1
|
Mnisi TJ, Matotoka MM, Mazimba O, Shekwa W, Masoko P. Bioassay-guided isolation of antibacterial and anti-biofilm compounds from Peltophorum africanum Sond. Stem and mechanisms of active fractions against nosocomial pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119876. [PMID: 40280370 DOI: 10.1016/j.jep.2025.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peltophorum africanum is widely used in indigenous medicine to treat infections, wounds, and inflammatory conditions. This study employs a bioassay-guided approach to isolate antibacterial compounds elucidating their pharmacological mechanisms and supporting their potential as sources of anti-infective agents. AIM OF THE STUDY The study aimed to investigate P. africanum stem as a potential source of novel compounds for drug discovery, emphasizing its antibacterial, antibiofilm, and antioxidant properties. MATERIALS AND METHODS Chromatographic techniques were used to fractionate and isolate antibacterial compounds. Structural elucidation was performed using NMR and LC-MS. Antioxidant activity was assessed using the DPPH radical scavenging assay. Antibacterial activity was determined using the microbroth dilution method against Pseudomonas aeruginosa and Staphylococcus aureus. Anti-biofilm activity was evaluated using the crystal violet staining method. The antibacterial mechanism of action of the most active fraction was examined by assessing changes in INT-dehydrogenase activity and monitoring the leakage of intracellular proteins and DNA. RESULTS Betulinic acid-3-3,4-dihydroxybenzoate and 3-octadecanoyl stigmasterol were isolated from the hexane crude extract. LC-MS identified 13 compounds. The plant samples MIC varied from 0.31 to 1.25 mg/mL. Isolated compounds had noteworthy activity across all biofilm phases. The fraction exhibited the lowest number of viable cells when assessing INT-dehydrogenase activity. Additionally, it was more effective in causing the release of intracellular proteins and DNA, while also displaying superior antioxidant activity. CONCLUSION The ability of antioxidant and antibacterial compounds of the P. africanum stem to inhibit biofilm formation and eradication of mature biofilms holds promise for the treatment of biofilm-associated nosocomial infections.
Collapse
Affiliation(s)
- Talita Jessica Mnisi
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Mashilo Mash Matotoka
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ofentse Mazimba
- Chemical and Forensic Sciences, Botswana International University of Science and Technology, Plot, Private Bag 16, Palapye, 10017, Botswana
| | - Wanda Shekwa
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa.
| |
Collapse
|
2
|
Kwon H, Lim DJ, Choi C. Prevention of foodborne viruses and pathogens in fresh produce and root vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:219-285. [PMID: 40023562 DOI: 10.1016/bs.afnr.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Every year, 1 in 10 people suffers from food poisoning, and in recent years, the highest number of foodborne outbreaks has been attributed to roots/underground vegetables and fresh produce. Major pathogens include as Escherichia coli, Salmonella enterica, Listeria monocytogenes, Human Norovirus, Hepatitis A virus and Cyclospora. The primary sources of contamination for agriculture products stem from uncontrolled exposure to soil, water, and animal waste. Contamination can occur in various ways during food cultivation, harvesting, processing, and distribution. Mechanical washing and disinfection are primarily employed as practices to control biological contaminants such as bacteria, viruses, and parasites. Current practices may encounter challenges such as microbial resistance to disinfectants or antibiotics, and the cleaning effectiveness could be compromised due to the internalization of bacteria and viruses into some plants. High-pressure processing, pulse electric fields, and cold plasma are environmentally friendly technologies, albeit with associated costs. Low-temperature sterilization technologies capable of controlling biological contaminants, such as bacteria and viruses, play a crucial role in preventing food safety issues. Compared to conventional cleaning methods, these technologies are effective in controlling microorganisms that are strongly attached to the food surface or internalized due to damage. Periodic surveillance is essential to ensure the overall microbiological safety of fresh produce and root vegetables.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Wang HB, Wu YH, Sun Y, Chen Z, Xu YQ, Ikuno N, Koji N, Hu HY. Ozone-Resistant Bacteria, an Inconvenient Hazard in Water Reclamation: Resistance Mechanism, Propagating Capacity, and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17908-17915. [PMID: 39344972 DOI: 10.1021/acs.est.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resistant bacteria have always been of research interest worldwide. In the urban water system, the increased disinfectant usage gives more chances for undesirable disinfection-resistant bacteria. As the strongest oxidative disinfectant in large-scale water treatment, ozone might select ozone-resistant bacteria (ORB), which, however, have rarely been reported and are inexplicit for their resistant mechanisms and physiological characteristics. In this study, six strains of ORB were screened from a water reclamation plant in Beijing. Three of them (O7, CR19, and O4) were more resistant to ozone than all previously reported ORB or even spores. The ozone consumption capacity of extracellular polymeric substances and cell walls was proved to be the main sources of bacterial ozone resistance, rather than intracellular antioxidant enzymes. The transcriptome results elucidated that strong ORB possessed a combined antioxidant mechanism consisting of the enhanced transcription of protein synthesis, protein export, and polysaccharide export genes (LptF, LptB, NodJ, LivK, LviG, MetQ, MetN, and GltU). This study confirmed the existence of ORB in urban water systems and brought doubts to the idea of a traditional control strategy against chlorine-resistant bacteria. A salient "trade-off" effect between the ozone resistance and propagation ability indicated the weakness and potential control approaches of ORB.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yige Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
4
|
Zheng X, Zhong T, Zhao H, Huang F, Huang W, Hu L, Xia D, Tian S, Shu D, He C. MnO 2-based capacitive system enhances ozone inactivation of bacteria by disrupting cell membrane. WATER RESEARCH 2024; 256:121608. [PMID: 38657310 DOI: 10.1016/j.watres.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.
Collapse
Affiliation(s)
- Xiyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
5
|
da Silva YCR, Alves RM, Benato EA, Usberti FCS. Gaseous ozone and ozonized mist in the control of Escherichia coli on 'Rama Forte' persimmon. Braz J Microbiol 2024; 55:1715-1722. [PMID: 38561500 PMCID: PMC11153475 DOI: 10.1007/s42770-024-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to evaluate the effectiveness of using two ozone applications (gaseous and mist) as a disinfection method for fresh persimmon. To test these sanitizers, in vitro and in vivo assays were performed, and the Escherichia coli was selected because it is a pathogen that causes foodborne diseases in humans. For in vitro experiments, a plate was inoculated with Escherichia coli strain ATCC 25922 and treated. For in vivo assays, persimmon fruit surface was inoculated with the bacteria and treated. For both assays, it was used 10,15,20,30,40 and 50 μL L-1 of gaseous ozone or ozonized mist for five minutes. The results demonstrated that the gas ozone application significantly reduced the growth of E. coli on the plate surface in vitro at doses of 30, 40 and 50 μL L-1 (with 0.83, 0.89 and 0.95 log CFU mL-1, respectively). The application of ozonized mist showed a significant reduction for 50 μL L-1 (with 1.28 log CFU g-1). And, for the in vivo assays, ozonized mist significantly reduced the number of bacteria on the persimmon surface, with a 1.57 log reduction, which was the largest for 40 μL L-1. Therefore, it is possible to conclude that the ozone application can contribute to the control of microorganisms present on fruit surfaces.
Collapse
Affiliation(s)
| | - Raysa Maduro Alves
- Agricultural Engineering College, Laboratory of Postharvest Technology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Eliane Aparecida Benato
- Center for Research and Development of Agricultural Biosystems and Postharvest, Agronomic Institute, Campinas, SP, Brazil
| | - Franciane Colares Souza Usberti
- Agricultural Engineering College, Laboratory of Postharvest Technology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
6
|
Zhang Z, Chen T, Yin X, Wang W, Li W, Chen X, Ma J, Long Y. Honokiol inhibits Botryosphaeria dothidea, the causal pathogen of kiwifruit soft rot, by targeting membrane lipid biosynthesis. PEST MANAGEMENT SCIENCE 2024; 80:1779-1794. [PMID: 38031205 DOI: 10.1002/ps.7910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Kiwifruit soft rot is mainly caused by Botryosphaeria dothidea, representing a considerable threat to kiwifruit industry. This investigation assessed the inhibitory consequences and mechanisms of honokiol against B. dothidea, evaluating the inhibitory effects and underlying mechanism. RESULTS A strain of B.dothidea (XFCT-2) was isolated from infected soft rot kiwifruit. The findings indicate that honokiol hindered the mycelial growth, conidial germination, and pathogenicity of B. dothidea in a dose-dependent manner, both in vitro and in vivo. Furthermore, ultrastructural examinations showed that honokiol impaired the integrity of B. dothidea, leading to an elevation in cell membrane permeability, engendering a multitude of intracellular substance extravasations and hampering energy metabolism. Transcriptome analysis exhibited that honokiol-regulated genes were related to membrane lipid biosynthesis, comprising ACC1, FAS2, Arp2, gk, Cesle, and Etnk1. These findings indicate that honokiol impedes B. dothidea by obstructing lipid biosynthesis within the cell membrane and compromising its integrity, halting the growth of the mycelia, which could potentially cause cellular demise. CONCLUSION This investigation illustrates how honokiol functions as an eco-friendly approach to prevent the occurrence of soft rot in kiwifruits. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- Teaching Experiment Farm, Guizhou University, Guiyang, China
| | - Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- Teaching Experiment Farm, Guizhou University, Guiyang, China
| | - Xianhui Yin
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- Teaching Experiment Farm, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Lenart-Boroń A, Stankiewicz K, Bulanda K, Czernecka N, Heliasz M, Hunter W, Ratajewicz A, Khachatryan K, Khachatryan G. In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals. Int J Mol Sci 2024; 25:3557. [PMID: 38542531 PMCID: PMC10971217 DOI: 10.3390/ijms25063557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures in the form of wound dressings with antibiotic properties, should be searched for. The aim of this study was to develop a new, efficient, cost-effective and non-toxic formulation with antimicrobial properties to serve as an alternative to antibiotic administration in wound-healing stimulation in companion animals. Nano/microencapsulated ozonated olive oil in a hyaluronan matrix was developed, with ozone concentration high enough to prevent bacterial growth. The presence and size of nano- and microcapsules were determined with scanning electron microscopy (SEM). Antibacterial activity of developed formulations was examined in vitro on 101 Gram-positive and Gram-negative bacteria isolated from the wounds of companion animals. The highest ozone concentration in the developed formulations inhibited the growth of 40.59% bacteria. Species and genus-specific differences in reactions were observed. Enterococcus spp. proved the least susceptible while non-pathogenic Gram-positive bacteria were the most susceptible to the examined formulations. Changes in the bacterial morphology and cell structure of Psychrobacter sanguinis suspension mixed with Ca-stabilized formulations with nano/microencapsulated ozonized olive oil were revealed during SEM observations. The combination of compounds that promote wound healing (hyaluronic acid, olive oil, ozone and calcium) with the antibacterial activity of the developed formula makes it a promising bionanocomposite for use as a topical dressing.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Klaudia Bulanda
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Natalia Czernecka
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Anna Ratajewicz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Kraków, Poland; (N.C.); (M.H.); (W.H.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland;
| |
Collapse
|
8
|
Larkin JO, Mozden SC, Chyan Y, Zheng Q, Cherukuri P, Tour JM, Ball ZT. Capacitively Coupled Plasma from Laser-Induced Graphene Points to Ozone as the Major Mediator of Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45601-45605. [PMID: 37724983 DOI: 10.1021/acsami.3c09216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Low-temperature plasma is an emerging approach for the treatment of bacterial infections. Nonchemical treatments such as cold plasma offer potential solutions to antibiotic resistance. We investigated the use of laser-induced graphene as an inexpensive, lightweight, and portable electrode for generating cold plasma. At the same time, the mechanism or molecular mediators of cold plasma-induced antibacterial activity remain poorly understood. This study validates graphene as an efficient structure for producing therapeutic cold plasma, and this study also indicates that ozone is the primary mediator of antibacterial activity in graphene-mediated cold plasmas for bacterial growth under the conditions studied.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah C Mozden
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yieu Chyan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qingxin Zheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Rice Nexus, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute and the NanoCarbon Center, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Computer Science, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Zhang YX, Xiang JL, Wang JJ, Du HS, Wang TT, Huo ZY, Wang WL, Liu M, Du Y. Ultraviolet-based synergistic processes for wastewater disinfection: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131393. [PMID: 37062094 DOI: 10.1016/j.jhazmat.2023.131393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for wastewater disinfection but suffers from low inactivation rates and can cause photoreactivation of microorganisms. Synergistic disinfection with UV and oxidants is promising for enhancing the inactivation performance. This review summarizes the inactivation effects on representative microorganisms by UV/hydrogen peroxide (H2O2), UV/ozone (O3), UV/persulfate (PS), UV/chlorine, and UV/chlorine dioxide (ClO2). UV synergistic processes perform better than UV or an oxidant alone. UV mainly attacks the DNA or RNA in microorganisms; the oxidants H2O2 and O3 mainly attack the cell walls, cell membranes, and other external structures; and HOCl and ClO2 enter cells and oxidize proteins and enzymes. Free radicals can have strong oxidation effects on cell walls, cell membranes, proteins, enzymes, and even DNA. At similar UV doses, the inactivation rates of Escherichia coli with UV alone, UV/H2O2, UV/O3, UV/PS (peroxydisulfate or peroxymonosulfate), and UV/chlorinated oxidant (chlorine, ClO2, and NH2Cl) range from 2.03 to 3.84 log, 2.62-4.30 log, 4.02-6.08 log, 2.93-5.07 log, and 3.78-6.55 log, respectively. The E. coli inactivation rates are in the order of UV/O3 ≈ UV/Cl2 > UV/PS > UV/H2O2. This order is closely related to the redox potentials of the oxidants and quantum yields of the radicals. UV synergistic disinfection processes inhibit photoreactivation of E. coli in the order of UV/O3 > UV/PS > UV/H2O2. The activation mechanisms and formation pathways of free radicals with different UV-based synergistic processes are presented. In addition to generating HO·, O3 can reduce the turbidity and chroma of wastewater to increase UV penetration, which improves the disinfection performance of UV/O3. This knowledge will be useful for further development of the UV-based synergistic disinfection processes.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
10
|
Gómez-Castillo MA, Rivera Romero C, Reátegui-Ochoa K, Mamani Zapana E, Silva-Jaimes M. Ozone Efficacy for the Disinfection of Ambulances Used to Transport Patients during the COVID-19 Pandemic in Peru. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105776. [PMID: 37239505 DOI: 10.3390/ijerph20105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
We assessed the disinfection efficacy of an ozone generator prototype in ambulances used to transport patients with coronavirus disease (COVID-19). This research consisted of three stages: in vitro tests using microbial indicators, such as Candida albicans, Escherichia coli, Staphylococcus aureus and Salmonella phage, which were experimentally inoculated onto polystyrene crystal surfaces within a 23 m3 enclosure. They were then exposed to ozone at a 25 ppm concentration using the ozone generator (Tecnofood SAC) portable prototype, and the decimal reduction time (D) was estimated for each indicator. The second stage involved the experimental inoculation of the same microbial indicators on a variety of surfaces inside conventional ambulances. The third stage consisted of exploratory field testing in ambulances used to transport patients with suspected COVID-19. During the second and third stages, samples were collected by swabbing different surfaces before and after 25 ppm ozonisation for 30 min. Results suggested that ozone was most effective on Candida albicans (D = 2.65 min), followed by Escherichia coli (D = 3.14 min), Salmonella phage (D = 5.01 min) and Staphylococcus aureus (D = 5.40 min). Up to 5% of the microbes survived following ozonisation of conventional ambulances. Of the 126 surface samples collected from ambulances transporting patients with COVID-19, 7 were positive (5.6%) for SARS-related coronavirus as determined on reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Ozone exposure from the ozone generator prototype inside ambulances at a concentration of 25 ppm for 30 min can eliminate gram positive and negative bacteria, yeasts, and viruses.
Collapse
Affiliation(s)
- Miguel Alejandro Gómez-Castillo
- Laboratorio de Microbiología de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| | | | - Kevin Reátegui-Ochoa
- Laboratorio de Microbiología de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| | | | - Marcial Silva-Jaimes
- Laboratorio de Microbiología de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| |
Collapse
|
11
|
Hu J, Huang W, Wang Y, Jin J, Li Y, Chen J, Zheng Y, Deng S. Atmospheric cold plasma: A potential technology to control Shewanella putrefaciens in stored shrimp. Int J Food Microbiol 2023; 390:110127. [PMID: 36806858 DOI: 10.1016/j.ijfoodmicro.2023.110127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
This work aimed to investigate the inactivation mechanism of atmospheric cold plasma (ACP) against Shewanella putrefaciens both in PBS and sterile shrimp juice (SSJ). Reductions in cell density, cell viability, and biofilm formation activity were observed after ACP treatment. ACP cyclical treatment (1 min, 5 times) was more efficient than a one-time treatment (5 min, 1 time). After ACP cyclical treatment, the cell counts and cell viability of S. putrefaciens in PBS were decreased by 3.41 log CFU/mL and 85.30 %, respectively. As for SSJ group, the antibacterial efficiency of ACP declined, but the antibacterial effect of ACP cyclical treatment was still stronger than that of ACP one-time treatment. The biofilm formation activity of S. putrefaciens in PBS was almost completely inhibited, while it gradually returned to normal level with the prolonged of storage time for the SSJ counterpart. The rapid decrease in AKP activity after ACP treatment indicated the damage to cell wall integrity, which was also demonstrated by TEM. In addition, cell membrane and DNA damage of the strain also occurred after ACP treatment. The ROS fluorescence intensity in PBS was higher for the one-time treatment group, while the cyclical treatment group exhibited higher and more stable ozone levels. It was also detected that the total nitric oxide concentration in bacterial suspension depended on the dose of ACP treatment time. ACP treatment (35 kV) for 5 min, especially cyclical treatment, displayed its antibacterial properties on packaged shrimp contaminated with high concentration of S. putrefaciens. ACP cyclical treatment reduced surface bacterial counts of whole shrimps by 0.52 log CFU/mL, while ACP one-time treatment only achieved a decrease of 0.18 log CFU/mL. Therefore, ACP treatment could be considered as a potential alternative to enhance microbial control in food processing.
Collapse
Affiliation(s)
- Jiajie Hu
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Weijiao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yihong Wang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Jin
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yuwei Li
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Chen
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China.
| | - Yan Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| |
Collapse
|
12
|
Castro RA, Neto OP, Mendes ALS, Moreira LH. Acaricidal action of ozone on larvae and engorged females of Rhipicephalus microplus: a dose-dependent relationship. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:433-445. [PMID: 37029855 DOI: 10.1007/s10493-023-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
The tick Rhipicephalus microplus is a vector of infectious agents that causes great economic loss in the productivity of cattle herds. Several studies have sought natural compounds with acaricidal activity to control ticks, without allowing the development of resistance, without causing environmental damage, and without presenting toxicity to the hosts. The activity of ozone on the natural biomolecules of living beings has been studied as an alternative to control arthropods and acaricidal effects were shown on ticks. The aim of the present study was to assess the acaricidal effect on larvae and engorged females of R. microplus according to ozone dose. Larvae (n = 377) were distributed in 10 groups and engorged females (n = 284) were distributed in 14 groups. One group was used as control (not exposed to ozone) and the other groups were exposed to ozone gas for 5-105 min. Ozone had a dose-dependent acaricidal effect on both larvae and engorged females. Dosages between 355 and 2130 mg/L min had a delayed acaricidal effect (12-180 h), leading to the death of all engorged females before laying eggs, whereas doses between 3195 and 7455 mg/L min showed immediate acaricidal effect (5 min to 4 h). Doses between 1775 and 6390 mg/L min had an immediate (up to 5 min) acaricidal effect on the larvae of this species. Further studies should consider longer follow-up times during the assessment of the acaricidal activity against ticks.
Collapse
Affiliation(s)
- R A Castro
- Biomedical Engineering Center, Anhembi Morumbi University (UAM), Rua Casa do Ator, 294, Campus Vila Olímpia, São Paulo, SP, CEP 04546-001, Brazil
- Centro Universitário de Barra Mansa (UBM), Rua José Maria da Cruz, 267, Centro, Barra Mansa, RJ, CEP 27330-550, Brazil
| | - O P Neto
- Biomedical Engineering Center, Anhembi Morumbi University (UAM), Rua Casa do Ator, 294, Campus Vila Olímpia, São Paulo, SP, CEP 04546-001, Brazil
- Center of Innovation, Technology and Education (CITÉ), Estrada Dr. Altino Bondesan, 500, Distrito de Eugênio de Melo, São José dos Campos, SP, CEP 12247-016, Brazil
- Arena235 Research Lab BR, Rua Carlos Maria Auricchio, 55-Jardim Aquarius, São José dos Campos, SP, CEP 12246-876, Brazil
| | - A L S Mendes
- Animal and Human Anatomy Department, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - L H Moreira
- Biomedical Engineering Center, Anhembi Morumbi University (UAM), Rua Casa do Ator, 294, Campus Vila Olímpia, São Paulo, SP, CEP 04546-001, Brazil.
- Center of Innovation, Technology and Education (CITÉ), Estrada Dr. Altino Bondesan, 500, Distrito de Eugênio de Melo, São José dos Campos, SP, CEP 12247-016, Brazil.
| |
Collapse
|
13
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
14
|
Xue W, Macleod J, Blaxland J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023; 12:foods12040814. [PMID: 36832889 PMCID: PMC9957223 DOI: 10.3390/foods12040814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination.
Collapse
Affiliation(s)
- Wenya Xue
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Joshua Macleod
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - James Blaxland
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
15
|
Investigation of antibacterial activity and mechanism of T. spicata essential oil, and activation of the hydrosol formed as a by-product with UV. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
17
|
Revealing novel synergistic defense and acid tolerant performance of Escherichia coli in response to organic acid stimulation. Appl Microbiol Biotechnol 2022; 106:7577-7594. [DOI: 10.1007/s00253-022-12241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
18
|
Erdogan Eliuz EA, Yabalak E, Gökşen G, Ayas D. Chemical composition, antifungal activity, antifungal mechanism and interaction manner of the fatty acid of Prunus mahaleb L. with fluconazole. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2337-2349. [PMID: 34382873 DOI: 10.1080/09603123.2021.1963686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The interaction manner of Prunus mahaleb L. (P. mahaleb) seed oil (MSO) and fluconazole (FLC: antimycotic) combinations (MSO*FLC) against C. albicans and C. parapsilosis were evaluated using the microdilution technique. The most representative compounds of mahaleb oil were found to be conjugated linolenic acid (34.39%), oleic acid (31.76%), and linoleic acid (25.54%) by GC-MS. In antimicrobial activity study, P. mahaleb had an inhibition zone (IZ) of C. albicans and C. parapsilosis with 6.89 mm and 11.39 mm and a minimum inhibitory concentration (MIC) with 35.3 µgmL-1 and 23.9 µgmL-1, respectively. The strongest indifferent effect was observed as 57.14% for C. albicans and 100% for C. parapsilosis in fluconazole-mahaleb oil combinations. An increase in DNA and protein leakage was observed when yeast was exposed to the FA. The destruction on the cell surface was visualized using Scanning Electron Microscopy (SEM) analysis.
Collapse
Affiliation(s)
- Elif Ayşe Erdogan Eliuz
- Department of Food Technology, Mersin University, Vocational School of Technical Sciences, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry, Mersin University, Faculty of Arts and Science, Mersin, Turkey
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
| | - Gülden Gökşen
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Deniz Ayas
- Department of Seafood Processing Technology, Mersin University, Mersin, Turkey
| |
Collapse
|
19
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sainz-García A, Toledano P, Muro-Fraguas I, Álvarez-Erviti L, Múgica-Vidal R, López M, Sainz-García E, Rojo-Bezares B, Sáenz Y, Alba-Elías F. Mask disinfection using atmospheric pressure cold plasma. Int J Infect Dis 2022; 123:145-156. [PMID: 35995313 PMCID: PMC9389523 DOI: 10.1016/j.ijid.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mask usage has increased over the last few years due to the COVID-19 pandemic, resulting in a mask shortage. Furthermore, their prolonged use causes skin problems related to bacterial overgrowth. To overcome these problems, atmospheric pressure cold plasma was studied as an alternative technology for mask disinfection. METHODS Different microorganisms (Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp.), different gases (nitrogen, argon, and air), plasma power (90-300 W), and treatment times (45 seconds to 5 minutes) were tested. RESULTS The best atmospheric pressure cold plasma treatment was the one generated by nitrogen gas at 300 W and 1.5 minutes. Testing of breathing and filtering performance and microscopic and visual analysis after one and five plasma treatment cycles, highlighted that these treatments did not affect the morphology or functional capacity of the masks. CONCLUSION Considering the above, we strongly believe that atmospheric pressure cold plasma could be an inexpensive, eco-friendly, and sustainable mask disinfection technology enabling their reusability and solving mask shortage.
Collapse
Affiliation(s)
- Ana Sainz-García
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Paula Toledano
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Ignacio Muro-Fraguas
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Lydia Álvarez-Erviti
- Molecular Neurobiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Rodolfo Múgica-Vidal
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - María López
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Elisa Sainz-García
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Beatriz Rojo-Bezares
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Yolanda Sáenz
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Fernando Alba-Elías
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain.
| |
Collapse
|
21
|
Erdoğan Eliuz EA. Antibacterial activity and antibacterial mechanism of ethanol extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (button mushroom). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1828-1841. [PMID: 33896292 DOI: 10.1080/09603123.2021.1919292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present work was the comparison of antimicrobial activity, mechanism and components of the ethanol extract (EE) from Lentinula edodes Berk (Pegler) and Agaricus bisporus Sing (Lange). The main component of EE of A. bisporus was dianhydromannitol (20.1%), while isosorbide/dianhydromannitol (21.8%) was detected at a high rate in L. edodes ethanol extract by GC-MS . The common phenolic acids were determined as chlorogenic acid, syringic acid, rutin, p-coumaric acid, ferulic acid, 2-hydroxy cinnamic acid, protocatechuic acid, abscisic acid, and trans-cinnamic acid in both mushroom extract by HPLC-MWD . The MICs (minimum inhibitory concentration) of L. edodes EE on Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Acinetobacter baumannii were between 5.1 mg ml-1 and 6.01 mg ml-1, while MICs of A. bisporus EE on the pathogens were between 5.8 mg ml-1 and 9.54 mg ml-1. The highest DRA decrease was in E. faecalis (69.1%) for L. edodes and S. aureus (71.0%) for A. bisporus in the 20th minute. As a result, L. edodes and A. bisporus have a similar antibacterial effect on the pathogens, and this inhibition effect caused DNA, protein leakage and destruction of permeability of bacterial cell membrane by bioactive molecules in mushroom extract.
Collapse
Affiliation(s)
- Elif Ayşe Erdoğan Eliuz
- Department of Food Technology, Mersin University, Technical Sciences Vocational School, Mersin, Turkey
| |
Collapse
|
22
|
Danaeifar M. New horizons in developing cell lysis methods: A Review. Biotechnol Bioeng 2022; 119:3007-3021. [PMID: 35900072 DOI: 10.1002/bit.28198] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Cell lysis is an essential step in many studies related to biology and medicine. Based on the scale and medium that cell lysis is carried out, there are three main types of the cell lysis: 1) lysis of the cells in the surrounding environment, 2) lysis of the isolated or cultured cells and 3) Single cell lysis. Conventionally, several cell lysis methods have been developed, such as freeze-thawing, bead beating, incursion in liquid nitrogen, sonication and enzymatic and chemical based approaches. In recent years, various novel technologies have been employed to develop new methods of cell lysis. The aim of studies in this field is to introduce more precise and efficient tools or to reduce the costs of cell lysis procedures. Nanostructure based lysis methods, acoustic oscillation, electrical current, irradiation, bacteria-mediated cell lysis, magnetic ionic liquids, bacteriophage genes, monolith columns, hydraulic forces and steam explosion are some examples of new developed cell lysis methods. Beside the significant advances in this field, there are still many challenges and the tools must be further improved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Rangel K, Cabral FO, Lechuga GC, Carvalho JPRS, Villas-Bôas MHS, Midlej V, De-Simone SG. Potent Activity of a High Concentration of Chemical Ozone against Antibiotic-Resistant Bacteria. Molecules 2022; 27:3998. [PMID: 35807244 PMCID: PMC9268618 DOI: 10.3390/molecules27133998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Health care-associated infections (HAIs) are a significant public health problem worldwide, favoring multidrug-resistant (MDR) microorganisms. The SARS-CoV-2 infection was negatively associated with the increase in antimicrobial resistance, and the ESKAPE group had the most significant impact on HAIs. The study evaluated the bactericidal effect of a high concentration of O3 gas on some reference and ESKAPE bacteria. MATERIAL AND METHODS Four standard strains and four clinical or environmental MDR strains were exposed to elevated ozone doses at different concentrations and times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. Scanning electron microscopy (SEM) was performed. RESULTS The culture exposure to a high level of O3 inhibited the growth of all bacterial strains tested with a statistically significant reduction in colony count compared to the control group. The cell viability of S. aureus (MRSA) (99.6%) and P. aeruginosa (XDR) (29.2%) was reduced considerably, and SEM showed damage to bacteria after O3 treatment Conclusion: The impact of HAIs can be easily dampened by the widespread use of ozone in ICUs. This product usually degrades into molecular oxygen and has a low toxicity compared to other sanitization products. However, high doses of ozone were able to interfere with the growth of all strains studied, evidencing that ozone-based decontamination approaches may represent the future of hospital cleaning methods.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Fellipe O. Cabral
- Microbiology Department, National Institute for Quality Control in Health (INCQS), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (F.O.C.); (M.H.S.V.-B.)
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| | - Maria H. S. Villas-Bôas
- Microbiology Department, National Institute for Quality Control in Health (INCQS), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (F.O.C.); (M.H.S.V.-B.)
| | - Victor Midlej
- Laboratory of Cellular and Ultrastructure, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (G.C.L.); (J.P.R.S.C.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| |
Collapse
|
24
|
Yepez X, Illera AE, Baykara H, Keener K. Recent Advances and Potential Applications of Atmospheric Pressure Cold Plasma Technology for Sustainable Food Processing. Foods 2022; 11:foods11131833. [PMID: 35804648 PMCID: PMC9265751 DOI: 10.3390/foods11131833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In a circular economy, products, waste, and resources are kept in the system as long as possible. This review aims to highlight the importance of cold plasma technology as an alternative solution to some challenges in the food chain, such as the extensive energy demand and the hazardous chemicals used. Atmospheric cold plasma can provide a rich source of reactive gas species such as radicals, excited neutrals, ions, free electrons, and UV light that can be efficiently used for sterilization and decontamination, degrading toxins, and pesticides. Atmospheric cold plasma can also improve the utilization of materials in agriculture and food processing, as well as convert waste into resources. The use of atmospheric cold plasma technology is not without challenges. The wide range of reactive gas species leads to many questions about their safety, active life, and environmental impact. Additionally, the associated regulatory approval process requires significant data demonstrating its efficacy. Cold plasma generation requires a specific reliable system, process control monitoring, scalability, and worker safety protections.
Collapse
Affiliation(s)
- Ximena Yepez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence:
| | - Alba E. Illera
- Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Kevin Keener
- College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
25
|
Sanito RC, You SJ, Wang YF. Degradation of contaminants in plasma technology: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127390. [PMID: 34879580 PMCID: PMC8500698 DOI: 10.1016/j.jhazmat.2021.127390] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC.
| |
Collapse
|
26
|
Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr Rev Food Sci Food Saf 2022; 21:1054-1085. [DOI: 10.1111/1541-4337.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - N. U. Sruthi
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
| |
Collapse
|
27
|
Song K, Wang H, Jiao Z, Qu G, Chen W, Wang G, Wang T, Zhang Z, Ling F. Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126906. [PMID: 34416696 DOI: 10.1016/j.jhazmat.2021.126906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The presence of viruses in water is a major risk for human and animal health due to their high resistance to disinfection. Pulsed corona discharge plasma (PCDP) efficiently inactivates bacteria by causing damage to biological macromolecules, but its effect on waterborne virus has not been reported. This study evaluated the inactivation efficacy of PCDP to viruses using spring viremia of carp virus (SVCV) as a model. The results showed that 4-log10 reduction of SVCV infectivity in cells was reached after 120 s treatment, and there was no significant difference in survival of fish infected with SVCV inactivated by PCDP for 240 s or more longer compared to the control fish without virus challenge, thus confirming the feasibility of PCDP to waterborne virus inactivation. Moreover, the high input energy density caused by voltage significantly improved the inactivation efficiency. The further research indicated that reactive species (RS) generated by pulsed corona discharge firstly reacted with phosphoprotein (P) and polymerase complex proteins (L) through penetration into the SVCV virions, and then caused the loss of viral infectivity by damage to genome and other structural proteins. This study has significant implications for waterborne virus removal and development of novel disinfection technologies.
Collapse
Affiliation(s)
- Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhi Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Weichao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
28
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Sheng L, Shen X, Su Y, Xue Y, Gao H, Mendoza M, Green T, Hanrahan I, Zhu MJ. Effects of 1-methylcyclopropene and gaseous ozone on Listeria innocua survival and fruit quality of Granny Smith apples during long-term commercial cold storage. Food Microbiol 2021; 102:103922. [PMID: 34809948 DOI: 10.1016/j.fm.2021.103922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
This study evaluated the impact of 1-methylcyclopropene (1-MCP), an ethylene synthesis inhibitor, followed by long-term commercial cold storage with low-dose gaseous ozone on the microbiological safety and quality of fresh apples. Granny Smith apples were inoculated with or without Listeria innocua, treated with or without 1.0 mg/L 1-MCP for 24 h, then subjected to commercial cold storage conditions including refrigerated air (RA, 0.6 °C, control), controlled atmosphere (CA, 2% O2, 1% CO2, 0.6 °C), and CA with 51-87 μg/L ozone gas for up to 36 weeks. RA storage reduced L. innocua on apples by up to 3.6 log10 CFU/apple. CA had no advantage over RA in controlling Listeria. Continuous ozone gas application resulted in an additional ∼2.0 log10 CFU/apple reduction of L. innocua (total reduction up to 5.7 log10 CFU/apple) and suppressed native bacteria and fungi. Treatment with 1-MCP had a minor impact on survival of L. innocua or background microbiota on apples, while it significantly delayed fruit ripening and reduced the incidence of superficial scald and internal browning. In summary, 1-MCP treatment followed by CA storage with low-dose continuous ozone gas can effectively control Listeria on fresh apples and delay fruit ripening.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Hui Gao
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
30
|
Liao Q, Tao H, Li Y, Xu Y, Wang HL. Evaluation of Structural Changes and Molecular Mechanism Induced by High Hydrostatic Pressure in Enterobacter sakazakii. Front Nutr 2021; 8:739863. [PMID: 34631769 PMCID: PMC8495323 DOI: 10.3389/fnut.2021.739863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
The contamination of infant milk and powder with Enterobacter sakazakii poses a risk to human health and frequently caused recalls of affected products. This study aims to explore the inactivation mechanism of E. sakazakii induced by high hydrostatic pressure (HHP), which, unlike conventional heat treatment, is a nonthermal technique for pasteurization and sterilization of dairy food without deleterious effects. The mortality of E. sakazakii under minimum reaction conditions (50 MPa) was 1.42%, which was increased to 33.12% under significant reaction conditions (400 MPa). Scanning electron microscopy (SEM) and fluorescent staining results showed that 400 MPa led to a loss of physical integrity of cell membranes as manifested by more intracellular leakage of nucleic acid, intracellular protein and K+. Real-time quantitative PCR (RT-qPCR) analysis presents a downregulation of three functional genes (glpK, pbpC, and ompR), which were involved in cell membrane formation, indicating a lower level of glycerol utilization, outer membrane protein assembly, and environmental tolerance. In addition, the exposure of E. sakazakii to HHP modified oxidative stress, as reflected by the high activity of catalase and super oxide dismutase. The HHP treatment lowered down the gene expression of flagellar proteins (fliC, flgI, fliH, and flgK) and inhibited biofilm formation. These results determined the association of genotype to phenotype in E. sakazakii induced by HHP, which was used for the control of food-borne pathogens.
Collapse
Affiliation(s)
- Qiaoming Liao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yali Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Yi Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
31
|
Ozonization of Water, Retention of Ozone and Devitalization of Escherichia Coli in Water By Ozone. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The aim of this study was to observe the efficiency of ozone transferred by an airstone bubble diffuser, using two ozone generators with different output of ozone (5 g.h–1 ‒ G1; 15 g.h–1 ‒ G2). The retention of ozone in ozonised distilled and potable water and the devitalisation effects on E. coli in the water were also noted. Ozone was introduced to two types of potable water of different composition intended for mass consumption, (MC)a and (MC)b, distilled water, and well water intended for individual consumption. The devitalisation effect of ozone on E. coli in well water (WW) and added to potable and distilled water was observed. The results of our study showed that under the conditions used, the level of ozone during ozonisation with G1 increased more rapidly in distilled water and after termination of ozonisation, the retention of ozone in distilled water was a little lower in comparison with the potable water. The devitalisation of E. coli either naturally present in the water or added to it required the level of ozone close to or equal to 0.25 mg.l–1.
Collapse
|
32
|
Shen X, Su Y, Hua Z, Sheng L, Mendoza M, He Y, Green T, Hanrahan I, Blakey R, Zhu MJ. Effectiveness of Low-Dose Continuous Gaseous Ozone in Controlling Listeria innocua on Red Delicious Apples During 9-Month Commercial Cold Storage. Front Microbiol 2021; 12:712757. [PMID: 34659142 PMCID: PMC8513861 DOI: 10.3389/fmicb.2021.712757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of low-dose continuous ozone gas in controlling Listeria innocua and quality attributes and disorders of Red Delicious apples during long-term commercial cold storage. Red Delicious apples were inoculated with a three-strain L. innocua cocktail at ∼6.2 log10 CFU/apple, treated with or without 1-methylcyclopropene, and then subjected to controlled atmosphere (CA) storage with or without continuous gaseous ozone in a commercial facility for 36 weeks. Uninoculated Red Delicious apples subjected to the above storage conditions were used for yeast/mold counts and quality attributes evaluation. The 36 weeks of refrigerated air (RA) or CA storage caused ∼2.2 log10 CFU/apple reduction of L. innocua. Ozone gas application caused an additional > 3 log10 CFU/apple reduction of L. innocua compared to RA and CA storage alone. During the 36-week CA storage, low-dose continuous gaseous ozone application significantly retarded the growth of yeast/mold, delayed apple firmness loss, and had no negative influence on ozone burn, lenticel decay, russet, CO2 damage, superficial scald, and soft scald of Red Delicious apples compared to CA-alone storage. In summary, the application of continuous low-dose gaseous ozone has the potential to control Listeria on Red Delicious apples without negatively influencing apple quality attributes.
Collapse
Affiliation(s)
- Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Zi Hua
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Yang He
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Rob Blakey
- Stemilt Growers LLC., Wenatchee, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
33
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. CHEMOSPHERE 2021; 274:129957. [PMID: 33979920 PMCID: PMC8121763 DOI: 10.1016/j.chemosphere.2021.129957] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
34
|
Sheng L, Zhu MJ. Practical in-storage interventions to control foodborne pathogens on fresh produce. Compr Rev Food Sci Food Saf 2021; 20:4584-4611. [PMID: 34190395 DOI: 10.1111/1541-4337.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Although tremendous efforts have been made to ensure fresh produce safety, various foodborne outbreaks and recalls occur annually. Most of the current intervention strategies are evaluated within a short timeframe (less than 1 h), leaving the behavior of the remaining pathogens unknown during subsequent storages. This review summarized outbreak and recall surveillance data from 2009 to 2018 obtained from government agencies in the United States to identify major safety concerns associated with fresh produce, discussed the postharvest handling of fresh produce and the limitations of current antimicrobial interventions, and reviewed the intervention strategies that have the potential to be applied in each storage stage at the commercial scale. One long-term (up to 12 months) prepacking storage (apples, pears, citrus among others) and three short-term (up to 3 months) postpacking storages were identified. During the prepacking storage, continuous application of gaseous ozone at low doses (≤1 ppm) is a feasible option. Proper concentration, adequate circulation, as well as excess gas destruction and ventilation systems are essential to commercial application. At the postpacking storage stages, continuous inhibition can be achieved through controlled release of gaseous chlorine dioxide in packaging, antimicrobial edible coatings, and biocontrol agents. During commercialization, factors that need to be taken into consideration include physicochemical properties of antimicrobials, impacts on fresh produce quality and sensory attributes, recontamination and cross-contamination, cost, and feasibility of large-scale production. To improve fresh produce safety and quality during storage, the collaboration between researchers and the fresh produce industry needs to be improved.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
35
|
dos Santos LMC, da Silva ES, Oliveira FO, Rodrigues LDAP, Neves PRF, Meira CS, Moreira GAF, Lobato GM, Nascimento C, Gerhardt M, Lessa AS, Mascarenhas LAB, Machado BAS. Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. BIOLOGY 2021; 10:525. [PMID: 34204772 PMCID: PMC8231602 DOI: 10.3390/biology10060525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
O3 dissolved in water (or ozonized water) has been considered a potent antimicrobial agent, and this study aimed to test this through microbiological and in vitro assays. The stability of O3 was accessed following modifications of the physicochemical parameters of water, such as the temperature and pH, with or without buffering. Three concentrations of O3 (0.4, 0.6, and 0.8 ppm) dissolved in water were tested against different microorganisms, and an analysis of the cytotoxic effects was also conducted using the human ear fibroblast cell line (Hfib). Under the physicochemical conditions of 4 °C and pH 5, O3 remained the most stable and concentrated compared to pH 7 and water at 25 °C. Exposure to ozonized water resulted in high mortality rates for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Scanning electron micrograph images indicate that the effects on osmotic stability due to cell wall lysis might be one of the killing mechanisms of ozonized water. The biocidal agent was biocompatible and presented no cytotoxic effect against Hfib cells. Therefore, due to its cytocompatibility and biocidal action, ozonized water can be considered a viable alternative for microbial control, being possible, for example, its use in disinfection processes.
Collapse
Affiliation(s)
- Laerte Marlon Conceição dos Santos
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Eduardo Santos da Silva
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Fabricia Oliveira Oliveira
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Leticia de Alencar Pereira Rodrigues
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Paulo Roberto Freitas Neves
- University Center SENAI/CIMATEC, SENAI Computational Modeling and Industrial Technology, Salvador 41650-010, Bahia, Brazil;
| | - Cássio Santana Meira
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Greta Almeida Fernandes Moreira
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Gabriela Monteiro Lobato
- China Three Gorges Corporation—CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira 79590-000, Selviria, Brazil; (G.M.L.); (C.N.); (M.G.)
| | - Carlos Nascimento
- China Three Gorges Corporation—CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira 79590-000, Selviria, Brazil; (G.M.L.); (C.N.); (M.G.)
| | - Marcelo Gerhardt
- China Three Gorges Corporation—CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira 79590-000, Selviria, Brazil; (G.M.L.); (C.N.); (M.G.)
| | - Arlene Souza Lessa
- Gonçalo Moniz Institute, FIOCRUZ Microscopy Service, Technological Platforms Network, Salvador 40296-710, Bahia, Brazil;
| | - Luis Alberto Breda Mascarenhas
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), Salvador 41650-010, Bahia, Brazil; (L.M.C.d.S.); (E.S.d.S.); (F.O.O.); (L.d.A.P.R.); (C.S.M.); (G.A.F.M.); (L.A.B.M.)
| |
Collapse
|
36
|
Antimicrobial Activity and Mechanism of Essential Oil of Endemic Salvia hypargeia Finc. & Mey. in Turkey. Indian J Microbiol 2021; 61:291-297. [PMID: 34294995 DOI: 10.1007/s12088-021-00939-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 01/28/2023] Open
Abstract
In this study, the aerial parts of Salvia hypargeia were subjected to hydrodistillation and the resulting compounds were analyzed in GC-MS. Antimicrobial activity of S. hypargeia essential oil (EO) against A. baumannii , S. aureus, and C. tropicalis were determined by agar well diffusion assay and microdilution method. Antimicrobial mechanism of the EO were investigated based on change of TTC-dehydrogenase relative, leakages of intracellular protein, DNA and potassium ion (K +). The main components of the EO were β-pinene, 1,8-cineole, camphor, α-pinene, 4-terpineol, and 4-thujanol. The MICs of the EO against the microorganisms were 15.2 mg/mL for S. aureus, 17.5 mg/mL for C. tropicalis and 28.8 mg/mL for A. baumannii. The inhibition zones were 18.16 mm, 25.01 mm, and 27.01 mm for A. baumannii, S. aureus, and C. tropicalis, respectively (p < 0.05). An increase in DNA, protein and K+ leakage was observed when microorganisms were exposed to the EO. The TTC-DRA of the treated microorganism cells was also significantly decreased because of slowing the respiration. The present study provided an experimental basis of practical application of S. hypargeia EO as a natural agent. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00939-1.
Collapse
|
37
|
Botta C, Ferrocino I, Pessione A, Cocolin L, Rantsiou K. Spatiotemporal Distribution of the Environmental Microbiota in Food Processing Plants as Impacted by Cleaning and Sanitizing Procedures: the Case of Slaughterhouses and Gaseous Ozone. Appl Environ Microbiol 2020; 86:e01861-20. [PMID: 32978124 PMCID: PMC7657643 DOI: 10.1128/aem.01861-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Microbial complexity and contamination levels in food processing plants heavily impact the final product fate and are mainly controlled by proper environmental cleaning and sanitizing. Among the emerging disinfection technologies, ozonation is considered an effective strategy to improve the ordinary cleaning and sanitizing of slaughterhouses. However, its effects on contamination levels and environmental microbiota still need to be understood. For this purpose, we monitored the changes in microbiota composition in different slaughterhouse environments during the phases of cleaning/sanitizing and ozonation at 40, 20, or 4 ppm. Overall, the meat processing plant microbiota differed significantly between secondary processing rooms and deboning rooms, with a greater presence of psychrotrophic taxa in secondary processing rooms because of their lower temperatures. Cleaning/sanitizing procedures significantly reduced the contamination levels and in parallel increased the number of detectable operational taxonomic units (OTUs), by removing the masking effect of the most abundant human/animal-derived OTUs, which belonged to the phylum Firmicutes Subsequently, ozonation at 40 or 20 ppm effectively decreased the remaining viable bacterial populations. However, we could observe selective ozone-mediated inactivation of psychrotrophic bacteria only in the secondary processing rooms. There, the Brochothrix and Pseudomonas abundances and their viable counts were significantly affected by 40 or 20 ppm of ozone, while more ubiquitous genera like Staphylococcus showed a remarkable resistance to the same treatments. This study showed the effectiveness of highly concentrated gaseous ozone as an adjunct sanitizing method that can minimize cross-contamination and so extend the meat shelf life.IMPORTANCE Our in situ survey demonstrates that RNA-based sequencing of 16S rRNA amplicons is a reliable approach to qualitatively probe, at high taxonomic resolution, the changes triggered by new and existing cleaning/sanitizing strategies in the environmental microbiota in human-built environments. This approach could soon represent a fast tool to clearly define which routine sanitizing interventions are more suitable for a specific food processing environment, thus limiting the costs of special cleaning interventions and potential product loss.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agriculture, Forestry, and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agriculture, Forestry, and Food Sciences, University of Turin, Turin, Italy
| | | | - Luca Cocolin
- Department of Agriculture, Forestry, and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agriculture, Forestry, and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Zhou J, Wang T, Xie X. Locally Enhanced Electric Field Treatment (LEEFT) Promotes the Performance of Ozonation for Bacteria Inactivation by Disrupting the Cell Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14017-14025. [PMID: 32940462 DOI: 10.1021/acs.est.0c03968] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adoption of ozonation for water disinfection is hindered by its high ozone demand and the resulting high cost. Electric field treatment inactivates bacteria by physically disrupting the integrity of the cell membrane. Assisted by nanowire-modified electrodes, locally enhanced electric field treatment (LEEFT) reduces the required voltage to several volts to induce sufficient electric field strength for efficient bacteria inactivation. In this study, the LEEFT is applied as a pretreatment of ozonation for bacteria inactivation. Our results show that a low-voltage (<0.4 V) LEEFT has no obvious effect on the following ozonation, but a higher-voltage (0.6-1.2 V) LEEFT significantly enhances the ozone inactivation. After the LEEFT, a large number of viable cells with impaired cell membranes are observed, shown by both selective plate count and staining methods. The mechanism inducing the enhancement is explained by the initially reparable pores generated by LEEFT that cannot recover in the subsequent ozonation and the greater intracellular diffusion of ozone after the membrane disruption induced by LEEFT. The application of LEEFT as a pretreatment process is beneficial to reduce the ozone dosage and disinfection by-product formation with a broader inactivation spectrum, which facilitates the application of ozonation in primary water disinfection.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
40
|
Olatunde OO, Benjakul S, Vongkamjan K. Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. J Food Saf 2019. [DOI: 10.1111/jfs.12705] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro‐IndustryPrince of Songkla University Hat Yai Thailand
| | - Kitiya Vongkamjan
- Department of Food Technology, Faculty of Agro‐IndustryPrince of Songkla University Hat Yai Thailand
| |
Collapse
|
41
|
Sipahi H, Reis R, Dinc O, Kavaz T, Dimoglo A, Aydın A. In vitro biocompatibility study approaches to evaluate the safety profile of electrolyzed water for skin and eye. Hum Exp Toxicol 2019; 38:1314-1326. [DOI: 10.1177/0960327119862333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrolyzed water (EW) is a widely used disinfectant agent with high oxidation–reduction potential (ORP). Although EW has been used in many areas, such as food hygiene, agriculture, and animal husbandry, the studies presented in the literature are not enough to clarify the toxic effects of EW. The aim of this study is, therefore, to produce EWs at different pH, ORP, and chlorine concentrations and to assess their safety in terms of toxicology. At the beginning of the study, the antimicrobial activity of the EW types with respect to bacteria and fungus was investigated. EWs below pH 7 were all effective in inactivating Enterococcus hirae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans completely. In vitro studies of cell cultures revealed that different concentrations of EWs were not cytotoxic for the L929 cells under 10- to 80-fold dilutions. In addition, it has been determined that produced EWs did not have irritation potential, according to the in vitro EpiDerm™, reconstituted skin irritation test in the frames of biocompatibility tests. For the mucous membrane irritation test, the hen’s egg test-chorioallantoic membrane experiment was performed, and EWs were found to have no eye irritation. In conclusion, it has been shown that produced EWs with antimicrobial efficacy were found to be safe for skin and eye according to in vitro biocompatibility study studies. Thus, the establishment of a technological infrastructure for the EW production and the use of produced EW as an effective disinfectant in the food, medical, and agricultural areas should be encouraged.
Collapse
Affiliation(s)
- H Sipahi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Yeditepe University, Istanbul, Turkey
| | - R Reis
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Yeditepe University, Istanbul, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Karadeniz Technical University, Trabzon, Turkey
| | - O Dinc
- Institutue of Health Science, Department of Biotechnology, University of Health Sciences, Istanbul, Turkey
| | - T Kavaz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Yeditepe University, Istanbul, Turkey
| | - A Dimoglo
- Faculty of Engineering, Department of Environmental Engineering, Duzce University, Konuralp, Duzce, Turkey
| | - A Aydın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|