1
|
Lee Y, Lee SW, Yun JK, Han SY, Choi CY. Changes in the distribution of the tear film lipid layer after intensive pulsed light combined with meibomian gland expression in patients with meibomian gland dysfunction. PLoS One 2025; 20:e0316935. [PMID: 40019876 PMCID: PMC11870382 DOI: 10.1371/journal.pone.0316935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/02/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE This study aimed to investigate changes in dry eye disease (DED) parameters and tear film lipid layer distribution after intensive pulse light (IPL) combined with meibomian gland expression (MGX) in patients with meibomian gland dysfunction (MGD). METHODS This retrospective study included 218 patients diagnosed with MGD who underwent IPL combined with MGX. Various DED parameters, including tear film lipid layer thickness (LLT), were measured using a Placido disc tear film analyzer and slit lamp. Inferior corneal images were quantified and divided into upper, lower, nasal, and temporal quadrants, with further subdivision into six parts from top to bottom using Python. RESULTS The ocular surface disease index, meibomian gland expressibility, and quality scores significantly improved after three treatment sessions. Slit-lamp-measured DED parameters also improved, excluding the fluorescein-stained tear meniscus height. Redness in the nasal limbal and bulbar conjunctivae significantly decreased. The mean LLT tended to increase after treatment. LLT in the upper half of the images, but not in the lower half, increased significantly, with the difference in LLT between the two halves decreasing significantly from 34.46 ± 15.73 to 30.27 ± 14.63 nm (p = 0.031). When the vertical distribution was analyzed by further subdivision into six equal parts from top to bottom, the average difference in LLT decreased in the uppermost segment after treatment. CONCLUSION IPL combined with MGX reduced the vertical distribution of lipids in patients with MGD by reducing lower tear film lipid layer stasis. Thus, the Placido disc tear film analyzer is a useful tool for analyzing lipid layer distribution in MGD.
Collapse
Affiliation(s)
- Yongwoo Lee
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- Department of Ophthalmology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Sung Woo Lee
- Global Leadership College, Yonsei University, Seoul, Republic of Korea
- Snow Subsidiary Company, Naver Corporation, Seongnam, Republic of Korea
| | - Ji Kyu Yun
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - So Young Han
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chul Young Choi
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Iqbal F, Stapleton F, Masoudi S, Papas EB, Tan J. Meibomian Gland Shortening Is Associated With Altered Meibum Composition. Invest Ophthalmol Vis Sci 2024; 65:49. [PMID: 39083311 PMCID: PMC11290566 DOI: 10.1167/iovs.65.8.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose The purpose of this study was to investigate differences in the composition of meibum extracted from human meibomian glands displaying different morphological characteristics. Methods Adult participants with evidence of meibomian gland shortening were enrolled. Glands were observed using infrared meibography, and meibum was collected from one short and one long gland from the lower eyelid of the same eye. Total protein concentration was evaluated using the detergent compatible (DC) protein assay and lipid analysis was performed using liquid chromatography mass spectrometry. Results Fifteen participants (8 women and 7 men) completed the study (mean age = 34.7 ± 7.7 years). The average volume of meibum collected from the short and long glands was 0.02 ± 0.01 and 0.05 ± 0.03 µL, respectively (P = 0.01). Average protein concentration in the short glands was significantly higher compared to the long glands (0.10 ± 0.03 vs. 0.08 ± 0.02 mg/mL, P = 0.01). Among the non-polar lipids, the mole percent of cholesterol esters (CEs; P = 0.02), triacylglycerols (TAGs; P = 0.04), and ceramide (Cer; P = 0.03) was significantly lower in short glands compared with long glands. Among the polar lipids, the mole percent of (O-acyl)-ω-hydroxy fatty acid (OAHFA; P = 0.01) was significantly lower in short glands, whereas phosphatidylcholine (PC; P = 0.02) and sphingomyelin (SM; P = 0.01) were significantly higher in short glands than long glands. Conclusions Meibum composition differed between short and long glands. The lower mole percent of CE, TAG, OAHFA, and Cer and a higher mole percent of PC and SM among short glands may indicate disease activity. This information may clarify the natural history of meibomian gland dysfunction and future targets for therapy.
Collapse
Affiliation(s)
- Fatima Iqbal
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Eric B. Papas
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Jacqueline Tan
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Gary AA, Prislovsky A, Tovar A, Locatelli E, Felix ER, Stephenson D, Chalfant CE, Lai J, Kim C, Mandal N, Galor A. Lipids from ocular meibum and tears may serve as biomarkers for depression and post-traumatic stress disorder. Clin Exp Ophthalmol 2024; 52:516-527. [PMID: 38146655 PMCID: PMC11199378 DOI: 10.1111/ceo.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND There is a need to develop biomarkers for diagnosis and prediction of treatment responses in depression and post-traumatic stress disorder (PTSD). METHODS Cross-sectional study examining correlations between tear inflammatory proteins, meibum and tear sphingolipids, and symptoms of depression and PTSD-associated anxiety. Ninety individuals filled depression (Patient Health Questionnaire 9, PHQ-9) and PTSD-associated anxiety (PTSD Checklist-Military Version, PCL-M) questionnaires. In 40 patients, a multiplex assay system was used to quantify 23 inflammatory proteins in tears. In a separate group of 50 individuals, liquid chromatography-mass spectrometry was performed on meibum and tears to quantify 34 species of sphingolipids, encompassing ceramides, monohexosyl ceramides and sphingomyelins. RESULTS The mean age of the population was 59.4 ± 11.0 years; 89.0% self-identified as male, 34.4% as White, 64.4% as Black, and 16.7% as Hispanic. The mean PHQ-9 score was 11.1 ± 7.6, and the mean PCL-M score was 44.3 ± 19.1. Symptoms of depression and PTSD-associated anxiety were highly correlated (ρ =0.75, p < 0.001). Both PHQ9 and PCL-M scores negatively correlated with multiple sphingolipid species in meibum and tears. In multivariable models, meibum Monohexosyl Ceramide 26:0 (pmol), tear Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 16:0 (mol%), and tear Ceramide 26:1 (mol%) remained associated with depression and meibum Monohexosyl Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 26:0 (pmol), tear Sphingomyelin 20:0 (mol%), and tear Sphingosine-1-Phosphate (mol%) remained associated with PTSD-associated anxiety. CONCLUSIONS Certain meibum and tear sphingolipid species were related to mental health indices. These interactions present opportunities for innovative diagnostic and therapeutic approaches for mental health disorders.
Collapse
Affiliation(s)
- Ashlyn A. Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Arianna Tovar
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Elyana Locatelli
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Department of Physical Medicine & Rehabilitation, University of Miami, Miami, FL, USA
| | - Daniel Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James Lai
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Colin Kim
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nawajes Mandal
- Memphis VA Medical Center, Memphis, TN, USA
- Depts. of Ophthalmology, Anatomy and Neurobiology and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Hamilton Eye Institute, Memphis, TN, USA
| | - Anat Galor
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Mondal K, Del Mar NA, Gary AA, Grambergs RC, Yousuf M, Tahia F, Stephenson B, Stephenson DJ, Chalfant CE, Reiner A, Mandal N. Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases. Lipids Health Dis 2024; 23:200. [PMID: 38937745 PMCID: PMC11209960 DOI: 10.1186/s12944-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Molecular Diagnostics Laboratory, Department of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, Kolkata, WB, 700 063, India
| | - Nobel A Del Mar
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Ashlyn A Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard C Grambergs
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Mohd Yousuf
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Faiza Tahia
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Benjamin Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Research Service, Richmond VA Medical Center, Richmond, VA, 23298, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
5
|
Garcia-Queiruga J, Pena-Verdeal H, Sabucedo-Villamarin B, Paz-Tarrio M, Guitian-Fernandez E, Garcia-Resua C, Yebra-Pimentel E, Giraldez MJ. Meibum Lipidomic Analysis in Evaporative Dry Eye Subjects. Int J Mol Sci 2024; 25:4782. [PMID: 38731998 PMCID: PMC11083861 DOI: 10.3390/ijms25094782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Meibomian Glands (MG) are sebaceous glands responsible for the production of meibum, the main component of the Tear Film Lipid Layer (TFLL). The TFLL facilitates the spread of the tear film over the ocular surface, provides stability and reduces tear evaporation. Alterations in meibum composition lead to different ocular alterations like Meibomian Gland Dysfunction (MGD) and subsequent Evaporative Dry Eye (EDE). The aim of the present study was to investigate the composition and abundance of meibum lipids and their relationship with eyelid margin abnormalities, lipid layer patterns and MG status. The study utilizes a lipidomic approach to identify and quantify lipids in meibum samples using an Elute UHPLC system. This system considered all four dimensions (mass/charge, retention time, ion mobility and intensity) to provide the accurate identification of lipid species. Samples were categorized as healthy or low/no signs of alteration (group 1) or severe signs of alteration or EDE/MGD (group 2). The current investigation found differences in Variable Importance in Projection lipid abundance between both groups for the MGD signs studied. Changes in meibum composition occur and are related to higher scores in eyelid margin hyperaemia, eyelid margin irregularity, MG orifice plugging, MG loss and lipid layer pattern.
Collapse
Affiliation(s)
- Jacobo Garcia-Queiruga
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
- AC-24 Optometry, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana, 15701 Santiago de Compostela, Spain
| | - Hugo Pena-Verdeal
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
- AC-24 Optometry, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana, 15701 Santiago de Compostela, Spain
| | - Belen Sabucedo-Villamarin
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
| | - Monica Paz-Tarrio
- Mass Spectrometry and Proteomic Unit, Área de Infraestruturas de Investigación, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (M.P.-T.); (E.G.-F.)
| | - Esteban Guitian-Fernandez
- Mass Spectrometry and Proteomic Unit, Área de Infraestruturas de Investigación, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (M.P.-T.); (E.G.-F.)
| | - Carlos Garcia-Resua
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
- AC-24 Optometry, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana, 15701 Santiago de Compostela, Spain
| | - Eva Yebra-Pimentel
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
- AC-24 Optometry, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana, 15701 Santiago de Compostela, Spain
| | - Maria J. Giraldez
- GI-2092 Optometry, Departamento de Física Aplicada, Facultad de Óptica y Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain; (J.G.-Q.); (H.P.-V.); (B.S.-V.); (C.G.-R.); (E.Y.-P.)
- AC-24 Optometry, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana, 15701 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Tian L, Guo Y, Wang S, Li Z, Wang N, Jie Y. Efficacy of far infrared functional glasses in the treatment of meibomian gland dysfunction-related dry eye. MedComm (Beijing) 2024; 5:e507. [PMID: 38525107 PMCID: PMC10959456 DOI: 10.1002/mco2.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
Meibomian gland dysfunction (MGD)-related dry eye disease (DED) is a significant subtype of DED. In this research, we investigate the effectiveness of far infrared (FIR) functional glasses in the treatment of MGD-related DED. According to the TFO DEWS II diagnostic criteria, 61 eyes with MGD-related DED were included. All participants wore functional FIR glasses throughout the day for a period of 4 weeks and were followed up three times during the treatment. All subjects were followed up thoroughly in accordance with the DED clinical examination procedure. Ultimately, the treatment's impact was assessed. We found the Visual Analogue Scale and Ocular Surface Disease Index scores after FIR treatment were significantly lower than the baseline values (p < 0.05). Compared with the baseline, fluorescein tear breakup time and corneal fluorescein staining score after FIR treatment were significantly improved (p < 0.05). The eyelid margin signs, meibum quality, and meibomian gland expressibility after the 4-week treatment were significantly better than those at baseline (p < 0.05). We can see that wearing the FIR functional glasses significantly relieves the symptoms and signs of patients. We believe FIR therapy could be considered as a new method of MGD-related DED.
Collapse
Affiliation(s)
- Lei Tian
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang University and Capital Medical UniversityBeijingChina
| | - Yihan Guo
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Silu Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Zhongying Li
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Ningli Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Ying Jie
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| |
Collapse
|
7
|
Mandal N, Stentz F, Asuzu PC, Nyenwe E, Wan J, Dagogo-Jack S. Plasma Sphingolipid Profile of Healthy Black and White Adults Differs Based on Their Parental History of Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:740-749. [PMID: 37804534 PMCID: PMC10876402 DOI: 10.1210/clinem/dgad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
CONTEXT Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.
Collapse
Affiliation(s)
- Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Chiamaka Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer Nyenwe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Muttuvelu DV, Cehofski LJ, Holtz J, Utheim TP, Chen X, Vorum H, Heegaard S, Rasmussen MLR, Khan AM, Abduljabar AB, Honoré B. Meibomian Gland Dysfunction Is Associated with Low Levels of Immunoglobulin Chains and Cystatin-SN. Int J Mol Sci 2023; 24:15115. [PMID: 37894795 PMCID: PMC10606780 DOI: 10.3390/ijms242015115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Meibomian gland dysfunction (MGD) is a highly prevalent condition and the most common cause of evaporative dry eye disease. Studying the proteome of MGD can result in important advances in the management of the condition. Here, we collected tear film samples from treatment naïve patients with MGD (n = 10) and age-matched controls (n = 11) with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography-tandem mass spectrometry. The proteins were considered differentially expressed if p < 0.05. A total of 88 proteins were significantly regulated. The largest change was observed in cystatin-SN, which was downregulated in MGD and correlated negatively with tear meniscus height. The downregulation of cystatin-SN was confirmed with targeted mass spectrometry by single reaction monitoring (SRM). Eighteen immunoglobulin components involved in B cell activation, phagocytosis, and complement activation were downregulated in MGD including Ig alpha-1 chain C region, immunoglobulin J chain, immunoglobulin heavy variable 3-15, and Ig mu chain C region. The changes in cystatin-SN and immunoglobulin chains are likely to result from the inflammatory changes related to tear film evaporation, and future studies may assess their association with the meibum quality.
Collapse
Affiliation(s)
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Jeppe Holtz
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 5000 Oslo, Norway; (T.P.U.); (X.C.)
- Norwegian Dry Eye Clinic, 0366 Oslo, Norway
| | - Xiangjun Chen
- Department of Medical Biochemistry, Oslo University Hospital, 5000 Oslo, Norway; (T.P.U.); (X.C.)
- Norwegian Dry Eye Clinic, 0366 Oslo, Norway
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (S.H.)
| | | | - Asif Manzoor Khan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.M.K.); (A.B.A.)
| | | | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.M.K.); (A.B.A.)
| |
Collapse
|
9
|
Zhao W, Yang J, Liao Y, Yang B, Lin S, Liu R, Liang L. Alteration of Meibum Lipidomics Profiling in Patients With Chronic Ocular Graft-Versus-Host Disease. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 37733365 PMCID: PMC10517420 DOI: 10.1167/iovs.64.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose To investigate the characteristics of the lipid profiling in meibum of patients with chronic ocular graft-versus-host disease (coGVHD) and to detect the potential influence of anti-inflammatory therapy on these differential lipids. Methods This cross-sectional study included 25 coGVHD patients and 13 non-coGVHD after allogeneic hematopoietic stem cell transplantation. Among those with coGVHD, 14 had prior topical treatment (coGVHD(T)), and 11 did not (coGVHD(WT)). All participants completed ocular surface disease index questionnaire and received slit lamp examination, Schirmer's test without anesthesia, ocular surface interferometer, and meibography. Binocular meibum was collected and pooled for lipidomic analysis by liquid chromatography-mass spectrometry. Results One hundred and twenty differential lipid species were found among the three groups (96 of coGVHD(WT) vs. non-coGVHD, 78 of coGVHD(WT) vs. coGVHD(T), and three of non-coGVHD vs. coGVHD(T)). Compared with non-coGVHD group, coGVHD(WT) group had a significant abnormality of meibum composition, showing a significant decrease in glycerolipids, and an increase in glycerophospholipids and sphingolipids. Similar changes were also observed when coGVHD(WT) versus coGVHD(T). CoGVHD severity was negatively associated with mono-unsaturated triglycerides (TG), (β = -214.7; 95% CI, -363.9 to -65.5; P = 0.006) and poly-unsaturated TG (β = -4019.9; 95% CI, -7758.1 to -281.6; P = 0.036). Intensity of immunosuppression was negatively associated with mono-unsaturated TG (β = -162.4; 95% CI, -268.6 to -56.2; P = 0.004) and positively associated with phosphatidylcholine (β = 332.0; 95% CI, 19.2-644.8; P = 0.038). Conclusions Altered meibum in coGVHD is characterized by a decrease of glycerolipids and an increase of glycerophospholipids and may be significantly reversed by topical anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wenxin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yinglin Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shujiao Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ren Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
10
|
GAO Y, LIAN H, DENG S, DUAN Y, ZHANG P, WANG Z, ZHANG Y. Dry eye disease due to meibomian gland dysfunction treated with Pinggan Yuyin Qingre formula: a stratified randomized controlled trial. J TRADIT CHIN MED 2023; 43:770-779. [PMID: 37454262 PMCID: PMC10320449 DOI: 10.19852/j.cnki.jtcm.20230526.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/04/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To observe the clinical efficacy on improving the quality of meibum in patients suffer from dry eye disease (DED) due to meibomian gland dysfunction (MGD) with hyperactivity ofdue todeficiency pattern after being treated with Pinggan Yuyin Qingre formula (, PGYYQR). METHODS Totally 120 patients who met the inclusion criteria were included and stratified into three levels according to the level of MGD (1-3), and patients in each level was randomly allocated into the treatment group and control group according to a 1∶1 ratio. Both groups were treated with sodium hyaluronate eye drops, and the treatment group was also given PGYYQR granules. Both groups were treated continuously for eight weeks. The score of the properties of meibomian gland (MG) secretion, the score of the palpebral margins, the average noninvasive tear breakup time (NITBUTav), lipid layer thickness (LLT), and Traditional Chinese Medicine (TCM) syndrome efficacy were compared between the two groups after treatment. RESULTS A total of 116 cases were included in the statistical analysis. The differences were statistically significant in the score of the properties of MG secretion, the score of the palpebral margins, and NITBUTav between the two groups after treatment, the treatment group was superior to the control group; there was no evidence of a difference in LLT. In terms of TCM syndrome efficacy, the total effective rate was 84.7% in the treatment group and 50.9% in the control group, with the statistically significant difference. None of the included cases had adverse reactions. CONCLUSIONS PGYYQR is effective in improving the quality of meibum, and the tear film stability which thereby relieving the ocular symptoms in MGD-related DED patients with hyperactivity ofdue todeficiency pattern.
Collapse
Affiliation(s)
- Yinli GAO
- 1 Department of Traditional Chinese Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Haihong LIAN
- 1 Department of Traditional Chinese Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Shijing DENG
- 2 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100005, China
| | - Ying DUAN
- 1 Department of Traditional Chinese Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Peng ZHANG
- 1 Department of Traditional Chinese Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhiqun WANG
- 3 Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yang ZHANG
- 3 Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
11
|
Amano S, Shimazaki J, Yokoi N, Hori Y, Arita R. Meibomian Gland Dysfunction Clinical Practice Guidelines. Jpn J Ophthalmol 2023; 67:448-539. [PMID: 37351738 DOI: 10.1007/s10384-023-00995-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/24/2023]
Affiliation(s)
- Shiro Amano
- Ochanomizu Inoue Eye Clinic, 4-3 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan
| | | |
Collapse
|
12
|
Chester T, Garg S(S, Johnston J, Ayers B, Gupta P. How Can We Best Diagnose Severity Levels of Dry Eye Disease: Current Perspectives. Clin Ophthalmol 2023; 17:1587-1604. [PMID: 37304329 PMCID: PMC10254642 DOI: 10.2147/opth.s388289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Dry eye disease (DED) is a common ocular condition, but the diagnosis relative to other ocular conditions and the evaluation of severity of the condition has often been difficult. This challenge can be due to clinical signs and symptoms not always correlating with each other. An understanding of the various components which create the condition, as well as the diagnostic measures used to evaluate these components, is useful to the clinician working with DED patients. This review paper will discuss traditional diagnostic options, diagnostic imaging, and Advanced Point of Care testing capabilities to determine the severity level of dry eye disease more adequately.
Collapse
Affiliation(s)
| | - Sumit (Sam) Garg
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California-Irvine, Irvine, CA, USA
| | - Josh Johnston
- Georgia Eye Partners, Atlanta, GA, USA
- Southern College of Optometry, Memphis, TN, USA
| | - Brandon Ayers
- Ophthalmic Partners PC, Cornea Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Preeya Gupta
- Triangle Eye Consultants, Raleigh, NC, USA
- Department of Ophthalmology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
13
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
14
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:2914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
15
|
Sphingolipidomics of Bovine Pink Eye: A Pilot Study. Vet Sci 2022; 9:vetsci9080388. [PMID: 36006303 PMCID: PMC9414827 DOI: 10.3390/vetsci9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The liquid tear film, which protects the eye from the environment, is a dynamic fluid containing a large number of complex lipids. Disruptions of these lipids by infections can result in damage to the eye and ultimately blindness. In this study we characterized various lipid subfamilies present in the tear film of the eye and the effect of pink eye infections in cattle. Our findings demonstrate that the pink eye infections dramatically decrease the levels of lipids in the tear film covering the eye and suggest that this is a major factor in the development of blindness in infected cattle. Abstract Sphingolipids are essential structural components of tear film that protect the surface of the eye from dehydration. A detailed analysis of the effects of pink eye infections on the sphingolipidome in cattle has not previously been undertaken. We recently published a new assay utilizing high-resolution mass spectrometric monitoring of the chloride adducts of sphingolipids that provides enhanced sensitivity and specificity. Utilizing this assay, we monitored decreases in the levels of tear film ceramides with short-chain fatty acids, hydroxy-ceramides, phytoceramides, and hydroxy-phytoceramides. Dihydroceramide levels were unaltered and increased levels of ceramides with long-chain fatty acids (24:0 and 24:1) were monitored in cattle with pink eye. The data from this pilot study (n = 8 controls and 8 pink eye) demonstrate a major disruption of the lipid tear film layer in pink eye disease, that can result in severe eye irritation and damage.
Collapse
|
16
|
Sanchez V, Galor A, Jensen K, Mondal K, Mandal N. Relationships between ocular surface sphingomyelinases, Meibum and Tear Sphingolipids, and clinical parameters of meibomian gland dysfunction. Ocul Surf 2022; 25:101-107. [PMID: 35714913 DOI: 10.1016/j.jtos.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Sphingolipids (SPL) are a class of lipid molecules that play important functional and structural roles in our body and are a component of meibum. Sphingomyelinases (SMases) are key enzymes in sphingolipid metabolism that hydrolyze sphingomyelin (SM) and generate ceramide (Cer). The purpose of this study was to examine relationships between ocular surface SMases, SPL composition, and parameters of Meibomian gland dysfunction (MGD). METHODS Individuals were grouped by meibum quality (n = 25 with poor-quality, MGD, and n = 25 with good-quality, control). Meibum and tears were analyzed with LC-MS to quantify SPL classes: Cer, Hexosyl-Ceramide (Hex-Cer), SM, Sphingosine (Sph), and sphingosine 1-phosphate (S1P). SMase activity in tears were quantified using a commercially available 'SMase assay'. Statistical analysis included multiple linear regression analyses to assess the impact of SMase activity on lipid composition, as well as ocular surface symptoms and signs of MGD. RESULTS Demographic characteristics were similar between the two groups. nSMase and aSMase levels were lower in the poor vs good quality group. aSMase activity in tears negatively correlated with SM in meibum and tears and positively with Sph in meibum and S1P in tears. Lower SMase activity were associated with signs of MGD, most notably Meibomian gland dropout. CONCLUSION This study suggests that individuals with MGD have reduced enzymatic activity of SMases in tears. Specifically, individuals with poor vs good meibum quality were noted to have alterations in SMase activity and SPL composition of meibum and tears which may reflect deviations from normal lipid metabolism in individuals with MGD.
Collapse
Affiliation(s)
- Victor Sanchez
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Katherine Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
17
|
Mondal K, Porter H, Cole J, Pandya HK, Basu SK, Khanam S, Chiu CY, Shah V, Stephenson DJ, Chalfant CE, Mandal N. Hydroxychloroquine Causes Early Inner Retinal Toxicity and Affects Autophagosome-Lysosomal Pathway and Sphingolipid Metabolism in the Retina. Mol Neurobiol 2022; 59:3873-3887. [PMID: 35426574 PMCID: PMC10259418 DOI: 10.1007/s12035-022-02825-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 01/21/2023]
Abstract
Hydroxychloroquine (HCQ) is an anti-malarial drug but also widely used to treat autoimmune diseases like arthritis and lupus. Although there have been multiple reports of the adverse effect of prolonged HCQ usage on the outer retina, leading to bull's-eye maculopathy, the effect of HCQ toxicity on the inner retina as well as on overall visual functions has not been explored in detail. Furthermore, lack of an established animal model of HCQ toxicity hinders our understanding of the underlying molecular mechanisms. Here, using a small clinical study, we confirmed the effect of HCQ toxicity on the inner retina, in particular the reduction in central inner retinal thickness, and established a mouse model of chronic HCQ toxicity that recapitulates the effects observed in human retina. Using the mouse model, we demonstrated that chronic HCQ toxicity results in loss of inner retinal neurons and retinal ganglion cells (RGC) and compromises visual functions. We further established that HCQ treatment prevents autophagosome-lysosome fusion and alters the sphingolipid homeostasis in mouse retina. Our results affirm the notion that HCQ treatment causes early damage to the inner retina and affects visual functions before leading to characteristic toxicity in the macular region of the outer retina, 'bull's-eye maculopathy.' We also provide insights into the underlying molecular mechanisms of HCQ retinal toxicity that may involve autophagy-lysosomal defects and alterations in sphingolipid metabolism.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hunter Porter
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Jerome Cole
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hemang K Pandya
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Sandip K Basu
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chi-Yang Chiu
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Vinay Shah
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Nawajes Mandal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
18
|
Galor A, Sanchez V, Jensen A, Burton M, Maus K, Stephenson D, Chalfant C, Mandal N. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul Surf 2022; 23:87-95. [PMID: 34861426 PMCID: PMC8792295 DOI: 10.1016/j.jtos.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Sphingolipids (SPL) play a role in cell signaling, inflammation, and apoptosis. The purpose of this study was to examine meibum and tear SPL composition in individuals with poor versus good meibum quality. METHODS Individuals were grouped by meibum quality (n = 25 with poor quality, case group and n = 25 with good quality, control group). Meibum and tears were analyzed with liquid chromatography-mass spectrometry (LC-MS) to quantify SPL classes. Semiquantitative and relative composition (mole percent) of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph), and sphingosine 1-phosphate (S1P) were compared between groups. RESULTS Demographic characteristics were similar between the two groups. Overall, individuals with poor meibum quality had more SPL pmole in meibum and tears than controls. Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer, Hex-Cer, and Sph and more SM compared to individuals with good quality meibum. This pattern was not reproduced in tears as individuals with poor meibum quality had SPL composed of a similar amount of Cer, but more Hex-Cer, Sph and SM compared to controls. In meibum, SPL pmole and relative composition most strongly correlated with MG metrics while in tears, SPL pmole and relative composition most strongly correlated with tear production. SPL in both compartments, specifically Cer pmole in meibum and S1P% in tears, correlated with DE symptoms. CONCLUSION SPL composition differs in meibum and tears in patients with poor vs good meibum quality. These findings may be translated into therapeutic targets for disease.
Collapse
Affiliation(s)
- Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125,Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
| | - Victor Sanchez
- New York University Grossman School of Medicine, New York, NY 10016
| | - Andrew Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| | - Madeline Burton
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163
| | - Kenneth Maus
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | | | - Charles Chalfant
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620,The Moffitt Cancer Center, Tampa, FL 33620,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163,Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN 38163,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104.,Corresponding Author: Nawajes Mandal, PhD, 930 Madison Avenue, Suite 718, Memphis, TN 38163;
| |
Collapse
|
19
|
Gao H, Chen H, Xie HT, Xu KK, Shi BJ, Huang YK. Changes in Meibum Lipid Composition With Ocular Demodex Infestation. Transl Vis Sci Technol 2021; 10:6. [PMID: 34874449 PMCID: PMC8662575 DOI: 10.1167/tvst.10.14.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose The purpose of this study was to understand the impact of Demodex infection in the lipid component of meibum in patients. Methods The meibum samples were collected from four groups of subjects: (1) Demodex-negative with non-MGD (D−M−; n = 10); (2) Demodex-positive with non-MGD (D+M−; n = 10); (3) Demodex-negative with MGD (D−M+; n = 10); and (4) Demodex-positive with MGD (D+M+; n = 10). A liquid chromatography–mass spectrometry (LC-MS) system consisting of ultra-performance liquid chromatography and a Q Exactive high-resolution mass spectrometer was used for lipids separation and detection. Results Compared with the D−M− group, the D+M− group had lower levels of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) and higher levels of phosphatidylethanolamines (PEs). Compared with the D−M+ group, the levels of sphingomyelins (SMs) and PCs in the D+M+ group were decreased, whereas the levels of (O-acyl)-ω-hydroxy fatty acids (OAHFAs), ceramides (CERs), LPCs, and diacylglycerols (DGs) were significantly increased. Triacylglycerols (TGs), DGs, CERs, and OAHFAs were decreased in D−M+ group, whereas levels of PEs, phosphatidylinositols, and phosphatidylglycerols were increased in meibum obtained from the D−M+ group compared with those in the D−M− group. TGs, SMs, CERs, and PEs were decreased in the D+M+ group, whereas levels of LPCs, LPEs, PCs, and PEs were increased in meibum from the D−M+ group compared with those in the D+M− group. Conclusions To the best of our knowledge, this is the first study to assess the changes in meibum from patients with ocular Demodex infestation. The significant increase of OAHFAs in the Demodex-positive group suggest that OAHFAs may be associated with the progress of ocular Demodex infections. Translational Relevance OAHFAs could be a potential new therapeutic target for ocular Demodex infestation.
Collapse
Affiliation(s)
- Hui Gao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Hua Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang-Kang Xu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Jie Shi
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Kan Huang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: Current progress, challenges, and future directions. Ocul Surf 2021; 23:96-113. [PMID: 34843998 DOI: 10.1016/j.jtos.2021.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
The widely used immortalised human meibomian gland epithelia cell (iHMGEC) line has made possible extensive studies of the biology and pathophysiology of meibomian glands (MG). Tissue culture protocols for iHMGEC have been revised and modified to optimise the growth conditions for cell differentiation and lipid accumulation. iHMGEC proliferate in serum-free medium but require serum or other appropriate exogenous factors to differentiate. Several supplements can enhance differentiation and neutral lipid accumulation in iHMGEC grown in serum-containing medium. In serum-free medium, rosiglitazone, a peroxisome proliferator activator receptor-γ (PPARγ) agonist, is reported to induce iHMGEC differentiation, neutral lipid accumulation and expression of key biomarkers of differentiation. iHMGEC cultured in serum-containing medium under hypoxia or with azithromycin increases DNAse 2 activity, a biomarker of terminal differentiation in sebocytes. The production of lipids with composition similar to meibum has not been observed in vitro and this remains a major challenge for iHMGEC culture. Innovative methodologies such as 3D ex vivo culture of MG and generation of MG organoids from stem cells are important for further developing a model that more closely mimics the in vivo biology of human MG and to facilitate the next generation of studies of MG disease and dry eye.
Collapse
Affiliation(s)
- Minh Anh Thu Phan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| |
Collapse
|
21
|
Mondal K, Takahashi H, Cole J, Del Mar NA, Li C, Stephenson DJ, Allegood J, Cowart LA, Chalfant CE, Reiner A, Mandal N. Systemic Elevation of n-3 Polyunsaturated Fatty Acids (n-3-PUFA) Is Associated with Protection against Visual, Motor, and Emotional Deficits in Mice following Closed-Head Mild Traumatic Brain Injury. Mol Neurobiol 2021; 58:5564-5580. [PMID: 34365584 PMCID: PMC8655834 DOI: 10.1007/s12035-021-02501-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Haruka Takahashi
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Animal Science, Iwate University, Morioka, Japan
| | - Jerome Cole
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
22
|
Ji C, Guo Y, Liu Y, Xu S, Zhao S, Luo X, Qiu F, Huang R, Xu Q, Zheng R, Xia M, Zhao Y, Ren J, Qiu Y. Inhibition of ceramide de novo synthesis ameliorates meibomian gland dysfunction induced by SCD1 deficiency. Ocul Surf 2021; 22:230-241. [PMID: 34474170 DOI: 10.1016/j.jtos.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
High expression of stearoyl-CoA desaturase-1 (SCD1) in meibomian glands produces monounsaturated fatty acids that allow the biosynthesis of glycerolipids and other wax-esters but only the low production of sphingolipids. Here, we found that SCD1 deficiency in mice induces the spill of free fatty acids into a parallel pathway for ceramide biosynthesis, resulting in severe meibomian gland dysfunction associated with meibum accumulation in duct lumen and orifices and subsequent atrophy and loss of acinar cells. Genetic and pharmacological inhibition of SCD1 in mice resulted in meibomian gland pathological phenotypes, including local lipid microenvironment alterations, reduced normal cellular differentiation, increased keratinization, inflammatory cell infiltration, cell apoptosis, and mitochondrial dysfunction. However, inhibition of serine palmitoyltransferase, the initial enzyme in ceramide biosynthesis, improved meibomian gland metabolism and morphology in SCD1-deficient mice, resulting in normal cell differentiation and reduced inflammation infiltration, cell apoptosis, and keratinization. These results indicate that elevated levels of endogenous ceramides are a sign of MGD and suggest that inhibition of ceramide de novo biosynthesis could be a new clinical approach to treating MGD.
Collapse
Affiliation(s)
- Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yuli Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Sennan Xu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Sichen Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Luo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Funan Qiu
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Rui Huang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Qingyan Xu
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Ruihe Zheng
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Miao Xia
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yun Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
23
|
Wang H, Zhou Q, Wan L, Guo M, Chen C, Xue J, Yang L, Xie L. Lipidomic analysis of meibomian glands from type-1 diabetes mouse model and preliminary studies of potential mechanism. Exp Eye Res 2021; 210:108710. [PMID: 34339682 DOI: 10.1016/j.exer.2021.108710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a significant risk factor for meibomian gland dysfunction (MGD), but its mechanism is poorly understood. The main function of the meibomian glands (MGs) is to synthesize, store, and secrete lipids. In this study, we found that the amount of lipids in the meibomian acini in STZ-induced type 1 diabetic mice decreased, and the lipid droplets became larger and irregular. In all, 31 lipid subclasses were identified in the mouse MGs, which contained 1378 lipid species in total through lipidomics analysis based on LC-MS/MS. Diabetes caused a significant increase in the content of ceramides (Cer) in the MGs but a significant decrease in the ration of sphingomyelin to ceramides (SM/Cer). The quantity of meibocytes in diabetic mice was dramatically decreased, and the proliferation activity was alleviated, which may be associated with cell cycle arrest caused by diabetes-induced abnormal Cer metabolism in MGs. We found an increase in macrophage and neutrophils infiltration in the diabetic MGs, which may be related to the significant reduction of AcCa in diabetic MGs. Taken together, the results of the present study demonstrated that diabetes induced disruption of lipid homeostasis in MGs, which may mediate the decreased cell proliferation and increased inflammation caused by diabetes in MGs.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Medicine, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Luqin Wan
- Department of Medicine, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Menglong Guo
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Junfa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
24
|
Hwang JS, Shin YJ. Role of Choline in Ocular Diseases. Int J Mol Sci 2021; 22:4733. [PMID: 33946979 PMCID: PMC8124599 DOI: 10.3390/ijms22094733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.
Collapse
Affiliation(s)
| | - Young-Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea;
| |
Collapse
|
25
|
Zhao F, Zhang D, Ge C, Zhang L, Reinach PS, Tian X, Tao C, Zhao Z, Zhao C, Fu W, Zeng C, Chen W. Metagenomic Profiling of Ocular Surface Microbiome Changes in Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2021; 61:22. [PMID: 32673387 PMCID: PMC7425691 DOI: 10.1167/iovs.61.8.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Ocular surface microbiome changes can affect meibomian gland dysfunction (MGD) development. This study aimed to delineate differences among the microbiome of eyelid skin, conjunctiva, and meibum in healthy controls (HCs) and patients afflicted with MGD. Methods Shotgun metagenomic analysis was used to determine if there are differences between the microbial communities in ocular sites surrounding the meibomian gland in healthy individuals and patients afflicted with MGD. Results The meibum bacterial content of these microbiomes was dissimilar in these two different types of individuals. Almost all of the most significant taxonomic changes in the meibum microbiome of individuals with MGD were also present in their eyelid skin, but not in the conjunctiva. Such site-specific microbe pattern changes accompany increases in the gene expression levels controlling carbohydrate and lipid metabolism. Most of the microbiomes in patients with MGD possess a microbe population capable of metabolizing benzoate. Pathogens known to underlie ocular infection were evident in these individuals. MGD meibum contained an abundance of Campylobacter coli, Campylobacter jejuni, and Enterococcus faecium pathogens, which were almost absent from HCs. Functional annotation indicated that in the microbiomes of MGD meibum their capability to undergo chemotaxis, display immune evasive virulence, and mediate type IV secretion was different than that in the microbiomes of meibum isolated from HCs. Conclusions MGD meibum contains distinct microbiota whose immune evasive virulence is much stronger than that in the HCs. Profiling differences between the meibum microbiome makeup in HCs and patients with MGD characterizes changes of microbial communities associated with the disease status.
Collapse
|
26
|
Butovich IA, Suzuki T. Delineating a novel metabolic high triglycerides-low waxes syndrome that affects lipid homeostasis in meibomian and sebaceous glands. Exp Eye Res 2020; 199:108189. [PMID: 32805264 DOI: 10.1016/j.exer.2020.108189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/12/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Meibomian glands that are embedded in tarsal plates of human eyelids, and sebaceous glands found in the skin, including that of eyelids, are two related types of holocrine glands that produce lipid-rich secretions called meibum and sebum. Pervasive ocular disorders, such as Meibomian gland dysfunction and dry eye, have been linked to changes in the lipid composition of meibum. However, in most described cases the changes were either small, or random, or insufficiently characterized on the molecular level. Here, we present results of comprehensive lipidomic analyses of meibum, tears and sebum of a patient whose secretions were highly abnormal (abnormal meibum, tears and sebum, or AMTS, patient). The lipidomes were characterized on the level of individual lipid species using ultra-high performance liquid chromatography and high resolution mass spectrometry. The major differences between the AMTS patient and normal age- and gender-matched subjects included, among others, severely diminished pools of normal meibomian lipids such as wax esters and cholesteryl esters in meibum and tears, a 2x increase in total cholesteryl esters to wax esters ratio, their skewed molecular profiles, a ~3x increase in free cholesterol to cholesteryl esters ratio, and, most importantly, a 20x to 30x increase in the triglicerides fraction over the norm. Sebum of the AMTS patient was also highly abnormal lacking major wax esters. Notably, the routine blood lipid panel test of the AMTS patient showed no abnormalities. The data imply that the AMTS patient had a severe, previously unreported, metabolic disorder that affected meibogenesis in Meibomian glands and sebogenesis in sebaceous glands. This is, to the best of our knowledge, a first observation of the condition that we have termed High Triglycerides/Low Waxes (HTLW) syndrome.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tomo Suzuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Ophthalmology, Kyoto City Hospital Organization, Kyoto, Japan
| |
Collapse
|
27
|
Sabeti S, Kheirkhah A, Yin J, Dana R. Management of meibomian gland dysfunction: a review. Surv Ophthalmol 2019; 65:205-217. [PMID: 31494111 DOI: 10.1016/j.survophthal.2019.08.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
Abstract
Meibomian gland dysfunction is the leading cause of evaporative dry eye disease and is one of the most common conditions encountered by eye care providers. The disorder is characterized by obstruction of the meibomian gland terminal ducts and/or changes in their glandular secretion, resulting in changes in tear film stability, inflammation, and symptoms of irritation. There is no gold standard treatment for meibomian gland dysfunction, but rather a diversity of options. Conservative measures include warm compresses and lid hygiene, but there is growing interest and need for medical treatments and procedures. Potential medical treatments include antibiotics, nonsteroidal and steroidal anti-inflammatory agents, essential fatty acid supplementation, hormone therapy, and control of Demodex infestation. Procedures include intraductal meibomian gland probing, the use of electronic heating devices, intense pulsed light therapy, and intranasal neurostimulation. We provide an update on meibomian gland dysfunction treatments based on recent studies.
Collapse
Affiliation(s)
- Saama Sabeti
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ahmad Kheirkhah
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jia Yin
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Kloosterboer A, Dermer HI, Galor A. Diagnostic tests in dry eye. EXPERT REVIEW OF OPHTHALMOLOGY 2019; 14:237-246. [PMID: 31649745 PMCID: PMC6812581 DOI: 10.1080/17469899.2019.1657833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Dry Eye (DE) is a multifactorial condition with a variable clinical presentation. This highly prevalent disease has multiple symptoms and signs that often do not correlate with one another. As such, the diagnosis of DE can be challenging to make, and a systematic approach must be taken. AREAS COVERED We review the different methods commonly utilized to evaluate a patient complaining of DE symptoms. Included in this review are clinical examination techniques, point of care tests, and imaging techniques. EXPERT OPINION DE is an umbrella term that encompasses different etiologies and pathophysiological mechanisms. The current definition recognizes tear instability, high osmolarity, inflammation, and neuro-sensory dysfunction as causative entities. The approach to DE begins with a systematic assessment of symptoms and signs, evaluating for both nociceptive and neuropathic sources of symptoms. Future research is needed to develop tests that assess neurosensory status in DE and couple point of care tests with therapeutic algorithms.
Collapse
Affiliation(s)
- Amy Kloosterboer
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | - Anat Galor
- Miami Veterans Administration Medical Center, Miami, Florida, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
29
|
Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:149-167. [PMID: 31562629 DOI: 10.1007/978-3-030-21735-8_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.
Collapse
|
30
|
Inflammatory Ocular Diseases and Sphingolipid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:139-152. [DOI: 10.1007/978-3-030-21162-2_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|