1
|
Baik S, Qianshi Y, Park S, Lee H, Heo H, Lee J, Yuan C, Sung J. Flavonoid Derivatives Isolated from Hypericum monogynum Ameliorate Insulin Resistance via Modulation of IRS-1/PI3K/Akt/FOXO1 Pathway in HepG2 Cells. J Med Food 2025; 28:243-255. [PMID: 39711189 DOI: 10.1089/jmf.2024.k.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3-O-β-d-galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from Hypericum monogynum flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis. They upregulate the phosphorylation of glycogen synthase kinase-3β, which may affect glycogen synthesis. Furthermore, the production of reactive oxygen species was decreased by the two compounds. This study provides novel mechanistic insights into the protective effects of flavonoid derivatives isolated from H. monogynum flowers in preventing and managing insulin resistance and associated metabolic disorders.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Yunhua Qianshi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
- Natural Products Research Center of Guizhou Province, Guiyang, P.R. China
| | - Samuel Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| |
Collapse
|
2
|
Mbankou SN, Fokoua AR, Koho CW, Foguieng RHS, Tabatabaei SM, Nono Nankam PA, Tidgewell KJ, Nguelefack TB. Aqueous and Ethanol Extracts of Acacia sieberiana (Fabaceae) Stem Bark Reverse the Pain-Depression Dyad in Mice Through Modulation of Catecholamines, Proinflammatory Cytokines, and Oxidative Stress. Adv Pharmacol Pharm Sci 2025; 2025:1244498. [PMID: 40225229 PMCID: PMC11991813 DOI: 10.1155/adpp/1244498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/21/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale and Objective: The pain-depression dyad is highly prevalent and has reciprocal psychological and behavioral effects, leading to poor quality of life, increased disability, and challenging therapeutic outcomes. In an attempt to find better substances that can target pain-depression comorbidity, we examined the effect of aqueous (AE) and ethanol (EE) extracts from Acacia sieberiana (A. sieberiana) stem bark on reserpinized mice (female and male Swiss albino mice aged 2-3 months). Methods: The dyad was induced with 3 injections (Days 1-3) of reserpine (1 mg/kg/day, s.c.). Then, animals were treated (Days 4-8) with plant extracts (25, 50 and 100 mg/kg/day, p.o.) or L-tryptophane (100 mg/kg/day, i.p.). Pain-like (tactile and cold allodynia) and depression-like (pole, tail suspension, and force swimming tests) behavioral parameters were evaluated on Days 4 and 8. On Day 9, animals were sacrificed for the quantification of acetylcholinesterase activity, oxidative stress parameters, total catecholamines, dopamine, serotonin, IL-1β, and TNF-α levels in the brain or spinal cord. IL-1β and TNF-α were also assayed in the serum. The acute toxicity and phytochemical analysis of EE were conducted. Results: Reserpine-induced tactile and cold allodynia, depression-like behavior, increased serum IL-1β and TNF-α, brain acetylcholinesterase activity, and decreased catecholamine concentration were all reversed by AE and EE. Plant extracts significantly increased dopamine levels and reduced oxidative stress in the brain and/or spinal cord. No significant effect was observed on brain serotonin and TNF-α. EE elicited the best pharmacological activity and was nontoxic. LC-MS/MS molecular networking phytochemical analysis identified 5 compounds with high certainty including piperine, aurantiamide acetate, and asperphenamate. Conclusion: AE and EE are effective against pain and depression. Their pharmacological activities might be related to the modulation of inflammation, oxidative stress and catecholamine, and the presence of bioactive natural products.
Collapse
Affiliation(s)
- Sorelle Ngassam Mbankou
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| | - Aliance Romain Fokoua
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| | - Cedric Wamba Koho
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| | - Roger Hermann Sadie Foguieng
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| | | | - Pamela Arielle Nono Nankam
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| | - Kevin Joseph Tidgewell
- Pharmaceutical Sciences Department, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Télesphore Benoît Nguelefack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of DSchang, Dschang, Cameroon
| |
Collapse
|
3
|
Sullens DG, Gilley K, Moraglia LE, Dison S, Hoffman JT, Wiffler MB, Barnes RC, Ginty AT, Sekeres MJ. Sex in aging matters: exercise and chronic stress differentially impact females and males across the lifespan. Front Aging Neurosci 2025; 16:1508801. [PMID: 39881679 PMCID: PMC11774976 DOI: 10.3389/fnagi.2024.1508801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Assessing sex as a biological variable is critical to determining the influence of environmental and lifestyle risks and protective factors mediating behavior and neuroplasticity across the lifespan. We investigated sex differences in affective behavior, memory, and hippocampal neurogenesis following short- or long-term exposure to exercise or chronic mild stress in young and aged mice. Male and female mice were assigned control, running, or chronic stress rearing conditions for 1 month (young) or for 15 months (aged), then underwent a behavioral test battery to assess activity, affective behavior, and memory. Stress exposure into late-adulthood increased hyperactivity in both sexes, and enhanced anxiety-like and depressive-like behavior in aged female, but not male, mice. One month of stress or running had no differential effects on behavior in young males and females. Running increased survival of BrdU-labelled hippocampal cells in both young and aged mice, and enhanced spatial memory in aged mice. These findings highlight the importance of considering sex when determining how aging is differently impacted by modifiable lifestyle factors across the lifespan.
Collapse
Affiliation(s)
- D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Luke E. Moraglia
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Psychology, The University of Texas at Dallas, Richardson, TX, United States
| | - Sarah Dison
- Department of Biology, Baylor University, Waco, TX, United States
| | - Jessica T. Hoffman
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Madison B. Wiffler
- Department of Biology, Baylor University, Waco, TX, United States
- Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Robert C. Barnes
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Annie T. Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Melanie J. Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Hasan R, Bhuia MS, Chowdhury R, Khan MA, Mazumder M, Yana NT, Alencar MVOBD, Ansari SA, Ansari IA, Islam MT. Piperine exerts anti-inflammatory effects and antagonises the properties of celecoxib and ketoprofen: in vivo and molecular docking studies. Nat Prod Res 2024:1-16. [PMID: 39390887 DOI: 10.1080/14786419.2024.2413039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
This study evaluates the anti-inflammatory effects of a natural product, piperine (PPN), using in vivo and in silico methodologies. In the in vivo segment, inflammation was induced in the right hind paw of young chicks via a formalin (50 μL) injection. PPN was orally administered at doses of 25 and 50 mg/kg with or without celecoxib (CXB) and/or ketoprofen (KPN) (42 mg/kg). The vehicle acted as the negative control group (NC). The in silico analysis predicted the drug-likeness, pharmacokinetics, and toxicity profile of PPN, along with evaluating its binding affinity and ligand-receptor interactions. Results indicate that PPN significantly (p < 0.05) reduced licking frequency and paw edoema in a dose-dependent manner. However, in combination therapy, PPN diminished the effects of both CXB and KPN. PPN showed high affinity (-8.6 kcal/mol) towards the COX-2 enzyme. Therefore, PPN exerts anti-inflammatory effects in chicks through COX-2 inhibition pathways and antagonises CXB and KPN activities.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Modhurima Mazumder
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
5
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
6
|
Wimalarathna NA, Wickramasuriya AM, Metschina D, Cauz-Santos LA, Bandupriya D, Ariyawansa KGSU, Gopallawa B, Chase MW, Samuel R, Silva TD. Genetic diversity and population structure of Piper nigrum (black pepper) accessions based on next-generation SNP markers. PLoS One 2024; 19:e0305990. [PMID: 38924027 PMCID: PMC11207170 DOI: 10.1371/journal.pone.0305990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the economic importance of Piper nigrum (black pepper), a highly valued crop worldwide, development and utilization of genomic resources have remained limited, with diversity assessments often relying on only a few samples or DNA markers. Here we employed restriction-site associated DNA sequencing to analyze 175 P. nigrum accessions from eight main black pepper growing regions in Sri Lanka. The sequencing effort resulted in 1,976 million raw reads, averaging 11.3 million reads per accession, revealing 150,356 high-quality single nucleotide polymorphisms (SNPs) distributed across 26 chromosomes. Population structure analysis revealed two subpopulations (K = 2): a dominant group consisting of 152 accessions sourced from both home gardens and large-scale cultivations, and a smaller group comprising 23 accessions exclusively from native collections in home gardens. This clustering was further supported by principal component analysis, with the first two principal components explaining 35.2 and 12.1% of the total variation. Genetic diversity analysis indicated substantial gene flow (Nm = 342.21) and a low fixation index (FST = 0.00073) between the two subpopulations, with no clear genetic differentiation among accessions from different agro-climatic regions. These findings demonstrate that most current black pepper genotypes grown in Sri Lanka share a common genetic background, emphasizing the necessity to broaden the genetic base to enhance resilience to biotic and abiotic stresses. This study represents the first attempt at analyzing black pepper genetic diversity using high-resolution SNP markers, laying the foundation for future genome-wide association studies for SNP-based gene discovery and breeding.
Collapse
Affiliation(s)
- Nilni A. Wimalarathna
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Dominik Metschina
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Luiz A. Cauz-Santos
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Dharshani Bandupriya
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Bhathiya Gopallawa
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mark W. Chase
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Rosabelle Samuel
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Tara D. Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
7
|
Darwish AB, Mohsen AM, ElShebiney S, Elgohary R, Younis MM. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci Rep 2024; 14:8247. [PMID: 38589438 PMCID: PMC11002014 DOI: 10.1038/s41598-024-58601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Shaimaa ElShebiney
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mostafa Mohamed Younis
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
8
|
Chernonosov AA, Mednova IA, Levchuk LA, Mazurenko EO, Roschina OV, Simutkin GG, Bokhan NA, Koval VV, Ivanova SA. Untargeted Plasma Metabolomic Profiling in Patients with Depressive Disorders: A Preliminary Study. Metabolites 2024; 14:110. [PMID: 38393002 PMCID: PMC10890195 DOI: 10.3390/metabo14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Depressive disorder is a multifactorial disease that is based on dysfunctions in mental and biological processes. The search for biomarkers can improve its diagnosis, personalize therapy, and lead to a deep understanding of the biochemical processes underlying depression. The purpose of this work was a metabolomic analysis of blood serum to classify patients with depressive disorders and healthy individuals using Compound Discoverer software. Using high-resolution mass spectrometry, blood plasma samples from 60 people were analyzed, of which 30 were included in a comparison group (healthy donors), and 30 were patients with a depressive episode (F32.11) and recurrent depressive disorder (F33.11). Differences between patient and control groups were identified using the built-in utilities in Compound Discoverer software. Compounds were identified by their accurate mass and fragment patterns using the mzCloud database and tentatively identified by their exact mass using the ChemSpider search engine and the KEGG, ChEBI, FDA UNII-NLM, Human Metabolome and LipidMAPS databases. We identified 18 metabolites that could divide patients with depressive disorders from healthy donors. Of these, only two compounds were tentatively identified using the mzCloud database (betaine and piperine) based on their fragmentation spectra. For three compounds ((4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one, (2E,4E)-N-(2-hydroxy-2-methylpropyl)-2,4-tetradecadienamide and 17α-methyl-androstan-3-hydroxyimine-17β-ol), matches were found in the mzCloud database but with low score, which could not serve as reliable evidence of their structure. Another 13 compounds were identified by their exact mass in the ChemSpider database, 9 (g-butyrobetaine, 6-diazonio-5-oxo-L-norleucine, 11-aminoundecanoic acid, methyl N-acetyl-2-diazonionorleucinate, glycyl-glycyl-argininal, dilaurylmethylamine, 12-ketodeoxycholic acid, dicetylamine, 1-linoleoyl-2-hydroxy-sn-glycero-3-PC) had only molecular formulas proposed, and 4 were unidentified. Thus, the use of Compound Discoverer software alone was not sufficient to identify all revealed metabolites. Nevertheless, the combination of the found metabolites made it possible to divide patients with depressive disorders from healthy donors.
Collapse
Affiliation(s)
- Alexander A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Ekaterina O Mazurenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Olga V Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| |
Collapse
|
9
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
10
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper ( Piper nigrum) and Red Pepper ( Capsicum annum) against Diverse Metabolic Complications. Molecules 2023; 28:6569. [PMID: 37764345 PMCID: PMC10534530 DOI: 10.3390/molecules28186569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
11
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
12
|
Jogdand SV, Jadhav GB, Talekar YP. Acute and sub-acute toxicity studies of hydro-alcoholic extract of dried fruits of Piper longum Linn in Wistar rats. ADVANCES IN TRADITIONAL MEDICINE 2023. [DOI: 10.1007/s13596-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
García-Gutiérrez MS, Navarro D, Austrich-Olivares A, Manzanares J. Unveiling behavioral and molecular neuroadaptations related to the antidepressant action of cannabidiol in the unpredictable chronic mild stress model. Front Pharmacol 2023; 14:1171646. [PMID: 37144214 PMCID: PMC10151764 DOI: 10.3389/fphar.2023.1171646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: This study aims to further characterize cannabidiol's pharmacological and molecular profile as an antidepressant. Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR), were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic mild stress (UCMS) procedure. Once the model was established (4 weeks), mice received CBD (20 mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for 28 days. The efficacy of CBD was evaluated using the light-dark box (LDB), elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and novel object recognition (NOR) tests. Gene expression changes in the serotonin transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in the Hipp. Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of treatment to show efficacy. CBD improved cognitive impairment and anhedonia more significantly than STR. CBD plus STR showed a similar effect than CBD in the LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp. Discussion: These results pointed out CBD as a potential new antidepressant with faster action and efficiency than STR. Particular attention should be given to the combination of CBD with current SSRI since it appears to produce a negative impact on treatment.
Collapse
Affiliation(s)
- María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Jorge Manzanares,
| |
Collapse
|
14
|
Hassan NA, Alshamari AK, Hassan AA, Elharrif MG, Alhajri AM, Sattam M, Khattab RR. Advances on Therapeutic Strategies for Alzheimer's Disease: From Medicinal Plant to Nanotechnology. Molecules 2022; 27:4839. [PMID: 35956796 PMCID: PMC9369981 DOI: 10.3390/molecules27154839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic dysfunction of neurons in the brain leading to dementia. It is characterized by gradual mental failure, abnormal cognitive functioning, personality changes, diminished verbal fluency, and speech impairment. It is caused by neuronal injury in the cerebral cortex and hippocampal area of the brain. The number of individuals with AD is growing at a quick rate. The pathology behind AD is the progress of intraneuronal fibrillary tangles, accumulation of amyloid plaque, loss of cholinergic neurons, and decrease in choline acetyltransferase. Unfortunately, AD cannot be cured, but its progression can be delayed. Various FDA-approved inhibitors of cholinesterase enzyme such as rivastigmine, galantamine, donepezil, and NDMA receptor inhibitors (memantine), are available to manage the symptoms of AD. An exhaustive literature survey was carried out using SciFinder's reports from Alzheimer's Association, PubMed, and Clinical Trials.org. The literature was explored thoroughly to obtain information on the various available strategies to prevent AD. In the context of the present scenario, several strategies are being tried including the clinical trials for the treatment of AD. We have discussed pathophysiology, various targets, FDA-approved drugs, and various drugs in clinical trials against AD. The goal of this study is to shed light on current developments and treatment options, utilizing phytopharmaceuticals, nanomedicines, nutraceuticals, and gene therapy.
Collapse
Affiliation(s)
- Nasser A. Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia;
| | - Allam A. Hassan
- Department of Chemistry, Faculty of Science, Suez University, Suez 43221, Egypt;
- Department of Chemistry, College of Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed G. Elharrif
- Department of Basic Medical Sciences, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Abdullah M. Alhajri
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Mohammed Sattam
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Reham R. Khattab
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
15
|
Gawande D, Barewar S, Taksande J, Umekar M, Ghule B, Taksande B, Kotagale N. Achyranthes aspera ameliorates stress induced depression in mice by regulating neuroinflammatory cytokines. J Tradit Complement Med 2022; 12:545-555. [PMID: 36325246 PMCID: PMC9618396 DOI: 10.1016/j.jtcme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background and aim Achyranthes aspera Linn. (A. aspera) (family: Amaranthaceae) is highly recognized in ethnomedicine and traditional systems of Indian medicine as a nervine restorative for several psychiatric disorders. Study presented here was designed to appraise the antidepressant-like effects of A. aspera in murine model of chronic unpredictable mild stress (CUMS) induced depression. Experimental procedures- Rodents were exposed to different stressor in unpredictive manner during CUMS protocol once a day for 4 weeks. Mice were intraperitoneally injected with A. aspera extract (2.5, 5 and 10 mg/kg) or fluoxetine (10 mg/kg) or betaine (20 mg/kg) once daily during day 15–28 of the CUMS protocol. Sucrose preference, motivation and self-care, immobility latency and plasma corticosterone were evaluated after 24 h of last stressor. After behavioral assessments TNF-α, Il-6 and BDNF immunocontent was determined in hippocampus and prefrontal cortex. Results and conclusion A. aspera extract as well as betaine improved sucrose preference, increased grooming frequency and latency in splash test and ameliorated depression-like condition in CUMS mice in Porsolt test. A. aspera treatment decreased the elevated plasma corticosterone and reversed the effect of CUMS on TNF-α, Il-6 and BDNF immunocontent in mice. The results of the present study suggest A. aspera as a promising indigenous medicine for stress associated neurobehavioral and comorbid complications. Achyranthes aspera is a recognized medicine for psychiatric disorders. A. aspera improved sucrose preference, increased grooming frequency and latency in splash test in CUMS mice. A. aspera ameliorated depression-like condition in CUMS mice. A. aspera treatment decreased the elevated plasma corticosterone and reversed the effect of CUMS on TNF-α, Il-6 and BDNF immunocontent in mice. Results suggest A. aspera as a medicine for stress associated neurobehavioral and comorbid complications.
Collapse
|
16
|
Li H, Wang P, Zhou Y, Zhao F, Gao X, Wu C, Wu T, Jiang L, Zhang D. Correlation between intestinal microbiotal imbalance and 5-HT metabolism, immune inflammation in chronic unpredictable mild stress male rats. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12806. [PMID: 35535862 PMCID: PMC9744555 DOI: 10.1111/gbb.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
To explore the role of intestinal microbiota on the occurrence of depression-like behavior. Twenty male adult Wistar rats were randomly divided into control and experimental groups. Depression-like behavior of the rats was validated using sucrose preference test (SPT) and forced swimming test (FST) after chronic unpredictable mild stress (CUMS) for 3 weeks. Fecal microbiota was analyzed through 16S rRNA sequence analysis. The levels of 5-HT and inflammatory factors in the colon, brain and sera were measured using enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR) and western blotting analyses. The percentage of different types of immune cells in the peripheral blood was determined through flow cytometry. CUMS caused depression-like symptoms, including anhedonia and desperate behavior. Significant differences were found in the structure and abundance of intestinal microbiota. CUMS intervention significantly increased the levels of 5-HT and Tph1 in the colon and decreased the level of Scl6a4. The concentrations of 5-HT and Tph2 in the prefrontal and hippocampal tissues were lower, while IDO1 was higher. Certain cytokines, such as IL-6, IL-1 and TNF-ɑ, were significantly elevated in peripheral blood, while the percentage of CD3+ CD4+ double-positive cells and CD4+ /CD8+ ratio were downregulated in the CUMS group. Pearson correlation analysis showed that intestinal microbiota was significantly associated with not only the metabolism of 5-HT in intestinal and brain tissues, but also with the proportion of immune cells and certain cytokines. Stress can lead to disturbances in the intestinal microbial structure, which may contribute to depression by interfering with 5-HT metabolism and immune inflammatory responses.
Collapse
Affiliation(s)
- Huawei Li
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Peng Wang
- Department of UrologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandong ProvinceChina
| | - Yunping Zhou
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Fei Zhao
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Xue Gao
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Chunfeng Wu
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Tianxia Wu
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Liping Jiang
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Dianliang Zhang
- Center of Colon and RectumQingdao Municipal Hospital, Qingdao UniversityQingdaoShandong ProvinceChina
| |
Collapse
|
17
|
Jafari DA, Baspinar Y, Ustundas M, Bayraktar O, Kara HG, Sezgin C. Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
19
|
Fitriani L, Fitriandi AD, Hasanah U, Zaini E. Nano‐Cocrystals of Piperine‐Succinic Acid: Physicochemical Characterization and Dissolution Rate Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lili Fitriani
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| | | | - Uswatul Hasanah
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| | - Erizal Zaini
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| |
Collapse
|
20
|
Biswas S, Kar A, Sharma N, Haldar PK, Mukherjee PK. Synergistic effect of ursolic acid and piperine in CCl 4 induced hepatotoxicity. Ann Med 2021; 53:2009-2017. [PMID: 34751064 PMCID: PMC8583772 DOI: 10.1080/07853890.2021.1995625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ursolic acid (UA) is a potent plant-based hepatoprotective agent having poor bioavailability, which hampers its therapeutic efficacy. The present study tries to overcome this limitation by combining it with piperine (PIP), a proven bioenhancer and hepatoprotective agent. METHODS The type of interaction (synergism, addition, or antagonism) resulting between UA and PIP was analyzed and quantified by isobologram and combination index analysis. The hepatoprotective activity of UA and PIP was evaluated by measuring the level of hepatic marker enzymes. Pharmacokinetic analysis was carried out to ascertain the improvement of bioavailability. RESULTS The combinations significantly decrease the enzyme levels, which indicate better hepatoprotective activity compared to single drugs. The relative oral bioavailability of UA was increased about tenfold (from AUC0-t =12.78 ± 2.59 µg/h/ml to 125.15 ± 1.84 µg/h/ml) along with the improvement of plasma concentration and elimination half-life. CONCLUSIONS The findings indicated that the combination of PIP and UA is an effective strategy in enhancing the bioavailability and hepatoprotective potential of UA.KEY MESSAGESUrsolic acid in a combination with piperine provides a synergistic hepatoprotective effect in carbon tetrachloride induced liver damage in rats.Piperine improves the pharmacokinetic properties of ursolic acid when given in combination.Piperine improves the relative oral bioavailability of ursolic acid by tenfold when combined together.
Collapse
Affiliation(s)
- Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nanaocha Sharma
- Department of Biotechnology, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Pallab K. Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K. Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Department of Biotechnology, Institute of Bioresources and Sustainable Development, Imphal, India
| |
Collapse
|
21
|
R R. GC-MS Analysis of Bioactive Compounds in Ethanolic Leaf Extract of Hellenia speciosa (J.Koenig) S.R. Dutta. Appl Biochem Biotechnol 2021; 194:176-186. [PMID: 34762268 DOI: 10.1007/s12010-021-03742-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
Collapse
Affiliation(s)
- Ramya R
- Department of Biochemistry, J.B.A.S College for Women, Teynampet, Chennai, 600018, Tamil Nadu, India.
| |
Collapse
|
22
|
Ademuyiwa OH, Fasogbon BM, Adebo OA. The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review. Crit Rev Food Sci Nutr 2021; 63:2840-2850. [PMID: 34609267 DOI: 10.1080/10408398.2021.1980764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of β-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.
Collapse
Affiliation(s)
| | - Beatrice Mofoluwaso Fasogbon
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| |
Collapse
|
23
|
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Piperidine is an essential heterocyclic system and a pivotal cornerstone in the production of drugs. Piperidine byproducts showed several important pharmacophoric features and are being utilized in different therapeutic applications.
Main text
Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.
Conclusions
This review article sheds a light on the most recent studies proving the importance of piperidine nucleus in the field of drug discovery.
Collapse
|
24
|
Nasrnezhad R, Halalkhor S, Sadeghi F, Pourabdolhossein F. Piperine Improves Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats Through its Neuroprotective, Anti-inflammatory, and Antioxidant Effects. Mol Neurobiol 2021; 58:5473-5493. [PMID: 34338970 DOI: 10.1007/s12035-021-02497-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, demyelination, glial activation, and oxidative damage are the most pathological hallmarks of multiple sclerosis (MS). Piperine, a main bioactive alkaloid of black pepper, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has been less studied in the experimental autoimmune encephalomyelitis (EAE) models. In this study, the efficiency of piperine on progression of EAE model and myelin repair mechanisms was investigated. EAE was induced in female Lewis rats and piperine and its vehicle were daily administrated intraperitoneally from day 8 to 29 post immunization. We found that piperine alleviated neurological deficits and EAE disease progression. Luxol fast blue and H&E staining and immunostaining of lumbar spinal cord cross sections confirmed that piperine significantly reduced the extent of demyelination, inflammation, immune cell infiltration, microglia, and astrocyte activation. Gene expression analysis in lumbar spinal cord showed that piperine treatment decreased the level of pro-inflammatory cytokines (TNF-α, IL-1β) and iNOS and enhanced IL-10, Nrf2, HO-1, and MBP expressions. Piperine supplementation also enhanced the total antioxidant capacity (FRAP) and reduced the level of oxidative stress marker (MDA) in the CNS of EAE rats. Finally, we found that piperine has anti-apoptotic and neuroprotective effect in EAE through reducing caspase-3 (apoptosis marker) and enhancing BDNF and NeuN expressing cells. This study strongly indicates that piperine has a beneficial effect on the EAE progression and could be considered as a potential therapeutic target for MS treatment. Upcoming clinical trials will provide a deeper understanding of piperine's role for the treatment of the MS.
Collapse
Affiliation(s)
- Reza Nasrnezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Halalkhor
- Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran. .,Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
25
|
Ashokkumar K, Murugan M, Dhanya MK, Pandian A, Warkentin TD. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: a review. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00292-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Black pepper [Piper nigrum (L.), Family: Piperaceae] is used traditionally for the treatment of various diseases including; cough, cold, dyspnea throat diseases, intermittent fever, dysentery, stomachache, worms and piles. The pharmacological potential of black pepper is due to the presence of metabolites like phenolic compounds, alkaloids, flavonoids, carotenoids, terpenoids, etc. The multipurpose use of black pepper dried seeds has several other beneficial health effects that also received in the light of traditional as well as current medicine perspectives. The review aims to discuss the botany, phytochemical constituents, and pharmacological properties of piperine and black pepper essential oil (BPEO).
Results
Phytochemical analyses have described the main chemical constituents of black pepper, including carbohydrates, proteins, calcium, magnesium, potassium, iron, vitamin C, tannins, flavonoids and carotenoids. The volatile oil content ranges from 0.4 to 7 % in dried berries. The major constituents of BPEO are sabinene, 3-carene, D-limonene, α-pinene, caryophyllene, β-phellandrene, α-phellandrene, α-thujene, and β-bisabolene. Additionally, piperine is the naturally occurring and principal bioactive alkaloid constituent of black pepper owing to its potential therapeutic properties, including cerebral brain functioning and increased nutrient absorption. The BPEO has several biological roles, including antioxidant, anti-inflammatory, anticancer, anti-obesity, antidepressant, antidiabetic, antimicrobial, gastroprotective, and insecticidal activities.
Conclusions
This review examines and presents the appropriate evidence on black pepper and its traditional uses as well as biological activities of BPEO and piperine. Although several previous reports showed diverse biological effects for piperine and bioactive constitutes of BPEO. Thus, minimal investigations were conducted using animal models, and many of these studies also lacked appropriate experimental setting like doses, control details. Hence, future studies are necessary to understand the mechanism of piperine, BPEO, bioactive constituents and their effects upon their use by animal models and humans with the proper experimental procedure which we can facilitate the protection of human health from several diseases.
Collapse
|
26
|
Park B, Lee YJ. Pterostilbene Improves Stress-Related Behaviors and Partially Reverses Underlying Neuroinflammatory and Hormonal Changes in Stress-Challenged Mice. J Med Food 2021; 24:299-309. [PMID: 33739881 DOI: 10.1089/jmf.2020.4766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Pterostilbene is a natural compound contained in various dietary sources that has received tremendous attention due to its antioxidant properties with promising benefits in cancers and vascular diseases. Currently, little is known about pterostilbene-associated neuroimmune endocrine effects. We aimed to examine the efficacy of pterostilbene for improving stress-related behaviors, neuroinflammation, and hormonal changes in a mouse stress model. To evaluate the efficacy of oral administration of pterostilbene or vehicle for 16 days for improving behavior, inflammation, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, mice were divided into a normal control group or one of five restraint stress groups-the vehicle group; the 20, 40, or 80 mg/[kg·day] pterostilbene treatment group; or the 20 mg/[kg·day] resveratrol treatment group. Open field and forced swimming tests were conducted. Hippocampal brain-derived neurotrophic factor (BDNF) levels, endocrine hormone levels, oxidative stress parameters, and histopathological features were assessed. Oral pterostilbene administration significantly increased the measured times in the open field and forced swimming tests, elevated the BDNF levels, decreased the inducible nitric oxide synthase and superoxide dismutase levels in the brain, and reduced the plasma adrenocorticotropic hormone and corticosterone levels. Compared with vehicle treatment, pterostilbene dose dependently increased the numbers of neurons and decreased the numbers of glial and tumor necrosis factor alpha-immunolabeled cells in the hypothalamus. These findings suggest that pterostilbene may effectively modulate stress-related abnormal behaviors, neuroinflammation, and HPA axis hyperactivity.
Collapse
Affiliation(s)
- Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Yonsei University Graduate School of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Family Medicine, Gangnam Severance Hospital, Seoul, Korea
| |
Collapse
|
27
|
Nakajima K, Oiso S. Upregulating Effect of Wheat on Brain-Derived Neurotrophic Factor in Human Lung Adenocarcinoma A549 Cells. J Oleo Sci 2021; 70:867-874. [PMID: 33967169 DOI: 10.5650/jos.ess20327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neurotrophic hypothesis of depression, that is, a deficiency in hippocampal brain-derived neurotrophic factor (BDNF) leads to depression, has gained widespread acceptance. BDNF is synthesized in various peripheral tissues such as the lung, kidney, liver, heart and testis, besides the brain. Peripheral BDNF can traverse the blood-brain barrier and reach the hippocampus; accordingly, substances that upregulate BDNF production in peripheral tissues may be useful in the treatment of depression. The Mediterranean diet, containing high amounts of whole grains including unrefined wheat, vegetables, fruits, nuts, and olive oil, reportedly reduces the risk of depression. The association between the high consumption of unrefined wheat in the Mediterranean diet and BDNF production in peripheral tissues is unclear. In this study, we investigated the BDNF production capacity of human lung adenocarcinoma cell line A549 and the effect of wheat on BDNF production in the cells. Methanol extracts of whole-wheat flour and wheat bran, which are forms of unrefined wheat, increased the BDNF level in the culture medium of A549 cells. However, methanol extract of wheat endosperm had no effect on the BDNF level in these cells. Our findings suggest that wheat bran contains ingredients that upregulate BDNF production in peripheral tissues, and unrefined wheat potentially contributes to the elevation in peripheral BDNF level.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
28
|
Differentially expressed genes accompanying neurobehavioral deficits in a modified rat model of vascular dementia. Neurosci Lett 2021; 750:135774. [PMID: 33640362 DOI: 10.1016/j.neulet.2021.135774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
Vascular dementia refers to the progressive loss of memory and other cognitive functions. The heterogeneity of cerebrovascular disease renders it challenging to elucidate the neuropathological substrates and mechanisms underlying vascular dementia. In this study, we performed neurobehavioral tests, RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR) tests to evaluate a rat model of modified two-vessel occlusion (2-VO) and identify the differentially expressed genes in the hippocampus of 2-VO versus sham rats by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Compared with the sham group, the 2-VO group revealed significantly reduced spontaneous motor behaviors, a lack of exploration for new objects, and varying degrees of spatial memory impairment. Although the genetic background of vascular dementia is well established for monogenic disorders, the relationship between key regulatory genes and signaling pathways remains obscure. Using RNA-seq and bioinformatic analyses, we identified 58 upregulated genes and 137 downregulated genes in the hippocampus of 2-VO rats compared to sham rats. Results were confirmed by qRT-PCR. ErbB3, a gene mainly involved in cranial nervous system development, negative regulation of neuronal apoptosis, and signal transduction, was downregulated in the hippocampus of 2-VO rats compared to sham rats. Moreover, ERBB3 plays an important role in neuron-protecting ERBB and PI3K-AKT signaling pathways, both of which were found to be enriched by GO and KEGG functional pathway analyses. Understanding the molecular mechanisms of vascular dementia may help establish potential treatment targets for cognitive deficits.
Collapse
|
29
|
Flores NP, Bona NP, Luduvico KP, Cardoso JDS, Soares MSP, Gamaro GD, Spanevello RM, Lencina CL, Gazal M, Stefanello FM. Eugenia uniflora fruit extract exerts neuroprotective effect on chronic unpredictable stress-induced behavioral and neurochemical changes. J Food Biochem 2020; 44:e13442. [PMID: 32803896 DOI: 10.1111/jfbc.13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023]
Abstract
The aim of the current study was to evaluate the effect of chronic administration of Eugenia uniflora fruit extract on behavioral parameters, oxidative stress markers, and acetylcholinesterase activity in an animal model of depression, which was induced by chronic unpredictable stress (CUS). Mice were divided into six groups as follows: control/vehicle (water), control/fluoxetine (20 mg/kg), control/extract (200 mg/kg), CUS/vehicle, CUS/fluoxetine (20 mg/kg), and CUS/extract (200 mg/kg). Animals of the CUS group were exposed to a series of stressors for a period of 21 days. Vehicle, fluoxetine, and hydroalcoholic extract were administered daily by gavage. Results showed that E. uniflora treatment: (a) prevented the depressant-like effect induced by CUS; (b) regulated the activity of acetylcholinesterase; (c) reduced oxidative damage to lipids and reactive oxygen species production, in the prefrontal cortex and hippocampus; and (d) prevented the reduction of glutathione peroxidase in the hippocampus of animals subjected to CUS protocol. Taken together, our findings suggested that E. uniflora extract exerts a neuroprotective effect by preventing oxidative damage and decreasing CUS-induced acetylcholinesterase activity, thus, ameliorating depressive-type behavior. PRACTICAL APPLICATIONS: E. uniflora fruit extract revealed an antidepressant-like effect and prevented the oxidative damage as well as cholinergic alterations caused by chronic stress in mice. Therefore, we believe that the results obtained in this study can be used to develop an alternative therapy for the management of depressive disorders.
Collapse
Affiliation(s)
- Natália Porto Flores
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Karina Pereira Luduvico
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Juliane de Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Giovana Duzzo Gamaro
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marta Gazal
- Programa de Biologia Celular e Molecular-Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
30
|
Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci Rep 2020; 10:11681. [PMID: 32669593 PMCID: PMC7363889 DOI: 10.1038/s41598-020-68574-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023] Open
Abstract
More than 94% of colorectal cancer cases have mutations in one or more Wnt/β-catenin signaling pathway components. Inactivating mutations in APC or activating mutations in β-catenin (CTNNB1) lead to signaling overactivation and subsequent intestinal hyperplasia. Numerous classes of medicines derived from synthetic or natural small molecules, including alkaloids, have benefited the treatment of different diseases, including cancer, Piperine is a true alkaloid, derived from lysine, responsible for the spicy taste of black pepper (Piper nigrum) and long pepper (Piper longum). Studies have shown that piperine has a wide range of pharmacological properties; however, piperine molecular mechanisms of action are still not fully understood. By using Wnt/β-catenin pathway epistasis experiment we show that piperine inhibits the canonical Wnt pathway induced by overexpression of β-catenin, β-catenin S33A or dnTCF4 VP16, while also suppressing β-catenin nuclear localization in HCT116 cell line. Additionally, piperine impairs cell proliferation and migration in HCT116, SW480 and DLD-1 colorectal tumor cell lines, while not affecting the non-tumoral cell line IEC-6. In summary, piperine inhibits the canonical Wnt signaling pathway and displays anti-cancer effects on colorectal cancer cell lines.
Collapse
|
31
|
Thakre A, Jadhav V, Kazi R, Shelar A, Patil R, Kharat K, Zore G, Karuppayil SM. Oxidative stress induced by piperine leads to apoptosis in Candida albicans. Med Mycol 2020; 59:366-378. [PMID: 32658959 DOI: 10.1093/mmy/myaa058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a member of pathogens with potential drug resistance threat that needs novel chemotherapeutic strategies. Considering the multifarious biological activities including bioenhancer activity, anti-Candida potential of piperine was evaluated against planktonic/biofilm and hyphal growth of C. albicans alone or in combination as a synergistic agent with fluconazole. Piperine inhibits planktonic growth at or less than 15 μg/ml, hyphae induction at 5 μg/ml concentration, and exhibits stage-dependent activity against biofilm growth of a fluconazole-resistant strain of C. albicans (ATCC10231). Though piperine couldn't kill inoculum completely at minimum inhibitory concentration (MIC), it is fungicidal at higher concentrations, as shown in apoptosis assay. FIC index values indicate that piperine exhibits excellent synergistic activity with fluconazole against planktonic (0.123) and biofilm (0.215) growth of an FLC resistant strain. Mode of anti-Candida activity was studied by identifying piperine responsive proteins wherein the abundance of 25 proteins involved in stress response, signal transduction and cell cycle were modulated (22 up and 3 down-regulated) significantly in response to piperine (MIC50). Modulation of the proteins involved suggests that piperine affects membrane integrity leading to oxidative stress followed by cell cycle arrest and apoptosis in C. albicans. Flow cytometry-based mitochondrial membrane potential (MMP), cell cycle and apoptosis assay, as well as real-time quantitative polymerase chain reaction analysis of selected genes, confirms piperine induced oxidative stress (TRR1), cell cycle arrest and apoptosis (CaMCA1). Based on our results, we conclude that piperine inhibits planktonic and difficult-to treat-biofilm growth of C. albicans by affecting membrane integrity thereby inducing oxidative stress and apoptosis. LAY ABSTRACT Piperine inhibit Candida albicans growth (planktonic and biofilm) significantly in our study. Piperine exhibits excellent synergistic potential with fluconazole The proteome analysis suggests that piperine induced membrane damage leads to oxidative stress followed by cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Archana Thakre
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (MS) India
| | - Vyankatesh Jadhav
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (MS) India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune, Pune-8 (MS) India
| | - Amruta Shelar
- Dept. of Biotechnology, Savitribai Phule Pune University, Pune-7, (MS) India
| | - Rajendra Patil
- Dept. of Biotechnology, Savitribai Phule Pune University, Pune-7, (MS) India
| | - Kiran Kharat
- Dept. of Biotechnology, Deogiri College, Aurangabad (MS) India
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (MS) India
| | - S Mohan Karuppayil
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (MS) India
| |
Collapse
|
32
|
Wang L, Cai X, Shi M, Xue L, Kuang S, Xu R, Qi W, Li Y, Ma X, Zhang R, Hong F, Ye H, Chen L. Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/keap1 pathway. Eur J Med Chem 2020; 199:112385. [PMID: 32402936 DOI: 10.1016/j.ejmech.2020.112385] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive and complex neurodegenerative disorder. Up to date, there are no approved drugs that could slow or reverse the neurodegenerative process of PD. Here, we reported the synthesis of series of piperine analogues and the evaluation of their neuroprotective effects against hydrogen peroxide (H2O2) induced damage in the neuron-like PC12 cells. Among these analogues, 3b exhibited the most potent protection effect and its underlying mechanism was further investigated. Further results indicated that the ROS scavenging and cytoprotection effect of 3b might be related to the Nrf2 activation and upregulation of related phase II antioxidant enzymes, such as HO-1 and NQO1. In in vivo study, oral administration (100 mg/kg) of 3b significantly attenuated PD-associated behavioral deficits in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and protected tyrosine hydroxylase-immunopositive dopaminergic neurons. Our results provided evidence that 3b might be a promising candidate for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linlin Xue
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shuang Kuang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ruiling Xu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xu Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ruijia Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Hong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Sci 2020; 253:117671. [PMID: 32335165 DOI: 10.1016/j.lfs.2020.117671] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
AIMS We still do not have effective treatment for hippocampal demyelination and memory deficit, the two common comorbidities in multiple sclerosis (MS). This study aimed to assess the therapeutic effect of Piperine (the main alkaloid of black pepper) in an experimental model of demyelination. MAIN METHODS Demyelination was induced in male Wistar rats by bilateral injection of lysolecithin (LPC) into the CA1 region of the hippocampus. Piperine (5, 10, 20 mg/kg) was daily injected intraperitoneally three days post LPC injection for ten days. The spatial memory was examined by the Morris water maze task. Demyelination and astrocyte activation were assessed by an immunohistological study. The gene expression analysis of TNF-α, IL1-β, NF-κB, IL-10, Foxp3, iNOS, Nrf2, HO1, MBP, and BDNF was done using qPCR. The total antioxidant capacity of hippocampal tissue was measured using FRAP assay. KEY FINDINGS Our results showed that piperine improved the memory performance and myelin repair in the hippocampal demyelination model. Piperine inhibited iNOS expression concomitant with enhanced expression levels of Nrf2, HO1 and the total antioxidant capacity in the hippocampal tissue. Piperine treatment significantly reduced the gene expression level of TNF-α, IL1-β, NF-κB, and glial activation in the injured area; however, the mRNA level of IL-10, Foxp3, BDNF and MBP were significantly increased. SIGNIFICANCE We found piperine to be an effective treatment for spatial memory impairment and myelin repair in the hippocampal demyelination model. However, further experimental evidence is needed to investigate the precise mechanisms underlying piperine as a promising therapeutic target in MS patients.
Collapse
|
34
|
Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-κB/NLRP3 pathway in rats. Neuroreport 2020; 30:893-900. [PMID: 31373969 DOI: 10.1097/wnr.0000000000001302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ginsenoside (GS Rg1), which has neuroprotection and anti-inflammation activities, is the main active ingredient of Radix Ginseng. However, its antidepressant-like effect in rats remains unclear. Our study was conducted to investigate whether GS Rg1 confers an antidepressant effect in rats exposed to a chronic unpredictable mild stress model of depression and to explore its possible mechanisms. Our results revealed that GS Rg1 treatments for 3 weeks alleviated the depression-related behaviors of chronic unpredictable mild stress-exposed rats, as indicated by increasing sucrose preference, improving locomotor activity and shortening immobile time in both the forced swimming tests and tail suspension tests. And these ameliorative effects of GS Rg1 treatment were involved with regulating chronic unpredictable mild stress-induced pro-inflammatory cytokine interleukin beta (IL-1β) related neuro-inflammation. In addition, we further found that GS Rg1 reversed chronic unpredictable mild stress-induced IL-1β elevation, possibly by inhibiting nuclear factor kappa B pathway activation and regulating nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome expression. In short, our results suggested that GS Rg1 exerted a potential antidepressant-like effect in chronic unpredictable mild stress rat model of depression, which may provide an insight into the potential of GS Rg1 in therapeutic implications for depression.
Collapse
|
35
|
El-Ghazaly MA, Fadel NA, Abdel-Naby DH, Abd El-Rehim HA, Zaki HF, Kenawy SA. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: Effect on pro-inflammatory cytokines and oxidative stress biomarkers. EGYPTIAN RHEUMATOLOGIST 2020. [DOI: 10.1016/j.ejr.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Wang C, Cai Z, Wang W, Wei M, Si X, Shang Y, Yang Z, Li T, Guo H, Li S. Piperine regulates glycogen synthase kinase-3β-related signaling and attenuates cognitive decline in D-galactose-induced aging mouse model. J Nutr Biochem 2020; 75:108261. [DOI: 10.1016/j.jnutbio.2019.108261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023]
|
37
|
Menneson S, Ménicot S, Malbert CH, Meurice P, Serrand Y, Noirot V, Etienne P, Coquery N, Val-Laillet D. Neuromodulatory and possible anxiolytic-like effects of a spice functional food ingredient in a pig model of psychosocial chronic stress. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Zhang LL, Yang ZY, Fan G, Ren JN, Yin KJ, Pan SY. Antidepressant-like Effect of Citrus sinensis (L.) Osbeck Essential Oil and Its Main Component Limonene on Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13817-13828. [PMID: 30905156 DOI: 10.1021/acs.jafc.9b00650] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present study investigated the antidepressant-like effects of navel orange [Citrus sinensis (L.) Osbeck] essential oil (OEO) and its main components using the chronic unpredictable mild stress (CUMS) model mice and explored its possible mechanisms. The results indicated that OEO inhalation significantly ameliorated the depression-like behaviors of CUMS mice with decreased body weight, sucrose preference, curiosity, and mobility as well as shortened immobile time and attenuated dyslipidemia. Limonene was the most abundant compound in the sniffing OEO environment and mice brain after sniffing, and it was not metabolized immediately in the brain. In addition, limonene inhalation significantly restored CUMS-induced depressive behavior, hyperactivity of hypothalamic-pituitary-adrenal axis, and the decrease of monoamine neurotransmitter levels, with downregulation of brain-derived neurotrophic factor and its receptor expression in the hippocampus. Thus, the study indicates that the improvements in neuroendocrine, neurotrophic, and monoaminergic systems are related to the antidepressant effects of limonene.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| | - Zi-Yu Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| | - Kai-Jing Yin
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , 1 Shizishan Street , Hongshan District, Wuhan , Hubei 430070 , People's Republic of China
| |
Collapse
|
39
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
40
|
Hua S, Liu J, Zhang Y, Li J, Zhang X, Dong L, Zhao Y, Fu X. Piperine as a neuroprotective functional component in rats with cerebral ischemic injury. Food Sci Nutr 2019; 7:3443-3451. [PMID: 31762997 PMCID: PMC6848843 DOI: 10.1002/fsn3.1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/27/2023] Open
Abstract
Long pepper (Piper longum L.) and black pepper (Piper nigrum L.) plants are commonly used as spices around the world and have also been postulated to have medicinal effects. Piperine, as the major alkaloid of P. nigrum and P. longum, has gained wide attention of the medical community and culinary enthusiasts. This study seeks to determine the effects of piperine on neuronal apoptosis in peri-infarcted cerebral cortices of rats with permanent middle cerebral artery occlusion (pMCAO) injury. Evaluation of the different behavioral components was conducted after pMCAO. 2, 3, 5-Triphenyltetrazolium chloride (TTC) was used to evaluate the area of cortical ischemia. Gross histopathological changes, as well as microscopic neuronal changes, were observed in brain tissue samples. The protein expression of Caspase-3, Caspase-9, Bax, Bcl-2, and Cytochrome C (Cyt-c) was analyzed using western blotting. The findings reveal that rats that received piperine treatment show markedly decreased neurological deficit, less ischemia-induced cellular damage, as well as smaller areas of cerebral infarction, with less severe macro and microcellular cerebral structural changes. Western blotting analysis reveals that piperine administration inhibits Bax, while enhancing Bcl-2 expression. The protein expression of Caspase-3, Caspase-9, and Cyt-c was also found to be significantly inhibited. We conclude that piperine may provide several beneficial neuroprotective effects that warrant further investigation.
Collapse
Affiliation(s)
- Shiyao Hua
- School of PharmacyNingxia Medical UniversityYinchuanChina
| | - Jiayue Liu
- School of PharmacyNingxia Medical UniversityYinchuanChina
| | - Yiwei Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Juan Li
- School of PharmacyNingxia Medical UniversityYinchuanChina
- Ningxia Engineering and Technology Research Center for Modernization of Hui MedicineYinchuanChina
- Key Laboratory of Hui Ethnic Medicine ModernizationMinistry of Education (Ningxia Medical University)YinchuanChina
| | - Xinhui Zhang
- School of PharmacyNingxia Medical UniversityYinchuanChina
- Ningxia Engineering and Technology Research Center for Modernization of Hui MedicineYinchuanChina
- Key Laboratory of Hui Ethnic Medicine ModernizationMinistry of Education (Ningxia Medical University)YinchuanChina
| | - Lin Dong
- School of PharmacyNingxia Medical UniversityYinchuanChina
- Ningxia Engineering and Technology Research Center for Modernization of Hui MedicineYinchuanChina
- Key Laboratory of Hui Ethnic Medicine ModernizationMinistry of Education (Ningxia Medical University)YinchuanChina
| | - Yunsheng Zhao
- School of PharmacyNingxia Medical UniversityYinchuanChina
- Ningxia Engineering and Technology Research Center for Modernization of Hui MedicineYinchuanChina
- Key Laboratory of Hui Ethnic Medicine ModernizationMinistry of Education (Ningxia Medical University)YinchuanChina
| | - Xueyan Fu
- School of PharmacyNingxia Medical UniversityYinchuanChina
- Ningxia Engineering and Technology Research Center for Modernization of Hui MedicineYinchuanChina
- Key Laboratory of Hui Ethnic Medicine ModernizationMinistry of Education (Ningxia Medical University)YinchuanChina
| |
Collapse
|
41
|
Chen C, Shen JH, Xu H, Chen P, Chen F, Guan YX, Jiang B, Wu ZH. Hippocampal PPARα is involved in the antidepressant-like effects of venlafaxine in mice. Brain Res Bull 2019; 153:171-180. [DOI: 10.1016/j.brainresbull.2019.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
|
42
|
Ren T, Zuo Z. Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2019; 15:849-867. [DOI: 10.1080/17425255.2019.1672658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
43
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
44
|
Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, Wu H, Liu XS, Wang J, Gray NS, Sur M, Jaenisch R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med 2019; 11:eaau0164. [PMID: 31366578 PMCID: PMC8140401 DOI: 10.1126/scitranslmed.aau0164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.
Collapse
Affiliation(s)
- Xin Tang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Keji Li
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Austin J Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA 02139, USA
| | | | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
45
|
Li C, Li Y, Zhang L, Zhang S, Yao W, Zuo Z. The protective effect of piperine on ovariectomy induced bone loss in female mice and its enhancement effect of osteogenic differentiation via Wnt/β-catenin signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
46
|
Xian Y, Ip S, Li H, Qu C, Su Z, Chen J, Lin Z. Isorhynchophylline exerts antidepressant‐like effects in mice
via
modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK‐3β signaling pathway. FASEB J 2019; 33:10393-10408. [DOI: 10.1096/fj.201802743rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yan‐Fang Xian
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Siu‐Po Ip
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Hui‐Qin Li
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Chang Qu
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Zi‐Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese MedicineMathematical Engineering Academy of Chinese MedicineGuangzhou University of Chinese Medicine Guangzhou China
| | - Jian‐Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese MedicineMathematical Engineering Academy of Chinese MedicineGuangzhou University of Chinese Medicine Guangzhou China
| | - Zhi‐Xiu Lin
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Hong Kong Institute of Integrative MedicineThe Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
47
|
Wang C, Cai Z, Wang W, Wei M, Kou D, Li T, Yang Z, Guo H, Le W, Li S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer's disease. J Nutr Biochem 2019; 70:147-155. [PMID: 31207354 DOI: 10.1016/j.jnutbio.2019.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Piperine, the major alkaloid constituent of black pepper, has been reported to possess a wide range of pharmacological effects on the central nervous system, including antidepressant, anticonvulsant and anti-ischemic activities. In the present study, we aimed to investigate the therapeutic potential and neuroprotective mechanisms of piperine in an experimental mouse model of sporadic Alzheimer's disease (sAD) induced by intracerebroventricular (ICV) infusion of streptozotocin (STZ). STZ was infused bilaterally at a dose of 1.5 mg/kg/day on day 1 and day 3. From day 8, piperine (2.5-10 mg/kg body weight) was administered intraperitoneally once daily for 15 consecutive days. The locomotor activity and cognitive performance of mice were evaluated using open field test and Morris water maze test, respectively. On day 23, all animals were sacrificed, and the hippocampus was used for biochemical, neurochemical and neuroinflammatory determinations. Our data revealed that the ICV-STZ-infused sAD mouse showed an increased oxidative-nitrosative stress, an altered neurotransmission and an elevated neuroinflammation in hippocampus, as well as significant cognitive deficits. All these alterations can be ameliorated by piperine in a dose-dependent manner. In summary, our findings predict a therapeutic potential of piperine against cognitive deficits in sAD mouse. This effect might be due to its abilities to ameliorate oxidative-nitrosative stress, restore neurotransmission and reduce neuroinflammation.
Collapse
Affiliation(s)
- Che Wang
- Department of Medicinal Chemistry, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhengxu Cai
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Wei Wang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Min Wei
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Daqing Kou
- Department of Clinical Laboratory, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Tianbai Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Zhaofei Yang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Huishu Guo
- Central Laboratory, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China.
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
48
|
Hu MZ, Wang AR, Zhao ZY, Chen XY, Li YB, Liu B. Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model. Neurol Res 2019; 41:446-455. [PMID: 30759063 DOI: 10.1080/01616412.2019.1576361] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most prevalent emotional disorders after stroke and often results in poor outcomes. However, the underlying physiopathologic mechanism and effective treatment of PSD remain poorly elucidated. OBJECTIVE To investigate whether paeoniflorin has antidepressant-like activity in a rat model of PSD. METHODS Rats were randomly divided into four groups: sham-operated control (Sham), PSD, paeoniflorin (with PSD) and fluoxetine group(with PSD). PSD was developed by the right middle cerebral artery occlusion followed 21 days chronic unpredictable mild stress combined (CUMS) with raised alone. Tests of sucrose preference and open field were used to assess the depression-like behavior. Neurological function was evaluated by neurological deficit score and beam balance test. Expression of phosphorylated CREB (p-CREB) and brain-derived neurotrophic factor (BDNF) in the CA1 region of the hippocampal complex was evaluated by western blot and immunofluorescence. RESULTS Te depressive-like behaviors markedly improved after paeoniflorin and fluoxetine treatment. Furthermore, paeoniflorin treatment significantly increased BDNF and p-CREB expression in the CA1 region. CONCLUSIONS Observed results suggested that paeoniflorin could ameliorate the symptoms and improve the functional capability of PSD rats, similar to the effect of fluoxetine. ABBREVIATIONS PSD: post-stroke depression; CUMS: chronic unpredictable mild stress stimulation; MCAO: middle cerebral artery occlusion; OFT: open field test; SPT: sucrose preference test, NDS: neurological deficit score, BBT: beam balance test; BDNF: brain-derived neurotrophic factor protein; p-CREB: phosphorylated Cyclic-AMP responsive element binding protein.
Collapse
Affiliation(s)
- Ming-Zhe Hu
- a The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou , China
| | - An-Rong Wang
- b Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Ze-Yu Zhao
- c School of Clinical Medicine , Weifang Medical University , Weifang , China
| | - Xiang-Yan Chen
- d Department of Internal Medicine , Zibo City Hospital of Traditional Chinese Medicine , Zibo , China
| | - Yan-Bin Li
- e Department of Neurology, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Bin Liu
- e Department of Neurology, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| |
Collapse
|
49
|
Esposito T, Lucariello A, Hay E, Contieri M, Tammaro P, Varriale B, Guerra G, De Luca A, Perna A. Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem Biol Interact 2019; 305:112-118. [PMID: 30935902 DOI: 10.1016/j.cbi.2019.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
Abstract
Previous studies have demonstrated that different curcumin extracts are able to influence cell metabolic activity vitality in human papillary thyroid carcinoma TPC-1 cells. We continued the study using the most effective extract and adding other nutraceuticals such as piperine and vitamin E, in order to define the possible role of these in modulating the genetic expression of cell markers and to understand the effectiveness in modulating the regression of cancer phenotype. Cells were treated with one extract of curcumin (Naturex® Ultimate Botanical Benefits), with Piperine (Piper Longum, A.C.E.F.) and Vitamin E (Dry Vitamin E-Acetate 50% DC, BASF) alone and in combination, dissolved in the culture medium, for 48 h. Treatment with the different nutraceuticals is able to influence cell cycle regulators (cyclin D1, β-catenin, p21, p53) and activators or inhibitors of apoptosis (BAX, pro-caspase3, Bcl-2). They are able to influence cell cycle distribution and metabolic activity vitality. The inhibitory effect of curcumin, piperine and vitamin E on cell proliferation involves different markers, and in particular inhibits β-catenin, cyclinD1 and p53, making them candidates for a possible use in alternative therapies although further studies are needed.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Experimental Medicine, Molecular Genetics Laboratory, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", 80100, Naples, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Pasquale Tammaro
- Department of Experimental Medicine, Molecular Genetics Laboratory, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Bruno Varriale
- Department of Experimental Medicine, Molecular Genetics Laboratory, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy.
| |
Collapse
|
50
|
Deng Y, Liang Q, Wang Y, Zhang X, Yan C, He Y. The inhibiting role of hydroxypropylmethylcellulose acetate succinate on piperine crystallization to enhance its dissolution from its amorphous solid dispersion and permeability. RSC Adv 2019; 9:39523-39531. [PMID: 35540632 PMCID: PMC9076092 DOI: 10.1039/c9ra08283b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to demonstrate that inhibiting crystallization by HPMCAS played a key role in enhancing dissolution and absorption of piperine (Pip) from its amorphous solid dispersion (ASD). Nucleation induction time and supersaturation tests were used to evaluate the ability of the polymers to inhibit crystallization of Pip. The prepared solid dispersions were characterized by DSC and FTIR. The dissolution rate of Pip from its ASDs was assayed by a dissolution test. Pip permeability was investigated by single-pass intestinal perfusion studies. The order of the ability of polymers to inhibit Pip crystallization was HF > MF > LF > L100-55. The best inhibition effect of HF can be attributed to its hydrophobicity and steric hindrance. Pip is amorphous in polymer matrices when the ratio of Pip/HPMCAS is lower than 1 : 1 and Pip/L100-55 is lower than 3 : 1. IR spectra show that there are hydrogen bonds between the amide groups of Pip and the carboxyl groups of polymer. The order of the ability of polymers to enhance Pip dissolution is HF > MF > LF > L100-55, which coincided with the ability of polymers to inhibit Pip crystallization. Increased apparent permeability via HF-induced supersaturation and decreased apparent permeability via solubilization with L100-55 are demonstrated. Nucleation induction time and supersaturation tests may be used to screen appropriate polymers for preparing ASDs. HPMCAS enhances piperine dissolution and permeability in amorphous solid dispersion by inhibiting crystallization.![]()
Collapse
Affiliation(s)
- Yueyi Deng
- School of Pharmacy
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| | - Qi Liang
- School of Pharmacy
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| | - Yiru Wang
- School of Pharmacy
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| | - Xiaolan Zhang
- School of Pharmacy
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| | - Chengyun Yan
- School of Pharmacy
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| | - Yulin He
- School of Basic Medical
- Guilin Medical University
- 541004 Guilin
- People's Republic of China
| |
Collapse
|