis results. A good agreement with the potentiometric titration data was obtained. A correlation (r = 0.9867) between the results of AA determination obtained on the developed sensor and integral antioxidant activity of fruit juices was observed.
Collapse
Affiliation(s)
- Khiena Z. Brainina
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
- Department of Analytical Chemistry, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia
| | - Maria A. Bukharinova
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
| | - Natalia Yu. Stozhko
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
- Correspondence:
| | - Sergey V. Sokolkov
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
| | - Aleksey V. Tarasov
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
| | - Marina B. Vidrevich
- Department of Physics and Chemistry, Research and Innovation Center of Sensor Technologies, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (K.Z.B.); (M.A.B.); (S.V.S.); (A.V.T.); (M.B.V.)
| |
Collapse
|
46
|
Madhavan A, Juneja S, Moulick RG, Bhattacharya J. Growth Kinetics of Gold Nanoparticle Formation from Glycated Hemoglobin. ACS OMEGA 2020; 5:3820-3827. [PMID: 32149208 PMCID: PMC7057321 DOI: 10.1021/acsomega.9b02200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Gold nanostructures have always been a subject of interest to physicists, chemists, and material scientists. Despite the extensive research associated with gold nanoparticles, their actual formation mechanism is still debatable. The nanoscale rearrangements leading to the formation of gold nanostructures of definite size and shape are contradictory. The study presented in here details out a mechanism for gold nanoparticle formation in the presence of a biological template. The kinetics of gold nanostructure formation was studied using glycated hemoglobin as a biological template as well as the reducing agent. Particle formation was studied in a time- and temperature-dependent manner using different biophysical techniques. Here, we report for the first time spontaneous formation of gold nanoflowers which gradually dissociates to form smaller spherical particles. In addition, our experiments conclusively substantiate the existing postulations on gold nanoparticle formation from relatively larger precursor structures of gold and contradict with the popular nucleation growth mechanism.
Collapse
Affiliation(s)
- Ashwathi
Asha Madhavan
- School
of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Subhavna Juneja
- School
of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ranjita Ghosh Moulick
- Amity
Institute of Integrative Sciences and Health, Amity University Gurgaon, Panchgaon, Haryana 122413, India
| | - Jaydeep Bhattacharya
- School
of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
47
|
Park SY, Cui Z, Kim B, Park G, Choi YW. Treatment with Gold Nanoparticles Using Cudrania tricuspidata Root Extract Induced Downregulation of MMP-2/-9 and PLD1 and Inhibited the Invasiveness of Human U87 Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21041282. [PMID: 32074974 PMCID: PMC7072962 DOI: 10.3390/ijms21041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to elucidate the anti-invasive effects of Cudrania tricuspidata root-gold nanoparticles (CTR-GNPs) using glioblastoma cells. We demonstrated the rapid synthesis of CTR-GNPs using UV-vis spectra. The surface morphology, crystallinity, reduction, capsulation, and stabilization of CTR-GNPs were analyzed using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, CTR-GNPs displayed excellent photocatalytic activity as shown by the photo-degradation of methylene blue and rhodamine B. Cell migration and invasion assays with human glioblastoma cells were performed to investigate the anti-invasive effect of CTR-GNPs on U87 cells that were treated with phorbol 12-myristate 13-acetate. The results show that CTR-GNPs can significantly inhibit both basal and phorbol 12-myristate 13-acetate (PMA)-induced migration and invasion ability. Importantly, treatment with CTR-GNPs significantly decreased the levels of metalloproteinase (MMP)-2/-9 and phospholipase D1 (PLD1) and protein but not PLD2, which is involved in the modulation of migration and the invasion of glioblastoma cells. These results present a novel mechanism showing that CTR-GNPs can attenuate the migration and invasion of glioblastoma cells induced by PMA through transcriptional and translational regulation of MMP-2/-9 and PLD1. Taken together, our results suggest that CTR-GNPs might be an excellent therapeutic alternative for wide range of glioblastomas.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| | - Zhengwei Cui
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
| | - Beomjin Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan 609-735, Korea;
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| |
Collapse
|
48
|
Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int J Nanomedicine 2020; 15:275-300. [PMID: 32021180 PMCID: PMC6970630 DOI: 10.2147/ijn.s233789] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
Collapse
Affiliation(s)
- Kar Xin Lee
- Department of Environmental Engineering and Green Technology, Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur54100, Malaysia
| | - Kamyar Shameli
- Department of Environmental Engineering and Green Technology, Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur54100, Malaysia
| | - Yen Pin Yew
- Department of Environmental Engineering and Green Technology, Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur54100, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway47500, Selangor Darul Ehsan, Malaysia
| | - Hossein Jahangirian
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA
| |
Collapse
|
49
|
Aminul Haque M, Shamim Hossain M, Akanda MR, Haque MA, Naher S. Procedure Optimization ofLimonia acidissimaLeaf Extraction and Silver Nanoparticle Synthesis for Prominent Antibacterial Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201904019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Aminul Haque
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| | | | | | - Md. Aminul Haque
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| | - Shamsun Naher
- Department of ChemistryJagannath University Dhaka- 1100 Bangladesh
| |
Collapse
|
50
|
Karimzadeh K, Elham sharifi, Bakhshi N, Ramzanpoor M. Biogenic silver nanoparticles using Oxalis corniculata characterization and their clinical implications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|