1
|
Wang T, Ning M, Mo Y, Tian X, Fu Y, Laher I, Li S. Metabolomic Profiling Reveals That Exercise Lowers Biomarkers of Cardiac Dysfunction in Rats with Type 2 Diabetes. Antioxidants (Basel) 2024; 13:1167. [PMID: 39456421 PMCID: PMC11505272 DOI: 10.3390/antiox13101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) leads to significant global health challenges, including cardiac structural and functional deficits, which in severe cases can progress to heart failure that can further strain healthcare resources. Aerobic exercise can ameliorate cardiac dysfunction in individuals with diabetes, although a comprehensive understanding of its underlying mechanisms remains elusive. This study utilizes untargeted metabolomics to reveal aerobic-exercise-activated metabolic biomarkers in the cardiac tissues of Sprague Dawley rats with T2DM. Metabolomics analysis revealed that diabetes altered 1029 myocardial metabolites, while aerobic exercise reversed 208 of these metabolites, of which 112 were upregulated and 96 downregulated. Pathway topology analysis suggested that these metabolites predominantly contributed to purine metabolism and arginine biosynthesis. Furthermore, receiver operating characteristic curve analysis identified 10 potential biomarkers, including xanthine, hypoxanthine, inosine, dGMP, l-glutamic acid, l-arginine, l-tryptophan, (R)-3-hydroxybutyric acid, riboflavin, and glucolepidiin. Finally, data from Pearson correlation analysis indicated that some metabolic biomarkers strongly correlated with cardiac function. Our data suggest that certain metabolic biomarkers play an important role in ameliorating diabetes-related cardiac dysfunction by aerobic exercise.
Collapse
Affiliation(s)
- Tutu Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Miaomiao Ning
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Yurou Mo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Xinyu Tian
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| |
Collapse
|
2
|
Raza A, Mushtaq MN, Hassan S, Sharif A, Akhtar B, Akhtar MF. Mitigation of Diabetes Mellitus Using Euphorbia helioscopia Leaf Ethanolic Extract by Modulating GCK, GLUT4, IGF, and G6P Expressions in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:5497320. [PMID: 39329045 PMCID: PMC11424858 DOI: 10.1155/2024/5497320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder. Synthetic antidiabetics are the commonly used treatment options associated with complications. The objective of this study was to explore the antioxidative and antidiabetic potential of Euphorbia helioscopia whole plant ethanolic extract using in vitro and in vivo models. For that purpose, the antioxidative potential was explored by using 2,2-diphenyl-1-picrylhydrazyl analysis. In vitro antidiabetic potential of the extract was evaluated using amylase inhibitory analysis. In vivo antidiabetic activity of the extract was assessed in diabetic rats using streptozotocin/nicotinamide (60 mg/kg/120 mg/kg) as an inducing agent. Metformin was used as standard. The results indicated the presence of significant quantities of phenolic 82.18 ± 1.28 mgg-1 gallic acid equivalent (GAE) and flavonoid 66.55±1.22 mgg-1 quercetin equivalent (QE) contents in the extract. Quantitation of phytoconstituents exhibited the presence of sinapic acid, myricetin, and quercetin using HPLC analysis. The extract inhibited α-amylase by 84.71%, and an antiglycemic potential of 50.34% was assessed in the OGTT assay. Biochemical analysis demonstrated a reduction in urea, creatinine, cholesterol, low-density lipoprotein, and alkaline phosphatase (p < 0.001) as compared to diabetic control rats at the dose of 500 mg/kg. An upregulation in the expressions of glucokinase, glucose transporter 4, peroxisome proliferator-activated receptor γ, and insulin-like growth factor was observed in treated rats in contrast to G6P expression, which was downregulated upon treatment. In conclusion, this study provided evidence of the antioxidative and antidiabetic potential of E. helioscopia whole plant ethanolic extract through in vitro and in vivo analysis and emphasized its promising role as a natural alternative.
Collapse
Affiliation(s)
- Ahmed Raza
- Faculty of PharmacyThe University of Lahore, Lahore 54000, Pakistan
| | | | - Sadia Hassan
- Department of Biomedical Engineering and SciencesSchool of Mechanical and Manufacturing EngineeringNational University of Science and Technology, Islamabad 24090, Pakistan
| | - Ali Sharif
- Department of PharmacologyFaculty of Pharmaceutical and Allied Health SciencesLahore College for Women University, Lahore 54000, Pakistan
| | - Bushra Akhtar
- Department of PharmacyUniversity of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical SciencesRiphah International UniversityLahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHDA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int J Mol Sci 2024; 25:9213. [PMID: 39273161 PMCID: PMC11394750 DOI: 10.3390/ijms25179213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Collapse
Affiliation(s)
- Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ingrid Wilza L. Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
4
|
Wang Y, Wang X, Du C, Wang Z, Wang J, Zhou N, Wang B, Tan K, Fan Y, Cao P. Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne) 2024; 15:1379521. [PMID: 38854692 PMCID: PMC11157045 DOI: 10.3389/fendo.2024.1379521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
At present, pulmonary fibrosis (PF) is a prevalent and irreversible lung disease with limited treatment options, and idiopathic pulmonary fibrosis (IPF) is one of its most common forms. Recent research has highlighted PF as a metabolic-related disease, including dysregulated iron, mitochondria, lipid, and glucose homeostasis. Systematic reports on the regulatory roles of glucose metabolism in PF are rare. This study explores the intricate relationships and signaling pathways between glucose metabolic processes and PF, delving into how key factors involved in glucose metabolism regulate PF progression, and the interplay between them. Specifically, we examined various enzymes, such as hexokinase (HK), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate kinase (PK), and lactate dehydrogenase (LDH), illustrating their regulatory roles in PF. It highlights the significance of lactate, alongside the role of pyruvate dehydrogenase kinase (PDK) and glucose transporters (GLUTs) in modulating pulmonary fibrosis and glucose metabolism. Additionally, critical regulatory factors such as transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were discussed, demonstrating their impact on both PF and glucose metabolic pathways. It underscores the pivotal role of AMP-activated protein kinase (AMPK) in this interplay, drawing connections between diabetes mellitus, insulin, insulin-like growth factors, and peroxisome proliferator-activated receptor gamma (PPARγ) with PF. This study emphasizes the role of key enzymes, regulators, and glucose transporters in fibrogenesis, suggesting the potential of targeting glucose metabolism for the clinical diagnosis and treatment of PF, and proposing new promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Yuejiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Chaoqi Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Zeming Wang
- Department of Laboratory, Hebei Provincial People’s Hospital, Shijiazhuang, Hebei, China
| | - Jiahui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Nan Zhou
- Department of Gynecology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Lin X, Qu J, Yin L, Wang R, Wang X. Aerobic exercise-induced decrease of chemerin improved glucose and lipid metabolism and fatty liver of diabetes mice through key metabolism enzymes and proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159409. [PMID: 37871796 DOI: 10.1016/j.bbalip.2023.159409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Our previous studies have implicated an important role of adipokine chemerin in exercise-induced improvements of glycolipid metabolism and fatty liver in diabetes rat, but the underlying mechanisms remain unknown. This study first used an exogenous chemerin supplement to clarify the roles of decreased chemerin in exercised diabetes mice and possible mechanisms of glucose and lipid metabolism key enzymes and proteins [such as adipose triglyceride lipase (ATGL), lipoprotein lipase (LPL), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 4 (GLUT4)]. In addition, two kinds of adipose-specific chemerin knockout mice were generated to demonstrate the regulation of chemerin on glucose and lipid metabolism enzymes and proteins. We found that in diabetes mice, exercise-induced improvements of glucose and lipid metabolism and fatty liver, and exercise-induced increases of ATGL, LPL, and GLUT4 in liver, gastrocnemius and fat were reversed by exogenous chemerin. Furthermore, in chemerin knockdown mice, chemerin(-/-)∙adiponectin mice had lower body fat mass, improved blood glucose and lipid, and no fatty liver; while chemerin(-/-)∙fabp4 mice had hyperlipemia and unchanged body fat mass. Peroxisome proliferator-activated receptor γ (PPARγ), ATGL, LPL, GLUT4 and PEPCK in the liver and gastrocnemius had improve changes in chemerin(-/-)·adiponectin mice while deteriorated alterations in chemerin(-/-)·fabp4 mice, although PPARγ, ATGL, LPL, and GLUT4 increased in the fat of two kinds of chemerin(-/-) mice. CONCLUSIONS: Decreased chemerin exerts an important role in exercise-induced improvements of glucose and lipid metabolism and fatty liver in diabetes mice, which was likely to be through PPARγ mediating elevations of ATGL, LPL and GLUT4 in peripheral metabolic organs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
6
|
Asghar A, Sharif A, Awan SJ, Akhtar B, Akhtar MF, Ali S, Shahnaz. "Ficus johannis Boiss. leaves ethanolic extract ameliorate streptozotocin-induced diabetes in rats by upregulating the expressions of GCK, GLUT4, and IGF and downregulating G6P". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49108-49124. [PMID: 36773254 DOI: 10.1007/s11356-023-25765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
The leaves of Ficus johannis Boiss (F. johannis), commonly known as Fig tree, Anjir, and Teen, are used by the folk medicinal practitioners in Iran for controlling hyperglycemia in diabetic patients. This study investigated the pharmacological basis for antidiabetic effect of the ethanolic extract of F. johannis leaves using in vitro and in vivo experimental models. Qualitative screening of phytochemicals, estimation of total phenolic and flavonoid contents, and in vitro antioxidant and α-amylase inhibition assays were performed. Moreover, the High-performance liquid chromatography (HPLC) quantification, acute toxicity, glucose tolerance, and in vivo antidiabetic effect along with the evaluation of gene expressions involved in diabetes mellitus were carried out. Significant quantities of phenolic (71.208 ± 2.89 mgg-1 GAE) and flavonoid (26.38 ± 3.53 mgg-1 QE) were present. Inhibitory concentration (IC50) of the plant extract exhibited an excellent in vitro antioxidant (IC50 = 33.81 µg/mL) and α-amylase (IC50 = 12.18 µg/mL) inhibitory potential. The HPLC analysis confirmed the gallic acid (257.79 mgg-1) as main constituent of the extract followed by kaempferol (22.86 mgg-1), myricetin (0.16 mgg-1), and quercetin (3.22 mgg-1). Ethanolic extract displayed glucose tolerance in normo-glycemic rats. Streptozotocin-induced hyperglycemia declined dose dependently in the extract treated rats with improvement in lipid profile and liver and renal function biomarkers. The F. johannis-treated groups showed an increase in mRNA expressions of glucose transporter 4 (GLUT-4), glucokinase, insulin growth like factor 1 and peroxisomal proliferator activating receptor gamma in pancreas. However, the Glucose-6-phosphatase was downregulated. Present study suggests that the ethanolic extract of F. johannis leaves demonstrates a good anti-diabetic profile by improving insulin sensitivity, GLUT-4 translocation, and carbohydrate metabolism while inhibiting lipogenesis.
Collapse
Affiliation(s)
- Afshan Asghar
- Faculty of Pharmacy, The University of Lahore, 1Km- Off Defense Road, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, Pakistan.
| | - Sana Javaid Awan
- Department of Zoology, Kinnaird College for Women Lahore, 1Km- Off Defense Road, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Sajid Ali
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Shahnaz
- Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Pakistan
| |
Collapse
|
7
|
Wang M, Wang G, Pang X, Ma J, Yuan J, Pan Y, Fu Y, Laher I, Li S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front Nutr 2023; 9:1060684. [PMID: 36687680 PMCID: PMC9846618 DOI: 10.3389/fnut.2022.1060684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiac structure remodeling and dysfunction are common complications of diabetes, often leading to serious cardiovascular events. MOTS-c, a mitochondria-derived peptide, regulates metabolic homeostasis by accelerating glucose uptake and improving insulin sensitivity. Plasma levels of MOTS-c are decreased in patients with diabetes. MOTS-c can improve vascular endothelial function, making it a novel therapeutic target for the cardiovascular complications of diabetes. We investigated the effects of MOTS-c on cardiac structure and function and analyzed transcriptomic characteristics in diabetic rats. Our results indicate that treatment with MOTS-c for 8-week repaired myocardial mitochondrial damage and preserved cardiac systolic and diastolic function. Transcriptomic analysis revealed that MOTS-c altered 47 disease causing genes. Functional enrichment analysis indicated MOTS-c attenuated diabetic heart disease involved apoptosis, immunoregulation, angiogenesis and fatty acid metabolism. Moreover, MOTS-c reduced myocardial apoptosis by downregulating CCN1 genes and thereby inhibiting the activation of ERK1/2 and the expression of its downstream EGR1 gene. Our findings identify potential therapeutic targets for the treatment of T2D and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Gangqiang Wang
- Physical Education Section, Chengdu Textile College, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China,*Correspondence: Shunchang Li,
| |
Collapse
|
8
|
Sharma V, Gautam DNS, Radu AF, Behl T, Bungau SG, Vesa CM. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants (Basel) 2022; 11:1359. [PMID: 35883850 PMCID: PMC9311956 DOI: 10.3390/antiox11071359] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Embelia ribes Burm. (E. ribes, Myrsinaceae), also known as Vidanga in Ayurveda, has been shown to have significant therapeutic benefits on several disorders, and its main chemical bioactive constituent, embelin, has the therapeutic potential to be converted into innovative drugs, which is why it has recently received considerable interest. In the present work, we provide a higher level of comprehension, awareness, and extensive knowledge of the traditional uses, phytochemistry, and pharmacological characteristics of E. ribes throughout the last several decades (February 1965 to June 2021), emphasizing the importance of the study of essential oils extracted from E. ribes, which show a major potential for exerting antioxidant and anti-inflammatory activity. MATERIALS AND METHODS Google Scholar, MEDLINE, EMBASE, Scifinder, Scopus, and ScienceDirect were used to conduct a thorough literature search. RESULTS E. ribes is high in essential oils, alkaloids, flavonoids, steroids, and phenolics, all of which have medicinal benefits. The essential oils/extracts and isolated chemical constituents exhibited antioxidant activity, wound healing, antidiabetic, central nervous system (CNS)-related disease, antiviral, antiobesity, cardioprotective, antifungal, antibacterial, and antifertility activity, among other promising pharmacological effects. CONCLUSION The translation between traditional applications and modern medicine may make E. ribes a promising target for the implementation of innovative medication. To investigate the efficacy and safety profile of E. ribes, further high-quality preclinical studies using advanced methodologies are required.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
9
|
Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats. Sci Rep 2022; 12:10711. [PMID: 35739183 PMCID: PMC9226017 DOI: 10.1038/s41598-022-15114-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Rising prevalence of type 2 diabetes mellitus (T2DM) in sub-Saharan Africa has necessitated surveys of antidiabetic medicinal plants. This study assessed the antidiabetic mechanism of Terminalia catappa aqueous leaf extract (TCA) in high fat/low dose streptozotocin-induced type 2 diabetic rats. T2DM was induced by a combination of high-fat diet and low dose STZ (30 mg/kg bw) and the animals were administered with TCA (400 and 800 mg/kg bw) orally daily for 28 days. Biochemical parameters and indices for diabetes including renal function tests and pancreatic histology were evaluated. Relative expression of hepatic insulin resistance, signalling and glucose transport genes were also assessed. Induction of T2DM resulted in significant (p < 0.05) weight loss, dysregulated glucose level and clearance, electrolyte imbalance and disrupted diabetic biochemical parameters. Diabetes onset also perturbed β-cell function and insulin resistance indices, damaged pancreas microanatomy, while disrupting the expression of insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and glucose transporter isoform 4 (GLUT-4) mRNA. Oral treatment of diabetic animals with TCA significantly (p < 0.05) ameliorated alterations due to T2DM induction in a manner comparable with glibenclamide. These results suggest TCA exerts its antidiabetic action by reversing insulin resistance, improving glucose transport and activating PI3K/AKT signalling.
Collapse
|
10
|
Stalin A, Daniel Reegan A, Rajiv Gandhi M, Saravanan RR, Balakrishna K, Hesham AEL, Ignacimuthu S, Zhang Y. Mosquitocidal efficacy of embelin and its derivatives against Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae) and computational analysis of acetylcholinesterase 1 (AChE1) inhibition. Comput Biol Med 2022; 146:105535. [PMID: 35487124 DOI: 10.1016/j.compbiomed.2022.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Embelin was isolated from the chloroform extract of Embelia ribes (Burm.f.) fruits; its derivative compounds 6-bromoembelin and vilangin were prepared, and they were evaluated for mosquitocidal activities against the third instar larvae and pupae of Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae). The concentrations used were 0.5, 1.0, 1.5, and 2.0 ppm. Embelin recorded LC50 values of 5.79 and 5.54 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of embelin were 10.23 and 6.93 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. Of the two derivatives tested, vilangin showed the highest larvicidal activity with LC50 values of 1.38 and 1.28 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of vilangin were 1.60 and 1.43 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The LC50 values of 6-bromoembelin were 3.30 and 2.83 ppm against the larvae and 4.40 and 4.30 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The histopathological results displayed significant damage on cuboidal cells of the midgut (CU) in vilangin treated larvae of Ae. aegypti and Cx. quinquefasciatus at a concentration of 2.0 ppm. Similarly, peritrophic membrane (PM) was completely impaired in vilangin-treated larvae of Cx. quinquefasciatus and midgut content (MC) was very low in vilangin-treated larvae of Cx. quinquefasciatus. In addition, molecular docking and molecular dynamics studies demonstrated the efficacy of vilangin on the inhibition of acetylcholinesterase (AChE1) in Ae. aegypti and Cx. quinquefasciatus. The present results suggest that vilangin could be used to develop a natural active product against mosquito larvae.
Collapse
Affiliation(s)
- Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610 054, China.
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, Bengaluru Branch, No:8, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India; Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India.
| | - Munusamy Rajiv Gandhi
- National Biodiversity Authority, 5th Floor, CSIR Road, TICEL Bio Park, Taramani, Chennai, 600 113, India
| | - R R Saravanan
- Department of Physics, Meenakshi Chandrasekaran College of Arts and Science, Karambayam, Pattukkottai, Thanjavur, 614 626, India
| | - Kedike Balakrishna
- Entomology Research Institute, Loyola College, Affiliated to the University of Madras, Chennai, 600 034, Tamil Nadu, India
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated To Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Irudayaraj SS, Jincy J, Sunil C, Duraipandiyan V, Ignacimuthu S, Chandramohan G, Packiam SM. Antidiabetic with antilipidemic and antioxidant effects of flindersine by enhanced glucose uptake through GLUT4 translocation and PPARγ agonism in type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114883. [PMID: 34861363 DOI: 10.1016/j.jep.2021.114883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have been used by the people of developing countries to treat various diseases. WHO also recommends the use of medicines from plants source. In that, diabetes also one of the diseases that have been treated traditionally by several people all over the world. In India, Toddalia asiatica (L.) Lam. (Rutaceae) is also a medicinal plant used traditionally for the treatment of diabetes in Ayurveda. Moreover, T. asiatica is also used in a polyherbal formulation to treat diabetes. AIM OF THE STUDY This study examined the antidiabetic with antilipidemic and antioxidant effects of flindersine isolated from T. asiatica leaves. MATERIALS AND METHODS Diabetes was induced in Wistar rats by feeding a high-fat diet (HFD) for 15 days and injecting a single dose of 40 mg/kg b. wt. of Streptozotocin (STZ). Five days post-injection, the grouped diabetic rats were treated with 20 and 40 mg/kg of flindersine. RESULTS Flindersine resulted in a clear decline of blood glucose levels during 28 days of treatment in two different doses. Flindersine also significantly (P ≤ 0.05; P ≤ 0.005) reduced the body weight gain, plasma insulin concentration, urea, creatinine, total cholesterol (TC), triglycerides (TG) and free fatty acids (FFA) levels and significantly increased (P ≤ 0.05; P ≤ 0.005) the total protein level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities compared to the standard drug, pioglitazone. Additionally, flindersine restored the glucose transporter protein 4 (GLUT4), adenosine monophosphate protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) expressions in adipose tissues and skeletal muscles. CONCLUSION It has been found that flindersine has potent antilipidemic and antidiabetic activities by improving insulin sensitivity by enhancing the phosphorylation of AMPK, GLUT4 translocation, and PPARγ agonism on adipose tissue and skeletal muscles of diabetic rats.
Collapse
Affiliation(s)
- Santiagu Stephen Irudayaraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600 034, India; St. Xavier's College, Maharo, Dumka, 814110, Jharkhand, India
| | - Jacob Jincy
- Hillside College of Pharmacy and Research Center, Bangalore, 560062, India
| | - Christudas Sunil
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600 034, India.
| | - Veeramuthu Duraipandiyan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600 034, India.
| | | | - Govindasamy Chandramohan
- Department of Community Health Sciences, College of Applied Medical Sciences,King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Soosaimanickam Maria Packiam
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600 034, India; Department of Advanced Zoology and Biotechnology, Loyola College, Chennai-600 034, India
| |
Collapse
|
12
|
Li S, Wang M, Ma J, Pang X, Yuan J, Pan Y, Fu Y, Laher I. MOTS-c and Exercise Restore Cardiac Function by Activating of NRG1-ErbB Signaling in Diabetic Rats. Front Endocrinol (Lausanne) 2022; 13:812032. [PMID: 35370955 PMCID: PMC8969227 DOI: 10.3389/fendo.2022.812032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Pathologic cardiac remodeling and dysfunction are the most common complications of type 2 diabetes. Physical exercise is important in inhibiting myocardial pathologic remodeling and restoring cardiac function in diabetes. The mitochondrial-derived peptide MOTS-c has exercise-like effects by improving insulin resistance, combatting hyperglycemia, and reducing lipid accumulation. We investigated the effects and transcriptomic profiling of MOTS-c and aerobic exercise on cardiac properties in a rat model of type 2 diabetes which was induced by feeding a high fat high sugar diet combined with an injection of a low dose of streptozotocin. Both aerobic exercise and MOTS-c treatment reduced abnormalities in cardiac structure and function. Transcriptomic function enrichment analysis revealed that MOTS-c had exercise-like effects on inflammation, myocardial apoptosis, angiogenesis and endothelial cell proliferation and migration, and showed that the NRG1-ErbB4 pathway might be an important component in both MOTS-c and exercise induced attenuation of cardiac dysfunction in diabetes. Moreover, our findings suggest that MOTS-c activates NRG1-ErbB4 signaling and mimics exercise-induced cardio-protection in diabetes.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Ismail Laher,
| |
Collapse
|
13
|
Iheagwam FN, Batiha GES, Ogunlana OO, Chinedu SN. Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene. Int J Inflam 2021; 2021:9778486. [PMID: 34956587 PMCID: PMC8702315 DOI: 10.1155/2021/9778486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study aims at evaluating the ameliorative role of Terminalia catappa aqueous leaf extract (TCA) on hyperglycaemia-induced oxidative stress and inflammation in a high-fat, low dose streptozotocin-induced type 2 diabetic rat model. Experimental rats were treated orally with 400 and 800 mg/kg bw TCA daily for four weeks. Antioxidant enzyme activities, plasma glucose concentration, protein concentration, oxidative stress, and inflammation biomarkers were assayed using standard methods. Hepatic relative expressions of tumour necrosis factor-alpha (TNF-α), interleukin-six (IL-6), and nuclear factor-erythroid 2 related factor 2 (Nrf-2) were also assessed. Molecular docking and prediction of major TCA phytoconstituents' biological activity related to T2DM-induced oxidative stress were evaluated in silico. Induction of diabetes significantly (p < 0.05) reduced superoxide dismutase, glutathione-S-transferase, and peroxidase activities. Glutathione and protein stores were significantly (p < 0.05) depleted, while glucose, MDA, interleukin-six (IL-6), and tumour necrosis factor-α (TNF-α) concentrations were significantly (p < 0.05) increased. A significant (p < 0.05) upregulation of hepatic TNF-α and IL-6 expression and downregulation (p < 0.05) of Nrf-2 expression were observed during diabetes onset. TCA treatment significantly (p < 0.05) modulated systemic diabetic-induced oxidative stress and inflammation, mRNA expression dysregulation, and dysregulated macromolecule metabolism. However, only 800 mg/kg TCA treatment significantly (p < 0.05) downregulated hepatic TNF-α expression. 9-Oxabicyclo[3.3.1]nonane-2,6-diol and 1,2,3-Benzenetriol bound comparably to glibenclamide in Nrf-2, IL-6, and TNF-α binding pockets. They were predicted to be GST A and M substrate, JAK2 expression, ribulose-phosphate 3-epimerase, NADPH peroxidase, and glucose oxidase inhibitors. These results suggest that TCA ameliorates hyperglycaemia-induced oxidative stress and inflammation by activating Nrf-2 gene.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
14
|
Iheagwam FN, Okeke CO, De Campos OC, Adegboye BE, Ogunlana OO, Chinedu SN. Toxicopathological, proinflammatory and stress response evaluation of Terminalia catappa extract in male Wistar rats. Toxicol Rep 2021; 8:1769-1776. [PMID: 34712595 PMCID: PMC8528644 DOI: 10.1016/j.toxrep.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
The present study was carried out to assess the oral safety, proinflammatory and stress response effect of Terminalia catappa aqueous leaf extract (TCA) in male Wistar rats. The acute and sub-acute oral toxicity of TCA was assessed using guidelines 423 and 407 of the Organisation for Economic Co-operation and Development (OECD), respectively. Signs of clinical toxicity, morbidity and mortality were observed. The biochemical, haematological, proinflammatory, stress response and histopathological indices were assessed. In the acute toxicity study, no sign of clinical toxicity, morbidity, and mortality was observed for TCA treatment, up to 5000 mg/kg bwt. However, in the sub-acute toxicity study, repeated daily TCA treatment significantly (p<0.05) altered the body weight gain, plasma alkaline phosphatase activity and albumin concentration. There were no obvious morphological and macroscopic alterations in the organs investigated. TCA appear not to elicit any proinflammatory, stress, systemic and organ toxic effect when utilised at the reported dose and time frame.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | | | - Opeyemi Christianah De Campos
- Department of Biochemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Bose Esther Adegboye
- Department of Biochemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
15
|
Kshirsagar R, Gadekar PK, Khedkar VM, Vijayakumar V. Design, Synthesis, and the Effects of ( E)-9-Oxooctadec-10-en-12-ynoic Acid Analogues to Promote Glucose Uptake. ACS OMEGA 2021; 6:24118-24127. [PMID: 34568690 PMCID: PMC8459440 DOI: 10.1021/acsomega.1c03600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
(E)-9-Oxooctadec-10-en-12-ynoic acid is found to mediate its antidiabetic activity by increasing insulin-stimulated glucose uptake in L6 myotubes by activating the phosphoinositide 3-kinase (PI3K) pathway. A simultaneous study of site-specific modification followed by structure-activity relationship provides a tremendous scope for exploiting the bioactivity of the parent molecule. Therefore, in the present study, we focused on site-specific modification of (E)-9-oxooctadec-10-en-12-ynoic acid (1) to generate multiple derivatives and extensive structure-activity relationship (SAR) studies. We have done structural base design and synthesized a series of amides from acid compound 1. Compound 1 consists of an acid functionality, which is known for its metabolism-related liabilities. The SAR has been generated using scaffolds of different antidiabetic drugs such as biguanides, sulfonylureas, thiazolidinediones/glitazones, peroxisome proliferator-activated receptors, K + ATP, α-glucosidase inhibitors, and others. Furthermore, the study demonstrates and explains the promising derivatives and importance of SAR of the compound (E)-9-oxooctadec-10-en-12-ynoic acid. In order to gain mechanistic insights, a molecular docking study was performed against PI3K, which could identify the binding modes and thermodynamic interactions governing the binding affinity. According to our research, compounds 5, 6, 27, 28, 31, 32, and 33 are the best compounds from the series having EC50 values of 15.47, 8.89, 7.00, 13.99, 8.70, 12.27, and 16.14 μM, respectively.
Collapse
Affiliation(s)
- Rajendra
R. Kshirsagar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
- Discovery
Analytical Sciences Department, Piramal
Enterprises Limited, 1A - Nirlon Complex,
Off Western Express Highway, Goregaon (East), Mumbai, Maharashtra 400 063, India
| | - Pradip K. Gadekar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra 411 048, India
| | - Vijayaparthasarathi Vijayakumar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
16
|
Stalin A, Dhivya P, Lin D, Feng Y, Asharaja AC, Gandhi MR, Kannan BS, Kandhasamy S, Reegan AD, Chen Y. Synthesis, molecular docking and mosquitocidal efficacy of lawsone and its derivatives against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Med Chem 2021; 18:170-180. [PMID: 34315380 DOI: 10.2174/1573406417666210727121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aedes aegypti is the primary dengue vector, a significant public health problem in many countries. Controlling the growth of Ae. aegypti is the biggest challenge in the mosquito control program, and there is a need for finding bioactive molecules to control Ae. aegypti in order to prevent dengue virus transmission. OBJECTIVE To assess the mosquitocidal property of lawsone and its 3-methyl-4H-chromen-3-yl-1-phenylbenzo[6,7]chromeno[2,3,c]pyrazole-dione derivatives (6a-6h) against various life stages of Ae. aegypti. Besides, to study the mode of action of the active compound by molecular docking and histopathological analysis. METHODS All derivatives were synthesized from the reaction between 2-hydroxy-1,4-naphthoquinone, chromene-3-carbaldehyde, and 1-phenyl-3-methyl-pyrazol-5-one by using one pot sequential multicomponent reaction. The mosquito life stages were subjected to diverse concentrations ranging from 1.25, 2.5, 5.0, and 10 ppm for lawsone and its derivatives. The structure of all synthesized compounds was characterized by spectroscopic analysis. Docking analysis was performed using autodock tools. Midgut sections of Ae. aegypti larvae were analyzed for histopathological effects. RESULTS Among the nine compounds screened, derivative 6e showed the highest mortality on Ae. aegypti life stages. The analyzed LC50 and LC90 results of derivative 6e were 3.01, 5.87 ppm, and 3.41, 6.28 ppm on larvae and pupae of Ae. aegypti, respectively. In the ovicidal assay, the derivative 6e recorded 47.2% egg mortality after 96-hour post-exposure to 10 ppm concentration. In molecular docking analysis, the derivative 6e confirmed strong binding interaction (-9.09 kcal/mol and -10.17 kcal/mol) with VAL 60 and HIS 62 of acetylcholinesterase 1 (AChE1) model and LYS 255, LYS 263 of kynurenine aminotransferase of Ae. aegypti, respectively. The histopathological results showed that the derivative 6e affected the columnar epithelial cells (CC) and peritrophic membrane (pM). CONCLUSION The derivative 6e is highly effective in the life stages of Ae. aegypti mosquito and it could be used in the integrated mosquito management programme.
Collapse
Affiliation(s)
- Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Paul Dhivya
- Department of Chemistry, Nirmala College for Women, Coimbatore 641018, Tamil Nadu, India
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yue Feng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Antony Cruz Asharaja
- P.G. and Research Department of Zoology, Pasumpon Muthuramalinga Thevar College, Melaneelithanallur 627 953, Sankarankovil, Tenkasi, Tamil Nadu, India
| | | | - Balakrishnan Senthamarai Kannan
- Department of Chemistry, Tirunelveli Dakshina Mara Nadar Sangam (T D M N S) College, Valliyur, Tirunelveli 627113, Tamil Nadu, India
| | - Subramani Kandhasamy
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, NTI Campus, Ballary Road, Bangalore 560003, Karnataka, India
| | - Yuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorg Chem 2020; 96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
|
18
|
Li S, Liang M, Pan Y, Wang M, Gao D, Shang H, Su Q, Laher I. Exercise modulates heat shock protein 27 activity in diabetic cardiomyopathy. Life Sci 2020; 243:117251. [PMID: 31904365 DOI: 10.1016/j.lfs.2019.117251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/05/2023]
Abstract
AIMS Heat shock protein 27 regulates homeostasis of skeletal and cardiac muscle proteins in various stressful states including diabetes and exercise. Aerobic exercise can inhibit or ameliorate cardiac structural abnormality and dysfunction in diabetic cardiomyopathy. The aim of this study was to evaluate the role of HSP27 in aerobic exercise improving cardiac diastolic dysfunction in type 2 diabetic rats. METHODS Forty male Sprague-Dawley rats were randomly divided into the following groups: control, control + aerobic exercise, diabetic, and diabetic + aerobic exercise. Diabetes was induced by feeding with a high-fat high-sugar diet for 7-weeks followed by a single intraperitoneal injection of streptozotocin (30 mg/kg) in male rats. Moderate aerobic exercise training was performed on a treadmill for 8 weeks after induction of diabetes. KEY FINDINGS Aerobic exercise increased left ventricular end-diastolic internal diameter, left ventricular end-diastolic volume, myocardial HSP27 protein expression, HSP27-S82 phosphorylation levels, pHSP27-titin binding and improved cardiac muscle fibre alignment in diabetic rats. SIGNIFICANCE Our study indicates that moderate aerobic exercise increases HSP27 activation, improves cardiomyocyte fibre alignment and restores cardiac diastolic function.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Derun Gao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Quansheng Su
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
19
|
Wei Y, Zhang R, Fang L, Qin X, Cai M, Gu R, Lu J, Wang Y. Hypoglycemic effects and biochemical mechanisms of Pea oligopeptide on high-fat diet and streptozotocin-induced diabetic mice. J Food Biochem 2019; 43:e13055. [PMID: 31591749 DOI: 10.1111/jfbc.13055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the hypoglycemic effects of Pea oligopeptide on the glycemic and lipidemic status of mice with type 2 diabetes (T2D) induced by a high-fat diet and streptozotocin (STZ). Using HPLC-MS/MS spectra processing, 70 significant peptide (2-3 amino acids) sequences were identified, noting four peptides from Pea oligopeptide with a proline residue at the C-terminus, which might have dipeptidase-IV (DPP-IV) inhibitory activity for the treatment of T2D. After a 4-week administration of Pea oligopeptide and metformin, various blood biochemical indexes and organic histopathologies were detected to aid the discussion regarding potential mechanisms. The results showed a significant reduction in the levels of blood glucose, lipid profiles, and liver fat deposition in diabetic mice. Furthermore, Pea oligopeptide and metformin improved glucose tolerance, promoted glycogen synthesis, and protected the liver and kidney structures in diabetic mice. The results indicated that Pea oligopeptide played an essential role in the hypoglycemic effect in the T2D mice model. Practical applications This paper examined the preliminary hypoglycemic activities of Pea oligopeptide in a high-fat diet and STZ-induced T2D mice. Furthermore, four kinds of dipeptides and tripeptides that might exhibit antidiabetic functions were detected using HPLC-MS/MS. The results provided practical knowledge regarding the hypoglycemic effects of Pea oligopeptide and established the foundation of its structure-function relationships.
Collapse
Affiliation(s)
- Ying Wei
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Ruixue Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Lei Fang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Xiuyuan Qin
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Muyi Cai
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| | - Yuqing Wang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, P.R. China
| |
Collapse
|
20
|
Periyasami G, Antonisamy P, Perumal K, Stalin A, Rahaman M, Alothman AA. A competent synthesis and efficient anti-inflammatory responses of isatinimino acridinedione moiety via suppression of in vivo NF-κB, COX-2 and iNOS signaling. Bioorg Chem 2019; 90:103047. [PMID: 31234130 DOI: 10.1016/j.bioorg.2019.103047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
A potent Nonsterodial Anti-inflammatory Drug (NSAID) candidates has been conceived and built by an assembly of a hydrophilic, fluorescent and COX-2 inhibiting units in the same molecule. The isatinimino-acridinedione core (TM-7) was achieved in a simple three step synthetic procedure viz (i) a multicomponent reaction between dimedone, aldehyde and amine to furnish the nitroacridinedione (4), (ii) reduction step and (iii) schiff's-base condensation with isatin. The excellent anti-inflammatory pharmacological efficiency of the drug was established by in vivo biological experiments. Accordingly, it was found that the treatment with the synthesized isatinimino analogues (dosage: 30 mg/kg) inhibited protein expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) levels induced by carrageenan. Further, a comparative molecular modeling analysis of TM-7 carried out with the crystal structure of aspirin acetylated human COX-2 suggested effectively binding and efficient accommodation inside the active site's gorge.
Collapse
Affiliation(s)
- Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Paulrayer Antonisamy
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk 570-749, Republic of Korea
| | - Karthikeyan Perumal
- Department of Chemistry, The Ohio State University, 170A CBEC, 151 West Woodruff Avenue, Columbus, OH 43210, United States
| | - Antony Stalin
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Periyasami G, Kamalraj S, Padmanaban R, Yeswanth Kumar S, Stalin A, Arumugam N, Suresh Kumar R, Rahaman M, Durairaju P, Alrehaili A, Aldalbahi A. Glucosamine-6-phosphate synthase inhibiting C3-β-cholesterol tethered spiro heterocyclic conjugates: Synthesis and their insight of DFT and docking study. Bioorg Chem 2019; 88:102920. [PMID: 30991194 DOI: 10.1016/j.bioorg.2019.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
A series of novel covalent cholesterol-spiro pyrrolidine/pyrrolizidine heterocyclic hybrids possessing biologically active oxindole, indanedione, and acenaphthylene-1-one have been synthesized by the reaction of C3-β-cholesteroalacrylate with heterocyclic di- and tri-ketones. All the sixteen compounds were obtained as a single isomer in good yield through a stereo- and regio- selective 1,3-dipolar cycloaddition methodology. Stereochemistry of the spiranic cycloadducts has been established by spectroscopic analysis and the regioselectivity outcome of the spiro adducts has been accomplished by DFT calculations at B3LYP/6-31G (d,p) level study. In vitro antibacterial activity of the newly synthesized cycloadducts were evaluated against highly pathogenic Gram-positive and Gram-negative bacteria and the most active compounds 5a, 13, and 14 underwent automated in silico molecular docking analysis in order to validate their effective orientation as a inhibitors bound in the active site of glucosamine-6-phosphate synthase (1XFF) enzyme by employing AutoDock Tools.
Collapse
Affiliation(s)
- Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai, India.
| | - Subban Kamalraj
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India; Centre for Advanced Studies in Botany & Centre for Herbal Sciences, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Ramanathan Padmanaban
- Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, India
| | - Santhakumar Yeswanth Kumar
- Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, India
| | - Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India; Centre for Advanced Studies in Botany & Centre for Herbal Sciences, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Periyan Durairaju
- Department of Chemistry, Thiruvalluar Government Arts College, Periyar University, Raispuram, India
| | - Abdulaziz Alrehaili
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Li S, Liang M, Gao D, Su Q, Laher I. Changes in Titin and Collagen Modulate Effects of Aerobic and Resistance Exercise on Diabetic Cardiac Function. J Cardiovasc Transl Res 2019; 12:404-414. [PMID: 30820865 DOI: 10.1007/s12265-019-09875-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Diastolic dysfunction is a common complication that occurs early in diabetes mellitus. Titin and collagen are two important regulators of myocardial passive tension, which contributes to diabetic myocardial diastolic dysfunction. Exercise therapy significantly improves the impaired diabetic cardiac function, but its benefits appear to depend on the type of exercise used. We investigated the effect of aerobic and resistance exercise on cardiac diastolic function in diabetic rats induced by high-fat diet combined with low-dose streptozotocin injection. Interestingly, although resistance training had a more pronounced effect on blood glucose control than did aerobic training in type 2 diabetic rats, improvements in cardiac diastolic parameters benefited more from aerobic training. Moreover, aerobic exercise did significantly increase the expression levels of titin and decrease collagen I, TGFβ1 expression level. In summary, out data suggest that aerobic exercise may improve diabetic cardiac function through changes in titin-dependent myocardial stiffness rather than collagen-dependent interstitial fibrosis.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Derun Gao
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Quansheng Su
- School of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
23
|
Chemoprotective effects of butanol fraction of Buchholzia coriacea (Capparidaceae) against type 2 diabetes and oxidative stress in male Wistar rats. Biosci Rep 2019; 39:BSR20170665. [PMID: 28790167 PMCID: PMC6379225 DOI: 10.1042/bsr20170665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
Abstract
Recent studies have shown that Type 2 diabetes (T2D) in rats can result through a synergy that links obesity to insulin resistance and β-cell dysfunction. The present study achieved T2D via high fructose (20%w/v, p.o.), streptozotocin single dose (40 mg/kg, i.p.) (HFSTZ) in rats. Also, chemoprotective potential of butanol fraction of Buchholzia coriacea (BFBC) was demonstrated. Control normal and diabetic untreated (HFSTZ-induced T2D) rats received CM-cellulose (1 mg/kg, p.o.). Diabetic rats received intragastric BFBC (20, 200, 400 mg/kg), glibenclamide (0.07 mg/kg), and BFBC (200 mg/kg) plus glibenclamide treatments, respectively. 2,2-Diphenyl-1-picrylhydrazyl, nitric oxide radical, hydroxyl radical scavenging activities, and α-amylase inhibition were assessed. After 2 weeks of treatments, blood glucose levels, lipid profiles, renal and liver function, serum insulin as well as in vivo oxidative stress biomarkers were assessed. BFBC shows highest antioxidants and α-amylase inhibitory activities in vitro HFSTZ-induced T2D produced hyperglycemia (P<0.05-0.001; F = 5.26-26.47), serum hyperinsulinemia (six-folds) plus elevated lipid peroxidation levels. Similarly, there were altered lipid profiles, liver and renal biomarker enzymes plus weight loss. BFBC administration alone or in combination with glibenclamide reversed T2D symptomatologies in treated animals, and improved body weights against control diabetic rats. In vivo antioxidant activities also improved while histological sections in treated rats show reduced tissue damage in pancreas, kidneys, liver, and heart, respectively. Oleic, stearic, 2-methyl-pyrrolidine-2-carboxylic, and n-hexadecanoic acids were present in BFBC in large quantities given GC-MS analysis. Overall, data from the present study suggest chemoprotective potentials of BFBC against HFSTZ-induced T2D rats.
Collapse
|
24
|
Guo Q, Chen Z, Santhanam RK, Xu L, Gao X, Ma Q, Xue Z, Chen H. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int J Biol Macromol 2019; 121:981-988. [DOI: 10.1016/j.ijbiomac.2018.10.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 12/25/2022]
|
25
|
Tharsius Raja WR, Antony S, Pachaiyappan S, Amalraj J, Narasimhan P, Keduki B, Veeramuthu D, Perumal P, Savarimuthu I. Antibacterial Activity study of Musizin isolated from Rhamnus wightii Wight and Arn. Bioinformation 2018; 14:511-520. [PMID: 31223211 PMCID: PMC6563663 DOI: 10.6026/97320630014511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022] Open
Abstract
The crude extracts and the compounds isolated from traditional medicinal plants are used to treat infectious diseases caused by bacteria, fungi, and viruses. An attempt has been made in the present investigation to evaluate the antibacterial activity of musizin isolated from Rhamnus wightii, (Family: Rhamnaceae) against Gram-positive (Bacillus cereus, Staphylococcus aureus, Streptococcus faecalis), and Gramnegative (Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) bacteria. The tested compound showed more pronounced antibacterial activity against the tested pathogens than the standard antibiotics like streptomycin and gentamycin with the lowest minimum inhibitory concentration (MIC). Molecular docking analysis was performed to study the effectiveness of musizin compared to the standard antibiotics; it showed a significant interaction with the target proteins such asalgR (P. arginosa), divIVA (E. faecalis), icaA (S. aureus), plcR(B. cereus), treC (K. pneumonia) and ftsl (E. coli) and found that musizin showed higher potential with least binding energy. It has also been found that musizin had better ADMET properties than the standard drugs. Thus,musizin acts as an inhibitor of bacterial growth for consideration as a drug to treat bacterial infections.
Collapse
Affiliation(s)
| | - Stalin Antony
- 2Division of Bioinformatics,Entomology Research Institute, Loyola College, Chennai
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Jackson Amalraj
- Division of Microbiology, Entomology Research Institute, LoyolaCollege, Chennai - Chennai
| | - Poorva Narasimhan
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | - Balakrishna Keduki
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai
| | - Duraipandiyan Veeramuthu
- Division of Microbiology, Entomology Research Institute, LoyolaCollege, Chennai - Chennai
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies Collegeof Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Palani Perumal
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | - Ignacimuthu Savarimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai
- International Scientific Partnership Program, King Saud University, PostBox 2455, Riyadh 1011 11451, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Hepatoprotective effect of bisbenzylisoquinoline alkaloid tiliamosine from Tiliacora racemosa in high-fat diet/diethylnitrosamine-induced non-alcoholic steatohepatitis. Biomed Pharmacother 2018; 108:963-973. [DOI: 10.1016/j.biopha.2018.09.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
|
27
|
Toppo E, Sylvester Darvin S, Esakkimuthu S, Buvanesvaragurunathan K, Ajeesh Krishna T, Antony Caesar S, Stalin A, Balakrishna K, Pandikumar P, Ignacimuthu S, Al-Dhabi N. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomed Pharmacother 2018; 107:979-988. [DOI: 10.1016/j.biopha.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
|
28
|
Sankaranarayanan C, Nishanthi R, Pugalendi P. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats. Biomed Pharmacother 2018; 103:539-545. [DOI: 10.1016/j.biopha.2018.04.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022] Open
|
29
|
Zhang Q, Yu H, Xiao X, Hu L, Xin F, Yu X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ 2018; 6:e4446. [PMID: 29507837 PMCID: PMC5835350 DOI: 10.7717/peerj.4446] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/10/2018] [Indexed: 12/18/2022] Open
Abstract
Background & Aims Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. Methods A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. Results We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck, G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3–V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Phascolarctobacterium, and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio, which produce lipopolysaccharide (LPS). The abundance of Lachnospiraceae was negatively correlated with the blood glucose response after a glucose load. Conclusion In summary, diabetic rats have different gut microbiota from control rats. Inulin treatment can alleviate gut microbiota dysbiosis in T2D model rats. Moreover, inulin treatment enhanced serum GLP-1 level to suppress IL-6 secretion and production and hepatic gluconeogenesis, resulted in moderation of insulin tolerance.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyue Yu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Hu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaobing Yu
- Fengning Ping'an High-tech Industrial Co., Ltd., Hebei Province, China
| |
Collapse
|
30
|
Synthesis of novel β-amino alcohols from phenylacetylcarbinol: cytotoxicity activity against A549 cells and molecular docking. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Liu L, Tang D, Zhao H, Xin X, Aisa HA. Hypoglycemic effect of the polyphenols rich extract from Rose rugosa Thunb on high fat diet and STZ induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:174-181. [PMID: 28213107 DOI: 10.1016/j.jep.2017.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa rugosa Thunb is a traditional Uygur medicine that has been used in the treatment of diabetes in Uygur ancient recipe for hundreds of years. However, the mechanism of Rosa rugosa Thunb activity is still unclear. This study was designed to address this issue by studying the polyphenols enriched extract (RPE) of Rosa rugosa Thunb in diabetic rats. MATERIALS AND METHODS RPE were tested in the inhibition of α-glucosidase and oxidative stress in vitro. RPE was administrated at dosages of 37.5, 75 and 150mg/kg body weight in the type 2 diabetic rats, which were made by high fat diet feeding plus a low dose of STZ injection (30mg/kg). The therapeutic effect was evaluated four weeks later. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and insulin signal pathway (PI3K/AKT) were examined to determine insulin sensitivity. Blood glucose levels and body weight were measured weekly in the study. RESULTS In vitro, RPE exhibited an activity in the inhibition of α-glucosidase and had an excellent antioxidant activity in the liver of diabetic rats. RPE significantly decreased the fasting blood glucose, improved insulin sensitivity (HOMA-IR), OGTT, ITT and blood lipid profile. The glycogen synthesis and hexokinase activity were increased together with the improved signaling activity of insulin as indicated by p-IRS, p-IR, p-AKT, and p-GSK-3β. CONCLUSIONS The results suggest that RPE reduced blood glucose in type 2 diabetic rats by improvement of insulin sensitivity. The effect is likely achieved by inhibition of oxidative stress and α-glucosidase.
Collapse
Affiliation(s)
- Liu Liu
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Tang
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiqing Zhao
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
32
|
Saravana Kumar P, Stalin A, Lakshmi sundaram R, Duraipandiyan V, Al-Dhabi NA, Yuvaraj P, Balakrishna K, Ignacimuthu S. Isolation of chemical constituents from Nonomuraea species: In vitro and in silico evaluation of its antibacterial properties. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
Durg S, Veerapur VP, Neelima S, Dhadde SB. Antidiabetic activity of Embelia ribes, embelin and its derivatives: A systematic review and meta-analysis. Biomed Pharmacother 2017; 86:195-204. [PMID: 27984799 DOI: 10.1016/j.biopha.2016.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 12/09/2022] Open
Abstract
Embelia ribes (ER) has been documented in Ayurveda for treating various diseases, including diabetes mellitus (DM). The present systematic review and meta-analysis evaluated the efficacy and safety of ER and its active bio-marker, embelin and its derivatives in the treatment of DM. Literature search was performed in PubMed/MEDLINE, EMBASE, Scopus, ScienceDirect, Scifinder, and Google Scholar. Using Review Manager, meta-analysis of ER/embelin/derivatives of embelin versus diabetic control was performed with inverse-variance model, providing mean differences (MDs) and 95% confidence intervals (CIs). Heterogeneity was determined by I2 statistic. A total of 13 studies were included in the systematic review and meta-analysis, and were conducted in experimental rats. ER and embelin significantly (P≤0.01) resorted blood glucose (MD, -231.30; CI, -256.79, -205.82; and MD, -154.70; CI, -168.65, -140.74) and glycosylated haemoglobin (MD, -6.36; CI, -8.33, -4.39; and MD,-4.68; CI, -7.76, -1.60), respectively. Meta-analysis findings also reported considerable restoration of insulin, lipid profile, haemodynamic parameters, serum and oxidative stress markers. The derivatives of embelin, 6-bromoembelin and vilangin, also improved diabetic condition. In addition, treatments also ameliorated body weight changes due to diabetes. The present systematic review and meta-analysis supports scientific evidence for the antidiabetic activity of ER/embelin/derivatives of embelin. However, further research is warranted in clinical trials to validate the present findings.
Collapse
Affiliation(s)
| | - Veeresh P Veerapur
- Department of Quality Assurance, Sree Siddaganga College of Pharmacy, Tumkur 572102, Karnataka, India
| | - Satrasala Neelima
- Vasavi Institute of Pharmaceutical Sciences, Kadapa 516247, Andhra Pradesh, India
| | - Shivsharan B Dhadde
- Department of Pharmacology, D.S.T.S. Mandal's College of Pharmacy, Solapur 413004, Maharashtra, India
| |
Collapse
|