1
|
Wang B, Liang L, Zeng H, Yang X, Zhang R, Deng W, Wang X, Yuan J. Single-Cell RNA Sequencing Revealed Functional Conjunctival Keratinocytes Loss via TGF-β-Wnt/β-Catenin Signaling in Sjögren's Syndrome Related Dry Eye. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 40238113 PMCID: PMC12011132 DOI: 10.1167/iovs.66.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The role of the conjunctiva in the pathophysiology of Sjögren's syndrome (SS) related dry eye disease (DED) remains obscure especially in the view of functional conjunctival epithelia. In order to illustrate effects of conjunctiva in SS, we investigated the interactions between parenchymal cells and immune cells in the conjunctiva with single-cell RNA sequencing technique. Methods Freshly collected conjunctiva from a canonical SS model was prepared for 10 × Genomics single-cell RNA sequencing and T cell receptor (TCR) sequencing. Conjunctiva was collected for Western blot, immunofluorescence, multiplex immunohistochemical (mIHC), and flow cytometry. Phenol red thread test, lissamine staining, and qRT-PCR were applied to evaluate signs of DED. Results DED phenotype was validated in the SS model. Loss of water-secreting keratinocyte was projected in scRNA-seq data and proved by mIHC test in SS mice. The proportion of Lgr4+ basal epithelial cells with poor ability to differentiate into mature keratinocyte increased, and Wnt/β-catenin signaling was upregulated in it under regulation of TGF-β derived from macrophages. Such macrophages promoted angiogenesis through secretion of VEGFA to activate endothelial cells. Immuno-fibroblasts had an increased population, which were implicated in specifically activated T cell chemotaxis. Conclusions In SS conjunctiva, a TGF-β-Wnt/β-catenin axis downregulated the formation of functional keratinocytes accompanied by infiltration of pro-angiogenetic and pro-fibrotic macrophage and pro-inflammatory T cell.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Runze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Wenrui Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jin Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
2
|
Yang X, Zhong X, Lin H, Huang AJW, Reneker LW. Deletion of Fgfr2 in Ductal Basal Epithelium With Tamoxifen Induces Obstructive Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 39546290 DOI: 10.1167/iovs.65.13.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Fibroblast growth factor receptor 2 (Fgfr2) is crucial for the homeostasis of meibomian gland (MG). However, the role of Fgfr2 in MG ductal epithelial progenitors remains to be delineated. Herein, we created a new transgenic mouse model with conditional deletion of Fgfr2 from MG ductal progenitors and investigated the cell-specific role in the pathogenesis of obstructive meibomian gland dysfunction. Methods Peritoneal injection of tamoxifen (TAM) at 50 µg/gm for three consecutive days was performed to induce conditional deletion of Fgfr2 in two-month-old Krt5Fgfr2CKO or Krt5Fgfr2CKO-mTmG mice. Phenotypes of MG after Fgfr2 deletion were monitored by meibography, lipid staining, and immunostaining against keratin-6a in MG whole mounts. Lineage tracing of the Krt5+ progenitors of MG and biomarkers for ductal differentiation and proliferation were also examined by immunostainings. Results The Krt5Fgfr2CKO mice developed extensive ductal occlusion and acinar atrophy at day 10 after TAM administration. Robust thickening of ductal epithelium with abnormal differentiation and proliferation of ductal basal meibocytes were observed in the MGs of Krt5Fgfr2CKO mice. In Krt5Fgfr2CKO-mTmG mice, the Krt5+ progenitors and its progeny were labeled by EGFP after Fgfr2 depletion by TAM with evident expansion of the suprabasal and superficial layers of MG ductal epithelium when compared with the controls. Conclusions Our results substantiated the crucial role of Fgfr2 in homeostasis of the MG ductal epithelium. Deletion of Fgfr2 affects the MG ductal basal progenitors by impacting the differentiation of ductal meibocytes and the maintenance of acinar meibocytes, which are likely the underlying pathogenesis of obstructive MGD.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Lixing W Reneker
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, United States
| |
Collapse
|
3
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
4
|
Beatty CJ, Ruiz-Lozano RE, Quiroga-Garza ME, Perez VL, Jester JV, Saban DR. The Yin and Yang of non-immune and immune responses in meibomian gland dysfunction. Ocul Surf 2024; 32:81-90. [PMID: 38224775 PMCID: PMC11881750 DOI: 10.1016/j.jtos.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Meibomian gland dysfunction (MGD) is a leading cause of dry eye disease and one of the most common ophthalmic conditions encountered in eye clinics worldwide. These holocrine glands are situated in the eyelid, where they produce specialized lipids, or meibum, needed to lubricate the eye surface and slow tear film evaporation - functions which are critical to preserving high-resolution vision. MGD results in tear instability, rapid tear evaporation, changes in local microflora, and dry eye disease, amongst other pathological entities. While studies identifying the mechanisms of MGD have generally focused on gland obstruction, we now know that age is a major risk factor for MGD that is associated with abnormal cell differentiation and renewal. It is also now appreciated that immune-inflammatory disorders, such as certain autoimmune diseases and atopy, may trigger MGD, as demonstrated through a T cell-driven neutrophil response. Here, we independently discuss the underlying roles of gland and immune related factors in MGD, as well as the integration of these two distinct mechanisms into a unified perspective that may aid future studies. From this unique standpoint, we propose a revised model in which glandular dysfunction and immunopathogenic pathways are not primary versus secondary contributors in MGD, but are fluid, interactive, and dynamic, which we likened to the Yin and Yang of MGD.
Collapse
Affiliation(s)
- Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Raul E Ruiz-Lozano
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Manuel E Quiroga-Garza
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Victor L Perez
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| |
Collapse
|
5
|
Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol 2024; 54:e2350582. [PMID: 38279592 DOI: 10.1002/eji.202350582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.
Collapse
Affiliation(s)
- Anna Vaseruk
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| | - Galyna Bila
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| |
Collapse
|
6
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
7
|
Li J, Qin X, Jiang H, Guo Y, Liu X, Zhang R, Jiang L, Du A. Morphological and functional characteristics of the meibomian gland in pediatric patients with epiblepharon. BMC Ophthalmol 2024; 24:84. [PMID: 38388877 PMCID: PMC10885463 DOI: 10.1186/s12886-024-03345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND To observe morphologic and functional changes in meibomian glands in pediatric patients with and without lower eyelid epiblepharon. METHODS In this prospective observation study, 55 eyes of 55 patients( 24 males, 31 females; mean age ± SD,9.82 ± 2.59 years; range 6-14 years) and 60 eyes of 60 controls ( 32 males, 28 females; mean age ± SD,10.57 ± 2.75 years; range 6-14 years) were included. The following tests were performed: eyelid margin abnormality by slit-lamp examination, measurement of noninvasive keratographic break-up time (NIKBUT), grading of absence of meibomian gland (meibography score) assessed with noncontact meibography, morphologic changes of meibomian glands (thinning, dilatation and distortion), tear production by the Schirmer 1 test, and grading of meibum quality and meibomian gland expressibility. RESULTS The morphologic changes in meibomian glands were more common in the epiblepharon group (56.36%) than in the control group (28.33%) (p = 0.002). The meibum quality was worse in the epiblepharon group than in the control group (p = 0.009), and the NIKBUT was significantly shorter in the epiblepharon group than in the control group (p = 0.012). There was no significant difference in the Schirmer 1 test, meibomian gland expressibility, eyelid margin abnormality score or total meibography score between the two groups. Morphologic changes in the meibomian glands in the upper eyelids (38.18%) were more common than those in the lower eyelids (20%) (p = 0.036) in the epiblepharon group, and the meibography score was higher in the upper eyelids than in the lower eyelids (p = 0.001). CONCLUSION There are morphological and functional changes in meibomian glands in pediatric patients with lower eyelid epiblepharon. Although the inverted eyelashes were located in the lower eyelid, morphological changes in the meibomian glands were more common in the upper eyelid.
Collapse
Affiliation(s)
- Junping Li
- Department of Plastic Surgery, Aier Eye Hospital (East of Chengdu), No. 388 Shuanglin Road, Chenghua District, 610051, Chengdu, Sichuan Province, China
| | - Xiaolin Qin
- Department of Plastic Surgery, Aier Eye Hospital (East of Chengdu), No. 388 Shuanglin Road, Chenghua District, 610051, Chengdu, Sichuan Province, China
| | - Hong Jiang
- Department of Pediatric Ophthalmology, Aier Eye Hospital (East of Chengdu), 610051, Chengdu, China
| | - Yunan Guo
- Department of Plastic Surgery, Aier Eye Hospital (East of Chengdu), No. 388 Shuanglin Road, Chenghua District, 610051, Chengdu, Sichuan Province, China
| | - Xin Liu
- Department of Pediatric Ophthalmology, Aier Eye Hospital (East of Chengdu), 610051, Chengdu, China
| | - Rui Zhang
- Department of Plastic Surgery, Aier Eye Hospital (East of Chengdu), No. 388 Shuanglin Road, Chenghua District, 610051, Chengdu, Sichuan Province, China
| | - Lu Jiang
- Department of Pediatric Ophthalmology, Aier Eye Hospital (East of Chengdu), 610051, Chengdu, China
| | - Anshi Du
- Department of Plastic Surgery, Aier Eye Hospital (East of Chengdu), No. 388 Shuanglin Road, Chenghua District, 610051, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Tu M, Liu R, Xue J, Xiao B, Li J, Liang L. Urban Particulate Matter Triggers Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38315493 PMCID: PMC10851789 DOI: 10.1167/iovs.65.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose The meibomian gland (MG), as the largest modified sebaceous gland, is potentially damaged by urban particulate matter (UPM) based on epidemiological evidence, but the specific experimental mechanisms remain unknown. This study investigated the effects of UPM on MG dysfunction (MGD) in rodent models. Methods Female C57BL/6J mice received eye drops containing UPM suspension or PBS for 14 days. The proliferative capacity and progenitor of MG were evaluated by immunofluorescence. Cell apoptosis was confirmed by TUNEL assay, along with the analysis of caspase family expression. Lipid accumulation was visualized by Oil Red O staining and LipidTox staining. Ductal hyperkeratinization, neutrophil infiltration, and pyroptosis activation were detected through immunostaining. The relative gene expression and signaling pathway activation were determined by Western blot analysis. Results Administration of UPM caused MGD-like clinical signs, manifested as distinct corneal epithelial erosion, increased MG orifice occlusion, and glandular dropout. UPM exposure significantly induced progenitor loss, cellular apoptosis, and lipogenic disorder in MG, by reducing P63/Lrig1 expression and increasing cleaved caspase-8, -9, and -3 and meibum lipogenic protein (HMGCR/SREBP-1) expression. UPM-treated mice exhibited ductal hyperkeratinization and neutrophil recruitment. Simultaneously, pyroptosis was motivated, as indicated by the heightened expression of NLRP3 and the cleavage of caspase-1 and -4 and gasdermin D, as well as the increase in IL-1β and IL-18 downstream. The underlying pathological mechanisms of UPM involve the phosphorylation of mitogen-activated protein kinase and nuclear factor-κB. Conclusions These results provided direct evidence for the toxicity of UPM in MG. UPM-induced activation of pyroptosis and mitogen-activated protein kinase/nuclear factor-κB signaling pathway might account for the inflammatory MGD.
Collapse
Affiliation(s)
- Mengqian Tu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ren Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianwen Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bing Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Willemsen JF, Wenskus J, Lenz M, Rhode H, Trochimiuk M, Appl B, Pagarol-Raluy L, Börnigen D, Bang C, Reinshagen K, Herrmann M, Elrod J, Boettcher M. DNases improve effectiveness of antibiotic treatment in murine polymicrobial sepsis. Front Immunol 2024; 14:1254838. [PMID: 38259485 PMCID: PMC10801052 DOI: 10.3389/fimmu.2023.1254838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) have various beneficial and detrimental effects in the body. It has been reported that some bacteria may evade the immune system when entangled in NETs. Thus, the aim of the current study was to evaluate the effects of a combined DNase and antibiotic therapy in a murine model of abdominal sepsis. Methods C57BL/6 mice underwent a cecum-ligation-and-puncture procedure. We used wild-type and knockout mice with the same genetic background (PAD4-KO and DNase1-KO). Mice were treated with (I) antibiotics (Metronidazol/Cefuroxime), (II) DNAse1, or (III) with the combination of both; mock-treated mice served as controls. We employed a streak plate procedure and 16s-RNA analysis to evaluate bacterial translocation and quantified NETs formation by ELISA and immune fluorescence. Western blot and proteomics analysis were used to determine inflammation. Results A total of n=73 mice were used. Mice that were genetically unable to produce extended NETs or were treated with DNases displayed superior survival and bacterial clearance and reduced inflammation. DNase1 treatment significantly improved clearance of Gram-negative bacteria and survival rates. Importantly, the combination of DNase1 and antibiotics reduced tissue damage, neutrophil activation, and NETs formation in the affected intestinal tissue. Conclusion The combination of antibiotics with DNase1 ameliorates abdominal sepsis. Gram-negative bacteria are cleared better when NETs are cleaved by DNase1. Future studies on antibiotic therapy should be combined with anti-NETs therapies.
Collapse
Affiliation(s)
- Jan-Fritjof Willemsen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Wenskus
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rhode
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madgalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagarol-Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Börnigen
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitäts-klinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Shu Q, Zhang N, Liu Y, Wang X, Chen J, Xie H, Pan F, Zhao L, Ding X, Wen Y, Wang L, Xie W, Lu J, Su G, Peng H, Yang P. IL-8 Triggers Neutrophil Extracellular Trap Formation Through an Nicotinamide Adenine Dinucleotide Phosphate Oxidase- and Mitogen-Activated Protein Kinase Pathway-Dependent Mechanism in Uveitis. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37824136 PMCID: PMC10587853 DOI: 10.1167/iovs.64.13.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To explore the mechanism underlying IL-8-induced neutrophil extracellular trap (NET) formation in patients with ocular-active Behçet's disease (BD) and the effect of inhibiting NET formation on the severity of inflammation in experimental autoimmune uveitis (EAU) mice. Methods The serum extracellular DNA and neutrophil elastase (NE) and IL-8 levels in patients with ocular-active BD, the expression of myeloperoxidase, NE, and histone H3Cit in IL-8-induced neutrophils isolated from healthy controls, and the effects of NETs on HMC3 cells were detected. Female C57BL/6J mice were immunized with IRBP651-670 to induce EAU and EAU mice received intravitreal injection of the CXCR2 (IL-8 receptor) antagonist SB225002 or PBS. The serum levels of extracellular DNA, NE, and keratinocyte-derived chemokine (the mouse ortholog of human IL-8) and expression of myeloperoxidase, NE, and histone H3Cit in mouse retinas were detected. Disease severity was evaluated by clinical and histopathological scores. Results Serum keratinocyte-derived chemokine expression levels in EAU mice and IL-8 expression levels in patients with ocular-active BD increased. IL-8 notably increased NET formation in a dose-dependent manner through an nicotinamide adenine dinucleotide phosphate oxidase and mitogen-activated protein kinase pathway dependent mechanism. IL-8-induced NET formation damaged HMC3 cells in vitro. Pretreatment with SB225002 notably ameliorated the production of NETs in EAU mice. Conclusions Our data confirm that NET formation is induced by IL-8. IL-8-induced NET formation was found to be related to mitogen-activated protein kinase and nicotinamide adenine dinucleotide phosphate pathways. Pretreatment with the CXCR2 antagonist SB225002 alleviated neutrophil infiltration and suppressed NET formation in EAU mice.
Collapse
Affiliation(s)
- Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ni Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jinquan Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hao Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fuying Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Long Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xuanheng Ding
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yan Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lingda Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wenxi Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hui Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
11
|
Amano S, Shimazaki J, Yokoi N, Hori Y, Arita R. Meibomian Gland Dysfunction Clinical Practice Guidelines. Jpn J Ophthalmol 2023; 67:448-539. [PMID: 37351738 DOI: 10.1007/s10384-023-00995-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/24/2023]
Affiliation(s)
- Shiro Amano
- Ochanomizu Inoue Eye Clinic, 4-3 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan
| | | |
Collapse
|
12
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Hisey EA, Galor A, Leonard BC. A comparative review of evaporative dry eye disease and meibomian gland dysfunction in dogs and humans. Vet Ophthalmol 2023; 26 Suppl 1:16-30. [PMID: 36786010 PMCID: PMC10175238 DOI: 10.1111/vop.13066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Dry eye disease is a complex ophthalmic disorder that consists of two main subtypes, aqueous deficient dry eye (ADDE) and evaporative dry eye disease (EDED). Due to the complex underlying physiology, human dry eye disease can be difficult to model in laboratory animal species. Thus, the identification and characterization of a spontaneous large animal model of dry eye disease is desirable. Dogs have been described as an ideal spontaneous model of ADDE due to the similar pathophysiology between dogs and humans. Recently, EDED and meibomian gland dysfunction (MGD) have been increasingly recognized and reported in dogs. These reports on EDED and MGD in dogs have identified similarities in pathophysiology, clinical presentations, and diagnostic parameters to humans with the comparable disorders. Additionally, the tests that are used to diagnose EDED and MGD in humans are more easily applicable to dogs than to laboratory species due to the comparable globe sizes between dogs and humans. The reported response of dogs to EDED and MGD therapies are similar to humans, suggesting that they would be a valuable preclinical model for the development of additional therapeutics. Further research and clinical awareness of EDED and MGD in dogs would increase their ability to be utilized as a preclinical model, improving the positive predictive value of therapeutics for EDED and MGD in both humans and dogs.
Collapse
Affiliation(s)
- Erin A Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, Florida, USA.,Miami Veterans Affairs Medical Center, Miami, Florida, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
14
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
15
|
A Pleomorphic Puzzle: Heterogeneous Pulmonary Vascular Occlusions in Patients with COVID-19. Int J Mol Sci 2022; 23:ijms232315126. [PMID: 36499449 PMCID: PMC9739020 DOI: 10.3390/ijms232315126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.
Collapse
|
16
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
17
|
Yang X, Zhong X, Huang AJ, Reneker LW. Spontaneous acinar and ductal regrowth after meibomian gland atrophy induced by deletion of FGFR2 in a mouse model. Ocul Surf 2022; 26:300-309. [PMID: 34798325 DOI: 10.1016/j.jtos.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE We have demonstrated that deletion of fibroblast growth factor receptor 2 gene (Fgfr2) leads to Meibomian gland (MG) atrophy in an inducible conditional knockout mouse model, referred as Fgfr2CKO. Herein, we investigated whether MG spontaneously recovers after atrophy in this model. METHODS Two months old Fgfr2CKO mice were injected peritoneally once or twice of doxycycline (Dox) at 80 μg/gm of body weight to induce MG atrophy of various severities via Fgfr2 deletion. Recovery of acinar and ductal tissues was monitored by meibography, lipid staining and immunofluorescence against keratin-6a in MG whole-mount. Biomarkers for acinar and ductal differentiation and proliferation were also examined by immunostaining. RESULTS Single Dox injection in Fgfr2CKO mice caused severe acinar and moderate ductal atrophy. Severe ductal shortening or loss occurred after second Dox injection, presumably related to the reported slower cycling of the ductal epithelia. Spontaneous acinar regrowth after atrophy was observed over a period of 60 days in both injection regimens. However, less robust acinar recovery was associated with more disrupted ductal structures in twice injected Fgfr2CKO mice. CONCLUSIONS Our current findings further substantiate the role of FGFR2 in MG homeostasis, and suggest that FGFR2-signaling may provide a potential strategy for regenerating acini from age-related MG dysfunction in humans. Our data demonstrated that spontaneous MG recovery depends on the extent of ductal atrophy, suggesting that ductal epithelia may provide the progenitor cells for acinar regeneration. Nonetheless, the role of ductal tissue as the source of acinar progenitors awaits further investigation.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China.
| | - Andrew Jw Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lixing W Reneker
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
18
|
Lou B, Wu W, Zeng L, Zhou W, Zhang X, Zhou X, Liu Z, Liu K, Gu X, Chen X, Wang Y, Chen Y, Gao X, Zhang F. Alleviating experimental allergic eye disease by inhibiting pro-lymphangiogenic VEGFR3 signal. Ocul Surf 2022; 26:1-12. [PMID: 35931408 DOI: 10.1016/j.jtos.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Ocular allergy leads to acute and chronic inflammation that may deteriorate the conjunctiva and other ocular tissue. The conjunctiva is covered with abundant lymphatic vessels but how the conjunctival lymphatic system patriciates in the development of allergic eye disease (AED) remains to be elucidated. METHODS AND RESULTS By using ovalbumin (OVA)+pertussis toxin (PTX) as a sensitizer followed by daily OVA challenges, we induced optimized AED manifestations in mice. We show that conjunctival lymphatics underwent significant expansion after 28 days of chronic OVA challenge, and this process can be prevented by inducible genetic ablation of lymphatic Vegfr3. Through transcriptomic profile analysis in combination with histopathological examinations, we found that pro-lymphangiogenic VEGFR3 signal promoted allergy-induced activation of T helper 2 (Th2) type immune responses, including antigen presentation, and Th2 cells, B cells and mast cell-related pathways in the conjunctiva, thereby critically contributing to the immunoglobulin E (IgE) production and AED manifestations. As a result, ocular allergy can be alleviated by genetic inhibition of lymphatic Vegfr3. Interestingly, pro-lymphangiogenic VEGFR3 signal did not appear to affect the obstruction of meibomian glands (MGs) or the activation of Th17 type and neutrophil pathways that are associated with AED. CONCLUSIONS These data reveal the key role of pro-lymphangiogenic VEGFR3 signaling in the development of AED and provide experimental evidence that VEGFR3 inhibition may be useful in treating ocular allergy in patients.
Collapse
Affiliation(s)
- Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xuetong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, China; State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Effects of PPAR-γ and RXR-α on mouse meibomian gland epithelial cells during inflammation induced by latanoprost. Exp Eye Res 2022; 224:109251. [PMID: 36150542 DOI: 10.1016/j.exer.2022.109251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to investigate the effects of latanoprost on the secretion of cytokines and chemokines from meibomian gland epithelial cells, and to evaluate the modulation of peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor α (RXR-α) during latanoprost-induced inflammation. Mouse meibomian gland epithelial cells were cultured in proliferation and differentiation medium, respectively. Cells were exposed to latanoprost, rosiglitazone (PPAR-γ agonist), or LG100268 (RXR-α agonist), respectively. The expression of IL-6, IL-1β, TNF-α, MMP-9, MCP-1, and CCL-5 were detected by real-time PCR and ELISA. The effect of latanoprost, rosiglitazone, LG100268, and inflammatory cytokines on the differentiation of meibocyte were evaluated by related gene expression and lipid staining. The expression of Keratin-1, 6, 17 protein was detected by western immunoblotting. The results showed that the above cytokines could be induced by latanoprost in meibomian gland epithelial cells. LG100268 and rosiglitazone could inhibit the production of IL-6 and TNF-α induced by latanoprost, respectively. Latanoprost suppressed the expression of differentiation-related mRNA through a positive feedback loop by enhancement of COX-2 expression via FP receptor-activated ERK signaling. The expression of Keratin-17 was upregulated by rosiglitazone and suppressed by LG100268. The application of IL-6 and TNF-α showed negative effects on lipid accumulation in meibomian gland epithelial cells. These results demonstrated that latanoprost could induce inflammation and suppress differentiation of mouse meibomian gland epithelial cells. The activation of PPAR-γ and RXR-α showed an anti-inflammatory effect, showing a potential role to antagonize the effect of latanoprost eyedrops on meibomian gland epithelial cells.
Collapse
|
20
|
Liu Y, Wang Y, Jin X, Zhang N, Shi Y, Zhu R, Wang J, Dong Y, Zhang H. Observation of Conjunctiva-Associated Lymphoid Tissue With In Vivo Confocal Microscopy in Healthy Patients and Patients With Meibomian Gland Dysfunction. Cornea 2022; 41:1129-1136. [PMID: 34759200 PMCID: PMC9365257 DOI: 10.1097/ico.0000000000002910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to assess the distribution and morphological variation of conjunctiva-associated lymphoid tissue (CALT) in healthy human subjects and patients with meibomian gland dysfunction (MGD) using laserscanningin vivo confocal microscopy. METHODS A total of 34 healthy subjects and 32 patients with MGD were enrolled. All subjects underwent a conventional examination consisting of slitlamp biomicroscopy, tear film break-up time, and the Schirmer test. In vivo microscopy was applied to analyze the morphological changes in the diffuse lymphoid layer and lymphoid follicles in CALT. Conjunctival impression cytology (CIC) of samples of patients' palpebral conjunctiva and immunofluorescence staining of CD4 and CD8 antibodies were also performed to indicate the immune response status of CALT. RESULTS In the MGD group, the density of diffuse lymphocytes ( P < 0.001), follicles ( P < 0.001), and perifollicular lymphocytes was higher ( P < 0.001) and the central reflection of the follicles was stronger ( P < 0.001) than in the control group, while there was no difference in the follicle area ( P = 0.758). Besides, diffuse lymphocyte density was correlated with telangiectasia, and follicular center reflection intensity was correlated with plugging. CIC immunofluorescence staining showed a higher percentage of CD4 + ( P < 0.001) and CD8 + ( P < 0.001) cells in the MGD group than in the control group. CONCLUSIONS Using laser scanning in vivo confocal microscopy and CIC immunofluorescence staining, we observed the activation of CALT in patients with MGD, and some CALT-related parameters correlated with the lid margin findings of patients with MGD.
Collapse
Affiliation(s)
- Yuting Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Yingbin Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Nan Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
| | - Yan Shi
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Rui Zhu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Jingrao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Yueyan Dong
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, China; and
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, China
| |
Collapse
|
21
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
22
|
Topographical Distribution and Phenotype of Resident Meibomian Gland Orifice Immune Cells (MOICs) in Mice and the Effects of Topical Benzalkonium Chloride (BAK). Int J Mol Sci 2022; 23:ijms23179589. [PMID: 36077001 PMCID: PMC9455816 DOI: 10.3390/ijms23179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Meibomian gland orifices (MGOs) are located along the eyelid margin and secrete meibum into the tear film. The profile of resident innate immune cells (ICs) at this site is not well understood. The distribution and phenotype of resident ICs around MGOs in mice was investigated and herein defined as MGO-associated immune cells (MOICs). The effect of topical 0.1% benzalkonium chloride (BAK) on MOICs was also assessed. Eyelids from healthy CD11ceYFP and Cx3cr1gfp/gfp mice aged three or seven months were compared. ICs were identified as CD11c+, Cx3cr1+, and MHC-II+ using four-colour immunostaining and confocal microscopy. MOIC density was variable but clustered around MGOs. There were more CD11c+ MOICs in three-month-old compared with seven-month-old mice (three-month-old: 893 ± 449 cells/mm2 vs. seven-month-old: 593 ± 493 cells/mm2, p = 0.004). Along the eyelid margin, there was a decreasing gradient of CD11c+ MOIC density in three-month-old mice (nasal: 1003 ± 369 cells/mm2, vs. central: 946 ± 574 cells/mm2, vs. temporal: 731 ± 353 cells/mm2, p = 0.044). Cx3cr1-deficient mice had two-fold fewer MHC-II+ MOICs, suggesting a role for Cx3cr1 receptor signaling in meibomian gland surveillance. CD11c+ MOIC density was lower in BAK-exposed eyes compared to saline-treated controls, suggesting a change in homeostasis. This study provides novel insight into resident ICs located at MGOs, and their contribution to MG homeostasis.
Collapse
|
23
|
Soifer M, Azar NS, Mousa HM, Perez VL. Ocular Surface Inflammatory Disorders (OSID): A Collective of Systemic Etiologies Which Cause or Amplify Dry Eye Syndrome. Front Med (Lausanne) 2022; 9:949202. [PMID: 35872765 PMCID: PMC9301237 DOI: 10.3389/fmed.2022.949202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The ocular surface inflammatory disorders (OSID) are caused by systemic disorders that conduct a persistent inflammatory reaction in the ocular adnexal connective tissues, such as the conjunctiva, lacrimal gland (LG) and meibomian glands (MGs), which cause an inflammatory dry eye. The etiologies of OSID are a subset of systemic pathologies such as graft versus host disease, Sjögren’s syndrome, allergies, cicatrizing conjunctivitis, and more. These cause a purely inflammatory dry eye syndrome as a consequence of the persistent surrounding inflammation in the adnexal tissues, which is distinct from the age-related dry eye disease. A limitation toward management of these conditions is the lack of available biomarkers that can detect presence of inflammation and quantify damage on the conjunctiva and LG, even though these are considered to be drivers of the inflammatory milieu. The OSID and dry eye syndrome are caused by different immune cells which are not exclusively limited to T cell lymphocytes, but rather derive from an orchestrated multicellular immunologic response. Recognition of this syndrome is crucial to direct research in a direction that clarifies the potential role of inflammation and its associated immune phenotype on the conjunctiva and adnexal ocular tissues in OSID and dry eye syndrome. On this paper, we review the basic and clinical research evidence for the existence of OSID with focus on the different immune cells involved, the target tissues and potential consequences and OSIDs diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Matias Soifer
- Foster Center for Ocular Immunology, Duke Eye Institute, Durham, NC, United States
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Nadim S. Azar
- Foster Center for Ocular Immunology, Duke Eye Institute, Durham, NC, United States
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Hazem M. Mousa
- Foster Center for Ocular Immunology, Duke Eye Institute, Durham, NC, United States
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Victor L. Perez
- Foster Center for Ocular Immunology, Duke Eye Institute, Durham, NC, United States
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
- *Correspondence: Victor L. Perez,
| |
Collapse
|
24
|
Sanchez V, Galor A, Jensen K, Mondal K, Mandal N. Relationships between ocular surface sphingomyelinases, Meibum and Tear Sphingolipids, and clinical parameters of meibomian gland dysfunction. Ocul Surf 2022; 25:101-107. [PMID: 35714913 DOI: 10.1016/j.jtos.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Sphingolipids (SPL) are a class of lipid molecules that play important functional and structural roles in our body and are a component of meibum. Sphingomyelinases (SMases) are key enzymes in sphingolipid metabolism that hydrolyze sphingomyelin (SM) and generate ceramide (Cer). The purpose of this study was to examine relationships between ocular surface SMases, SPL composition, and parameters of Meibomian gland dysfunction (MGD). METHODS Individuals were grouped by meibum quality (n = 25 with poor-quality, MGD, and n = 25 with good-quality, control). Meibum and tears were analyzed with LC-MS to quantify SPL classes: Cer, Hexosyl-Ceramide (Hex-Cer), SM, Sphingosine (Sph), and sphingosine 1-phosphate (S1P). SMase activity in tears were quantified using a commercially available 'SMase assay'. Statistical analysis included multiple linear regression analyses to assess the impact of SMase activity on lipid composition, as well as ocular surface symptoms and signs of MGD. RESULTS Demographic characteristics were similar between the two groups. nSMase and aSMase levels were lower in the poor vs good quality group. aSMase activity in tears negatively correlated with SM in meibum and tears and positively with Sph in meibum and S1P in tears. Lower SMase activity were associated with signs of MGD, most notably Meibomian gland dropout. CONCLUSION This study suggests that individuals with MGD have reduced enzymatic activity of SMases in tears. Specifically, individuals with poor vs good meibum quality were noted to have alterations in SMase activity and SPL composition of meibum and tears which may reflect deviations from normal lipid metabolism in individuals with MGD.
Collapse
Affiliation(s)
- Victor Sanchez
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Katherine Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
25
|
Li Y, Xie L, Song W, Huang M, Cheng Y, Chen S, Gao Y, Yan X. The Role of Neutrophil Extracellular Traps in the Ocular System. Curr Eye Res 2022; 47:1227-1238. [PMID: 35634655 DOI: 10.1080/02713683.2022.2079141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: Neutrophils remain at the top of congenital and adaptive immune systems. The past 20 years witnessed a steep rise in the interest in neutrophil extracellular traps (NETs), which are a novel type of anti-pathogen mechanism coordinated with neutrophils. However, accumulating data revealed that excessive NETs in the host were associated with exacerbated inflammation, thrombosis, and autoimmunity. Increasing evidence found the participation of NETs in the pathophysiological process of many infectious and sterile diseases in the ocular system. Therefore, we discussed the role of neutrophil extracellular traps in the ocular system in this review.Methods: Articles were searched on PubMed, Embase and Web of science up to December 2021.Results: In this review, we exhibited the protective role of neutrophils patrolling the ocular surface from invading pathogens and their contribution to exacerbated inflammation and thrombogenesis in some ocular diseases. We also discussed the physiological and pathological processes of NET generation to identify novel biomarkers and therapeutic targets to interrupt immoderate NET formation and alleviate NET-induced harmful effects.Conclusions: Neutrophils and NETs are quite important for immune responses in the ocular system, while their negative effects on ocular tissue should also be emphasized, which could serve as novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
26
|
Asiedu K. Candidate Molecular Compounds as Potential Indicators for Meibomian Gland Dysfunction. Front Med (Lausanne) 2022; 9:873538. [PMID: 35685417 PMCID: PMC9170961 DOI: 10.3389/fmed.2022.873538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease throughout the world. Studies have shown that several molecules in meibum, including but not limited to interleukins, amino acids, cadherins, eicosanoids, carbohydrates, and proteins, are altered in meibomian gland dysfunction compared with healthy normal controls. Some of these molecules such as antileukoproteinase, phospholipase A2, and lactoperoxidase also show differences in concentrations in tears between meibomian gland dysfunction and dry eye disease, further boosting hopes as candidate biomarkers. MGD is a complex condition, making it difficult to distinguish patients using single biomarkers. Therefore, multiple biomarkers forming a multiplex panel may be required. This review aims to describe molecules comprising lipids, proteins, and carbohydrates with the potential of serving various capacities as monitoring, predictive, diagnostic, and risk biomarkers for meibomian gland dysfunction.
Collapse
|
27
|
Liu R, Li J, Xu Y, Chen Z, Ye H, Tang J, Wei L, Liang L. Melatonin Attenuates LPS-Induced Proinflammatory Cytokine Response and Lipogenesis in Human Meibomian Gland Epithelial Cells via MAPK/NF-κB Pathway. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35506935 PMCID: PMC9078073 DOI: 10.1167/iovs.63.5.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Inflammation contributes to the development of meibomian gland dysfunction (MGD) under specific disease conditions, but the underlying mechanisms remain elusive. We examined whether lipopolysaccharide (LPS) induced a proinflammatory cytokine response and lipogenesis in human meibomian gland epithelial cells (HMGECs) and whether melatonin (MLT), a powerful anti-inflammatory regent in the eyes, could protect against LPS-induced disorders. Methods Human meibomian gland (MG) tissues and immortalized HMGECs were stained to identify Toll-like receptor (TLR) 4 and MLT receptors (MT1 and MT2). HMGECs were pretreated with or without MLT and then stimulated with LPS. Then, TLR4 activation, cytokine levels, lipid synthesis, apoptosis, autophagy, and MAPK/NF-κB factor phosphorylation in HMGECs were analyzed. Results TLR4, MT1, and MT2 were expressed in human MG acini and HMGECs. Pretreatment with MLT inhibited the TLR4/MyD88 signaling and attenuated proinflammatory cytokine response and lipogenesis in LPS-stimulated HMGECs, which manifested as decreased production of cytokines (IL-1β, IL-6, IL-8, and TNF-α), reduced lipid droplet formation, and downregulated expression of meibum lipogenic proteins (ADFP, ELOVL4, and SREBP-1). Phospho-histone H2A.X foci, lysosome accumulation, and cytoplasmic cleaved caspase 3/LC3B-II staining were increased in LPS-stimulated HMGECs, indicating enhanced cell death mediated by apoptosis and autophagy during LPS-induced lipogenesis. MLT downregulated cleaved caspase 3 levels and the Bax/Bcl-2 ratio to alleviate apoptosis and ameliorated the expression of Beclin 1 and LC3B-II to inhibit autophagy. The protective mechanisms of MLT include the inhibition of MAPK and NF-κB phosphorylation. Conclusions MLT attenuated lipogenesis, apoptosis, and autophagy in HMGECs induced by proinflammatory stimuli, indicating the protective potential of MLT in MGD.
Collapse
Affiliation(s)
- Ren Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ziyan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinhui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
28
|
Morphological and Functional Changes of Meibomian Glands in Pediatric and Adult Patients with Allergic Conjunctivitis. J Clin Med 2022; 11:jcm11051427. [PMID: 35268518 PMCID: PMC8911235 DOI: 10.3390/jcm11051427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Allergic conjunctivitis (AC) is one of the most common ocular disorders in clinical practice and is associated with meibomian gland dysfunction. This study aimed to explore the morphological and functional changes of meibomian glands (MGs) in pediatric and adult patients with AC and to analyze their potential predictors. In our prospective, observational cohort study, a total of 59 patients with AC were enrolled, with 30 patients aged ≤16 years in the pediatric group and 29 patients in the adult group. All patients underwent examinations at baseline and last visit when the complete resolution of conjunctival papillae was identified. An automatic MG analyzer was used to measure the morphological and functional parameters of MGs, including their area ratio (GA), tortuosity index (TI), and signal index (SI). Two groups were comparable at baseline in terms of characteristics and MG parameters (p > 0.05). The morphological (length, square, and GA) and functional MG parameters (SI) of AC patients significantly improved in the pediatric group after treatment (all p < 0.05), but not in the adult group. The change in the GA correlated with age, sex, GA, TI, and SI at baseline (all p < 0.05). Age (p = 0.001) and GA (p < 0.001) at baseline were predictors of an improvement in the GA of MGs. The findings showed that the structure and function of MGs in pediatric patients with AC seem to improve after the conjunctival papillae disappear, but not in adult patients.
Collapse
|
29
|
Dölling M, Eckstein M, Singh J, Schauer C, Schoen J, Shan X, Bozec A, Knopf J, Schett G, Muñoz LE, Herrmann M. Hypoxia Promotes Neutrophil Survival After Acute Myocardial Infarction. Front Immunol 2022; 13:726153. [PMID: 35222361 PMCID: PMC8873092 DOI: 10.3389/fimmu.2022.726153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation build the armory of neutrophils for the first line of defense against invading pathogens. All these processes are modulated by the microenvironment including tonicity, pH and oxygen levels. Here we investigated the neutrophil infiltration in cardiac tissue autopsy samples of patients with acute myocardial infarction (AMI) and compared these with tissues from patients with sepsis, endocarditis, dermal inflammation, abscesses and diseases with prominent neutrophil infiltration. We observed many neutrophils infiltrating the heart muscle after myocardial infarction. Most of these had viable morphology and only few showed signs of nuclear de-condensation, a hallmark of early NET formation. The abundance of NETs was the lowest in acute myocardial infarction when compared to other examined diseases. Since cardiac oxygen supply is abruptly abrogated in acute myocardial infarction, we hypothesized that the resulting tissue hypoxia increased the longevity of the neutrophils. Indeed, the viable cells showed increased nuclear hypoxia inducible factor-1α (HIF-1α) content, and only neutrophils with low HIF-1α started the process of NET formation (chromatin de-condensation and nuclear swelling). Prolonged neutrophil survival, increased oxidative burst and reduced NETs formation were reproduced under low oxygen tensions and by HIF-1α stabilization in vitro. We conclude that nuclear HIF-1α is associated with prolonged neutrophil survival and enhanced oxidative stress in hypoxic areas of AMI.
Collapse
Affiliation(s)
- Maximilian Dölling
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Markus Eckstein
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaomei Shan
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Luis E. Muñoz,
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Galor A, Sanchez V, Jensen A, Burton M, Maus K, Stephenson D, Chalfant C, Mandal N. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul Surf 2022; 23:87-95. [PMID: 34861426 PMCID: PMC8792295 DOI: 10.1016/j.jtos.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Sphingolipids (SPL) play a role in cell signaling, inflammation, and apoptosis. The purpose of this study was to examine meibum and tear SPL composition in individuals with poor versus good meibum quality. METHODS Individuals were grouped by meibum quality (n = 25 with poor quality, case group and n = 25 with good quality, control group). Meibum and tears were analyzed with liquid chromatography-mass spectrometry (LC-MS) to quantify SPL classes. Semiquantitative and relative composition (mole percent) of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph), and sphingosine 1-phosphate (S1P) were compared between groups. RESULTS Demographic characteristics were similar between the two groups. Overall, individuals with poor meibum quality had more SPL pmole in meibum and tears than controls. Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer, Hex-Cer, and Sph and more SM compared to individuals with good quality meibum. This pattern was not reproduced in tears as individuals with poor meibum quality had SPL composed of a similar amount of Cer, but more Hex-Cer, Sph and SM compared to controls. In meibum, SPL pmole and relative composition most strongly correlated with MG metrics while in tears, SPL pmole and relative composition most strongly correlated with tear production. SPL in both compartments, specifically Cer pmole in meibum and S1P% in tears, correlated with DE symptoms. CONCLUSION SPL composition differs in meibum and tears in patients with poor vs good meibum quality. These findings may be translated into therapeutic targets for disease.
Collapse
Affiliation(s)
- Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125,Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
| | - Victor Sanchez
- New York University Grossman School of Medicine, New York, NY 10016
| | - Andrew Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| | - Madeline Burton
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163
| | - Kenneth Maus
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | | | - Charles Chalfant
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620,The Moffitt Cancer Center, Tampa, FL 33620,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163,Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN 38163,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104.,Corresponding Author: Nawajes Mandal, PhD, 930 Madison Avenue, Suite 718, Memphis, TN 38163;
| |
Collapse
|
31
|
Mun Y, Hwang JS, Shin YJ. Role of Neutrophils on the Ocular Surface. Int J Mol Sci 2021; 22:10386. [PMID: 34638724 PMCID: PMC8508808 DOI: 10.3390/ijms221910386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
The ocular surface is a gateway that contacts the outside and receives stimulation from the outside. The corneal innate immune system is composed of many types of cells, including epithelial cells, fibroblasts, natural killer cells, macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, mucin, and lysozyme. Neutrophil infiltration and degranulation occur on the ocular surface. Degranulation, neutrophil extracellular traps formation, called NETosis, and autophagy in neutrophils are involved in the pathogenesis of ocular surface diseases. It is necessary to understand the role of neutrophils on the ocular surface. Furthermore, there is a need for research on therapeutic agents targeting neutrophils and neutrophil extracellular trap formation for ocular surface diseases.
Collapse
Affiliation(s)
- Yongseok Mun
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| |
Collapse
|
32
|
Yaykasli KO, Schauer C, Muñoz LE, Mahajan A, Knopf J, Schett G, Herrmann M. Neutrophil Extracellular Trap-Driven Occlusive Diseases. Cells 2021; 10:2208. [PMID: 34571857 PMCID: PMC8466545 DOI: 10.3390/cells10092208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.
Collapse
Affiliation(s)
- Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
33
|
Singh PP, Yu C, Mathew R, Perez VL, Saban DR. Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease (AED) model. Ocul Surf 2021; 21:271-278. [PMID: 33812087 PMCID: PMC8606044 DOI: 10.1016/j.jtos.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The etiology of meibomian gland dysfunction (MGD) is incompletely understood, despite being a common ophthalmic condition and an area of unmet medical need. It is characterized by an insufficiency in glandular provision of specialized lipids (meibum) to the tear film and is a major cause of dry eye. Work in the allergic eye disease (AED) mouse model has revealed an immunopathogenic role in MGD causation, now raising interest in the applicability of immunomodulatory therapies. As such, we herein ask whether inhibition of lymphocyte function associated antigen (LFA)-1/intracellular adhesion molecules (ICAM)-1 signaling via topical lifitegrast administration has a therapeutic effect on MGD in AED mice. METHODS Mice were induced with AED by i.p. injection of ovalbumin (OVA) mixed with alum and pertussis toxin, followed 2 weeks later by once daily topical OVA challenges for 7 days. Mice were treated topically with 5% lifitegrast ophthalmic solution or vehicle (PBS) 30 min prior to challenge. We developed a clinical ranking method to assess MGD severity, and also scored clinical allergy. Conjunctivae and draining lymph nodes were collected for flow cytometry. RESULTS Topical lifitegrast significantly inhibited clinical MGD severity, which was associated with diminished pathogenic TH17 cell and neutrophil numbers in the conjunctiva. No significant change in conjunctival TH2 cells or eosinophils, and only marginal differences in ocular allergy were observed. CONCLUSIONS In AED mice, lifitegrast inhibited MGD severity marked by a reduction in select immune populations in the conjunctiva. Our findings warrant future examination of lifitegrast in the treatment of patients with forms of MGD.
Collapse
Affiliation(s)
- Pali P Singh
- Duke University School of Medicine, Durham, NC, USA
| | - Chen Yu
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victor L Perez
- Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Abstract
Purpose: The meibomian glands are located in the tarsal plate of the upper and lower eyelid and are responsible for the production of a lipid-rich secretion, the meibum, which forms the outer component of the tear film. Meibomian gland dysfunction results in excessive evaporation of the tear film and is the leading cause of dry eye disease (DED). Despite the high prevalence of DED, the etiology of meibomian gland dysfunction is only basically understood. In addition, the molecular mechanisms of meibomian gland maturation and physiological function are currently the focus of research.Methods: A systematic literature search was performed using the main scientific databases, including all relevant published articles up to September 2020.Results: This article provides an overview of the current state of knowledge about meibomian gland stem cells, cell surface marker expression and PPARγ signaling, as well as the pathological causes of meibomian gland dysfunction.Conclusion: Androgen deficiency, hyperkeratinization, PPARγ signaling and inflammatory reactions including neutrophil extracellular traps (NETs) seem to be key factors within the pathological processes of the meibomian gland.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Garreis
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Topographic Anatomy and Operative Surgery, Sechenov University, Moscow, Russia
| |
Collapse
|
35
|
Kojima T, Dogru M, Shimizu E, Yazu H, Takahashi A, Shimazaki J. Atypical Granulomatosis with Polyangiitis Presenting with Meibomitis, Scleritis, Uveitis and Papillary Bladder Tumor: A Case Report and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11040680. [PMID: 33918928 PMCID: PMC8069415 DOI: 10.3390/diagnostics11040680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) presents with a variety of systemic findings, sometimes with ocular findings initially, but is often difficult to diagnose at an early stage. An 85-year-old male had complaints of ocular dryness and redness and was diagnosed with meibomian gland dysfunction with meibomitis. Despite an initial treatment with topical steroid and antibiotics, the meibomitis did not improve and the left eye developed scleritis and iridocyclitis. The patient was administered topical mydriatics and oral steroids. During follow-up, the patient developed left hearing difficulty and reported a darker urine. Urinalysis revealed microscopic hematuria. A blood test showed an elevated erythrocyte sedimentation rate, positivity for perinuclear anti-neutorophil cytoplasmic antibody, and elevations in blood urea nitrogen and serum creatinine. Nasal mucosal biopsy showed a non-necrotizing granulomatous inflammation. Renal biopsy revealed focal glomerulosclerosis. Cystoscopy and bladder wash followed by a planned transurethral resection revealed atypical cells and apical papillary tumors which were resected. Iridocyclitis and scleritis responded well to oral prednisolone with 0.1% topical betamethasone and prednisolone ointment. The patient is tumor free with no recurrences 24 months after resection. GPA may present atypically with meibomian gland dysfunction without showing representative clinical findings. Early detection and treatment are essential for visual recovery.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.K.); (E.S.); (H.Y.)
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.K.); (E.S.); (H.Y.)
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan; (A.T.); (J.S.)
- Department of Ophthalmology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan
- Correspondence: ; Tel.: +81-3-5363-2012
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.K.); (E.S.); (H.Y.)
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan; (A.T.); (J.S.)
| | - Hiroyuki Yazu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.K.); (E.S.); (H.Y.)
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan; (A.T.); (J.S.)
- Department of Ophthalmology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan
| | - Aya Takahashi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan; (A.T.); (J.S.)
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan; (A.T.); (J.S.)
| |
Collapse
|