1
|
Walker JR, Bente DA, Burch MT, Cerqueira FM, Ren P, Labonté JM. Molecular assessment of oyster microbiomes and viromes reveals their potential as pathogen and ecological sentinels. One Health 2025; 20:100973. [PMID: 39898315 PMCID: PMC11786891 DOI: 10.1016/j.onehlt.2025.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Oyster aquaculture world-wide is a booming industry that can provide many benefits to coastal habitats, including economic, ecosystem-level, and cultural benefits. Oysters present several risks for human consumption, including transmission of parasites, and bacterial and viral pathogens. Oyster microbiomes are well-defined, but their connection to the incidence of pathogens, humans or others, is unclear. Furthermore, viruses associated with oysters are largely unknown, and their connection to humans, animals, and ecosystem health has not been explored. Here, we employed a One Health framework and modern molecular techniques, including 16S rRNA amplicon and metagenomic sequencing, to identify links between changes in the microbial and viral communities associated with oysters and the incidence of pathogens detected in oyster tissues and their surrounding environments. In addition, we adapted the BioFire® FilmArray®, commonly used in hospitals, to determine the presence of human pathogens within the sampled oysters. We detected known human pathogens in 50 % of the oysters tested. Within the genomic datasets, we noted that pathogens of humans, animals, and plants in oysters were shared with the nearby water and sediments, suggesting a sink-source dynamic between the oysters and their surroundings. 16S rRNA gene analysis revealed that while oysters share common microbial constituents with their surrounding environments, they enrich for certain bacteria such as Mycoplasmatales, Fusobacteriales, and Spirochaetales. On the contrary, we found that oyster viromes harbored the same viruses in near equal relative abundances as their surrounding environments. Our results show how oysters could be used not only to determine the risk of human pathogens within coastal estuaries but also how oyster viruses could be used as ecosystem-level sentinels.
Collapse
Affiliation(s)
- Jordan R. Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| | - Dennis A. Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Megan T. Burch
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Filipe M. Cerqueira
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Jessica M. Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| |
Collapse
|
2
|
Steeves L, Winterburn K, Coffin MRS, Babarro JMF, Guyondet T, Comeau LA, Filgueira R. The combined effects of temperature and exogenous bacterial sources on mortality in the Eastern oyster ( Crassostrea virginica) under anoxia. MARINE BIOLOGY 2025; 172:57. [PMID: 40110181 PMCID: PMC11913911 DOI: 10.1007/s00227-025-04617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
In aquatic environments, low dissolved oxygen concentrations can result in depressed bivalve defense systems while promoting anaerobic bacterial growth, ultimately leading to increased bivalve mortality rates. Although the relationship between low oxygen availability and bivalve mortality has been previously examined, the mechanisms of mortality remain not well understood, limiting our ability to predict mass mortality events. In this study, the effect of anoxia (< 0.1 mgO2L-1) on adult oyster (Crassostrea virginica) mortality rates was explored experimentally using a factorial design, which included the effect of temperature (20°C vs. 28°C) combined with the presence/absence of an exogenous bacterial source (anoxic sediment vs. sterile sediment). Additionally, the effect on oyster mortality rate of removing vs. not removing deceased oysters from the experimental chambers was assessed. Oyster mortality rates, estimated as the time taken for half of the population to die (LT50) in anoxic conditions were significantly affected by temperature, the presence of anoxic sediment, and experimental execution (removing vs. not removing deceased oysters). Temperature had the greatest effect on mortality overall, with high temperatures resulting in increased mortality rates, whereas the presence of anoxic sediment only increased mortality rates consistently at high temperatures. The results of this study suggest that bacterial sources play a role in the mortality rate of oysters under warm anoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s00227-025-04617-4.
Collapse
Affiliation(s)
- Laura Steeves
- Flødevigen Research Station, Institute of Marine Research, Flødevigen, His Norway
- Biology Department, Dalhousie University, Halifax, NS Canada
| | | | - Michael R. S. Coffin
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | | | - Thomas Guyondet
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Luc A. Comeau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Ramón Filgueira
- Marine Affairs Program, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
3
|
Seymour JR, McLellan SL. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nat Microbiol 2025; 10:615-626. [PMID: 40021939 DOI: 10.1038/s41564-025-01948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/18/2024] [Indexed: 03/03/2025]
Abstract
More than 70% of the human population lives within five kilometres of a natural water feature. These aquatic ecosystems are heavily used for resource provision and recreation, and represent the interface between human populations and aquatic microbiomes, which can sometimes negatively impact human health. Diverse species of endemic aquatic microorganisms, including toxic microalgae and pathogenic bacteria, can be harmful to humans. Aquatic ecosystems are also subject to intrusions of allochthonous pathogenic microorganisms through pollution and runoff. Notably, environmental processes that amplify the abundance and impact of harmful aquatic microorganisms are occurring with increasing frequency owing to climate change. For instance, increases in water temperature stimulate outbreaks of pathogenic and toxic species, whereas more intense precipitation events escalate microbial contamination from stormwater discharge. In this Perspective we discuss the influence of aquatic microbiomes on the health and economies of human populations and examine how climate change is increasing these impacts.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
4
|
Scanes E, Siboni N, Potts J, Rao S, Labbate M, Seymour JR. Temporal and spatial co-occurrence of pacific oyster mortality and increased planktonic Vibrio abundance. iScience 2025; 28:111674. [PMID: 39898048 PMCID: PMC11787541 DOI: 10.1016/j.isci.2024.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Oyster mortality and human food poisoning events are linked to pathogens from the Vibrio genus. However, the link between these events, planktonic bacterial dynamics and environmental variables has not yet been resolved. In Port Stephens, Australia, we characterized the microbial community and quantified the abundance of total Vibrio, Vibrio harveyi, and Vibrio parahaemolyticus in a (i) 27-month seawater planktonic microbial time-series; (ii) samples of Pacific oysters (Crassostrea gigas) during a mortality event and (iii) seawater samples following the mortality event. Vibrio harveyi and V. parahaemolyticus exhibited seasonal abundance, peaking during the summer months. Total Vibrio and V. harveyi in seawater were significantly greater at sites with high levels of oyster mortality and decreased 5-fold in the weeks following oyster mortality. Our findings provide evidence for the role of Vibrio in oyster mortality events and indicate that ocean warming and elevated phytoplankton may stimulate putative pathogens in the Vibrio genus.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jaimie Potts
- NSW Department of Climate Change, Energy, the Environment and Water, Parramatta, NSW, Australia
| | - Shivanesh Rao
- NSW Department of Climate Change, Energy, the Environment and Water, Parramatta, NSW, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
Zrihan S, Itay P, Kroin Y, Davidovich N, Wosnick N, Tchernov D, Koh XP, Lau SCK, Morick D. Monitoring Fish Bacterial Pathogens of Wild Fish Species From the South China Sea by Applying Next-Generation Sequencing on Gill Tissue. JOURNAL OF FISH DISEASES 2025; 48:e14050. [PMID: 39575841 PMCID: PMC11706320 DOI: 10.1111/jfd.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The classic epidemiological triangle model of host-environment-pathogen is recently being reshaped into a tetrahedron, with the growing understanding of the importance of the microbiome in this array. The gills, being a gateway into the fish body, bearing an important role in fish homeostasis, host a complex microbiome that reflects the ambient water, while also showing resemblance to gut microbiome. Next-generation sequencing (NGS) and improvements in data analysis tools enable researchers to gather and analyse a lot more data than ever before, take a closer, more detailed look at microbiota, and gain a much better understanding of the biological processes at work in these complex relations. Here, 16S rRNA amplicons of bacterial DNA extracted from the gills of 36 asymptomatic specimens of three wild fish species from the South China Sea (Nemipterus japonicus, Alepes djebaba, and Saurida tumbil) were sequenced using NGS. Data analyses revealed the presence of 20 potentially pathogenic species, including several zoonotic agents. Gill microbiota exhibited host species-specificity, and expressed a significant difference between demersal and pelagic-amphidromous fish. It is suggested that this method be more widely implemented, in order to gain more insight on ocean ecosystems' health status, as well as fish stocks of commercial importance.
Collapse
Affiliation(s)
- Shlomi Zrihan
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Marine Biology, Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Peleg Itay
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Yael Kroin
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
| | - Nadav Davidovich
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Israeli Veterinary ServicesBet DaganIsrael
| | - Natascha Wosnick
- Programa de Pós‐Graduação Em ZoologiaUniversidade Federal Do ParanáCuritibaBrazil
| | - Dan Tchernov
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Marine Biology, Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Xiu Pei Koh
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongSARChina
| | - Stanley C. K. Lau
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongSARChina
| | - Danny Morick
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| |
Collapse
|
6
|
Qin H, Jiang J, Jing Z, Wang J, Xu S, Chen R, Wang B, Huo Z, Fang L. The Isolation and Identification of Pseudoalteromonas sp. H27, a Bacterial Strain Pathogenic to Crassostrea gigas. Microorganisms 2025; 13:296. [PMID: 40005668 PMCID: PMC11857945 DOI: 10.3390/microorganisms13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial infection is frequently observed in disease outbreaks of aquatic animals, making it of significance to isolate and identify the bacterial pathogens. In this study, diseased individuals of Crassostrea gigas were sampled from the nearshore area in Zhanjiang, Guangdong in May 2023. Culturable bacteria were isolated from the diseased tissue and a pathogenic strain labeled as H27 was screened through a hemolysis test and bacterial challenge experiments. Morphological characterization, 16S rRNA gene sequence-based molecular identification and biochemical tests showed that strain H27 belonged to the genus of Pseudoalteromonas, a dominant genus in the diseased tissue of C. gigas revealed by bacterial community structure analysis. The clinical signs originally observed in naturally diseased C. gigas were reproduced in strain H27-challenged adults, both with the red mantle and adductor. Histopathological analysis was further performed on the diseased tissues of the latter, which showed a significantly increased accumulation of pigment granules in the cytoplasm of the diseased mantle as well as enlarged muscle fiber distances in the diseased adductor. In addition, strain H27 was re-isolated from tissues of the moribund C. gigas after bacterial challenge, indicating the fulfillment of Koch's postulate. Our results help to enrich the knowledge of C. gigas diseases, possibly contributing to disease prevention and control.
Collapse
Affiliation(s)
- Heyang Qin
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Junyi Jiang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Zhikai Jing
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Jiayu Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Shuang Xu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Rongwei Chen
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Bo Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Engineering Research Center of Shellfish Culture and Breeding, Dalian Ocean University, Dalian 116023, China
| | - Lei Fang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China; (H.Q.); (J.J.); (Z.J.); (J.W.); (S.X.); (R.C.); (B.W.)
- Engineering Research Center of Shellfish Culture and Breeding, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
7
|
Smith RS, Pruett JL. Oyster Restoration to Recover Ecosystem Services. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:83-113. [PMID: 39028991 DOI: 10.1146/annurev-marine-040423-023007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Oyster reef loss represents one of the most dramatic declines of a foundation species worldwide. Oysters provide valuable ecosystem services (ES), including habitat provisioning, water filtration, and shoreline protection. Since the 1990s, a global community of science and practice has organized around oyster restoration with the goal of restoring these valuable services. We highlight ES-based approaches throughout the restoration process, consider applications of emerging technologies, and review knowledge gaps about the life histories and ES provisioning of underrepresented species. Climate change will increasingly affect oyster populations, and we assess how restoration practices can adapt to these changes. Considering ES throughout the restoration process supports adaptive management. For a rapidly growing restoration practice, we highlight the importance of early community engagement, long-term monitoring, and adapting actions to local conditions to achieve desired outcomes.
Collapse
Affiliation(s)
- Rachel S Smith
- Marine Science Institute, University of California, Santa Barbara, California, USA;
| | - Jessica L Pruett
- Mississippi Based RESTORE Act Center of Excellence, The University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
8
|
Tracy AM, Pagenkopp Lohan KM, Carnegie RB, McCollough CB, Southworth M, Ogburn MB. Co-infection is linked to infection prevalence and intensity in oysters amidst high environmental and spatial variation. J Invertebr Pathol 2024; 207:108201. [PMID: 39322009 DOI: 10.1016/j.jip.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Co-infecting parasites modify infection outcomes in the wild. However, it is unclear how multiple environmental factors influence co-infection. The Chesapeake Bay metapopulation of the eastern oyster, Crassostrea virginica, provides an opportunity to test the importance of co-infection across heterogeneous environments because multiple parasites infect oysters across a broad salinity gradient. This study leverages Maryland and Virginia oyster monitoring for a large-scale survey of four co-infecting organisms, including two tissue parasites and two shell bio-eroding parasites. We diagnosed infection in 440 oysters across 16 paired harvested and unharvested reefs and tested the importance of co-infecting organisms for each parasite relative to environmental conditions, host traits, and marine spatial management. Microscopic visual methods were used to diagnose prevalence and intensity of tissue infections with Perkinsus marinus (the causative agent of dermo disease) and Haplosporidium nelsoni (the causative agent of MSX disease). Macroscopic visual methods were used to diagnose prevalence and intensity of shell infections with Cliona boring sponges and blister-inducing Polydora worms. For the three oyster parasites that were detected [H. nelsoni infections were absent in all oysters], salinity was the overall strongest predictor, corresponding to bay-wide patterns of parasite prevalence and/or intensity. Despite high environmental and spatial variation, co-infections corresponded to altered prevalence and/or intensity for all three oyster parasites. The correlational patterns suggest that P. marinus acts as a lynchpin in co-infection, as its intensity increased with Cliona sponge prevalence and P. marinus co-infection predicted higher Polydora blister intensity. Oyster shell height, reef habitat, and harvest status also predicted parasite prevalence and intensity, further reflecting the multivariate drivers of infections in this system. Unharvested reefs had greater vertical habitat structure and higher intensities of Cliona sponge infections, but no differences in the prevalence of any of the three parasites. Spatial patterns unexpectedly show that reef-level predictors of parasite patterns were more important than differences between tributaries. This correlational survey provides novel insights through the statistical relationships between the three oyster parasites, environmental conditions, host traits, and human resource management. New and more detailed scenarios are needed to expand disease ecological theory to encompass co-infection in anthropogenically impacted wildlife populations.
Collapse
Affiliation(s)
- Allison M Tracy
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD, United States; Department of Marine Biotechnology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD, United States; Department of Microbiology & Immunology, University of Maryland Baltimore School of Medicine, 701 E. Pratt Street, Baltimore, MD, United States; Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, United States.
| | | | - Ryan B Carnegie
- Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA, United States
| | - Carol B McCollough
- Maryland Department of Natural Resources, Cooperative Oxford Laboratory, 904 Morris St, Oxford, MD, United States
| | - Melissa Southworth
- Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA, United States
| | - Matthew B Ogburn
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, United States
| |
Collapse
|
9
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
10
|
Liu M, Li Q, Xu W, Wang L, Wu F, Tan L, Li L, Zhang G. Characterization of water microbiota and their relationship with resident oysters during an oyster mortality event. Microbiol Spectr 2024; 12:e0288123. [PMID: 39162262 PMCID: PMC11448099 DOI: 10.1128/spectrum.02881-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Microorganisms are vital for the health of marine invertebrates, and their assembly is driven by both deterministic and stochastic factors that regulate residents (innate to the host) and transients (from ambient water). However, the role of water microbiota and the significance of deterministic and stochastic processes in aquatic hosts facing mortality threats are largely unknown. This study examines the shifts in water microbiota during an oyster mortality event using amplicon sequencing and compared with those of resident oysters to disentangle the balance of the deterministic and stochastic factors involved. Water temperature and dissolved oxygen significantly shape the microbial community with a distinct monthly pattern, and Cyanobacteria blooms might exacerbate oyster mortality. The comparative analysis of microbial communities in oysters and water revealed that ≤ 21% of the genera were shared between oysters and water, implying that water microbiota cannot easily transfer into oysters. Furthermore, these shared genera had different functions, with oysters more involved in promoting host digestion and nutrient acquisition and water bacteria enriched more in functions promoting their own growth and survival. These findings illustrate that oysters may possess specific selection or barrier mechanisms that permit a small percentage of transients, controlled by stochastic factors and having a minimal effect on oyster mortality, to enter, whereas the majority of oyster microbiota are residents governed by deterministic factors. Consequently, oysters exhibit some plasticity in their symbiotic microbiota, enabling them to maintain microbial homeostasis and adapt to complex microbial surroundings. This may be a shared mechanism among marine invertebrates for survival in complex marine environments.IMPORTANCEPacific oysters are widely cultured and play vital ecological roles. However, the summer mortality hinders sustainable oyster farming. Untangling causative mechanisms of oyster mortality is a complex task due to the intricate "interactome" involving environmental factors, hosts, and pathogens. Interactions between hosts and microorganisms offer an ideal avenue for investigating the truth. We systematically investigated the microbial community in water and resident oysters during a summer mortality event and proposed that the assembly of oyster microbiota is primarily governed by deterministic processes independent of mortality. Pathogens mainly originate from resident members of the oyster microbiota, with a limited influence from the microbial community in the water. Additionally, environmental degraders, such as Cyanobacteria blooms, cannot be overlooked as a contributing factor of oyster mortality. This study evaluated the weight of deterministic and stochastic factors in microbial assembly during an oyster mortality event and greatly broadened our understanding of the "interactome" through the interaction between oysters and water in microbiota.
Collapse
Affiliation(s)
- Mingkun Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Xu
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Rushan Marine Economy and Development Center, Rushan, China
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Lintao Tan
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Rushan Marine Economy and Development Center, Rushan, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
11
|
Unzueta‐Martínez A, Bowen J. Persistent tissue-specific resident microbiota in oysters across a broad geographical range. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70026. [PMID: 39446070 PMCID: PMC11500617 DOI: 10.1111/1758-2229.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (Crassostrea virginica) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.
Collapse
Affiliation(s)
- Andrea Unzueta‐Martínez
- Department of Marine and Environmental ScienceNortheastern UniversityNahantMassachusettsUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jennifer Bowen
- Department of Marine and Environmental ScienceNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
12
|
Sutherland BJG, Thompson NF, Surry LB, Gujjula KR, Carrasco CD, Chadaram S, Lunda SL, Langdon CJ, Chan AM, Suttle CA, Green TJ. An amplicon panel for high-throughput and low-cost genotyping of Pacific oyster. G3 (BETHESDA, MD.) 2024; 14:jkae125. [PMID: 38869232 PMCID: PMC11373646 DOI: 10.1093/g3journal/jkae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 189). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0 and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Sutherland Bioinformatics, Lantzville, BC V0R 2H0, Canada
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Neil F Thompson
- United States Department of Agriculture, Hatfield Marine Science Center, Pacific Shellfish Research Unit, Agricultural Research Service, Newport, OR 97365, USA
| | - Liam B Surry
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | | | | | - Srinivas Chadaram
- ThermoFisher Scientific, 2130 Woodward Street, Austin, TX 78744, USA
| | - Spencer L Lunda
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| | - Christopher J Langdon
- Hatfield Marine Science Center, 2030 SE Marine Science Dr., Oregon State University, Coastal Oregon Marine Experiment Station, Newport, OR 97365, USA
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Botany, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J Green
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
13
|
Potts RWA, Regan T, Ross S, Bateman K, Hooper C, Paley R, Houston RD, Bean TP. Laboratory Replication of Ostreid Herpes Virus (OsHV-1) Using Pacific Oyster Tissue Explants. Viruses 2024; 16:1343. [PMID: 39205317 PMCID: PMC11358966 DOI: 10.3390/v16081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Pacific oysters (Crassostrea or Magallana gigas) are one of the most economically important aquaculture species globally. Over the past two decades, ostreid herpesvirus (OsHV-1) has become a major pathogen of cultured Pacific oysters, resulting in widespread mortality with a global distribution. Experimental use of OsHV-1 is challenging for many reasons, including both complexity of host-pathogen dynamics and a lack of functioning model systems. The goal of this study was to improve the tools available for working with OsHV-1 in both whole animals and in tissue explants established from oysters maintained in controlled laboratory conditions. Tissue explants were taken from oysters originating from two different sources that have different levels of mortality in experimental OsHV-1 infections and were exposed to OsHV-1. A whole-animal infection experiment was run concurrently as a comparison. Quantitative PCR and electron microscopy were used to confirm that the explants were capable of replicating OsHV-1. Furthermore, the quantitative PCR results suggest that the source of the oysters was significant in determining the outcome of infection in the explants, supporting the validity of the explant model for OsHV-1 infection. This tissue explant approach for studying OsHV-1 allows for the control of confounding factors in the disease outcome that is not possible in whole-animal experiments, providing a new tool for the study of OsHV-1 in Pacific oysters.
Collapse
Affiliation(s)
- Robert W. A. Potts
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Centre for Environment Fisheries, Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Tim Regan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stuart Ross
- Centre for Environment Fisheries, Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Kelly Bateman
- Centre for Environment Fisheries, Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Chantelle Hooper
- Centre for Environment Fisheries, Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, UK
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK
| | - Richard Paley
- Centre for Environment Fisheries, Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Ross D. Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tim P. Bean
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
14
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
15
|
Zhong KX, Chan AM, Collicutt B, Daspe M, Finke JF, Foss M, Green TJ, Harley CDG, Hesketh AV, Miller KM, Otto SP, Rolheiser K, Saunders R, Sutherland BJG, Suttle CA. The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification. Appl Environ Microbiol 2024; 90:e0005224. [PMID: 38466091 PMCID: PMC11022565 DOI: 10.1128/aem.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.
Collapse
Affiliation(s)
- Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M. Chan
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Maxim Daspe
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F. Finke
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Megan Foss
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Christopher D. G. Harley
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amelia V. Hesketh
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Ben J. G. Sutherland
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Ben Cheikh Y, Massol F, Giusti-Petrucciani N, Travers MA. Impact of epizootics on mussel farms: Insights into microbiota composition of Mytilus species. Microbiol Res 2024; 280:127593. [PMID: 38184970 DOI: 10.1016/j.micres.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Outbreaks of marine mussel mortality on French farms could have different aetiologies. One of them implies Vibrio splendidus strains. Beyond the involvement of this pathogen, there is considerable evidence that diseases often result from interactions between several microbes and the host. In this study, we explored the bacterial communities associated with mussel species and the surrounding water collected from a mussel farm affected by mortalities. The microbiota of Mytilus edulis, Mytilus galloprovincialis and their hybrids displayed an abnormal abundance of Proteobacteria, in particular the genera Vibrio, Cobetia and Arcobacter. Despite the dysbiosis, the Mediterranean mussel showed a different microbiota profile with a higher richness and presence of the phylum Bacteroidetes. Bipartite network analyses at the level of bacteria families confirmed this finding and showed that the microbiomes of M. edulis and the hybrids tended to cluster together. In addition, injection of mussels with the virulent V. splendidus induced less mortality rate in M. galloprovincialis compared to the other Mytilus sp. suggesting a better resistance of the Mediterranean mussel to infection. Our findings point to a probable aetiology of pathobiome-mediated disease in mussels. To fully understand this phenomenon, more knowledge is needed on the roles of pathobiotic systems and their development during disease establishment.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- UMR-I 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO), Université Le Havre Normandie, Cedex 76063 Le Havre, France.
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nathalie Giusti-Petrucciani
- UMR-I 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO), Université Le Havre Normandie, Cedex 76063 Le Havre, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
17
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
18
|
Doni L, Tassistro G, Oliveri C, Balbi T, Auguste M, Pallavicini A, Canesi L, Pruzzo C, Vezzulli L. Plankton and marine aggregates as transmission vectors for V. aestuarianus 02/041 infecting the pacific oyster Crassostrea gigas. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:631-641. [PMID: 37776112 PMCID: PMC10667632 DOI: 10.1111/1758-2229.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Vibrio aestuarianus is a bacterium related to mass mortality outbreaks of the Pacific oyster, Crassostrea gigas in Europe. In this study, the role of different planktonic substrates (phytoplankton cells, marine aggregates and chitin fragments) in mediating V. aestuarianus 02/041 infection of oysters was evaluated by controlled infection experiments. It was shown that phytoplankton cells and, to a greater extent, marine aggregates, significantly promote V. aestuarianus 02/041 intake by C. gigas maintained under stressful conditions in the laboratory. Such intake is associated with higher concentration of the pathogen in the bivalve hemolymph and compromised health status of infected oysters. In contrast, chitin particles do not play a significant role as transmission vector for V. aestuarianus 02/041 infecting its bivalve host. Interestingly, incorporation into marine aggregates foster extracellular proteases (ECPs) activity and a higher expression of bacterial virulence genes, that are potentially involved in bivalve infection. Results from this study contribute to elucidate transmission patterns of V. aestuarianus 02/041 to C. gigas that may be useful for the development of efficient measures to prevent and control oyster disease outbreaks.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Giovanni Tassistro
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
- National Biodiversity Future CenterPalermoItaly
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Alberto Pallavicini
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Stazione Zoologica Anton DohrnNapoliItaly
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
- National Biodiversity Future CenterPalermoItaly
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
- National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
19
|
Oyanedel D, Lagorce A, Bruto M, Haffner P, Morot A, Labreuche Y, Dorant Y, de La Forest Divonne S, Delavat F, Inguimbert N, Montagnani C, Morga B, Toulza E, Chaparro C, Escoubas JM, Gueguen Y, Vidal-Dupiol J, de Lorgeril J, Petton B, Degremont L, Tourbiez D, Pimparé LL, Leroy M, Romatif O, Pouzadoux J, Mitta G, Le Roux F, Charrière GM, Travers MA, Destoumieux-Garzón D. Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus. Proc Natl Acad Sci U S A 2023; 120:e2305195120. [PMID: 37751557 PMCID: PMC10556616 DOI: 10.1073/pnas.2305195120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Arnaud Lagorce
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Philippe Haffner
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Amandine Morot
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, Institut Universitaire Européen de la Mer, LorientF-56100, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Yann Dorant
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Sébastien de La Forest Divonne
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - François Delavat
- Nantes Université, CNRS, Unité en Sciences Biologiques et Biotechnologies (US2B), UMR6286, Nantes,F-44000, France
| | - Nicolas Inguimbert
- Centre de Recherches Insulaires et OBservatoire de l’Environnement (CRIOBE), UAR3278, Ecole Pratique des Hautes Etudes (EPHE), Université de Perpignan Via Domitia, CNRS, PerpignanF-66860, France
| | - Caroline Montagnani
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Benjamin Morga
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Eve Toulza
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Cristian Chaparro
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Jean-Michel Escoubas
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Yannick Gueguen
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- MARine Biodiversity, Exploitation and Conservation (MARBEC) Univ Montpellier, CNRS, Ifremer, IRD, SèteF-34200, France
| | - Jeremie Vidal-Dupiol
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Julien de Lorgeril
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie,F-98800, France
| | - Bruno Petton
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
| | - Lionel Degremont
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Delphine Tourbiez
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Léa-Lou Pimparé
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marc Leroy
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Océane Romatif
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Juliette Pouzadoux
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Guillaume Mitta
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, Université de Polynésie Française, IRD, Institut Louis Malardé (ILM), Ecosystèmes Insulaires Océaniens (EIO), VairaoF-98719, Polynésie Française
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Guillaume M. Charrière
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marie-Agnès Travers
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| |
Collapse
|
20
|
Akter S, Wos-Oxley ML, Catalano SR, Hassan MM, Li X, Qin JG, Oxley AP. Host Species and Environment Shape the Gut Microbiota of Cohabiting Marine Bivalves. MICROBIAL ECOLOGY 2023; 86:1755-1772. [PMID: 36811710 PMCID: PMC10497454 DOI: 10.1007/s00248-023-02192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Pacific oysters (Crassostrea gigas) and Mediterranean mussels (Mytilus galloprovincialis) are commercially important marine bivalves that frequently coexist and have overlapping feeding ecologies. Like other invertebrates, their gut microbiota is thought to play an important role in supporting their health and nutrition. Yet, little is known regarding the role of the host and environment in driving these communities. Here, bacterial assemblages were surveyed from seawater and gut aspirates of farmed C. gigas and co-occurring wild M. galloprovincialis in summer and winter using Illumina 16S rRNA gene sequencing. Unlike seawater, which was dominated by Pseudomonadata, bivalve samples largely consisted of Mycoplasmatota (Mollicutes) and accounted for >50% of the total OTU abundance. Despite large numbers of common (core) bacterial taxa, bivalve-specific species (OTUs) were also evident and predominantly associated with Mycoplasmataceae (notably Mycoplasma). An increase in diversity (though with varied taxonomic evenness) was observed in winter for both bivalves and was associated with changes in the abundance of core and bivalve-specific taxa, including several representing host-associated and environmental (free-living or particle-diet associated) organisms. Our findings highlight the contribution of the environment and the host in defining the composition of the gut microbiota in cohabiting, intergeneric bivalve populations.
Collapse
Affiliation(s)
- Shirin Akter
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Md Mahbubul Hassan
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Hillarys, WA, Australia
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Andrew Pa Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
21
|
Liu D, Huang R, Yuan K, Zhao J, Wang Z, Yi Q, Wang J. Molecular characterization of a cation-dependent mannose-6-phosphate receptor gene in Crassostrea hongkongensis and its responsiveness in Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108843. [PMID: 37211330 DOI: 10.1016/j.fsi.2023.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The cation-dependent mannose-6-phosphate receptor (CD-M6PR) is a P-type lectin that plays a crucial role in lysosomal enzyme transport, bacterial resistance, and viral entry. In this study, we cloned and analyzed the ORF of the CD-M6PR gene from Crassostrea hongkongensis and named it ChCD-M6PR. We analyzed the nucleotide and amino acid sequence of ChCD-M6PR, its tissue expression pattern and immune response to Vibrio alginolyticus. Our results showed that the ORF of ChCD-M6PR was 801 bp long and encoded a protein of 266 amino acids with a signal peptide at the N-terminus, as well as Man-6-P_recep, ATG27 and transmembrane structural domains. Phylogenetic analysis indicated that Crassostrea hongkongensis shared the highest similarity with Crassostrea gigas in the terms of CD-M6PR. The ChCD-M6PR gene was found to be expressed in various tissues, with the highest expression observed in the hepatopancreas and the lowest in the hemocytes by the fluorescence quantitative PCR. Furthermore, the expression of ChCD-M6PR gene was significantly up-regulated for a short time in response to Vibrio alginolyticus infection in the gill and hemocytes, while it was down-regulated in the gonads. The expression patterns of ChCD-M6PR also varied in the other tissues. The 96 h cumulative mortality rate of Crassostrea hongkongensis infected with Vibrio alginolyticus after knockdown the ChCD-M6PR gene was significantly higher. Overall, our findings suggests that ChCD-M6PR plays a crucial role in the immune response of Crassostrea hongkongensis to Vibrio alginolyticus infection, and its tissue-specific expression patterns may be indicatitive of varied immune responses across tissues.
Collapse
Affiliation(s)
- Dan Liu
- College of Fisheries and Life, Dalian Ocean University, Dalian, 116000, China; School of Life Science, Huizhou University, Huizhou, 516000, China
| | - RunQing Huang
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - Kai Yuan
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - JiaHao Zhao
- School of Life Science, Huizhou University, Huizhou, 516000, China; College of Fisherie, Tianjin Agricultural University, Tianjin, 300384, China
| | - ZhaoRui Wang
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - QiLin Yi
- College of Fisheries and Life, Dalian Ocean University, Dalian, 116000, China
| | - JiangYong Wang
- School of Life Science, Huizhou University, Huizhou, 516000, China.
| |
Collapse
|
22
|
Diner RE, Zimmer-Faust A, Cooksey E, Allard S, Kodera SM, Kunselman E, Garodia Y, Verhougstraete MP, Allen AE, Griffith J, Gilbert JA. Host and Water Microbiota Are Differentially Linked to Potential Human Pathogen Accumulation in Oysters. Appl Environ Microbiol 2023; 89:e0031823. [PMID: 37318344 PMCID: PMC10370324 DOI: 10.1128/aem.00318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.
Collapse
Affiliation(s)
- Rachel E. Diner
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Amy Zimmer-Faust
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Emily Cooksey
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Sarah Allard
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Sho M. Kodera
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Emily Kunselman
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Yash Garodia
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Marc P. Verhougstraete
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Andrew E. Allen
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- J. Craig Venter Institute, Environmental and Microbial Genomics Group, La Jolla, California, USA
| | - John Griffith
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| |
Collapse
|
23
|
Scanes E, Siboni N, Rees B, Seymour JR. Acclimation in intertidal animals reduces potential pathogen load and increases survival following a heatwave. iScience 2023; 26:106813. [PMID: 37213223 PMCID: PMC10199257 DOI: 10.1016/j.isci.2023.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Intertidal animals can experience intense heat during a heatwave, leading to mortality. The causes of death for intertidal animals following heatwaves have often been attributed to a breakdown in physiological processes. This, however, contrasts with research in other animals where heatwave mortality is attributed to existing or opportunistic diseases. We acclimated intertidal oysters to four treatment levels, including an antibiotic treatment, and then exposed all treatments to a 50°C heatwave for 2 h, replicating what can be experienced on Australian shorelines. We found that both acclimation and antibiotics increased survival and reduced the presence of potential pathogens. Non-acclimated oysters had a significant shift in their microbiome, with increasing abundances of bacteria from the Vibrio genera, including known potential pathogens. Our results demonstrate that bacterial infection plays a pivotal role in post-heatwave mortality. We anticipate these findings to inform the management of aquaculture and intertidal habitats as climate change intensifies.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Corresponding author
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Brendon Rees
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
24
|
Fang G, Yu H, Zhang Y, Liang J, Tang Y, Liang Z. Diversities and Shifts of Microbial Communities Associated with Farmed Oysters ( Crassostrea gigas) and Their Surrounding Environments in Laoshan Bay Marine Ranching, China. Microorganisms 2023; 11:1167. [PMID: 37317141 DOI: 10.3390/microorganisms11051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Pacific oysters (Crassostrea gigas) are widely cultured in Chinese marine ranching with high economic value. However, mass death of farmed oysters has occurred frequently in recent years because of diseases and environmental disturbance (e.g., high temperatures). In order to analyze the potential relationships between microorganisms and the death of farmed oysters, we compared the dynamics of bacterial and protist communities in oysters at different growth phases using high-throughput sequencing. The results showed that the microbial communities in farmed oysters significantly changed and were markedly different from microbes in natural oysters and the surrounding environments. The number of biomarker taxa among farmed oysters and their surrounding environments decreased gradually with the growth of oysters. During the mass death of farmed oysters, the microbial communities' abundance of ecological function genes changed, and the correlations among microorganisms disappeared. These results enrich our understanding of the dynamics of microbial communities in farmed oysters at different growth phases, illustrating the characteristics of interactions among microorganisms during the mass death of farmed oysters. Our study is beneficial to promote the healthy aquaculture of oysters.
Collapse
Affiliation(s)
- Guangjie Fang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan 316021, China
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan 316021, China
| | - Haolin Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yazhou Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan 316021, China
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan 316021, China
| | - Jun Liang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan 316021, China
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan 316021, China
| | - Yanli Tang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
25
|
Kong N, Zhao J, Zhao B, Liu J, Li F, Wang L, Song L. Effects of high temperature stress on the intestinal histology and microbiota in Yesso scallop Patinopecten yessoensis. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105881. [PMID: 36657188 DOI: 10.1016/j.marenvres.2023.105881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
High temperature stress posed by global warming is considered as one of the greatest threats to marine ectotherms by altering their behavior and physiological functions. The intestine and its associated microbiota constitute the first defensive line for the animals against environmental stresses, but their responses to high temperature stress in mollusks are largely unknown. In the present study, the changes of intestinal histology and microbiota were investigated in Yesso scallop Patinopecten yessoensis, a cold-water bivalve species, after high temperature stress. The shrinkage of intestinal lumen, shortening of intestinal villi and increased goblet cells were observed in the intestines of scallops exposed to seawater temperatures of 20 °C (T20 group) and 23 °C (T23 group), compared to the control group (15 °C). High-throughput sequencing of 16S rRNA gene showed that the composition of intestinal microbiota rather than the alpha diversity indices changed significantly after high temperature stress. At the phylum level, the relative abundances of Proteobacteria and Firmicutes decreased progressively with increasing temperature, while that of Bacteroidetes increased by 1.18-fold in the T20 group and 0.95-fold in the T23 group. At the genus level, Tenacibaculum and Mycoplasma were significantly enriched after high temperature stress, and Mycoplasma exhibited highest abundance of 39.43% in the T23 group. Functional prediction revealed that the pathways related to amino acid biosynthesis were blocked after high temperature stress, while that of phospholipases showed the opposite trend. According to the results of network analysis, the network connectivity decreased with increasing temperature, while the percentages of negative correlations in the two high temperature groups were higher than that in the control group. Collectively, the intestinal histology and microbial community of P. yessoensis changed significantly after high temperature stress, which would hinder the nutrient absorption and promote the proliferation of pathogenic microorganisms in the intestine of scallops. Our results will provide novel insights into the occurrence mechanism of mass summer mortality in marine mollusks.
Collapse
Affiliation(s)
- Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Junyan Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Bao Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Fuzhe Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| |
Collapse
|
26
|
Rodrigues IC, Santos-Ferreira N, Silva D, da Silva CC, Inácio ÂS, Nascimento MSJ, da Costa PM. A One-Year Systematic Study to Assess the Microbiological Profile in Oysters from a Commercial Harvesting Area in Portugal. Microorganisms 2023; 11:338. [PMID: 36838302 PMCID: PMC9965842 DOI: 10.3390/microorganisms11020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
As filter-feeding animals farmed in water bodies exposed to anthropogenic influences, oysters can be both useful bioremediators and high-risk foodstuffs, considering that they are typically consumed raw. Understanding the dynamic of bacterial and viral load in Pacific oyster (Crassostrea gigas) tissues, hemolymph, outer shell surface biofilm, and farming water is therefore of great importance for microbiological risk assessment. A one-year survey of oysters collected from a class B production area (Canal de Mira, on the Portuguese western coast) revealed that these bivalve mollusks have a good depurating capacity with regard to bacteria, as Salmonella spp. and viable enterococci were not detected in any oyster flesh (edible portion) samples, despite the fact that these bacteria have regularly been found in the farming waters. Furthermore, the level of Escherichia coli contamination was clearly below the legal limit in oysters reared in a class B area (>230-≤4600 MPN E. coli/100 g). On the contrary, norovirus was repeatedly detected in the digestive glands of oysters sampled in autumn, winter, and spring. However, their presence in farming waters was only detected during winter.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nânci Santos-Ferreira
- KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Daniela Silva
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Chiquelho da Silva
- Department of Quality Control and Food Safety, Grupo Jerónimo Martins, Rua Nossa Sra. do Amparo, 4440-232 Porto, Portugal
| | - Ângela S. Inácio
- CNC-Center for Neurosciences and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 3004–504 Coimbra, Portugal
| | - Maria São José Nascimento
- Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo Martins da Costa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
27
|
Wang YQ, Liu Q, Zhou Y, Chen L, Yang YM, Shi X, Power DM, Li YF. Stage-Specific Transcriptomes of the Mussel Mytilus coruscus Reveals the Developmental Program for the Planktonic to Benthic Transition. Genes (Basel) 2023; 14:genes14020287. [PMID: 36833215 PMCID: PMC9957406 DOI: 10.3390/genes14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Many marine invertebrate larvae undergo complex morphological and physiological changes during the planktonic-benthic transition (a.k.a. metamorphosis). In this study, transcriptome analysis of different developmental stages was used to uncover the molecular mechanisms underpinning larval settlement and metamorphosis of the mussel, Mytilus coruscus. Analysis of highly upregulated differentially expressed genes (DEGs) at the pediveliger stage revealed enrichment of immune-related genes. The results may indicate that larvae co-opt molecules of the immune system to sense and respond to external chemical cues and neuroendocrine signaling pathways forecast and trigger the response. The upregulation of adhesive protein genes linked to byssal thread secretion indicates the anchoring capacity required for larval settlement arises prior to metamorphosis. The results of gene expression support a role for the immune and neuroendocrine systems in mussel metamorphosis and provide the basis for future studies to disentangle gene networks and the biology of this important lifecycle transformation.
Collapse
Affiliation(s)
- Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Liu
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lizhi Chen
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yue-Ming Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deborah M. Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (D.M.P.); (Y.-F.L.)
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (D.M.P.); (Y.-F.L.)
| |
Collapse
|
28
|
Liu M, Li Q, Tan L, Wang L, Wu F, Li L, Zhang G. Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer. ENVIRONMENTAL RESEARCH 2023; 216:114585. [PMID: 36252835 DOI: 10.1016/j.envres.2022.114585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.
Collapse
Affiliation(s)
- Mingkun Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
29
|
Worden PJ, Bogema DR, Micallef ML, Go J, Deutscher AT, Labbate M, Green TJ, King WL, Liu M, Seymour JR, Jenkins C. Phylogenomic diversity of Vibrio species and other Gammaproteobacteria isolated from Pacific oysters ( Crassostrea gigas) during a summer mortality outbreak. Microb Genom 2022; 8:mgen000883. [PMID: 36748707 PMCID: PMC9837568 DOI: 10.1099/mgen.0.000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Pacific oyster (PO), Crassostrea gigas, is an important commercial marine species but periodically experiences large stock losses due to disease events known as summer mortality. Summer mortality has been linked to environmental perturbations and numerous viral and bacterial agents, indicating this disease is multifactorial in nature. In 2013 and 2014, several summer mortality events occurred within the Port Stephens estuary (NSW, Australia). Extensive culture and molecular-based investigations were undertaken and several potentially pathogenic Vibrio species were identified. To improve species identification and genomically characterise isolates obtained from this outbreak, whole-genome sequencing (WGS) and subsequent genomic analyses were performed on 48 bacterial isolates, as well as a further nine isolates from other summer mortality studies using the same batch of juveniles. Average nucleotide identity (ANI) identified most isolates to the species level and included members of the Photobacterium, Pseudoalteromonas, Shewanella and Vibrio genera, with Vibrio species making up more than two-thirds of all species identified. Construction of a phylogenomic tree, ANI analysis, and pan-genome analysis of the 57 isolates represents the most comprehensive culture-based phylogenomic survey of Vibrios during a PO summer mortality event in Australian waters and revealed large genomic diversity in many of the identified species. Our analysis revealed limited and inconsistent associations between isolate species and their geographical origins, or host health status. Together with ANI and pan-genome results, these inconsistencies suggest that to determine the role that microbes may have in Pacific oyster summer mortality events, isolate identification must be at the taxonomic level of strain. Our WGS data (specifically, the accessory genomes) differentiated bacterial strains, and coupled with associated metadata, highlight the possibility of predicting a strain's environmental niche and level of pathogenicity.
Collapse
Affiliation(s)
- Paul J. Worden
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Melinda L. Micallef
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Jeffrey Go
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Ania T. Deutscher
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Maurizio Labbate
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, British Columbia,, Canada
| | - William L. King
- Department of Plant Pathology and Environmental MIcrobiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Liu
- iThree Institute, University of Technology Sydney, Building 4, 745 Harris Street, Broadway, Ultimo, NSW, 2007
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568,*Correspondence: Cheryl Jenkins,
| |
Collapse
|
30
|
Pruett JL, Pandelides AF, Keylon J, Willett KL, Showalter Otts S, Gochfeld DJ. Life‐stage‐dependent effects of multiple flood‐associated stressors on a coastal foundational species. Ecosphere 2022. [DOI: 10.1002/ecs2.4343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jessica L. Pruett
- National Center for Natural Products Research University of Mississippi, University Mississippi USA
| | - Ann Fairly Pandelides
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | - Jaycie Keylon
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | - Kristine L. Willett
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| | | | - Deborah J. Gochfeld
- National Center for Natural Products Research University of Mississippi, University Mississippi USA
- Department of BioMolecular Sciences University of Mississippi, University Mississippi USA
| |
Collapse
|
31
|
Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters. Appl Environ Microbiol 2022; 88:e0165422. [DOI: 10.1128/aem.01654-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with
Vibrio
disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses.
Collapse
|
32
|
Yang Y, Ni J, Niu D, Zheng G, Li Y. Physiological response of the razor clam Sinonovacula constricta exposed to hyposalinity stress. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Vibrio splendidus infection induces dysbiosis in the blue mussel and favors pathobiontic bacteria. Microbiol Res 2022; 261:127078. [DOI: 10.1016/j.micres.2022.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 11/15/2022]
|
34
|
King NG, Smale DA, Thorpe JM, McKeown NJ, Andrews AJ, Browne R, Malham SK. Core Community Persistence Despite Dynamic Spatiotemporal Responses in the Associated Bacterial Communities of Farmed Pacific Oysters. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02083-9. [PMID: 35881247 DOI: 10.1007/s00248-022-02083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A breakdown in host-bacteria relationships has been associated with the progression of a number of marine diseases and subsequent mortality events. For the Pacific oyster, Crassostrea gigas, summer mortality syndrome (SMS) is one of the biggest constraints to the growth of the sector and is set to expand into temperate systems as ocean temperatures rise. Currently, a lack of understanding of natural spatiotemporal dynamics of the host-bacteria relationship limits our ability to develop microbially based monitoring approaches. Here, we characterised the associated bacterial community of C. gigas, at two Irish oyster farms, unaffected by SMS, over the course of a year. We found C. gigas harboured spatiotemporally variable bacterial communities that were distinct from bacterioplankton in surrounding seawater. Whilst the majority of bacteria-oyster associations were transient and highly variable, we observed clear patterns of stability in the form of a small core consisting of six persistent amplicon sequence variants (ASVs). This core made up a disproportionately large contribution to sample abundance (34 ± 0.14%), despite representing only 0.034% of species richness across the study, and has been associated with healthy oysters in other systems. Overall, our study demonstrates the consistent features of oyster bacterial communities across spatial and temporal scales and provides an ecologically meaningful baseline to track environmental change.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK.
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK.
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| | - Jamie M Thorpe
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Adam J Andrews
- Bord Iascaigh Mhara, Dún Laoghaire, County Dublin, Ireland
| | - Ronan Browne
- Bord Iascaigh Mhara, Dún Laoghaire, County Dublin, Ireland
| | - Shelagh K Malham
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| |
Collapse
|
35
|
Hines IS, Smith SA, Kuhn DD, Stevens AM. Development of a Controlled Laboratory-scale Inoculation System to Study Vibrio parahaemolyticus-oyster Interactions. FEMS Microbiol Lett 2022; 369:fnac055. [PMID: 35687396 PMCID: PMC11506194 DOI: 10.1093/femsle/fnac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Prevalence of seafood-borne gastroenteritis caused by the human pathogen Vibrio parahaemolyticus is increasing globally despite current preventative measures. The United States Centers for Disease Control have designated V. parahaemolyticus as a reportable emerging human pathogen. The Eastern oyster (Crassostrea virginica) is a natural reservoir of the bacterium in marine environments, but little is actually known regarding interactions between oysters and V. parahaemolyticus. Therefore, a laboratory-scale Biosafety Level-2 (BSL2) inoculation system was developed wherein Chesapeake Bay region oysters harvested during summer or winter months, were exposed to the clinical RIMD2210633 strain carrying a chloramphenicol-selective marker (VP RIMDmC). Homogenized whole oyster tissues were spread on selective and differential agar medium to measure viable VP RIMDmC levels. Endogenous Vibrio spp. cell numbers were significantly reduced followed chloramphenicol treatment and this likely contributed to higher VP RIMDmC oyster-associated levels, especially using winter-harvested animals. Summer-harvested oysters had significantly higher existing Vibrio levels and a lower level of artificial oyster-associated VP RIMDmC. Thus, the pre-existing microbiome appears to afford some protection from an external V. parahaemolyticus challenge. Overall, this system successfully enabled controlled manipulation of parameters influencing V. parahaemolyticus-oyster interactions and will be useful in safely testing additional pertinent environmental variables and potential mitigation strategies.
Collapse
Affiliation(s)
- Ian S Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stephen A Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, United States
| | - David D Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ann M Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
36
|
Dai W, Ye J, Liu S, Chang G, Xu H, Lin Z, Xue Q. Bacterial Community Dynamics in Kumamoto Oyster Crassostrea sikamea Hatchery During Larval Development. Front Microbiol 2022; 13:933941. [PMID: 35903470 PMCID: PMC9315157 DOI: 10.3389/fmicb.2022.933941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that microbes colonized in early life stages have a long-term effect on animal wellbeing in later life stages. Related research is still limited in aquatic animals, particularly in bivalve mollusks. In this study, we analyzed the dynamics of the bacterial composition of the pelagic larval stages (fertilized egg, trochophore, D-stage, veliger, and pediveliger) and the sessile postlarval stage (spat) of Kumamoto oyster (Crassostrea sikamea) and their relationships with the rearing water bacterioplankton in a hatchery by using Illumina sequencing of bacterial 16S rRNA gene. Both bacterioplankton and larval bacterial communities changed greatly over larval development, and the two communities remarkably differed (r = 0.956, P < 0.001), as highlighted by the differences in the dominant taxa and bacterial diversity. Ecological processes of larval bacterial communities were measured by abundance-unweighted and abundance-weighted standardized effect sizes of the mean nearest taxon distance (ses.MNTD). The unweighted ses.MNTD analysis revealed that the deterministic process constrained the larval bacterial assembly, whereas the weighted ses.MNTD analysis showed that larval bacterial composition was initially governed by stochasticity and then gradually by determinism in the later stages. SourceTracker analysis revealed that the larval bacteria were primarily derived from an internal source, mainly from larvae at the present stage. Additionally, the abundances of larval bacterial-mediated functional pathways that were involved in the amino acid, energy, lipid and carbohydrate metabolisms significantly altered with the larval development. These findings suggest that bacteria assemble into distinct communities in larvae and rearing water in the hatchery system, and the dynamics of bacterial community composition in larvae is likely associated with larval developmental stages.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Guangqiu Chang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- *Correspondence: Qinggang Xue
| |
Collapse
|
37
|
Garner N, Ross PM, Falkenberg LJ, Seymour JR, Siboni N, Scanes E. Can seagrass modify the effects of ocean acidification on oysters? MARINE POLLUTION BULLETIN 2022; 177:113438. [PMID: 35276613 DOI: 10.1016/j.marpolbul.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Solutions are being sought to ameliorate the impacts of anthropogenic climate change. Seagrass may be a solution to provide refugia from climate change for marine organisms. This study aimed to determine if the seagrass Zostera muelleri sub spp. capricorni benefits the Sydney rock oyster Saccostrea glomerata, and if these benefits can modify any anticipated negative impacts of ocean acidification. Future and ambient ocean acidification conditions were simulated in 52 L mesocosms at control (381 μatm) and elevated (848 μatm) CO2 with and without Z. muelleri. Oyster growth, physiology and microbiomes of oysters and seagrass were measured. Seagrass was beneficial to oyster growth at ambient pCO2, but did not positively modify the impacts of ocean acidification on oysters at elevated pCO2. Oyster microbiomes were altered by the presence of seagrass but not by elevated pCO2. Our results indicate seagrasses may not be a panacea for the impacts of climate change.
Collapse
Affiliation(s)
- Natasha Garner
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia.
| | - Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science (SIMS), Mosman, New South Wales 2088, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
38
|
Xie W, Zhou QJ, Xu YX, Zhang M, Zhong SP, Lu LL, Qiu HT. Transcriptome analysis reveals potential key immune genes of Hong Kong oyster (Crassostrea hongkongensis) against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:316-324. [PMID: 35122949 DOI: 10.1016/j.fsi.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Hong Kong oyster (Crassostrea hongkongensis) is one of the main species of economic shellfish cultivated in the coastal areas of southern China. The cultivation of this shellfish may be adversely impacted by Vibrio parahaemolyticus, a harmful pathogenic bacterium for many mariculture species, as it usually exists on the surface of Hong Kong oysters. Although previous studies have discovered that oysters rely on non-specific immune system to fight pathogen invasion, the genes corresponding to the complex immune system against Vibrio is still not fully elucidated. Therefore, we conducted a transcriptome analysis on the gill from Hong Kong oysters at two time points (i.e., 12 h and 24 h after V. parahaemolyticus or PBS challenge) to identify potential immune genes against V. parahaemolyticus infection. A total of 61779 unigenes with the average length of 1221 bp were obtained, and the annotation information of 39917 unigenes were obtained from Nr, SwissProt, KEGG and COG/KOG. After a pairwise comparison between V. parahaemolyticus or PBS challenge at the two time points, three groups of differentially expressed genes induced by V. parahaemolyticus were captured and analyzed. GO and KEGG analyses showed that multiple immune-related genes played an important role in pathogen infection, including HSP70, PCDP3 and TLR4. Furthermore, genes annotation indicated that LITAF, TNFSF10, Duox2 and big defensin family are also involved in immune regulation. Our study provides a reference for further exploration the molecular mechanism that defenses the pathogen infection regarding the identified immune-related genes in Hong Kong oysters.
Collapse
Affiliation(s)
- Wei Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qi-Jia Zhou
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China.
| | - Yi-Xiao Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China
| | - Man Zhang
- School of Marine Sciences, Guangxi University, Nanning, 530001, China
| | - Sheng-Ping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Li-Li Lu
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection, Nanning, 530001, China
| | - Heng-Tong Qiu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China
| |
Collapse
|
39
|
Unzueta-Martínez A, Welch H, Bowen JL. Determining the Composition of Resident and Transient Members of the Oyster Microbiome. Front Microbiol 2022; 12:828692. [PMID: 35185836 PMCID: PMC8847785 DOI: 10.3389/fmicb.2021.828692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
To better understand how complex microbial communities become assembled on eukaryotic hosts, it is essential to disentangle the balance between stochastic and deterministic processes that drive their assembly. Deterministic processes can create consistent patterns of microbiome membership that result in persistent resident communities, while stochastic processes can result in random fluctuation of microbiome members that are transient with regard to their association to the host. We sampled oyster reefs from six different populations across the east coast of the United States. At each site we collected gill tissues for microbial community analysis and additionally collected and shipped live oysters to Northeastern University where they were held in a common garden experiment. We then examined the microbiome shifts in gill tissues weekly for 6 weeks using 16S rRNA gene amplicon sequencing. We found a strong population-specific signal in the microbial community composition of field-sampled oysters. Surprisingly, the oysters sampled during the common garden experiment maintained compositionally distinct gill-associated microbial communities that reflected their wild population of origin, even after rearing them in a common garden for several weeks. This indicates that oyster gill-associated microbiota are predominantly composed of resident microbes specific to host population, rather than being a reflection of their immediate biotic and abiotic surroundings. However, certain bacterial taxa tended to appear more frequently on individuals from different populations than on individuals from the same population, indicating that there is a small portion of the gill microbiome that is transient and is readily exchanged with the environmental pool of microbes. Regardless, the majority of gill-associated microbes were resident members that were specific to each oyster population, suggesting that there are strong deterministic factors that govern a large portion of the gill microbiome. A small portion of the microbial communities, however, was transient and moved among oyster populations, indicating that stochastic assembly also contributes to the oyster gill microbiome. Our results are relevant to the oyster aquaculture industry and oyster conservation efforts because resident members of the oyster microbiome may represent microbes that are important to oyster health and some of these key members vary depending on oyster population.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| | - Heather Welch
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, United States
| |
Collapse
|
40
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
41
|
Paillard C, Gueguen Y, Wegner KM, Bass D, Pallavicini A, Vezzulli L, Arzul I. Recent advances in bivalve-microbiota interactions for disease prevention in aquaculture. Curr Opin Biotechnol 2022; 73:225-232. [PMID: 34571318 DOI: 10.1016/j.copbio.2021.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
In bivalves, no clear-cut functional role of microbiota has yet been identified, although many publications suggest that they could be involved in nutrition or immunity of their host. In the context of climate change, integrative approaches at the crossroads of disciplines have been developed to explore the environment-host-pathogen-microbiota system. Here, we attempt to synthesize work on (1) the current methodologies to analyse bivalve microbiota, (2) the comparison of microbiota between species, between host compartments and their surrounding habitat, (3) how the bivalve microbiota are governed by environmental factors and host genetics and (4) how host-associated microorganisms act as a buffer against pathogens and/or promote recovery, and could thereby play a role in the prevention of disease or mortalities.
Collapse
Affiliation(s)
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France.
| | - K Mathias Wegner
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Waddensea Station Sylt, D-25992 List, Germany
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, DT4 8UB Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126 Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151 Trieste, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France.
| |
Collapse
|
42
|
Couch CE, Epps CW. Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations. J Hered 2022; 113:221-234. [PMID: 34983061 DOI: 10.1093/jhered/esab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
43
|
Pathirana E, Whittington RJ, Hick PM. Impact of seawater temperature on the Pacific oyster (Crassostrea gigas) microbiome and susceptibility to disease associated with Ostreid herpesvirus-1 (OsHV-1). ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Scanes E, Parker LM, Seymour JR, Siboni N, Dove MC, O'Connor WA, Ross PM. Microbiomes of an oyster are shaped by metabolism and environment. Sci Rep 2021; 11:21112. [PMID: 34702926 PMCID: PMC8548560 DOI: 10.1038/s41598-021-00590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Microbiomes can both influence and be influenced by metabolism, but this relationship remains unexplored for invertebrates. We examined the relationship between microbiome and metabolism in response to climate change using oysters as a model marine invertebrate. Oysters form economies and ecosystems across the globe, yet are vulnerable to climate change. Nine genetic lineages of the oyster Saccostrea glomerata were exposed to ambient and elevated temperature and PCO2 treatments. The metabolic rate (MR) and metabolic by-products of extracellular pH and CO2 were measured. The oyster-associated bacterial community in haemolymph was characterised using 16 s rRNA gene sequencing. We found a significant negative relationship between MR and bacterial richness. Bacterial community composition was also significantly influenced by MR, extracellular CO2 and extracellular pH. The effects of extracellular CO2 depended on genotype, and the effects of extracellular pH depended on CO2 and temperature treatments. Changes in MR aligned with a shift in the relative abundance of 152 Amplicon Sequencing Variants (ASVs), with 113 negatively correlated with MR. Some spirochaete ASVs showed positive relationships with MR. We have identified a clear relationship between host metabolism and the microbiome in oysters. Altering this relationship will likely have consequences for the 12 billion USD oyster economy.
Collapse
Affiliation(s)
- Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Climate Change Cluster, University of Technology Sydney, Vicki Sara Building, Ultimo, NSW, 2007, Australia.
| | - Laura M Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Vicki Sara Building, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Vicki Sara Building, Ultimo, NSW, 2007, Australia
| | - Michael C Dove
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
45
|
Marine Transcriptomics Analysis for the Identification of New Antimicrobial Peptides. Mar Drugs 2021; 19:md19090490. [PMID: 34564152 PMCID: PMC8468504 DOI: 10.3390/md19090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) participate in the immune system to avoid infection, are present in all living organisms and can be used as drugs. Fish express numerous AMP families including defensins, cathelicidins, liver-expressed antimicrobial peptides (LEAPs), histone-derived peptides, and piscidins (a fish-specific AMP family). The present study demonstrates for the first time the occurrence of several AMPs in lionfish (Pterois volitans). Using the lionfish transcriptome, we identified four transcript sequences encoding cysteine-rich AMPs and two new transcripts encoding piscidin-like peptides. These AMPs are described for the first time in a species of the Scorpaenidae family. A functional approach on new pteroicidins was carried out to determine antimicrobial sequences and potential uses, with a view to using some of these AMPs for human health or in aquaculture.
Collapse
|
46
|
King WL, Kaestli M, Siboni N, Padovan A, Christian K, Mills D, Seymour J, Gibb K. Pearl Oyster Bacterial Community Structure Is Governed by Location and Tissue-Type, but Vibrio Species Are Shared Among Oyster Tissues. Front Microbiol 2021; 12:723649. [PMID: 34434182 PMCID: PMC8381468 DOI: 10.3389/fmicb.2021.723649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Diseases of bivalves of aquacultural importance, including the valuable Australian silver-lipped pearl oyster (Pinctada maxima), have been increasing in frequency and severity. The bivalve microbiome is linked to health and disease dynamics, particularly in oysters, with putative pathogens within the Vibrio genus commonly implicated in oyster diseases. Previous studies have been biased toward the Pacific oyster because of its global dominance in oyster aquaculture, while much less is known about the microbiome of P. maxima. We sought to address this knowledge gap by characterizing the P. maxima bacterial community, and we hypothesized that bacterial community composition, and specifically the occurrence of Vibrio, will vary according to the sampled microenvironment. We also predicted that the inside shell swab bacterial composition could represent a source of microbial spillover biofilm into the solid pearl oyster tissues, thus providing a useful predictive sampling environment. We found that there was significant heterogeneity in bacterial composition between different pearl oyster tissues, which is consistent with patterns reported in other bivalve species and supports the hypothesis that each tissue type represents a unique microenvironment for bacterial colonization. We suggest that, based on the strong effect of tissue-type on the pearl oyster bacterial community, future studies should apply caution when attempting to compare microbial patterns from different locations, and when searching for disease agents. The lack of association with water at each farm also supported the unique nature of the microbial communities in oyster tissues. In contrast to the whole bacterial community, there was no significant difference in the Vibrio community among tissue types nor location. These results suggest that Vibrio species are shared among different pearl oyster tissues. In particular, the similarity between the haemolymph, inside shell and solid tissues, suggests that the haemolymph and inside shell environment is a source of microbial spillover into the oyster tissues, and a potentially useful tool for non-destructive routine disease testing and early warning surveillance. These data provide important foundational information for future studies identifying the factors that drive microbial assembly in a valuable aquaculture species.
Collapse
Affiliation(s)
- William L King
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Anna Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - David Mills
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Justin Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
47
|
Vignier J, Laroche O, Rolton A, Wadsworth P, Kumanan K, Trochel B, Pochon X, King N. Dietary Exposure of Pacific Oyster ( Crassostrea gigas) Larvae to Compromised Microalgae Results in Impaired Fitness and Microbiome Shift. Front Microbiol 2021; 12:706214. [PMID: 34504478 PMCID: PMC8421776 DOI: 10.3389/fmicb.2021.706214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
The Pacific oyster Crassostrea gigas is the world's most cultivated oyster and seed supply is heavily reliant on hatchery production where recurring mass mortality events are a major constraint. Outbreaks of bacterial infection via microalgal feed are frequently implicated in these mortalities. This study assessed the effects of feeding compromised microalgae to developing oyster larvae. Intentionally 'stressed' (high pH) or non-stressed microalgae were fed to 11 day-old oyster larvae at two feeding rations for 96 h, followed by a recovery period. Biological endpoints of larval performance were measured following the 96 h exposure and subsequent recovery. Bacterial communities associated with the microalgae feed, rearing seawater, and the oyster larvae, were characterized and correlated with effects on oyster fitness parameters. Feeding stressed algae to oyster larvae for 96 h increased the occurrence of deformities (>70% vs. 20% in control), reduced feeding and swimming ability, and slowed development. Following the recovery period, fewer larvae reached pediveliger stage (2.7% vs. 36% in control) and became spat (1.5% vs. 6.6% in control). The quantity of stressed algae supplied to oyster larvae also influenced overall larval performance, with high feeding rations generally causing greater impairment than low rations. Bacterial profiling using 16S rRNA showed that most bacterial families characterized in larval tissue were also present in larval rearing seawater and in the microalgae feed (98%). The rearing seawater showed the highest bacterial richness compared to the larval and the microalgal compartments, regardless of feeding regime. In larval tissue, bacterial richness was highest in stressed and high-feed treatments, and negatively correlated with larval fitness parameters. These results suggest significant dysbiosis induced by compromised feed and/or increased feed ration. Several bacterial genera (e.g., Halomonas, Marinomonas) were strongly associated with impaired larval performance while the presence of genera in larvae including Vibrio was closely associated with overfeeding. Our research demonstrated that metabarcoding can be effectively used to identify microbiota features associated with larval fitness.
Collapse
Affiliation(s)
- Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| | - Olivier Laroche
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Anne Rolton
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Branwen Trochel
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, The University of Auckland, Warkworth, New Zealand
| | - Nick King
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
48
|
Scanes E, Parker LM, Seymour JR, Siboni N, King WL, Wegner KM, Dove MC, O'Connor WA, Ross PM. Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. FEMS Microbiol Ecol 2021; 97:6311813. [PMID: 34190992 DOI: 10.1093/femsec/fiab099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome; however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for 4 weeks. The haemolymph bacterial microbiome was characterized using 16S rRNA (V3-V4) gene sequencing and varied among oyster lines in the control (ambient pCO2, 24°C) treatment. Microbiomes were also altered by climate change dependent on oyster lines. Bacterial α-diversity increased in response to elevated pCO2 in two selected lines, while bacterial β-diversity was significantly altered by combinations of elevated pCO2 and temperature in four selected lines. Climate change treatments caused shifts in the abundance of multiple amplicon sequence variants driving change in the microbiome of some selected lines. We show that oyster genetic background may influence the Sydney rock oyster haemolymph microbiome under climate change and that future assisted evolution breeding programs to enhance resilience should consider the oyster microbiome.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Laura M Parker
- The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, New South Wales 2052, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - William L King
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - K Mathias Wegner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Wadden Sea Station Sylt, List 25992, Germany
| | - Michael C Dove
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
49
|
Yu M, Wang X, Yan A. Microbial Profiles of Retail Pacific Oysters ( Crassostrea gigas) From Guangdong Province, China. Front Microbiol 2021; 12:689520. [PMID: 34305851 PMCID: PMC8292972 DOI: 10.3389/fmicb.2021.689520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
Oysters are one of the main aquatic products sold in coastal areas worldwide and are popular among consumers because of their delicious taste and nutritional value. However, the microorganisms present in oysters may pose health risks to consumers. In this study, the microbial communities of Pacific oysters (Crassostrea gigas) collected from aquatic product markets in three cities (Guangzhou, Zhuhai, and Jiangmen) of Guangdong Province, China, where raw oysters are popular, were investigated. The plate counts of viable bacteria in oysters collected in the three cities were all approximately 2 log colony-forming units/g. High-throughput sequencing analysis of the V3–V4 region of the 16Sribosomal DNA gene showed a high level of microbial diversity in oysters, as evidenced by both alpha and beta diversity analysis. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla of the microorganisms present in these samples. A variety of pathogenic bacteria, including the fatal foodborne pathogen Vibrio vulnificus, were found, and Vibrio was the dominant genus. Additionally, the relationship between other microbial species and pathogenic microorganisms may be mostly symbiotic in oysters. These data provide insights into the microbial communities of retail oysters in the Guangdong region and indicate a considerable risk related to the consumption of raw oysters.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Aixian Yan
- Department of Food Science, Foshan Polytechnic, Foshan, China
| |
Collapse
|
50
|
Yeh H, Skubel SA, Patel H, Cai Shi D, Bushek D, Chikindas ML. From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption. Probiotics Antimicrob Proteins 2021; 12:351-364. [PMID: 32056150 DOI: 10.1007/s12602-019-09629-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oysters hold a unique place within the field of aquaculture as one of the only organisms that is regularly shipped live to be consumed whole and raw. The microbiota of oysters is capable of adapting to a wide range of environmental conditions within their dynamic estuarine environments; however, human aquaculture practices can challenge the resilience of this microbial community. Several discrete stages in oyster cultivation and market processing can cause disruption to the oyster microbiota, thus increasing the possibility of proliferation by pathogens and spoilage bacteria. These same pressure points offer the opportunity for the application of probiotics to help decrease disease occurrence in stocks, improve product yields, minimize the risk of shellfish poisoning, and increase product shelf life. This review provides a summary of the current knowledge on oyster microbiota, the impact of aquaculture upon this community, and the current status of oyster probiotic development. In response to this biotechnological gap, the authors highlight opportunities of highest potential impact within the aquaculture pipeline and propose a strategy for oyster-specific probiotic candidate development.
Collapse
Affiliation(s)
- Heidi Yeh
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| | - Sarah A Skubel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Harna Patel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Denia Cai Shi
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - David Bushek
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08904, USA.,Don State Technical University, Rostov-on-Don, 344002, Russia
| |
Collapse
|