1
|
Ding R, Sun Y, Ma T, Yin H, Bi Y, Li S, Wang L, Wang X. Mechanism of Lung Fibrosis Caused by Rare Earth Samarium Oxide Through Hippo Signaling Pathway and the Intervention of GBE. Biol Trace Elem Res 2025:10.1007/s12011-025-04571-8. [PMID: 40102356 DOI: 10.1007/s12011-025-04571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
With the ongoing advancement and utilization of rare earth elements, human and environmental exposure to these materials has risen substantially. Samarium oxide (Sm₂O₃), a rare earth element, has been shown to induce pulmonary fibrosis, but the mechanisms are not clear. This study aimed to investigate the primary mechanisms by which rare earth Sm2O3 contributes to pulmonary fibrosis in relation to the Hippo signaling pathway and to assess the interventional effects of Ginkgo biloba extract (GBE). A mouse model of pulmonary fibrosis was established through intratracheal administration of a Sm2O3 suspension, while human embryonic lung fibroblasts were also treated for intervention studies. The results indicated that compared with the control group, the expression of SAV1, LATS1/2, MST1, YAP1, and TEAD1 genes was significantly up-regulated in the Sm2O3 group, while the expression of TAZ gene was down-regulated. Additionally, the levels of p-LATS1, LATS1, YAP, and p-YAP were elevated, suggesting that Sm2O3 promotes pulmonary fibrosis through an imbalance and abnormal regulation of the Hippo signaling pathway. Furthermore, human embryonic lung fibroblasts stained with Sm2O3 were treated with different dose gradients of GBE, and the expression level of p-LATS1, LATS1, YAP, and p-YAP was decreased as the dose of Sm2O3 increased, whereas treatment with GBE increased the expression of these proteins. GBE can mitigate the fibrotic response induced by Sm₂O₃ exposure. These findings demonstrate that Sm₂O₃ induces pulmonary fibrosis, at least in part, by inactivating the Hippo signaling pathway. Further investigation is warranted to fully elucidate the protective mechanisms of GBE and its therapeutic potential in this context.
Collapse
Affiliation(s)
- Ruixia Ding
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Ying Sun
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Teng Ma
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Haijing Yin
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Yannan Bi
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Sheng Li
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Li Wang
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China.
| | - Xiaohui Wang
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China.
| |
Collapse
|
2
|
Rached RA, Shakya AK, Fulgheri F, Aroffu M, Castangia I, García-Villén F, Ferraro M, Fernàndez-Busquets X, Pedraz JL, Louka N, Maroun RG, Manconi M, Manca ML. Resveratrol and grape pomace extract incorporated in modified phospholipid vesicles: A potential strategy to mitigate cigarette smoke-induced oxidative stress. Free Radic Biol Med 2025; 230:151-162. [PMID: 39952333 DOI: 10.1016/j.freeradbiomed.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
In this study, the extraction process of grape pomace from the Lebanese autochthonous cultivar Asswad Karech was enhanced through the selection of specific parameters, yielding an antioxidant extract (20 mg/mL) that was co-loaded with resveratrol (5 mg/mL) into phospholipid vesicles containing penetration enhancers (PEVs). Propylene glycol (PG) was incorporated as a penetration enhancer at concentrations of 10, 20, and 30 % to obtain 10 PG-PEVs, 20 PG-PEVs, and 30 PG-PEVs. Vesicle preparation was achieved through direct sonication, yielding unilamellar and bilamellar vesicles with an average size of ∼205; 234 nm, a monodisperse distribution (polydispersity index <0.3), and a negative surface charge (∼-54;-56 mV). The formulations containing 30 % propylene glycol exhibited long-term stability, maintaining a consistent mean diameter over 12 months at room temperature (25 °C). Upon nebulization using the Next Generation Impactor, the vesicular dispersions successfully reached the deepest stages of the impactor, mimicking deposition in the lower respiratory airways. Biocompatibility studies on A549 and CuFi-1 cell lines demonstrated that the vesicles co-loaded with grape extract and resveratrol effectively counteracted apoptosis induced by hydrogen peroxide. Furthermore, when 16HBE bronchial epithelial cells were exposed to cigarette smoke extract, vesicles containing 30 % propylene glycol inhibited reactive oxygen species (ROS) generation. These findings highlight the potential of phospholipid vesicles co-loaded with grape pomace extract and resveratrol, particularly those formulated with 30 % propylene glycol, for pulmonary administration to mitigate oxidative damage associated with cigarette smoke exposure and related respiratory diseases.
Collapse
Affiliation(s)
- Rita Abi Rached
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy; Centre d'Analyses et de Recherche, Unité de Recherche TVA, Laboratoire CTA, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut, 1104 2020, Lebanon.
| | - Ashok K Shakya
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy.
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy.
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy.
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain.
| | - Maria Ferraro
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Xavier Fernàndez-Busquets
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036, Barcelona, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain.
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche TVA, Laboratoire CTA, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut, 1104 2020, Lebanon.
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche TVA, Laboratoire CTA, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut, 1104 2020, Lebanon.
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042, Monserrato, CA, Italy.
| |
Collapse
|
3
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
4
|
Habib I, Jawed JJ, Nasrin T, Shaikh S. Briefing of pulmonary sarcoidosis: Reduction-oxidation, misleading and possibilities. Indian J Tuberc 2025; 72:103-111. [PMID: 39890360 DOI: 10.1016/j.ijtb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 02/03/2025]
Abstract
Sarcoidosis is an inflammatory disease with limited treatment strategies and is characterized by the presence of abnormal lumps (granulomas) of the inflammatory cells. Among the types, pulmonary sarcoidosis most commonly occurs (about 90%), affecting the lungs and intrathoracic lymph nodes. Although the cause of its occurrence is still unknown, perhaps microbes and chemical exposures, as well as genetic history, may trigger the disease occurrence. The updated scenario also depicted the interconnection between oxidative stress and pulmonary sarcoidosis. Thus, the therapeutic value of the genetic consequences, as well as the redox status of pulmonary sarcoidosis, are under consideration. In addition, sarcoidosis complexity has been associated with tumor malignancy and tuberculosis. Therefore, in this review, we summarized the current status of pulmonary sarcoidosis, interference of lung cancer and tuberculosis complications, understanding of the role of reactive species in disease occurrence, and how they are associated with genetic features.
Collapse
Affiliation(s)
- Irfan Habib
- Department of Internal Medicine, College of Medicine and JNM Hospital, WB, India
| | - Junaid Jibran Jawed
- Institute of Health Sciences, Presidency University-2nd Campus, DG/02/02, New Town, Rajarhat, Kolkata, 700156, India
| | - Tina Nasrin
- Dept. of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Soni Shaikh
- Laboratory of Histopathology, TATA MEDICAL CENTER 14, MAR (E-W), New Town, Rajarhat, Kolkata, 700160, India.
| |
Collapse
|
5
|
Sun Z, He W, Meng H, Li P, Qu J. Endoplasmic reticulum stress in acute lung injury and pulmonary fibrosis. FASEB J 2024; 38:e70232. [PMID: 39651914 DOI: 10.1096/fj.202401849rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive and irreversible lung disease that leads to diminished lung function, respiratory failure, and ultimately death and typically has a poor prognosis, with an average survival time of 2 to 5 years. Related articles suggested that endoplasmic reticulum (ER) stress played a critical role in the occurrence and progression of PF. The ER is responsible for maintaining protein homeostasis. However, factors such as aging, hypoxia, oxidative stress, or inflammation can disrupt this balance, promoting the accumulation of misfolded proteins in the ER and triggering ER stress. To cope with this situation, cells activate the unfolded protein response (UPR). Since acute lung injury (ALI) is one of the key onset events of PF, in this review, we will discuss the role of ER stress in ALI and PF by activating multiple signaling pathways and molecular mechanisms that affect the function and behavior of different cell types, with a focus on epithelial cells, fibroblasts, and macrophages. Linking ER stress to these cell types may broaden our understanding of the mechanisms underlying lung fibrosis and help us target these cells through these mechanisms. The relationship between ER stress and PF is still evolving, and future research will explore new strategies to regulate UPR pathways, providing novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Peizhi Li
- Department of Anesthesiology, Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China
| |
Collapse
|
6
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Rojas M, Tschumperlin DJ. A Redox-Shifted Fibroblast Subpopulation Emerges in the Fibrotic Lung. Am J Respir Cell Mol Biol 2024; 71:718-729. [PMID: 38959411 PMCID: PMC11622638 DOI: 10.1165/rcmb.2023-0346oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and, thus far, incurable disease characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study, we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen-producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)Hhigh and NAD(P)Hlow subpopulations. NAD(P)Hhigh fibroblasts exhibited elevated profibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)Hlow fibroblasts. The NAD(P)Hhigh population was present in healthy lungs but expanded with time after bleomycin injury, suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)Hhigh cells in freshly dissociated lungs of subjects with IPF relative to control subjects, as well as similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
Affiliation(s)
- Patrick A. Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley Y. Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Victor Peters
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Mauricio Rojas
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | |
Collapse
|
7
|
Tian X, Wang S, Zhang C, Prakash YS, Vassallo R. Blocking IL-23 Signaling Mitigates Cigarette Smoke-Induced Murine Emphysema. ENVIRONMENTAL TOXICOLOGY 2024; 39:5334-5346. [PMID: 39221838 PMCID: PMC11567802 DOI: 10.1002/tox.24405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.
Collapse
Affiliation(s)
- Xue Tian
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Chujie Zhang
- Department of Cardiology, Xi-Jing Hospital, Fourth Military Medical University, Xi’an, 710000, China
| | - YS Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
8
|
Han M, Liang J, Wang K, Si Q, Zhu C, Zhao Y, Khan NAK, Abdullah ALB, Shau-Hwai AT, Li YM, Zhou Z, Jiang C, Liao J, Tay YJ, Qin W, Jiang Q. Integrin A5B1-mediated endocytosis of polystyrene nanoplastics: Implications for human lung disease and therapeutic targets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176017. [PMID: 39236815 DOI: 10.1016/j.scitotenv.2024.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
Collapse
Affiliation(s)
- Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu 211100, China
| | - Chenxi Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | | | | | | | - Yi Ming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, China
| | - Zihan Zhou
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210017, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
9
|
Ejubović M, Kapic D, Custovic S, Lazović Salčin E, Lepara O, Kurtović A, Jahić R, Kulo Cesic A, Paralija B, Ziga Smajic N, Jagodić Ejubović A, Hasanbegovic S, Katica M, Besic A, Djesevic E, Fajkić A. Therapeutic Potential of N-acetylcysteine and Glycine in Reducing Pulmonary Injury in Diabetic Rats. Cureus 2024; 16:e72902. [PMID: 39628758 PMCID: PMC11611797 DOI: 10.7759/cureus.72902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Diabetes mellitus is associated with systemic complications, including the development of pulmonary injury, characterized mainly by excessive accumulation of extracellular matrix components and inflammatory cell infiltration in lung tissue. This process is driven by oxidative stress and chronic inflammation, both caused and exacerbated by hyperglycemia. N-acetylcysteine (NAC) and glycine, known for their antioxidant and anti-inflammatory effects, offer potential therapeutic benefits in mitigating diabetes-induced lung injury. OBJECTIVE The study aimed to investigate the effects of supplementation by either NAC or glycine or their combination on reducing lung injury in rats with type 1 diabetes Materials and methods: The study used 30 adult Wistar albino rats (10 weeks old, weighing between 180 g and 380 g). Six of them were used as controls, while 24 adult rats (10 weeks old, 180-380 g) with type 1 diabetes, induced through a single intraperitoneal injection of streptozotocin (STZ) at a dose of 55 mg/kg, were randomly assigned to four experimental groups: control (CTL), diabetic (Db), NAC treatment (diabetic+NAC), glycine treatment (diabetic+glycine), and combined NAC and glycine treatment (diabetic+NAC+glycine). NAC (100 mg/kg) and glycine (250 mg/kg) were administered orally for 12 weeks. At the end of the study, lung tissues were collected for histopathological examination. Qualitative, semi-quantitative, and stereological histological analysis was used to analyze structural changes in the lung tissue. Semi-quantitative scoring was carried out to evaluate the extent of inflammation, while stereological analysis was performed to determine the volume density of alveolar spaces and septal connective tissue. The semi-quantitative scoring included scores ranging from 0 (absent), 1 (minimal), 2 (mild), 3 (moderate), to 4 (severe). RESULTS Qualitative histological analysis revealed pronounced inflammation and fibrosis in the lungs of untreated diabetic rats, characterized by thickened alveolar septa and immune cell infiltration. Both treatments with NAC and glycine individually reduced inflammation and fibrosis compared to untreated diabetic rats. The greatest improvement was observed in the NAC+glycine group, where the alveolar structure appeared almost normal, with minimal inflammation. Semiquantitative analysis showed statistically significant differences in peribronchial and peribrochiolar infiltrates between the diabetic group (2.16±0.47) and the control group (0.33±0.21, p=0.026). The combination of NAC and glycine significantly reduced peribronchial and peribronchiolar infiltrates (0.33±0.33, p=0.026) compared to the diabetic group. Similarly, septal inflammatory infiltrates were significantly lower in the NAC+glycine group (1±0.36) compared to diabetic rats (3.33±0.33, p=0.004). Total airway inflammatory infiltration was also significantly reduced in the NAC+glycine group (1.33±0.33, p=0.002) compared to the diabetic group (5.5±0.5). CONCLUSION As the combination of NAC and glycine demonstrated protective effects against lung inflammation and fibrosis in diabetic rats, a synergistic effect of NAC and glycine in mitigating pulmonary complications associated with type 1 diabetes may be suggested. These findings warrant further exploration of the combination for managing diabetic lung disease and potentially other fibrotic conditions.
Collapse
Affiliation(s)
- Malik Ejubović
- Internal Medicine, Cantonal Hospital Zenica, Zenica, BIH
| | - Dina Kapic
- Histology and Embryology, University of Sarajevo, Sarajevo, BIH
| | - Samra Custovic
- Histology and Embryology, University of Sarajevo, Sarajevo, BIH
| | | | - Orhan Lepara
- Human Physiology, University of Sarajevo, Sarajevo, BIH
| | - Avdo Kurtović
- Orthopedics and Traumatology, Tuzla University Clinical Center, Tuzla, BIH
| | - Rijad Jahić
- Internal Medicine and Cardiology, Sarajevo University Clinical Center, Sarajevo, BIH
| | | | - Belma Paralija
- Pulmonology, Sarajevo University Clinical Center, Sarajevo, BIH
| | | | | | | | | | - Aida Besic
- Veterinary Medicine, University of Sarajevo, Sarajevo, BIH
| | - Enra Djesevic
- Endocrinology, Sarajevo University Clinical Center, Sarajevo, BIH
| | - Almir Fajkić
- Pathophysiology and Internal Medicine, University of Sarajevo, Sarajevo, BIH
| |
Collapse
|
10
|
Gong Y, Wang J, Pan M, Zhao Y, Zhang H, Zhang F, Liu J, Yang J, Hu J. Harmine inhibits pulmonary fibrosis through regulating DNA damage repair-related genes and activation of TP53-Gadd45α pathway. Int Immunopharmacol 2024; 138:112542. [PMID: 38924867 DOI: 10.1016/j.intimp.2024.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Harmine has many pharmacological activities and has been found to significantly inhibit the fibrosis of keloid fibroblasts. DNA damage repair (DDR) is essential to prevent fibrosis. This study aimed to investigate the effects of harmine on pulmonary fibrosis and its underlying mechanisms. METHODS Bleomycin and TGF-β1 were used to construct pulmonary fibrosis models in vivo and in vitro, then treated with harmine to explore harmine's effects in treating experimental pulmonary fibrosis and its related mechanisms. Then, RNA sequencing was applied to investigate further the crucial DDR-related genes and drug targets of harmine against pulmonary fibrosis. Finally, the expression levels of DDR-related genes were verified by real-time quantitative PCR (RT-qPCR) and western blot. RESULTS Our in vivo experiments showed that harmine treatment could improve weight loss and lung function and reduce tissue fibrosis in mice with pulmonary fibrosis. The results confirmed that harmine could inhibit the viability and migration of TGF-β1-induced MRC-5 cells, induce their apoptosis, and suppress the F-actin expression, suggesting that harmine could suppress the phenotypic transition from lung fibroblasts to lung myoblasts. In addition, RNA sequencing identified 1692 differential expressed genes (DEGs), and 10 DDR-related genes were screened as critical DDR-related genes. RT-qPCR and western blotting showed that harmine could down-regulate the expression of CHEK1, ERCC1, ERCC4, POLD1, RAD51, RPA1, TOP1, and TP53, while up-regulate FEN1, H2AX and GADD45α expression. CONCLUSIONS Harmine may inhibit pulmonary fibrosis by regulating DDR-related genes and activating the TP53-Gadd45α pathway.
Collapse
Affiliation(s)
- Yuehong Gong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Jie Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Meichi Pan
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Yicong Zhao
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Haibo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Fei Zhang
- Department of Medicine, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jiangyun Liu
- Soochow Univ, College of Pharmaceutic Science, Suzhou 215123, China
| | - Jianhua Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
11
|
Vaghasiya J, Jha A, Basu S, Bagan A, Jengsuksavat SK, Ravandi A, Pascoe CD, Halayko AJ. Neutralizing Oxidized Phosphatidylcholine Reduces Airway Inflammation and Hyperreactivity in a Murine Model of Allergic Asthma. BIOLOGY 2024; 13:627. [PMID: 39194564 DOI: 10.3390/biology13080627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Oxidative stress is associated with asthma pathobiology. We reported that oxidized phosphatidylcholines (OxPCs) are mediators of oxidative stress and accumulate in the lung in response to allergen challenge. The current study begins to unravel mechanisms for OxPC accumulation in the lung, providing the first insights about how OxPCs underpin allergic airway pathophysiology, and pre-clinical testing of selective neutralization of OxPCs in a murine model of allergic asthma. We hypothesized that intranasal delivery of E06, a natural IgM antibody that neutralizes the biological activity of OxPCs, can ameliorate allergen-induced airway inflammation and airway hyperresponsiveness. Adult BALB/c mice were intranasally (i.n.) challenged with house dust mite (HDM) (25 μg/mouse, 2 weeks). Some animals also received E06 monoclonal antibody (mAb) (10 µg) i.n. 1 hr before each HDM challenge. HDM challenge reduced mRNA for anti-oxidant genes (SOD1, SOD2, HO-1, and NFE2L2) in the lung by several orders of magnitude (p < 0.05). Concomitantly, total immune cell number in bronchoalveolar lavage fluid (BALF) increased significantly (p < 0.001). E06 mAb treatment prevented allergen-induced BALF immune cell number by 43% (p < 0.01). This included a significant blockade of eosinophils (by 48%, p < 0.001), neutrophils (by 80%, p < 0.001), macrophages (by 80%, p < 0.05), and CD4 (by 30%, p < 0.05) and CD8 (by 42%, p < 0.01) lymphocytes. E06 effects correlated with a significant reduction in TNF (by 64%, p < 0.001) and IL-1β (by 75%, p < 0.05) and a trend to diminish accumulation of other cytokines (e.g., IL-4, -10, and -33, and IFN-γ). E06 mAb treatment also inhibited HDM exposure-induced increases in total respiratory resistance and small airway resistance by 24% and 26%, respectively. In conclusion, prophylactic treatment with an OxPC-neutralizing antibody significantly limits allergen-induced airway inflammation and airway hyperresponsiveness, suggesting that OxPCs are important mediators of oxidative stress-associated allergic lung pathophysiology.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Alaina Bagan
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Siwon K Jengsuksavat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
12
|
Albaqami A, Alosaimi ME, Jafri I, Mohamed AAR, Abd El-Hakim YM, Khamis T, Elazab ST, Noreldin AE, Elhamouly M, El-Far AH, Eskandrani AA, Alotaibi BS, M Abdelnour H, Saleh AA. Pulmonary damage induction upon Acrylic amide exposure via activating miRNA-223-3p and miRNA-325-3p inflammasome/pyroptosis and fibrosis signaling pathway: New mechanistic approaches of A green-synthesized extract. Toxicology 2024; 506:153869. [PMID: 38909937 DOI: 10.1016/j.tox.2024.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10 mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3 P and miRNA 325-3 P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20 mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3 P and miRNA 325-3 P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3 P and miRNA 325-3 P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.
Collapse
Affiliation(s)
- Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ali H El-Far
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Medina 30002, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman A Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Lee S, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Ahn SY, Kim E, Jeong S, Yu SS, Lee W. Botanical formulation HX110B ameliorates PPE-induced emphysema in mice via regulation of PPAR/RXR signaling pathway. PLoS One 2024; 19:e0305911. [PMID: 39052574 PMCID: PMC11271920 DOI: 10.1371/journal.pone.0305911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.
Collapse
Affiliation(s)
- Soojin Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Soo-Yeon Ahn
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Eujung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seungyeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| |
Collapse
|
14
|
Chen J, Qiao W, Xue X, Li D, Zhang Y, Xie D, Wang J, Sun Y, Yang S, Yang Z. Amelioration of Oxidative Stress in Rats with Chronic Obstructive Pulmonary Disease through Shenqi Huatan Decoction Activation of Peroxisome Proliferator-Activated Receptor Gamma-Mediated Activated Protein Kinase/Forkhead Transcription Factor O3a Signaling Pathway. Can Respir J 2024; 2024:5647813. [PMID: 38983965 PMCID: PMC11233184 DOI: 10.1155/2024/5647813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. Currently, no specific treatment strategy has been established; therefore, finding new treatment methods is essential. Clinically, Shenqi Huatan Decoction (SQHT) is a traditional Chinese medicinal formula for COPD treatment; however, its mechanism of action in treatment needs to be clarified. Methods The COPD rat model was replicated by cigarette smoking and tracheal injection using the LPS method. The control group and the SQHT groups were treated with dexamethasone and SQHT by gavage, respectively. After treatment, superoxide dismutase (SOD) serum levels, total antioxidant capacity (TAOC), lipid peroxidation, and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). Activated protein kinase alpha (AMPK-α), forkhead transcription factor O3a (FOXO3a), manganese SOD (MnSOD), and peroxisome proliferator-activated receptor gamma (PPARγ) were detected using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot. Microribonucleic acid and protein expression levels were measured, and pathological changes in lung tissue were observed using hematoxylin and eosin staining. Results The pathological findings suggested that SQHT substantially affects COPD treatment by enhancing alveolar fusion and reducing emphysema. ELISA results showed that SQHT could lower the blood levels of MDA and lipid peroxide and raise SOD and TAOC levels, suggesting that it could lessen oxidative stress. In the lung tissue of rats with COPD, large doses of SQHT intervention dramatically increased AMPK protein expression, AMPK-α, FOXO3a, MnSOD, and PPARγ, indicating that SQHT may reduce oxidative stress by activating the PPARγ-mediated AMPK/FOXO3a signaling pathway. Similar results were obtained using RT-qPCR. Conclusion SQHT is effective for COPD treatment. The mechanism of action may be related to the activation of the PPARγ-mediated AMPK/FOXO3a signaling pathway to improve oxidative stress in lung tissue.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Respiration Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Wenxiao Qiao
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Xiaoming Xue
- Department of Respiration Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Dian Li
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Ye Zhang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Di Xie
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Jinyun Wang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Yaoqin Sun
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Shuo Yang
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Zhuomin Yang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
15
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
Li X, Wang S, Luo M, Wang M, Wu S, Liu C, Wang F, Li Y. Carnosol alleviates sepsis-induced pulmonary endothelial barrier dysfunction by targeting nuclear factor erythroid2-related factor 2/sirtuin-3 signaling pathway to attenuate oxidative damage. Phytother Res 2024; 38:2182-2197. [PMID: 38414287 DOI: 10.1002/ptr.8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Excessive reactive oxygen species production during acute lung injury (ALI) will aggravate the inflammatory process and endothelial barrier dysfunction. Carnosol is a natural phenolic diterpene with antioxidant and anti-inflammatory properties, but its role in treating sepsis-induced ALI remains unclear. This study aims to explore the protective effects and underlying mechanisms of carnosol in sepsis-induced ALI. C57BL/6 mouse were preconditioned with carnosol for 1 h, then the model of lipopolysaccharide (LPS)-induced sepsis was established. The degree of pulmonary edema, oxidative stress, and inflammation were detected. Endothelial barrier function was evaluated by apoptosis and cell junctions. In vitro, Mito Tracker Green probe, JC-1 staining, and MitoSOX staining were conducted to investigate the effect of carnosol on mitochondria. Finally, we investigated the role of nuclear factor-erythroid 2-related factor (Nrf2)/sirtuin-3 (SIRT3) in carnosol against ALI. Carnosol alleviated LPS-induced pulmonary oxidative stress and inflammation by inhibiting excess mitochondrial reactive oxygen species production and maintaining mitochondrial homeostasis. Furthermore, carnosol also attenuated LPS-induced endothelial cell barrier damage by reducing vascular endothelial cell apoptosis and restoring occludin, ZO-1, and vascular endothelial-Cadherin expression in vitro and in vivo. In addition, carnosol increased Nrf2 nuclear translocation to promote SIRT3 expression. The protective effects of carnosol on ALI were largely abolished by inhibition of Nrf2/SIRT3. Our study has provided the first evidence that the Nrf2/SIRT3 pathway is a protective target of the endothelial barrier in ALI, and carnosol can serve as a potential therapeutic candidate for ALI by utilizing its ability to target this pathway.
Collapse
Affiliation(s)
- Xingbing Li
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Shuo Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ming Wang
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Shaoping Wu
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Chang Liu
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Fengxian Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | - Yong Li
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| |
Collapse
|
17
|
Cai L, Wang J, Yi X, Yu S, Wang C, Zhang L, Zhang X, Cheng L, Ruan W, Dong F, Su P, Shi Y. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res 2024; 95:1543-1552. [PMID: 38245633 DOI: 10.1038/s41390-024-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. METHODS The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining. RESULTS We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial-mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro. CONCLUSIONS Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF. IMPACT The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.
Collapse
Affiliation(s)
- Liyun Cai
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xue Yi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Shuwei Yu
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Chong Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Liyuan Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xiaoling Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Lixian Cheng
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Feige Dong
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ping Su
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ying Shi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
18
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
20
|
Kavak AG, Karslioglu I, Saracaloglu A, Demiryürek S, Demiryürek AT. Impact of Radiation Therapy on Serum Humanin and MOTS-c Levels in Patients with Lung or Breast Cancer. Curr Radiopharm 2024; 17:229-237. [PMID: 38314601 DOI: 10.2174/0118744710254730231114181358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Lung and breast cancer are the most frequent causes of death from cancer globally. The objectives of this research were to evaluate the serum mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) and humanin levels in lung or breast cancer patients, and investigate the impacts of radiation therapy on the circulating levels of these peptides. METHODS 35 lung cancer patients, 34 breast cancer patients, and healthy volunteers as a control group were recruited in this prospective observatory research. Lung cancer patients with stage IIIA/IIIB were treated with paclitaxel-based chemotherapy plus radiotherapy (2 Gy per day, 30 times, 60 Gy total dose). Breast cancer stage IIA/IIB patients were treated with postoperative locoregional radiation therapy (2 Gy per day, 25 times, 50 Gy total dose). The ELISA method was used to detect serum humanin and MOTS-c levels during, before, and after radiotherapy. RESULTS We observed marked elevations in circulating MOTS-c, but not humanin levels in patients with lung cancer (P < 0.001). Radiation therapy led to a marked augmentation in MOTS-c levels in these patients (P < 0.001). On the other hand, there was a marked decline in humanin, but not MOTS-c, levels in breast cancer patients (P < 0.001). CONCLUSION Our research has shown, for the first time, that increased MOTS-c and decreased humanin levels play a role in lung cancer and breast cancer, respectively. Additionally, radiotherapy modifies MOTS-c levels in patients with lung, but not breast cancer.
Collapse
Affiliation(s)
- Ayse Gülbin Kavak
- Department of Radiation Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Ihsan Karslioglu
- Department of Radiation Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | | |
Collapse
|
21
|
Yan Z, Zhang W, Sun K. TREM1 is involved in the mechanism between asthma and lung cancer by regulating the Toll‑like receptor signaling pathway. Oncol Lett 2024; 27:16. [PMID: 38028174 PMCID: PMC10664071 DOI: 10.3892/ol.2023.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer and asthma are both global health problems with significant economic consequences. Recent studies have demonstrated that asthma may be a risk factor for lung cancer. The present study aimed to explore the pathogenesis between these two diseases through a comprehensive analysis. Differentially expressed genes (DEGs) screened in the asthma-related GSE165934 dataset were analyzed to find relevant inflammatory pathways. Overlapping genes regulated by inflammatory pathways and lung cancer-DEGs from The Cancer Genome Atlas (TCGA) were obtained and subjected to survival and gene-wide mutation analyses, and nomogram construction to determine the hub gene. The hub gene was further analyzed through expression validation, immunoassays and functional experiments to investigate its role and mechanism in lung cancer. Functional enrichment analysis showed that 1,275 DEGs from GSE165934 were closely associated with the Toll-like receptor signaling pathway, and 8 overlapping genes were identified from 12 genes regulated by the Toll-like receptor signaling pathway and 3,134 TCGA-DEGs. After a series of bioinformatics analyses, it was found that triggering receptor expressed on myeloid cells 1 (TREM1) was the hub gene involved in the mechanism of asthma and lung cancer. TREM1 was also found to be a suppressor gene in lung cancer correlated with immune cells, immune checkpoint-related genes and tumor mutational burden score. Additionally, the results of Cell Counting Kit-8 and Transwell experiments demonstrated that overexpression of TREM1 could significantly inhibit the invasion, proliferation and migration of lung cancer cells. Reverse transcription-quantitative PCR and western blotting demonstrated that the overexpression of TREM1 could also significantly reduce the level of Toll-like receptor signaling pathway proteins. The present findings suggest that TREM1 is associated with the mechanism of asthma and lung cancer through its regulation of the Toll-like receptor signaling pathway. Furthermore, TREM1 may serve as a potential treatment target and prognostic indicator for patients with lung cancer.
Collapse
Affiliation(s)
- Zhulin Yan
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Keyu Sun
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| |
Collapse
|
22
|
Pinzaru AD, Mihai CM, Chisnoiu T, Pantazi AC, Lupu VV, Kassim MAK, Lupu A, Grosan E, Al Jumaili AZN, Ion I, Stoleriu G, Ion I. Oxidative Stress Biomarkers in Cystic Fibrosis and Cystic Fibrosis-Related Diabetes in Children: A Literature Review. Biomedicines 2023; 11:2671. [PMID: 37893045 PMCID: PMC10604378 DOI: 10.3390/biomedicines11102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The most common inherited condition that results in death, particularly in those of Caucasian heritage, is cystic fibrosis (CF). Of all the young adults diagnosed with cystic fibrosis, 20% will develop hyperglycemia as a complication, later classified as a disease associated with cystic fibrosis. Impaired insulin secretion and glucose intolerance represent the primary mechanisms associated with diabetes (type 1 or type 2) and cystic fibrosis. Oxidative stress represents the imbalance between oxygen-reactive species and antioxidant defense mechanisms. This pathogenic mechanism is vital in triggering other chronic diseases, including cystic fibrosis-related diabetes. It is essential to understand oxidative stress and the significant impact it has on CFRD. This way, therapies can be individually adjusted and tailored to each patient's needs. This review aims to understand the connection between CFRD and oxidative stress. As a subsidiary element, we analyzed the effects of glycemic balance on complications and their evolution over time, providing insights into their potential benefits in mitigating oxidative stress-associated complications.
Collapse
Affiliation(s)
- Anca Daniela Pinzaru
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Grosan
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ahmed Zaki Naji Al Jumaili
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, 020475 Bucharest, Romania
| | - Irina Ion
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Gabriela Stoleriu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ileana Ion
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
23
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Smith GB, Rojas M, Tschumperlin DJ. A redox-shifted fibroblast subpopulation emerges in the fibrotic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559128. [PMID: 38014129 PMCID: PMC10680805 DOI: 10.1101/2023.09.23.559128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
|
24
|
Yong HW, Ferron M, Mecteau M, Mihalache-Avram T, Lévesque S, Rhéaume É, Tardif JC, Kakkar A. Single Functional Group Platform for Multistimuli Responsivities: Tertiary Amine for CO 2/pH/ROS-Triggered Cargo Release in Nanocarriers. Biomacromolecules 2023; 24:4064-4077. [PMID: 37647594 DOI: 10.1021/acs.biomac.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The design of multistimuli-responsive soft nanoparticles (NPs) often presents synthetic complexities and limited breadth in exploiting changes surrounding physiological environments. Nanocarriers that could collectively take advantage of several endogenous stimuli can offer a powerful tool in nanomedicine. Herein, we have capitalized on the chemical versatility of a single tertiary amine to construct miktoarm polymer-based nanocarriers that respond to dissolved CO2, varied pH, reactive oxygen species (ROS), and ROS + CO2. Curcumin (Cur), an anti-inflammatory phytopharmaceutic, was loaded into micelles, and we validated the sensitivity of the tertiary amine in tuning Cur release. An in vitro evaluation indicated that Cur encapsulation strongly suppressed its toxicity at high concentrations, significantly inhibited nigericin-induced secretion of interleukin-1β by THP-1 macrophages, and the proportion of M2/M1 (anti-inflammatory/pro-inflammatory macrophages) was higher for Cur-loaded NPs than for free Cur. Our approach highlights the potential of a simple-by-design strategy in expanding the scope of polymeric NPs in drug delivery.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Marine Ferron
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Mélanie Mecteau
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Teodora Mihalache-Avram
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Sylvie Lévesque
- Montréal Health Innovations Coordinating Center, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Éric Rhéaume
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Claude Tardif
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
25
|
Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci 2023; 24:12490. [PMID: 37569865 PMCID: PMC10419527 DOI: 10.3390/ijms241512490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.
Collapse
Affiliation(s)
- Patrudu Makena
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| | - Tatiana Kikalova
- Clarivate Analytics, 1500 Spring Garden, Philadelphia, PA 19130, USA
| | - Gaddamanugu L. Prasad
- Former Employee of RAI Services Company, Winston-Salem, NC 27101, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Sarah A. Baxter
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| |
Collapse
|
26
|
Matsunaga T, Sano H, Takita K, Morita M, Yamanaka S, Ichikawa T, Numakura T, Ida T, Jung M, Ogata S, Yoon S, Fujino N, Kyogoku Y, Sasaki Y, Koarai A, Tamada T, Toyama A, Nakabayashi T, Kageyama L, Kyuwa S, Inaba K, Watanabe S, Nagy P, Sawa T, Oshiumi H, Ichinose M, Yamada M, Sugiura H, Wei FY, Motohashi H, Akaike T. Supersulphides provide airway protection in viral and chronic lung diseases. Nat Commun 2023; 14:4476. [PMID: 37491435 PMCID: PMC10368687 DOI: 10.1038/s41467-023-40182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Sunghyeon Yoon
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Atsuhiko Toyama
- Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan
| | - Takakazu Nakabayashi
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Lisa Kageyama
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, 1122, Hungary
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
27
|
Bateman G, Guo-Parke H, Rodgers AM, Linden D, Bailey M, Weldon S, Kidney JC, Taggart CC. Airway Epithelium Senescence as a Driving Mechanism in COPD Pathogenesis. Biomedicines 2023; 11:2072. [PMID: 37509711 PMCID: PMC10377597 DOI: 10.3390/biomedicines11072072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of senescence cells has been observed in many age-related diseases. Likewise, cellular senescence has been implicated as a risk factor and driving mechanism in chronic obstructive pulmonary disease (COPD) pathogenesis. Airway epithelium exhibits hallmark features of senescence in COPD including activation of the p53/p21WAF1/CIP1 and p16INK4A/RB pathways, leading to cell cycle arrest. Airway epithelial senescent cells secrete an array of inflammatory mediators, the so-called senescence-associated secretory phenotype (SASP), leading to a persistent low-grade chronic inflammation in COPD. SASP further promotes senescence in an autocrine and paracrine manner, potentially contributing to the onset and progression of COPD. In addition, cellular senescence in COPD airway epithelium is associated with telomere dysfunction, DNA damage, and oxidative stress. This review discusses the potential mechanisms of airway epithelial cell senescence in COPD, the impact of cellular senescence on the development and severity of the disease, and highlights potential targets for modulating cellular senescence in airway epithelium as a potential therapeutic approach in COPD.
Collapse
Affiliation(s)
- Georgia Bateman
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Aoife M Rodgers
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Melanie Bailey
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
28
|
Lu C, Wang F, Liu Q, Deng M, Yang X, Ma P. Effect of NO 2 exposure on airway inflammation and oxidative stress in asthmatic mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131787. [PMID: 37295329 DOI: 10.1016/j.jhazmat.2023.131787] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nitrogen dioxide (NO2) is a widespread air pollutant. Epidemiological evidence indicates that NO2 is associated with an increase of incidence rate and mortality of asthma, but its mechanism is still unclear. In this study, we exposed mice to NO2 (5 ppm, 4 h per day for 30 days) intermittently to investigate the development and potential toxicological mechanisms of allergic asthma. We randomly assigned 60 male Balb/c mice to four groups: saline control, ovalbumin (OVA) sensitization, NO2 alone, and OVA+NO2 groups. The involved mechanisms were found from the perspective of airway inflammation and oxidative stress. The results showed that NO2 exposure could aggravate lung inflammation in asthmatic mice, and airway remodeling was characterized by significant thickening of the airway wall and infiltration of inflammatory cells. Moreover, NO2 would aggravate the airway hyperresponsiveness (AHR), which is characterized by significantly elevated inspiratory resistance (Ri) and expiratory resistance (Re), as well as decreased dynamic lung compliance (Cldyn). In addition, NO2 exposure promoted pro-inflammatory cytokines (IL-6 and TNF-α) and serum immunoglobulin (IgE) production. The imbalance of Th1/Th2 cell differentiation (IL-4 increased, IFN-γ reduced, IL-4/IFN-γ significantly increased) played a key role in the inflammatory response of asthma under NO2 exposure. In a nutshell, NO2 exposure could promote allergic airway inflammation and increase asthma susceptibility. The levels of ROS and MDA among asthmatic mice exposed to NO2 increased significantly, while GSH levels sharply decreased. These findings may provide better toxicological evidence for the mechanisms of allergic asthma risk due to NO2 exposure.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
29
|
Liu X, Wang X, Chang J, Zhang H, Cao P. Landscape analysis and overview of the literature on oxidative stress and pulmonary diseases. Front Pharmacol 2023; 14:1190817. [PMID: 37305540 PMCID: PMC10250599 DOI: 10.3389/fphar.2023.1190817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress is caused by an imbalance in oxidant/antioxidant processes and is a critical process in pulmonary diseases. As no truly effective therapies exist for lung cancer, lung fibrosis and chronic obstructive pulmonary disease (COPD), at present, it is important to comprehensively study the relationship between oxidative stress and pulmonary diseases to identify truly effective therapeutics. Since there is no quantitative and qualitative bibliometric analysis of the literature in this area, this review provides an in-depth analysis of publications related to oxidative stress and pulmonary diseases over four periods, including from 1953 to 2007, 2008 to 2012, 2013 to 2017, and 2018 to 2022. Interest in many pulmonary diseases has increased, and the mechanisms and therapeutic drugs for pulmonary diseases have been well analyzed. Lung injury, lung cancer, asthma, COPD and pneumonia are the 5 most studied pulmonary diseases related to oxidative stress. Inflammation, apoptosis, nuclear factor erythroid 2 like 2 (NRF2), mitochondria, and nuclear factor-κB (NF-κB) are rapidly becoming the most commonly used top keywords. The top thirty medicines most studied for treating different pulmonary diseases were summarized. Antioxidants, especially those targeting reactive oxygen species (ROS) in specific organelles and certain diseases, may be a substantial and necessary choice in combined therapies rather than acting as a single "magic bullet" for the effective treatment of refractory pulmonary diseases.
Collapse
|
30
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
31
|
Chen H, Dong J, Yang L, Song Y, Zhu H, Yang Y. Mitochondrial targeted fluorescent nitrite peroxide probe for dynamic monitoring of cellular lung injury. Anal Biochem 2023; 668:115114. [PMID: 36907310 DOI: 10.1016/j.ab.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Herein, a mitochondrial targeted fluorescent nitrite peroxide probe CHP for dynamic monitoring of cellular lung injury was developed. For the practical delivery and selectivity, the structural features including pyridine head and borate recognition group were selected. CHP could respond to ONOO- with the 585 nm fluorescence signal. The detecting system indicated advantages such as wide linear range (0.0-30 μM), high sensitivity (LOD = 0.18 μM), high selectivity and steadiness under different environmental conditions including pH (3.0-10.0), time (48 h) and medium. In living A549 cells, the response of CHP towards ONOO- showed dose-dependent and time-dependent tendencies. The co-localization suggested that CHP could achieve mitochondrial targeting. Moreover, CHP could monitor the variation of endogenous ONOO- level and the cellular lung injury induced by LPS.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| | - Junming Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| | - Longyang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| | - Yongchun Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China.
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China.
| | - Yushun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China; Jinhua Advanced Research Institute, Jinhua, 321019, China.
| |
Collapse
|
32
|
Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023; 634:122661. [PMID: 36736964 PMCID: PMC9975059 DOI: 10.1016/j.ijpharm.2023.122661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Airway mucus is a complex viscoelastic gel that provides a defensive physical barrier and shields the airway epithelium by trapping inhaled foreign pathogens and facilitating their removal via mucociliary clearance (MCC). In patients with respiratory diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, and asthma, an increase in crosslinking and physical entanglement of mucin polymers as well as mucus dehydration often alters and typically reduces mucus mesh network pore size, which reduces neutrophil migration, decreases pathogen capture, sustains bacterial infection, and accelerates lung function decline. Conventional aerosol particles containing hydrophobic drugs are rapidly captured and removed by MCC. Therefore, it is critical to design aerosol delivery systems with the appropriate size and surface chemistry that can improve drug retention and absorption with the goal of increased efficacy. Biodegradable muco-adhesive particles (MAPs) and muco-penetrating particles (MPPs) have been engineered to achieve effective pulmonary delivery and extend drug residence time in the lungs. MAPs can be used to target mucus as they get trapped in airway mucus by steric obstruction and/or adhesion. MPPs avoid muco-adhesion and are designed to have a particle size smaller than the mucus network, enhancing lung retention of particles as well as transport to the respiratory epithelial layer and drug absorption. In this review, we aim to provide insight into the composition of airway mucus, rheological characteristics of airway mucus in healthy and diseased subjects, the most recent techniques to study the flow dynamics and particle diffusion in airway mucus (in particular, multiple particle tracking, MPT), and the advancements in engineering MPPs that have contributed to improved airway mucus penetration, lung distribution, and retention.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Hutsell
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jonathan Ma
- Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Bruce K Rubin
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Oxidative stress stimulation leads to cell-specific oxidant and antioxidant responses in airway resident and inflammatory cells. Life Sci 2023; 315:121358. [PMID: 36596408 DOI: 10.1016/j.lfs.2022.121358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
AIMS The imbalance between reactive oxygen species (ROS) and the antioxidant response has been linked to various airway diseases, including asthma. However, knowledge on cell-specific responses of the airway resident and inflammatory cells against increased oxidant stress is very limited. We aim to better understand the cell-specific antioxidant response that contributes to the pathophysiology of lung disease in response to oxidative stress. MATERIALS AND METHODS The human cell lines of epithelial, fibroblast, endothelial, monocyte, eosinophil and neutrophil were incubated with tert-butyl hydroperoxide (tBHP) or cigarette smoke condensate (CSC). Following stimulation, cell viability, total oxidant and antioxidant activity were assessed in both residential and inflammatory cells. Human Oxidative Stress Plus RT2 Profiler PCR array was used to determine 84 gene expression differences in oxidant and antioxidant pathways following oxidant stimulus in all cells. KEY FINDINGS We showed that various cell types respond differently to oxidative stress inducers, with distinct gene expression and oxidant-antioxidant generation. Most importantly, eosinophils increased the activity of all main antioxidant enzymes in response to both oxidants. Monocytes, on the other hand, showed no change in response to each stimulation, whereas neutrophils only increased their CAT activity in response to both stimuli. The increase in NRF2-regulated genes HSPA1A, HMOX1 and DUSP1 after both tBHP and CSC in epithelial cells and fibroblasts indicates Nfr2 pathway activation. SIGNIFICANCE This study advances our knowledge of the molecular and cellular mechanisms of cell-specific antioxidant response upon exposure to oxidative stress. Additionally, our observations imply that the eosinophils' distinct biological response may be utilized for endotype-based cell-targeted antioxidant therapy.
Collapse
|
34
|
Chandrasekaran R, Bruno SR, Mark ZF, Walzer J, Caffry S, Gold C, Kumar A, Chamberlain N, Butzirus IM, Morris CR, Daphtary N, Aliyeva M, Lam YW, van der Vliet A, Janssen-Heininger Y, Poynter ME, Dixon AE, Anathy V. Mitoquinone mesylate attenuates pathological features of lean and obese allergic asthma in mice. Am J Physiol Lung Cell Mol Physiol 2023; 324:L141-L153. [PMID: 36511516 PMCID: PMC9902225 DOI: 10.1152/ajplung.00249.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.
Collapse
Affiliation(s)
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Zoe F Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph Walzer
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Sarah Caffry
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Clarissa Gold
- Department of Biology and Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont
| | - Amit Kumar
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | - Carolyn R Morris
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology and Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | | | - Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
35
|
Habibovic A, Hristova M, Morris CR, Lin MCJ, Cruz LC, Ather JL, Geiszt M, Anathy V, Janssen-Heininger YMW, Poynter ME, Dixon AE, van der Vliet A. Diet-induced obesity worsens allergen-induced type 2/type 17 inflammation in airways by enhancing DUOX1 activation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L228-L242. [PMID: 36625485 PMCID: PMC9942905 DOI: 10.1152/ajplung.00331.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.
Collapse
Affiliation(s)
- Aida Habibovic
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn R Morris
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miao-Chong Joy Lin
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Litiele C Cruz
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer L Ather
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miklós Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Vikas Anathy
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
36
|
Zanjani BN, Samadi A, Isikhan SY, Lay I, Beyaz S, Gelincik A, Buyukozturk S, Arda N. Plasma levels of oxysterols 7-ketocholesterol and cholestane-3β, 5α, 6β-triol in patients with allergic asthma. J Asthma 2023; 60:288-297. [PMID: 35188447 DOI: 10.1080/02770903.2022.2045310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The prevalence of allergic asthma is increasing on a global scale, reflecting changes in air pollution, climatic changes, and other environmental stimulants. In allergic conditions, oxidative stress occurs as a result of immune system activation. Oxidation of cholesterol leads to the formation of oxysterols. The main purpose of the study was to compare plasma levels of two oxysterols, namely 7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (C-triol), and a lipid peroxidation product, malondialdehyde (MDA) in allergic asthma patients with those of healthy controls, in order to provide information about the involvement of lipid peroxidation in allergic asthma. Oxysterols were quantified by LC-MS/MS in plasma samples of 120 asthma patients (90 females + 30 males) and 120 healthy controls (matched by age and sex). Plasma MDA level was analyzed by a spectrophotometric method. Plasma 7-KC (39.45 ± 20.37 ng/mL) and C-triol (25.61 ± 10.13 ng/mL) levels in patients were significantly higher than in healthy subjects (17.84 ± 4.26 ng/mL and 10.00 ± 3.90 ng/mL, respectively) (P < 0.001). Plasma MDA levels were also higher in asthmatic patients (4.98 ± 1.77 nmol/mL) than in healthy controls (1.14 ± 0.31 nmol/mL) (P < 0.001). All data support that lipid peroxidation products are involved in allergic asthma. Oxysterols were quantified for the first time in allergic asthma. Since the high plasma 7-KC and C-triol levels of allergic asthma patients correlate with high IgE levels, detection of these oxysterols by LC-MS/MS may be helpful in the clinical monitoring of allergic asthma. Current data may also lead to new approaches for the prevention, diagnosis, and treatment of the disease. Supplemental data for this article is available online at at.
Collapse
Affiliation(s)
- Behnoush Nasr Zanjani
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Afshin Samadi
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Selen Yilmaz Isikhan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sengul Beyaz
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asli Gelincik
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suna Buyukozturk
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazli Arda
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.,Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Turkey
| |
Collapse
|
37
|
High Glucose-Induced Kidney Injury via Activation of Necroptosis in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2713864. [PMID: 36756299 PMCID: PMC9902134 DOI: 10.1155/2023/2713864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) and is closely associated to programmed cell death. However, the complex mechanisms of necroptosis, an alternative cell death pathway, in DKD pathogenesis are yet to be elucidated. This study indicates that necroptosis is involved in DKD induced by high glucose (HG) both in vivo and in vitro. HG intervention led to the activation of RIPK1/RIPK3/MLKL signaling, resulting in renal tissue necroptosis and proinflammatory activation in streptozotocin/high-fat diet- (STZ/HFD-) induced diabetic mice and HG-induced normal rat kidney tubular cells (NRK-52E). We further found that in HG-induced NRK-52E cell, necroptosis might, at least partly, depend on the levels of reactive oxygen species (ROS). Meanwhile, ROS participated in necroptosis via a positive feedback loop involving the RIPK1/RIPK3 pathway. In addition, blocking RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS generation, could effectively protect the kidney against HG-induced damage, decrease the release of proinflammatory cytokines, and rescue renal function in STZ/HFD-induced diabetic mice. Inhibition of RIPK1 effectively decreased the activation of RIPK1-kinase-/NF-κB-dependent inflammation. Collectively, we demonstrated that high glucose induced DKD via renal tubular epithelium necroptosis, and Nec-1 or NAC treatment downregulated the RIPK1/RIPK3/MLKL pathway and finally reduced necroptosis, oxidative stress, and inflammation. Thus, RIPK1 may be a therapeutic target for DKD.
Collapse
|
38
|
Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, Minard CG, Taffet GE, Sekhar RV. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2023; 78:75-89. [PMID: 35975308 PMCID: PMC9879756 DOI: 10.1093/gerona/glac135] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial. METHODS Twenty-four OA and 12 young adults (YA) were studied. OA was randomized to receive either GlyNAC (N = 12) or isonitrogenous alanine placebo (N = 12) for 16-weeks; YA (N = 12) received GlyNAC for 2-weeks. Participants were studied before, after 2-weeks, and after 16-weeks of supplementation to assess GSH concentrations, OxS, MFO, molecular regulators of energy metabolism, inflammation, endothelial function, IR, aging hallmarks, gait speed, muscle strength, 6-minute walk test, body composition, and blood pressure. RESULTS Compared to YA, OA had GSH deficiency, OxS, mitochondrial dysfunction (with defective molecular regulation), inflammation, endothelial dysfunction, IR, multiple aging hallmarks, impaired physical function, increased waist circumference, and systolic blood pressure. GlyNAC (and not placebo) supplementation in OA improved/corrected these defects. CONCLUSION GlyNAC supplementation in OA for 16-weeks was safe and well-tolerated. By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans. Clinical Trials Registration Number: NCT01870193.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Chun Liu
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - James Suliburk
- Department of Surgery
- Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- Baylor College of Medicine, Houston, TX, USA
- Baylor-St. Luke’s Medical Center
| | - Raja Muthupillai
- Baylor-St. Luke’s Medical Center
- Baylor College of Medicine, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children’s Nutrition Research Center
- Baylor College of Medicine, Houston, TX, USA
| | - Charles G Minard
- Institute of Clinical and Translational Research
- Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Xuefei Y, Dongyan L, Tianming L, Hejuan Z, Jianhua F. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury. Respir Res 2023; 24:16. [PMID: 36647045 PMCID: PMC9841680 DOI: 10.1186/s12931-022-02287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells. METHODS We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor. The metabolic rerouting, cell viability and apoptosis resulting from the changes in O-GlcNAc glycosyltransferase levels were evaluated in RLE-6TN cells after hyperoxia exposure. We constructed rat Park2 overexpression and knockdown plasmmids for in vitro verification and Co-immunoprecipitation corroborated the binding of Parkin and O-GlcNAc. Finally, we assessed morphological detection in neonatal BPD rats with TG and OS treatment. RESULTS We found a decrease in O-GlcNAc content and levels of its metabolic enzymes in RLE-6TN cells under hyperoxia. However, the inhibition of OGT function with OSMI-1 ameliorated hyperoxia-induced lung epithelial cell injury, enhanced cell metabolism and viability, reduced apoptosis, and accelerated the cell proliferation. Mitochondrial homeostasis was affected by O-GlcNAc and regulated Parkin. CONCLUSION The results revealed that the decreased O-GlcNAc levels and increased O-GlcNAcylation of Parkin might cause hyperoxia-induced alveolar type II cells injurys.
Collapse
Affiliation(s)
- Yu Xuefei
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Liu Dongyan
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Li Tianming
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Zheng Hejuan
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Fu Jianhua
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| |
Collapse
|
40
|
Chen Z, Jin ZX, Cai J, Li R, Deng KQ, Ji YX, Lei F, Li HP, Lu Z, Li H. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022; 100:1721-1739. [PMID: 36396746 DOI: 10.1007/s00109-022-02269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhao-Xia Jin
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Ruyan Li
- Northfield Mount Hermon School, Gill, MA, 01354, USA
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huo-Ping Li
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
- School of Basic Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Zhu J, Liu L, Ma X, Cao X, Chen Y, Qu X, Ji M, Liu H, Liu C, Qin X, Xiang Y. The Role of DNA Damage and Repair in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:2292. [PMID: 36421478 PMCID: PMC9687113 DOI: 10.3390/antiox11112292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mortality rate of idiopathic pulmonary fibrosis (IPF) increases yearly due to ineffective treatment. Given that the lung is exposed to the external environment, it is likely that oxidative stress, especially the stimulation of DNA, would be of particular importance in pulmonary fibrosis. DNA damage is known to play an important role in idiopathic pulmonary fibrosis initiation, so DNA repair systems targeting damage are also crucial for the survival of lung cells. Although many contemporary reports have summarized the role of individual DNA damage and repair pathways in their hypotheses, they have not focused on idiopathic pulmonary fibrosis. This review, therefore, aims to provide a concise overview for researchers to understand the pathways of DNA damage and repair and their roles in IPF.
Collapse
Affiliation(s)
- Jiahui Zhu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lexin Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaodi Ma
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xinyu Cao
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yu Chen
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Ming Ji
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
42
|
Zhang T, Day NJ, Gaffrey M, Weitz KK, Attah K, Mimche PN, Paine R, Qian WJ, Helms MN. Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biol 2022; 55:102405. [PMID: 35872399 PMCID: PMC9307955 DOI: 10.1016/j.redox.2022.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Preterm infants and patients with lung disease often have excess fluid in the lungs and are frequently treated with oxygen, however long-term exposure to hyperoxia results in irreversible lung injury. Although the adverse effects of hyperoxia are mediated by reactive oxygen species, the full extent of the impact of hyperoxia on redox-dependent regulation in the lung is unclear. In this study, neonatal mice overexpressing the beta-subunit of the epithelial sodium channel (β-ENaC) encoded by Scnn1b and their wild type (WT; C57Bl6) littermates were utilized to study the pathogenesis of high fraction inspired oxygen (FiO2)-induced lung injury. Results showed that O2-induced lung injury in transgenic Scnn1b mice is attenuated following chronic O2 exposure. To test the hypothesis that reversible cysteine-redox-modifications of proteins play an important role in O2-induced lung injury, we performed proteome-wide profiling of protein S-glutathionylation (SSG) in both WT and Scnn1b overexpressing mice maintained at 21% O2 (normoxia) or FiO2 85% (hyperoxia) from birth to 11-15 days postnatal. Over 7700 unique Cys sites with SSG modifications were identified and quantified, covering more than 3000 proteins in the lung. In both mouse models, hyperoxia resulted in a significant alteration of the SSG levels of Cys sites belonging to a diverse range of proteins. In addition, substantial SSG changes were observed in the Scnn1b overexpressing mice exposed to hyperoxia, suggesting that ENaC plays a critically important role in cellular regulation. Hyperoxia-induced SSG changes were further supported by the results observed for thiol total oxidation, the overall level of reversible oxidation on protein cysteine residues. Differential analyses reveal that Scnn1b overexpression may protect against hyperoxia-induced lung injury via modulation of specific processes such as cell adhesion, blood coagulation, and proteolysis. This study provides a landscape view of protein oxidation in the lung and highlights the importance of redox regulation in O2-induced lung injury.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicholas J Day
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kwame Attah
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Liu W, Han X, Li Q, Sun L, Wang J. Iguratimod ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the EMT process and NLRP3 inflammasome activation. Biomed Pharmacother 2022; 153:113460. [DOI: 10.1016/j.biopha.2022.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
44
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
45
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
46
|
Cheng L, Wang D, Deng B, Li J, Zhang J, Guo X, Yan T, Yue X, An Y, Zhang B, Xie J. DR7dA, a Novel Antioxidant Peptide Analog, Demonstrates Antifibrotic Activity in Pulmonary Fibrosis In Vivo and In Vitro. J Pharmacol Exp Ther 2022; 382:100-112. [PMID: 35772783 DOI: 10.1124/jpet.121.001031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis (PF), which is characterized by enhanced extracellular matrix (ECM) deposition, is an interstitial lung disease that lacks an ideal clinical treatment strategy. It has an extremely poor prognosis, with an average survival of 3-5 years after diagnosis. Our previous studies have shown that the antioxidant peptide DR8 (DHNNPQIR-NH2), which is extracted and purified from rapeseed, can alleviate PF and renal fibrosis. However, natural peptides are easily degraded by proteases in vivo, which limits their potency. We have since synthesized a series of DR8 analogs based on amino acid scanning substitution. DR7dA [DHNNPQ (D-alanine) R-NH2] is an analog of DR8 in which L-isoleucine (L-Ile) is replaced with D-alanine (D-Ala), and its half-life is better than that of DR8. In the current study, we verified that DR7dA ameliorated tumor growth factor (TGF)-β1-induced fibrogenesis and bleomycin-induced PF. The results indicated that DR7dA reduced the protein and mRNA levels of TGF-β1 target genes in TGF-β1-induced models. Surprisingly, DR7dA blocked fibrosis in a lower concentration range than DR8 in cells. In addition, DR7dA ameliorated tissue pathologic changes and ECM accumulation in mice. BLM caused severe oxidative damage, but administration of DR7dA reduced oxidative stress and restored antioxidant defense. Mechanistic studies suggested that DR7dA inhibits ERK, P38, and JNK phosphorylation in vivo and in vitro All results indicated that DR7dA attenuated PF by inhibiting ECM deposition and oxidative stress via blockade of the mitogen-activated protein kinase (MAPK) pathway. Hence, compared with its parent peptide, DR7dA has higher druggability and could be a candidate compound for PF treatment in the future. SIGNIFICANCE STATEMENT: In order to improve druggability of DR8, we investigated the structure-activity relationship of it and replaced the L-isoleucine with D-alanine. We found that the stability and antifibrotic activity of DR7dA were significantly improved than DR8, as well as DR7dA significantly attenuated tumor growth factor (TGF)-β1-induced fibrogenesis and ameliorated bleomycin-induced fibrosis by inhibiting extracellular matrix deposition and oxidative stress via blockade of the MAPK pathway, suggesting DR7dA may be a promising candidate compound for the treatment of PF.
Collapse
Affiliation(s)
- Lu Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Dan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Jieru Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Xin Yue
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| |
Collapse
|
47
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
48
|
Mitochondrial Ribosome Dysfunction in Human Alveolar Type II Cells in Emphysema. Biomedicines 2022; 10:biomedicines10071497. [PMID: 35884802 PMCID: PMC9313339 DOI: 10.3390/biomedicines10071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.
Collapse
|
49
|
The Bioactivities of Phycocyanobilin from Spirulina. J Immunol Res 2022; 2022:4008991. [PMID: 35726224 PMCID: PMC9206584 DOI: 10.1155/2022/4008991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Phycocyanobilin (PCB) is a linear open-chain tetrapyrrole chromophore that captures and senses light and a variety of biological activities, such as anti-oxidation, anti-cancer, and anti-inflammatory. In this paper, the biological activities of PCB are reviewed, and the related mechanism of PCB and its latest application in disease treatment are introduced. PCB can resist oxidation by scavenging free radicals, inhibiting the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and delaying the activity of antioxidant enzymes. In addition, PCB can also be used as an excellent anti-inflammatory agent to reduce the proinflammatory factors IL-6 and IFN-γ and to up-regulate the production of anti-inflammatory cytokine IL-10 by inhibiting the inflammatory signal pathways NF-κB and mitogen-activated protein kinase (MAPK). Due to the above biological activities of phycocyanobilin PCB, it is expected to become a new effective drug for treating various diseases, such as COVID-19 complications, atherosclerosis, multiple sclerosis (MS), and ischaemic stroke (IS).
Collapse
|
50
|
Novel Antioxidant Collagen Peptides of Siberian Sturgeon (Acipenser baerii) Cartilages: The Preparation, Characterization, and Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs). Mar Drugs 2022; 20:md20050325. [PMID: 35621976 PMCID: PMC9146044 DOI: 10.3390/md20050325] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides—especially GEYGFE, PSVSLT, and IELFPGLP—which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.
Collapse
|