1
|
Ji Q, Liu X, Tang R, Yang J, Zeng Y, Aimaier R, Liu X, Kardumyan VV, Solovieva AB, Li Q, Huang RL. Bioengineered bilayered grafts for structural and functional posterior lamellar eyelid reconstruction. Biomaterials 2025; 321:123351. [PMID: 40273473 DOI: 10.1016/j.biomaterials.2025.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Eyelid defects involving posterior lamella loss pose significant challenges in reconstructive surgery due to their functional-anatomical complexity. While our previous autologous auricular chondrocyte-derived tissue-engineered cartilage (TEC) grafts successfully maintained normal eyelid morphology, they lacked functional epithelium. This study develops bioengineered bilayered mucosa-cartilage (BMC) grafts through coculture of TEC with oral mucosal explants. The resulting BMC grafts demonstrated a stratified epithelium with barrier integrity and MUC1-producing capacity and a cartilage layer with surgical-grade tensile modulus (1.68 MPa). Upon transplantation into rabbit tarsoconjunctival defects, BMC grafts surpassed both untreated controls and TEC grafts. All grafts demonstrated integration by 2 weeks post-implantation, with transient inflammatory infiltration resolving by 8 weeks. BMC and TEC grafts better preserved eyelid morphology and blinking function than controls throughout the 8-week study. Crucially, BMC-reconstructed eyelids developed continuous stratified epithelia with 5.8-layer MUC1-secreting epithelial cells as early as 2 weeks, progressing to MUC5AC+ goblet cell-rich epithelia by 8 weeks post-implantation. In contrast, TEC counterparts formed thinner epithelia with a lower density of goblet cells. These results confirm the structural integrity and secretory functions of BMC grafts, advancing clinical translation of functional eyelid substitutes.
Collapse
Affiliation(s)
- Qiumei Ji
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Xingran Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Ruize Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Yan Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Valeriya V Kardumyan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosygin St. 4, 119991, Moscow, Russia.
| | - Anna B Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosygin St. 4, 119991, Moscow, Russia.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| |
Collapse
|
2
|
Xiong WW, Ouyang ZJ, Tan Y, Xu LW, Peng XW. MUC4 O-GlcNAcylation Regulates the Epithelial Phenotype in Conjunctival Epithelial Cells. Biochem Genet 2025; 63:1780-1790. [PMID: 38627316 DOI: 10.1007/s10528-024-10791-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2025]
Abstract
In the present study, our aim was to explore the role of MUC4 in IL-4-stimulated conjunctival epithelial cells and the underlying mechanisms. Human recombinant IL-4 was employed in human conjunctival epithelial cells (HConEpic) cells, and MUC4 shRNA (sh-MUC4) was constructed to explore the functional role of MUC4. The protein level of MUC4, O-GlcNAc transferase (OGT), O-GlcNAc hydrolase (OGA), zonula occludens 1 (ZO-1), gap junction protein beta 2 (GJB2), claudin-8 (CLDN8), and E-cadherin were detected by Western blot in HConEpic cells, the interaction between MUC4 and OGT/OGA was assessed by co-immunoprecipitation (IP) and Western blot in 293T cells. Our results showed that IL-4 significantly up-regulated MUC4 and OGT protein levels in HConEpic cells, while down-regulated OGA protein level. Also, IL-4 down-regulated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while which was markedly reversed by sh-MUC4. Additionally, OGT inhibitor significantly reduced MUC4 protein level, and elevated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while OGA inhibitor resulted in the opposite results. Furthermore, in addition to the interaction between OGT/OGA and MUC4, Co-IP and Western blot also revealed the alteration of MUC4 O-GlcNAcylation in 293T cells treated with OGT/OGA inhibitor. Above findings suggested that OGT/OGA inhibitor regulated MUC4 protein level by affecting MUC4 O-GlcNAcylation to regulate ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, which was achieved via inhibiting the interaction between OGT/OGA and MUC4. This study may provide a better understanding of the pathogenesis of allergic conjunctivitis (AC).
Collapse
Affiliation(s)
- Wei-Wei Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zi-Jing Ouyang
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yi Tan
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Li-Wen Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiao-Wei Peng
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Ma W, Huang C, Fang W, Liu S, Li Y, Zhong Y, Zuo D, Lu X. Mucin1 N-domain variant contributes to dry eye syndrome in diabetes by increasing immature mucus secretory granules. Life Sci 2025; 363:123412. [PMID: 39848599 DOI: 10.1016/j.lfs.2025.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Diabetes-associated dry eye syndrome (DMDES) affects 20-54 % of diabetes, leading to ocular irritation and blurry vision. Decreased conjunctival goblet cell mucus secretion is one of the major pathological processes of DMDES. This study aims to investigate the mechanism of mucus granule maturation and secretion disturbance in DMDES. METHODS Tear samples from diabetic patients with and without dry eye syndrome were analyzed by mass spectrometry to identify proteins associated with ocular mucous layer reduction. The N-terminal domain fragment of Mucin1 (MUC1-ND) was transfected into the mouse conjunctiva to investigate alterations in goblet cell mucus secretion. Protein localization and granule morphology were explored through transmission electron microscopy with colloidal gold labeling and immunohistochemistry. Immunofluorescence, co-immunoprecipitation, and integrative computational modeling of protein interactions were employed to explore protein-protein interactions. RESULTS Tear proteomic analysis revealed significantly elevated MUC1-ND levels in tears from DMDES patients, which correlated with reduced goblet cell mucus secretion and tear film instability. Upregulation of MUC1-ND in mice conjunctiva inhibited the maturation of secretory mucus granules, contributing to tear mucous layer reduction. Protein docking and co-immunoprecipitation analysis demonstrated that the binding of MUC1-ND and Syntaxin6 prevents granule fusion and maintains the immature state of secretory granules, which leads to reduced mucus secretion. CONCLUSION In DMDES, MUC1-ND binds with Syntaxin6 to disrupt the fusion and maturation of secretory mucus granules in conjunctival goblet cells, which provides a new insight into DMDES pathophysiology.
Collapse
Affiliation(s)
- Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chunling Huang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wanyi Fang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingli Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
4
|
Deminami M, Hashimoto M, Takahashi H, Harada N, Minami Y, Kitakaze T, Masuda W, Takenaka S, Inui H, Yamaji R. Androgens suppress the sialyltransferases ST3GAL1 and ST3GAL4 and modulate mucin 10 glycosylation in the submandibular gland, related to sex differences in commensal microbiota composition in mice. Biosci Biotechnol Biochem 2025; 89:241-254. [PMID: 39572079 DOI: 10.1093/bbb/zbae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025]
Abstract
Sex differences exist in the commensal microbiota that impact on multiple physiological processes in the host. Here, we examined the mechanism by which the sex differences are formed. In addition to the epithelial ductal cell, the acinar cell mass in the submandibular gland was associated with androgen-androgen receptor (AR) signaling. Sex differences in the formation of submandibular mucin 10 (MUC10) were identified using SDS-PAGE. Neuraminidase treatment, which hydrolyzes terminal sialic acid, influenced the mobility shift of MUC10. Androgen-AR signaling negatively regulated ST3 β-galactoside α-2,3-sialyltransferase 1 (St3gal1) and St3gal4 in the submandibular gland. There was a trend and significant sex differences in α-diversity (Shannon, P = .09) and β-diversity (unweighted UniFrac) in oral microbiota composition, respectively. Some female-preferring bacteria including Akkermansia muciniphila can assimilate mucin by degrading terminal sialic acids. Our results indicate that androgen-AR signaling suppresses ST3GAL1 and ST3GAL4, which can influence sex differences in commensal microbiota composition.
Collapse
Affiliation(s)
- Mana Deminami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Miku Hashimoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Yukari Minami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Wataru Masuda
- Department of Nutrition, Faculty of Home Economics, Kyushu Women's University, Kitakyushu, Fukuoka, Japan
| | - Shigeo Takenaka
- Division of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Habikino, Osaka, Japan
| | - Hiroshi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Department of Health and Nutrition, Otemae University, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
5
|
Zhang F, Tan M, Hu ZE, Zhang YT, Qi XW, Che YT, Li J, Zhang S, Li BJ. A hyaluronic acid-modified cyclodextrin self-assembly system for the delivery of β-carotene in the treatment of dry eye disease. Int J Biol Macromol 2025; 287:138428. [PMID: 39647723 DOI: 10.1016/j.ijbiomac.2024.138428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Dry eye disease (DED) is a multifactorial ocular disease, the core mechanism of which is the tear film instability caused by ocular oxidative stress damage and inflammation. Although various pharmaceutical agents are available for DED treatment, their effectiveness is often limited by the eyes' unique biological barriers, and the long-term use of steroid hormones can lead to several adverse effects. This study reported a nano-supramolecular delivery system consisting of a polycyclodextrin (PCD), hyaluronic acid (HA) and the natural compound β-carotene (BC) for the DED treatment. Our findings indicate that the HA/PCD@BC eye drops effectively distribute on the ocular surface, retain BC, and significantly enhance the corneal penetration of BC. The excellent biocompatibility of HA/PCD@BC was demonstrated through viability testing on different cell lines, the Draize eye test, as well as the hematoxylin-eosin staining (H&E) sections of cornea and conjunctiva. Both in vitro oxidative stress assays and in vivo DED model evaluations demonstrated that the HA/PCD@BC delivery system significantly reduced abnormal oxidative stress levels on the ocular surface, inhibited the secretion of inflammatory factors, and increased the secretion of tear film stabilizing mucin. These effects collectively improved pathological changes in eye tissues and minimized damage to the ocular surface. It is of particular importance to note that HA/PCD@BC eye drops showed superior efficacy in comparison to cyclosporine A (CsA), an FDA-approved first-line drug. To sum up, the HA/PCD@BC nanodelivery system provides a natural, safe and effective therapeutic strategy for the treatment of DED and various ocular diseases.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-E Hu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye-Tao Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Wei Qi
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Che
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China.
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Schmidt HF, Darwin CB, Sundaram MV. The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell type-specific apical extracellular matrix in the Caenorhabditis elegans vulva. Dev Biol 2025; 517:265-277. [PMID: 39489317 PMCID: PMC11631643 DOI: 10.1016/j.ydbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The surface of epithelial tissues is covered by an apical extracellular matrix (aECM). The aECMs of different tissues have distinct compositions to serve distinct functions, yet how a particular cell type assembles the proper aECM is not well understood. We used the cell type-specific matrix of the C. elegans vulva to investigate the connection between cell identity and matrix assembly. The vulva is an epithelial tube composed of seven cell types descending from EGFR/Ras-dependent (1°) and Notch-dependent (2°) lineages. Vulva aECM contains multiple Zona Pellucida domain (ZP) proteins, which are a common component of aECMs across life. ZP proteins LET-653 and CUTL-18 assemble on 1° cell surfaces, while NOAH-1 assembles on a subset of 2° surfaces. All three ZP genes are broadly transcribed, indicating that cell type-specific ZP assembly must be determined by features of the destination cell surface. The paired box (Pax) transcription factor EGL-38 promotes assembly of 1° matrix and prevents inappropriate assembly of 2° matrix, suggesting that EGL-38 promotes expression of one or more ZP matrix organizers. Our results connect the known signaling pathways and various downstream effectors to EGL-38/Pax expression and the ZP matrix component of vulva cell fate execution. We propose that dedicated transcriptional networks may contribute to cell-appropriate assembly of aECM in many epithelial organs.
Collapse
Affiliation(s)
- Helen F Schmidt
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Troisi M, Del Prete S, Troisi S, Del Prete A, Bellucci C, Marasco D, Costagliola C. The Role of Scanning Electron Microscopy in the Evaluation of Conjunctival Microvilli as an Early Biomarker of Ocular Surface Health: A Literature Review. J Clin Med 2024; 13:7569. [PMID: 39768491 PMCID: PMC11727919 DOI: 10.3390/jcm13247569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Microvilli are bristle-like protuberances of the plasma membrane, which express the vitality of mucous and epithelial cells; their alteration indicates a condition of cellular suffering in a predictive sense, making it possible to establish how much an inflammatory state or toxic conditions affect cellular functionality. In this article, the authors evaluate the applications of scanning electron microscopy (SEM) examination to impression cytology (IC) of the bulbar conjunctiva for the assessment of microvillar alteration as an early ultrastructural indicator of ocular surface health. This method offers several advantages, starting with its simplicity: it involves the non-invasive application of a strip of bibulous paper to the bulbar or tarsal conjunctiva. Unlike conjunctival or corneal biopsies, which are surgical procedures, this technique is far less invasive and more comfortable for the patient. It also provides a more clinically relevant in vivo assessment compared to studies on cultured cell lines, which are mostly limited to scientific research and may not accurately reflect real-world conditions. This makes it an effective, repeatable, and patient-friendly option for detecting early pathological alterations of the ocular surface. It also represents a useful tool for evaluating the efficacy of topical drugs and the toxic effects of external factors and ophthalmic or systemic diseases. Finally, it allows for obtaining accessory information relating to goblet cells, the presence of inflammatory infiltrate, or any pathogens.
Collapse
Affiliation(s)
- Mario Troisi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | | | - Salvatore Troisi
- Ophthalmologic Unit, Salerno Hospital University, 84100 Salerno, Italy
| | - Antonio Del Prete
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | - Carlo Bellucci
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
| | - Daniela Marasco
- Service Biotech s.r.l., 80121 Naples, Italy; (S.D.P.); (D.M.)
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| |
Collapse
|
8
|
Li H, Zhang Y, Chen Y, Zhu R, Zou W, Chen H, Hu J, Feng S, Zhong Y, Lu X. MUC1‑ND interacts with TRPV1 to promote corneal epithelial cell proliferation in diabetic dry eye mice by partly activating the AKT signaling pathway. Mol Med Rep 2024; 30:213. [PMID: 39370807 PMCID: PMC11450431 DOI: 10.3892/mmr.2024.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein‑protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1‑ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1‑ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1‑ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1‑ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.
Collapse
Affiliation(s)
- Haiqiong Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yu Zhang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yuting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Rong Zhu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Jia Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
9
|
Yamada Y, Terada Y, Yamanaka R, Enoyoshi M, Ito K. TRPV4 activation in human corneal epithelial cells promotes membrane mucin production. Biochem Biophys Res Commun 2024; 731:150402. [PMID: 39024979 DOI: 10.1016/j.bbrc.2024.150402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Given that the corneal epithelium is situated on the outermost part of the eye, its functions can be influenced by external temperatures and chemical substances. This study aimed to elucidate the expression profile of chemosensory receptors in corneal epithelial cells and analyze their role in eye function regulation. A comprehensive analysis of 425 chemosensory receptors in human corneal epithelial cells-transformed (HCE-T) revealed the functional expression of TRPV4. The activation of TRPV4 in HCE-T cells significantly increased the expression of membrane-associated mucins MUC1, MUC4, and MUC16, which are crucial for stabilizing tear films, with efficacy comparable to the active components of dry eye medications. The present study suggests that TRPV4, which is activated by body temperature, regulates mucin expression and proposes it as a novel target for dry eye treatment.
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Rie Yamanaka
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Manami Enoyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Dai Y, Zhang J, Zhang S, Li L, Qu C, Chen J, Lu L. Ag/Cu nanoparticles-loaded glycocalyx biomimetic corneal bandage lenses for combatting bacterial keratitis. J Control Release 2024; 376:382-394. [PMID: 39419448 DOI: 10.1016/j.jconrel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Bacterial keratitis is a major cause of blindness, hindered by the rising threat of antibiotic resistance. Although corneal bandage lenses (CBLs) are widely utilized in ophthalmic treatment, their effectiveness in treating bacterial keratitis remains limited due to risks of secondary infections, patient discomfort, and complications. In this study, we developed a novel biomimetic coating on CBLs by grafting Ag/Cu bimetallic nanoparticles (Ag/Cu-NPs) and thiol-functionalized heparin (Hep-SH) using a rapid polydopamine (PDA) deposition technique, effectively mimicking the ocular surface glycocalyx structure. The resulting Ag/Cu-NPs/Hep-SH coated CBLs (PNH-CBLs) exhibited significant antibacterial activity, with over 80 % reduction in Staphylococcus aureus (S. aureus) and 70 % in Escherichia coli (E. coli) due to the sustained release of Ag+ and Cu2+, along with displaying favorable in vitro biocompatibility. Animal experiments conducted on New Zealand white rabbits with bacterial keratitis demonstrated successful treatment therapeutic outcomes, with PNH-CBLs leading to a significant decrease in clinical score. These biomimetic lenses also exhibited selective anti-protein adsorption properties, minimizing inflammation and promoting surface lubrication. Overall, this innovative approach addresses critical challenges in antibiotic resistance and offers a promising therapeutic strategy for managing ophthalmic infectious diseases.
Collapse
Affiliation(s)
- Yan Dai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiali Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
11
|
Wu Y, Liu Y, Feng Y, Li X, Lu Z, Gu H, Li W, Hill LJ, Ou S. Evolution of therapeutic strategy based on oxidant-antioxidant balance for fuchs endothelial corneal dystrophy. Ocul Surf 2024; 34:247-261. [PMID: 39111696 DOI: 10.1016/j.jtos.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) stands as the most prevalent primary corneal endothelial dystrophy worldwide, posing a significant risk to corneal homeostasis and clarity. Corneal endothelial cells exhibit susceptibility to oxidative stress, suggesting a nuanced relationship between oxidant-antioxidant imbalance and FECD pathogenesis, irrespective of FECD genotype. Given the constrained availability of corneal transplants, exploration into non-surgical interventions becomes crucial. This encompasses traditional antioxidants, small molecule compounds, biologics, and diverse non-drug therapies, such as gene-related therapy, hydrogen therapy and near infrared light therapy. This review concentrates on elucidating the mechanisms behind oxidant-antioxidant imbalance and the evolution of strategies to restore oxidant-antioxidant balance in FECD. It provides a comprehensive overview of both conventional and emerging therapeutic approaches, offering valuable insights for the advancement of non-surgical treatment modalities. The findings herein might establish a robust foundation for future research and the therapeutic strategy of FECD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuchong Feng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoshuang Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Zhaoxiang Lu
- Institute of Microbiology and Infection, Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Medical Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK.
| | - Shangkun Ou
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
12
|
Schmidt HF, Darwin CB, Sundaram MV. The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell-type specific apical extracellular matrix in the Caenorhabditis elegans vulva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611291. [PMID: 39282387 PMCID: PMC11398461 DOI: 10.1101/2024.09.04.611291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The surface of epithelial tissues is covered by an apical extracellular matrix (aECM). The aECMs of different tissues have distinct compositions to serve distinct functions, yet how a particular cell type assembles the proper aECM is not well understood. We used the cell-type specific matrix of the C. elegans vulva to investigate the connection between cell identity and matrix assembly. The vulva is an epithelial tube composed of seven cell types descending from EGFR/Ras-dependent (1°) and Notch-dependent (2°) lineages. Vulva aECM contains multiple Zona Pellucida domain (ZP) proteins, which are a common component of aECMs across life. ZP proteins LET-653 and CUTL-18 assemble on 1° cell surfaces, while NOAH-1 assembles on a subset of 2° surfaces. All three ZP genes are broadly transcribed, indicating that cell-type specific ZP assembly must be determined by features of the destination cell surface. The paired box (Pax) transcription factor EGL-38 promotes assembly of 1° matrix and prevents inappropriate assembly of 2° matrix, suggesting that EGL-38 promotes expression of one or more ZP matrix organizers. Our results connect the known signaling pathways and various downstream effectors to EGL-38/Pax expression and the ZP matrix component of vulva cell fate execution. We propose that dedicated transcriptional networks may contribute to cell-appropriate assembly of aECM in many epithelial organs.
Collapse
Affiliation(s)
- Helen F Schmidt
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Liu Y, Duan Z, Yuan J, Xiao P. Imaging assessment of conjunctival goblet cells in dry eye disease. Clin Exp Ophthalmol 2024; 52:576-588. [PMID: 38553944 DOI: 10.1111/ceo.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 07/03/2024]
Abstract
Dry eye disease (DED) is a widespread, multifactorial, and chronic disorder of the ocular surface with disruption of tear film homeostasis as its core trait. Conjunctival goblet cells (CGCs) are specialised secretory cells found in the conjunctival epithelium that participate in tear film formation by secreting mucin. Changes in both the structure and function of CGCs are hallmarks of DED, and imaging assessment of CGCs is important for the diagnosis, classification, and severity evaluation of DED. Existing imaging methods include conjunctival biopsy, conjunctival impression cytology and in vivo confocal microscopy, which can be used to assess the morphology, distribution, and density of the CGCs. Recently, moxifloxacin-based fluorescence microscopy has emerged as a novel technique that enables efficient, non-invasive and in vivo imaging of CGCs. This article presents a comprehensive overview of both the structure and function of CGCs and their alterations in the context of DED, as well as current methods of CGCs imaging assessment. Additionally, potential directions for the visual evaluation of CGCs are discussed.
Collapse
Affiliation(s)
- Yushuang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Zhengyu Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| |
Collapse
|
14
|
Lin N, Chen X, Liu H, Gao N, Liu Z, Li J, Pflugfelder SC, Li DQ. Ectoine Enhances Mucin Production Via Restoring IL-13/IFN-γ Balance in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 38935032 PMCID: PMC11216279 DOI: 10.1167/iovs.65.6.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.
Collapse
Affiliation(s)
- Na Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haixia Liu
- Allergan, an AbbVie company, Irvine, California, United States
| | - Ning Gao
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
15
|
Leoncini G, Cari L, Ronchetti S, Donato F, Caruso L, Calafà C, Villanacci V. Mucin Expression Profiles in Ulcerative Colitis: New Insights on the Histological Mucosal Healing. Int J Mol Sci 2024; 25:1858. [PMID: 38339134 PMCID: PMC10855303 DOI: 10.3390/ijms25031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A structural weakness of the mucus barrier (MB) is thought to be a cause of ulcerative colitis (UC). This study aims to investigate the mucin (MUC) composition of MB in normal mucosa and UC. Ileocolonic biopsies were taken at disease onset and after treatment in 40 patients, including 20 with relapsing and 20 with remitting UC. Ileocolonic biopsies from 10 non-IBD patients were included as controls. Gut-specific MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC15, and MUC17 were evaluated immunohistochemically. The promoters of mucin genes were also examined. Normal mucosa showed MUC2, MUC5B, and MUC13 in terminal ileum and colon, MUC17 in ileum, and MUC1, MUC4, MUC12, and MUC15 in colon. Membranous, cytoplasmic and vacuolar expressions were highlighted. Overall, the mucin expression was abnormal in UC. Derangements in MUC1, MUC4, and MUC5B were detected both at onset and after treatment. MUC2 and MUC13 were unaffected. Sequence analysis revealed glucocorticoid-responsive elements in the MUC1 promoter, retinoic-acid-responsive elements in the MUC4 promoter, and butyrate-responsive elements in the MUC5B promoter. In conclusion, MUCs exhibited distinct expression patterns in the gut. Their expression was disrupted in UC, regardless of the treatment protocols. Abnormal MUC1, MUC4, and MUC5B expression marked the barrier dysfunction in UC.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | | |
Collapse
|
16
|
Li X, Li X, Kang B, Eom Y, Lee HK, Kim DH, Zhong J, Song JS. Effects of particulate matter exposure on the expression of the SARS-CoV-2 ACE2 receptor in ocular surface tissues and cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8768-8780. [PMID: 38180673 DOI: 10.1007/s11356-023-31607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Particulate matter (PM) has been reported to be one of the risk factor for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, although the ocular surface is deeply affected by both PM exposure and SARS-COV-2 infection, no studies have investigated the effects of PM exposure on the ocular route of SARS-COV-2 infection. To this end, we explored the effects of PM on the expression of SARS-COV-2-associated receptors and proteins in ocular surface. Herein, short- and long-term PM-exposed rat models were established by topically administering PM for 3 and 10 days, respectively. Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to PM. ACE2, TMPRSS2, CD147, and ADAM17 expression levels were measured by western blot analysis. Our results show that short-term PM exposure had little effect on the expressions of ACE2, TMPRSS2, and CD147 in ocular surface tissues. However, long-term PM exposure decreased the ACE2 expression in conjunctival tissues and increased the CD147 expression in corneal or conjunctival tissues. PM exposure reduced the ACE2 expression by increasing the ADAM17 expression and ACE2 shedding level in HCECs and HCjECs. Our findings suggest that long-term PM exposure down-regulate the expression of the SARS-CoV-2 receptor ACE2 in conjunctival tissues through ADAM17-dependent ACE2 shedding. However, long-term PM exposure up-regulates the expression of another SARS-CoV-2 receptor CD147 in ocular surface tissues, accompanied by ocular surface damage and cytotoxicity. This study provides a new insight into uncovering potential risk factors for infection with SARS-CoV-2 via the ocular route.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuemin Li
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea.
| |
Collapse
|
17
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
18
|
Tong X, Dong C, Liang S. Mucin1 as a potential molecule for cancer immunotherapy and targeted therapy. J Cancer 2024; 15:54-67. [PMID: 38164273 PMCID: PMC10751670 DOI: 10.7150/jca.88261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mucin1 is a highly glycosylated type 1 transmembrane mucin that ranks second among 75 tumor-related antigens published by the National Cancer Institute, and has been identified as a possible therapeutic target over the past 30 years. MUC1 plays an important role in malignant transformation and disease evolution, including cell proliferation, survival, self-renewal, and metastatic invasion. MUC1 has been shown to interact with diverse effectors such as β-catenin, receptor tyrosine kinases, and cellular-abelsongene, which are of importance in the pathogenesis of various malignant tumors. Targeting MUC1 has been shown to be an effective way to induce tumor cell death in vivo and in vitro models. In recent years, a number of therapeutic strategies targeting MUC1 have been developed and their value for tumor therapy have been demonstrated experimentally. This review summarizes recent findings on the structure of MUC1, its expression in different tumors and its involved mechanism pathways, with emphasis on new progress in cancer therapy which related MUC1 in the past decade and evaluates their therapeutic effect.
Collapse
Affiliation(s)
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Ballesteros-Sánchez A, Sánchez-González MC, De-Hita-Cantalejo C, Gutiérrez-Sánchez E, Rocha-de-Lossada C, Sánchez-González JM. The Efficacy and Safety of Rebamipide Ophthalmic Suspension (OPC-12759) in Patients with Dry Eye Disease: A Systematic Review of Randomized Controlled Trials. J Clin Med 2023; 12:7155. [PMID: 38002767 PMCID: PMC10672675 DOI: 10.3390/jcm12227155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this paper is to evaluate the efficacy and safety of Rebamipide (REB) ophthalmic suspension in dry eye disease (DED). A systematic review that only included full-length randomized controlled studies (RCTs) reporting the effects of REB ophthalmic suspension in three databases, PubMed, Scopus and Web of Science, was performed according to the PRISMA statement. The Cochrane risk of bias tool was used to analyze the quality of the studies selected. A total of seven studies were included in this systematic review. Although the overall risk of bias was low, most studies were sponsored by the manufacturer. REB ophthalmic suspension treatment achieved higher improvement than the control group in all reported variables. The mean differences between both groups were in favor of the REB group and were as follows: dry eye-related quality of life score (DEQS) -3.5 ± 2.9 points, tear film break-up time (TBUT) of 0.7 ± 0.6 s, Schirmer test (ST) without anesthesia of 0.3 ± 0.6 mm and total corneal fluorescein staining (tCFS) of -1.2 ± 0.7 points. Adverse events (AEs) were 5.2 ± 7.6% superior in the REB group, with an overall compliance > 95%. Therefore, REB ophthalmic suspension is a safe and effective treatment that could be recommended in patients with DED.
Collapse
Affiliation(s)
- Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
- Department of Ophthalmology, Ophthalmologic Novovision Clinic, 30008 Murcia, Spain
| | - María Carmen Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| | - Concepción De-Hita-Cantalejo
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| | | | - Carlos Rocha-de-Lossada
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain; (E.G.-S.); (C.R.-d.-L.)
- Qvision, Ophthalmology Department, VITHAS Almeria Hospital, 04120 Almeria, Spain
- Ophthalmology Department, VITHAS Malaga, 29016 Malaga, Spain
- Regional University Hospital of Malaga, Hospital Civil Square, 29009 Malaga, Spain
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| |
Collapse
|
20
|
You Y, Chen J, Chen H, Wang J, Xie H, Pi X, Wang X, Jiang F. Investigation of Conjunctival Goblet Cell and Tear MUC5AC Protein in Patients With Graves' Ophthalmopathy. Transl Vis Sci Technol 2023; 12:19. [PMID: 37889503 PMCID: PMC10617636 DOI: 10.1167/tvst.12.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose The aim of this study was to investigate conjunctival goblet cell density (GCD) and tear mucin-5AC (MUC5AC) protein levels in patients with Graves' ophthalmopathy (GO) and their association with dry eye indicators. Methods A total of 99 patients with GO (54 active, 45 inactive) and 40 healthy controls were recruited. Comprehensive ophthalmic examinations, including the external eye, ocular surface, GCD, and tear MUC5AC ELISA, were performed. The GCD examination was performed in temporal bulbar conjunctiva, including IVCM GCD by in vivo confocal microscopy (IVCM) and filled GCD of cytokeratin-7 and MUC5AC-positive co-immunomarkers by impression cytology. Tear MUC5AC protein was detected using samples extracted from Schirmer strips. Results The GO group showed a significant decrease in IVCM GCD, filled GCD, and normalized tear MUC5AC protein compared to controls, with the active GO group showing the greatest decrease (all P < 0.05). Tear MUC5AC protein levels in GO correlated with those of IVCM GCD (r = 0.40, P < 0.001) and filled GCD (r = 0.54, P < 0.001, respectively). Higher ocular surface disease index (r = -0.22, P < 0.05; r = -0.20, P < 0.05; r = -0.21, P < 0.05) and lisamine green staining (r = -0.23, P < 0.05; r = -0.38, P < 0.001; r = -0.42, P < 0.001) were associated with lower tear MUC5AC protein levels, IVCM GCD, and filled GCD, respectively, which decreased with increasing clinical activity score (r = -0.24, P < 0.05; r = -0.28, P < 0.01; r = -0.27, P < 0.01) and conjunctival congestion score (r = -0.27, P < 0.01; r = -0.33, P < 0.001; r = -0.42, P < 0.001). Conclusions The goblet cell count and tear MUC5AC protein in GO eyes were decreased, possibly due to ocular surface inflammation. Translational Relevance This study observed the change of tear film mucin in GO patients.
Collapse
Affiliation(s)
- Yayan You
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jiasong Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohuan Pi
- Department of Ophthalmology, The Sixth Hospital of Wuhan, Jianghan University, Wuhan, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Martinez-Carrasco R, Rachagani S, Batra SK, Argüeso P, Fini ME. Roles unveiled for membrane-associated mucins at the ocular surface using a Muc4 knockout mouse model. Sci Rep 2023; 13:13558. [PMID: 37604830 PMCID: PMC10442421 DOI: 10.1038/s41598-023-40491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Membrane-associated mucins (MAMs) are proposed to play critical roles at the ocular surface; however, in vivo evidence has been lacking. Here we investigate these roles by phenotyping of a Muc4 KO mouse. Histochemical analysis for expression of the beta-galactosidase transgene replacing Muc4 revealed a spiraling ribbon pattern across the corneal epithelium, consistent with centripetal cell migration from the limbus. Depletion of Muc4 compromised transcellular barrier function, as evidenced by an increase in rose bengal staining. In addition, the corneal surface was less smooth, consistent with disruption of tear film stability. While surface cells presented with well-developed microprojections, an increase in the number of cells with fewer microprojections was observed. Moreover, an increase in skin-type keratin K10 and a decrease in transcription factor Pax6 was observed, suggesting an incipient transdifferentiation. Despite this, no evidence of inflammatory dry eye disease was apparent. In addition, Muc4 had no effect on signaling by toll-like receptor Tlr4, unlike reports for MUC1 and MUC16. Results of this study provide the first in vivo evidence for the role of MAMs in transcellular barrier function, tear film stability, apical epithelial cell architecture, and epithelial mucosal differentiation at the ocular surface.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Satyanarayan Rachagani
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pablo Argüeso
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
- Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
22
|
Duan H, Yang T, Zhou Y, Ma B, Zhao L, Chen J, Qi H. Comparison of mucin levels at the ocular surface of visual display terminal users with and without dry eye disease. BMC Ophthalmol 2023; 23:189. [PMID: 37106448 PMCID: PMC10139827 DOI: 10.1186/s12886-023-02931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The long-term use of visual display terminals (VDT) is linked to an increased risk of dry eye disease (DED). Numerous studies have indicated that ocular mucins play a vital role in the pathogenesis of DED. Therefore, we aimed to evaluate (1) whether mRNA levels of membrane-associated mucins (MAMs), including MUC1, MUC4, MUC16, and MUC20, as well as MUC5AC are altered in conjunctival cells of VDT users with and without DED and (2) the relationship between mucin levels and subjective and objective tests of DED in VDT users. METHODS Seventy-nine VDT users were enrolled and divided into DED (n = 53) and control (n = 26) groups. All participants were evaluated for parameters of DED using the Ocular Surface Disease Index (OSDI) questionnaire, tear breakup time (TBUT), corneal fluorescein staining (CFS), lissamine green (LG) staining, and tear meniscus height (TMH). Based on the conjunctival impression cytology (CIC) method, differences in MUC1, MUC4, MUC16, MUC20, and MUC5AC mRNA expression levels were observed between the DED and control groups, and between symptomatic and asymptomatic participants. RESULTS The DED group showed significantly decreased MUC1, MUC16, and MUC20 expressions (all P < 0.05) compared to the control group. In addition, these mucin levels were lower in subjects with frequent ocular symptoms (foreign body sensation, blurred vision and painful or sore eyes) than in asymptomatic participants (all P < 0.05). Correlation analysis revealed that MUC1, MUC16, and MUC20 levels in VDT users were positively correlated with TBUT or TMH, or both. However, no significant relationship was found between MUC4 and MUC5AC levels and the DED parameters. CONCLUSION VDT users with an increased frequency of ocular discomfort or a diagnosis of DED had a decreased MUC1, MUC16 and MUC20 mRNA expression in their conjunctival cells. MAMs deficiency in the conjunctival epithelium may be one of the mechanisms leading to tear film instability and DED in VDT users.
Collapse
Affiliation(s)
- Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Tingting Yang
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Lu Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
23
|
Itah S, Elad D, Jaffa AJ, Grisaru D, Rosner M. Transmembrane Mucin Response in Conjunctival Epithelial Cells Exposed to Wall Shear Stresses. Int J Mol Sci 2023; 24:ijms24076589. [PMID: 37047561 PMCID: PMC10095083 DOI: 10.3390/ijms24076589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Human conjunctival epithelium cells (HCEC) line the inner surface of the eyelid and cover the sclera and are continuously subjected to wall shear stresses (WSS). The effects of external forces on the conjunctival epithelium are not fully known. The conjunctival epithelium contains stratified squamous cells that synthesize the membrane-spanning mucins MUC1 and MUC16, which play important roles in protecting the ocular surface. Alterations in both gel-forming and membrane-tethered mucins occur in drying ocular surface diseases. The aim of this study was to explore the mechanobiological characteristics of transmembrane mucin secretion and cellular alterations of primary HCEC exposed to airflow-induced WSS perturbations. We exposed the HCEC to a steady WSS of 0.5 dyne/cm2 for durations of 15 and 30 min. Cytoskeletal alterations and MUC1 secretions were studied using immunohistochemically fluorescent staining with specific antibodies. We investigated for the first time an in vitro model of membrane-tethered mucin secretion by HCEC in response to WSS. The exposure of HCEC to WSS increased the polymerization of F-actin, altered the cytoskeletal shape and reduced the secretion of membrane-tethered MUC1.
Collapse
Affiliation(s)
- Shir Itah
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ariel J. Jaffa
- Department of Obstetrics and Gynecology, Tel-Aviv University, Tel-Aviv 69978, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Dan Grisaru
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Department of Gynecological Oncology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel-Aviv 64239, Israel
| | - Mordechai Rosner
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Department of Ophthalmology, Sheba Medical Center, Ramat-Gan 52620, Israel
- Assuta Medical Centers, Tel-Aviv 69710, Israel
| |
Collapse
|
24
|
View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci 2023; 24:ijms24044227. [PMID: 36835646 PMCID: PMC9960128 DOI: 10.3390/ijms24044227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Due to mucin's important protective effect on epithelial tissue, it has garnered extensive attention. The role played by mucus in the digestive tract is undeniable. On the one hand, mucus forms "biofilm" structures that insulate harmful substances from direct contact with epithelial cells. On the other hand, a variety of immune molecules in mucus play a crucial role in the immune regulation of the digestive tract. Due to the enormous number of microorganisms in the gut, the biological properties of mucus and its protective actions are more complicated. Numerous pieces of research have hinted that the aberrant expression of intestinal mucus is closely related to impaired intestinal function. Therefore, this purposeful review aims to provide the highlights of the biological characteristics and functional categorization of mucus synthesis and secretion. In addition, we highlight a variety of the regulatory factors for mucus. Most importantly, we also summarize some of the changes and possible molecular mechanisms of mucus during certain disease processes. All these are beneficial to clinical practice, diagnosis, and treatment and can provide some potential theoretical bases. Admittedly, there are still some deficiencies or contradictory results in the current research on mucus, but none of this diminishes the importance of mucus in protective impacts.
Collapse
|
25
|
Maiti G, Monteiro de Barros MR, Hu N, Dolgalev I, Roshan M, Foster JW, Tsirigos A, Wahlin KJ, Chakravarti S. Single cell RNA-seq of human cornea organoids identifies cell fates of a developing immature cornea. PNAS NEXUS 2022; 1:pgac246. [PMID: 36712326 PMCID: PMC9802453 DOI: 10.1093/pnasnexus/pgac246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
The cornea is a protective and refractive barrier in the eye crucial for vision. Understanding the human cornea in health, disease, and cell-based treatments can be greatly advanced with cornea organoids developed in culture from induced pluripotent stem cells. While a limited number of studies have investigated the single-cell transcriptomic composition of the human cornea, its organoids have not been examined similarly. Here, we elucidated the transcriptomic cell fate map of 4-month-old human cornea organoids and human donor corneas. The organoids harbor cell clusters that resemble cells of the corneal epithelium, stroma, and endothelium, with subpopulations that capture signatures of early developmental states. Unlike the adult cornea where the largest cell population is stromal, the organoids contain large proportions of epithelial and endothelial-like cells. These corneal organoids offer a 3D model to study corneal diseases and integrated responses of different cell types.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA
| | - Mona Roshan
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - James W Foster
- Wilmer Eye Institute, Johns Hopkins school of Medicine, Smith M037, 400 Broadway, Baltimore, MD 21287, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA,Department of Pathology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Karl J Wahlin
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Li Z, Yang D, Guo T, Lin M. Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules 2022; 12:biom12070952. [PMID: 35883508 PMCID: PMC9313386 DOI: 10.3390/biom12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BRCA) is the leading cause of death from malignant tumors among women. Fortunately, however, immunotherapy has recently become a prospective BRCA treatment with encouraging achievements and mild safety profiles. Since the overexpression and aberrant glycosylation of MUC1 (human mucin) are closely associated with BRCA, it has become an ideal target for BRCA immunotherapies. In this review, the structure and function of MUC1 are briefly introduced, and the main research achievements in different kinds of MUC1-mediated BRCA immunotherapy are highlighted, from the laboratory to the clinic. Afterward, the future directions of MUC1-mediated BRCA immunotherapy are predicted, addressing, for example, urgent issues in regard to how efficient immunotherapeutic strategies can be generated.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Dazhuang Yang
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Ting Guo
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
| | - Mei Lin
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
- Correspondence:
| |
Collapse
|
27
|
Lee HJ, Yoon CH, Kim HJ, Ko JH, Ryu JS, Jo DH, Kim JH, Kim D, Oh JY. Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization. Mucosal Immunol 2022; 15:1350-1362. [PMID: 35986099 DOI: 10.1038/s41385-022-00555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Microbiota promotes or inhibits the pathogenesis of a range of immune-mediated disorders. Although recent studies have elucidated the role of gut microbiota in ocular disease, the effect of ocular microbiota remains unclear. Herein, we explored the role of ocular commensal bacteria in non-infectious corneal inflammation and angiogenesis in a mouse model of suture-induced corneal neovascularization. Results revealed that the ocular surface harbored a microbial community consisting mainly of Actinobacteria, Firmicutes and Proteobacteria. Elimination of the ocular commensal bacteria by oral broad-spectrum antibiotics or topical fluoroquinolone significantly suppressed corneal inflammation and neovascularization. Disease amelioration was associated with reduced numbers of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells, not Foxp3+ regulatory T cells, in the spleen, blood, and draining lymph nodes. Therapeutic concentrations of fluoroquinolone, however, did not directly affect immune cells or vascular endothelial cells. In addition, data from a clinical study showed that antibiotic treatment in combination with corticosteroids, as compared with corticosteroid monotherapy, induced faster remission of corneal inflammation and new vessels in pediatric patients with non-infectious marginal keratitis. Altogether, our findings demonstrate a pathogenic role of ocular microbiota in non-infectious inflammatory disorders leading to sight-threatening corneal neovascularization, and suggest a therapeutic potential of targeting commensal microbes in treating ocular inflammation.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeon Ji Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Donghyun Kim
- Department of Biological Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
28
|
Singh N, Diebold Y, Sahu SK, Leonardi A. Epithelial barrier dysfunction in ocular allergy. Allergy 2022; 77:1360-1372. [PMID: 34757631 PMCID: PMC9300009 DOI: 10.1111/all.15174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The epithelial barrier is the first line of defense that forms a protective barrier against pathogens, pollutants, and allergens. Epithelial barrier dysfunction has been recently implicated in the development of allergic diseases such as asthma, atopic dermatitis, food allergy, and rhinitis. However, there is limited knowledge on epithelial barrier dysfunction in ocular allergy (OA). Since the ocular surface is directly exposed to the environment, it is important to understand the role of ocular epithelia and their dysfunction in OA. Impaired epithelial barrier enhances allergen uptake, which lead to activation of immune responses and development of chronic inflammation as seen in allergies. Abnormal expression of tight junction proteins that helps to maintain epithelial integrity has been reported in OA but sufficient data not available in chronic atopic (AKC) and vernal keratoconjunctivitis (VKC), the pathophysiology of which is not just complex, but also the current treatments are not completely effective. This review provides an overview of studies, which indicates the role of barrier dysfunction in OA, and highlights how ocular barrier dysfunction possibly contributes to the disease pathogenesis. The review also explores the potential of ocular epithelial barrier repair strategies as preventive and therapeutic approach.
Collapse
Affiliation(s)
- Neera Singh
- ProCyto Labs Pvt. Ltd. KIIT‐TBI KIIT University Patia, Bhubaneswar India
| | - Yolanda Diebold
- Ocular Surface Group Instituto Universitario de Oftalmobiología Aplicada (IOBA) Universidad de Valladolid Valladolid Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Valladolid Spain
| | - Srikant K. Sahu
- LV Prasad Eye Institute, Cornea and Anterior Segment, MTC Campus Patia, Bhubaneswar India
| | - Andrea Leonardi
- Ophthalmology Unit Department of Neuroscience University of Padova Padova Italy
| |
Collapse
|
29
|
Jackson CJ, Gundersen KG, Tong L, Utheim TP. Dry eye disease and proteomics. Ocul Surf 2022; 24:119-128. [PMID: 35278720 DOI: 10.1016/j.jtos.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Dry eye disease (DED) is a highly prevalent disease worldwide mostly associated with age, though other factors such as screen use and contact lens wear explain why it is increasingly diagnosed in younger people. DED also disproportionately affects women. Symptoms include eye dryness, burning, pain and sensitivity to light that can significantly affect quality of life. This condition may progress to cause lasting damage to the ocular surface if left untreated. Currently, diagnosis is through assessment of signs and symptoms determined by clinical tests and questionnaires. However, there is considerable overlap between normal and DED result distributions of currently available metrics as signs and symptoms fluctuate over time and with disease severity. Importantly, the non-targeted approach of proteomics means that significant changes in novel proteins may be discovered. Proteomics is a powerful tool that has been applied to the field of DED to understand changes at a biochemical level, uncover new disease biomarkers and determine the success of clinical interventions. While individual proteins may not be sensitive enough when used as single biomarkers, proteomics opens the possibility to uncover several relevant proteins that may be combined in a panel to provide more accurate diagnostic value i.e. parallel testing. In this review we discuss the use of proteomics in DED research and the potential for application of proteomic results in the clinic. We also identify shortcomings and future avenues for research.
Collapse
Affiliation(s)
- Catherine Joan Jackson
- IFocus Øyeklinikk AS, Haugesund, Norway; Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318, Oslo, Norway.
| | | | - Louis Tong
- Singapore Eye Research Institute, Singapore; Department of Cornea and External Diseases, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Duke-NUS Medical School, Singapore
| | - Tor Paaske Utheim
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450, Oslo, Norway; Department of Ophthalmology, Vestre Viken Hospital Trust, 3019, Drammen, Norway; Department of Ophthalmology, Stavanger University Hospital, 4011, Stavanger, Norway; Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020, Bergen, Norway; Department of Ophthalmology, Sørlandet Hospital Arendal, 4604, Arendal, Norway; National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, University of South Eastern Norway, 3603, Kongsberg, Norway; Department of Research and Development, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
30
|
Swamynathan S, Campbell G, Tiwari A, Swamynathan SK. Secreted Ly-6/uPAR-related protein-1 (SLURP1) is a pro-differentiation factor that stalls G1-S transition during corneal epithelial cell cycle progression. Ocul Surf 2021; 24:1-11. [PMID: 34923162 DOI: 10.1016/j.jtos.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Previously we demonstrated that the secreted Ly-6/uPAR related protein-1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an anti-inflammatory and anti-angiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal phenotype for the first time. METHODS We compared the 10-week-old wild type (WT) and Slurp1X-/- mouse corneal (i) histology by hematoxylin-eosin and periodic acid-Schiff's reagent staining, (ii) cell proliferation by immunostaining for Ki67, (iii) cell adhesion molecules by immunostaining for desmosomal and tight junction proteins, (iv) barrier function by fluorescein staining and (v) wound-healing by epithelial debridement. Effect of SLURP1 on cell cycle was quantified in human corneal limbal epithelial (HCLE) cells engineered to express SLURP1 (HCLE-SLURP1). RESULTS WT and Slurp1X-/- corneal histology was largely comparable, other than a few loosely attached superficial cells in Slurp1X-/- corneas. Compared with the WT, Slurp1X-/- corneas displayed (i) increase in Ki67+ cells, (ii) altered expression and/or localization of tight junction proteins Tjp1 and Pard3, and desmosomal Dsp, (iii) increased superficial fragility and (iv) slower CE wound healing. HCLE-SLURP1 cells displayed (i) decrease in Ki67+ cells, (ii) increased cell number doubling time, (iii) stalling in G1-S phase transition during cell cycle, and (iv) downregulation of cyclins CCNE and CCND1/D2, cyclin-dependent kinases CDK4 and CDK6, and upregulation of CDK inhibitor p15/CDKN2B. CONCLUSIONS Collectively, these results elucidate that Slurp1X-/- CE cell homeostasis is altered and suggest that SLURP1 is a pro-differentiation factor that stalls G1-S transition during cell cycle progression by downregulating cyclins and upregulating p15/CDKN2B.
Collapse
Affiliation(s)
- Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gregory Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| |
Collapse
|
31
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
32
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JKS, Yung KKL. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int J Mol Sci 2021; 22:ijms22126567. [PMID: 34207342 PMCID: PMC8234110 DOI: 10.3390/ijms22126567] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has different functions in normal and cancer cells. Owing to its structural and biochemical properties, MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer invasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling processes and the regulation of related biomolecules. This review introduces the biological structure and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer therapy based on its characteristics.
Collapse
Affiliation(s)
- Wenqing Chen
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Joshua Ka-Shun Ko
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| |
Collapse
|