1
|
Daraghmeh N, Exter K, Pagnier J, Balazy P, Cancio I, Chatzigeorgiou G, Chatzinikolaou E, Chelchowski M, Chrismas NAM, Comtet T, Dailianis T, Deneudt K, Diaz de Cerio O, Digenis M, Gerovasileiou V, González J, Kauppi L, Kristoffersen JB, Kukliński P, Lasota R, Levy L, Małachowicz M, Mavrič B, Mortelmans J, Paredes E, Poćwierz‐Kotus A, Reiss H, Santi I, Sarafidou G, Skouradakis G, Solbakken J, Staehr PAU, Tajadura J, Thyrring J, Troncoso JS, Vernadou E, Viard F, Zafeiropoulos H, Zbawicka M, Pavloudi C, Obst M. A Long-Term Ecological Research Data Set From the Marine Genetic Monitoring Program ARMS-MBON 2018-2020. Mol Ecol Resour 2025; 25:e14073. [PMID: 39887645 PMCID: PMC11969632 DOI: 10.1111/1755-0998.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Molecular methods such as DNA/eDNA metabarcoding have emerged as useful tools to document the biodiversity of complex communities over large spatio-temporal scales. We established an international Marine Biodiversity Observation Network (ARMS-MBON) combining standardised sampling using autonomous reef monitoring structures (ARMS) with metabarcoding for genetic monitoring of marine hard-bottom benthic communities. Here, we present the data of our first sampling campaign comprising 56 ARMS units deployed in 2018-2019 and retrieved in 2018-2020 across 15 observatories along the coasts of Europe and adjacent regions. We describe the open-access data set (image, genetic and metadata) and explore the genetic data to show its potential for marine biodiversity monitoring and ecological research. Our analysis shows that ARMS recovered more than 60 eukaryotic phyla capturing diversity of up to ~5500 amplicon sequence variants and ~1800 operational taxonomic units, and up to ~250 and ~50 species per observatory using the cytochrome c oxidase subunit I (COI) and 18S rRNA marker genes, respectively. Further, ARMS detected threatened, vulnerable and non-indigenous species often targeted in biological monitoring. We show that while deployment duration does not drive diversity estimates, sampling effort and sequencing depth across observatories do. We recommend that ARMS should be deployed for at least 3-6 months during the main growth season to use resources as efficiently as possible and that post-sequencing curation is applied to enable statistical comparison of spatio-temporal entities. We suggest that ARMS should be used in biological monitoring programs and long-term ecological research and encourage the adoption of our ARMS-MBON protocols.
Collapse
Affiliation(s)
- Nauras Daraghmeh
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity Centre (GGBC)University of GothenburgGothenburgSweden
| | - Katrina Exter
- Flanders Marine Institute (VLIZ)OostendeWest‐VlaanderenBelgium
| | - Justine Pagnier
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity Centre (GGBC)University of GothenburgGothenburgSweden
- LifeWatch ERICSevilleSpain
| | - Piotr Balazy
- Institute of OceanologyPolish Academy of Sciences (IOPAN)SopotPoland
| | - Ibon Cancio
- Plentzia Marine Station (PiE‐UPV/EHU)University of the Basque CountryPlentzia‐BizkaiaBasque CountrySpain
| | - Giorgos Chatzigeorgiou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | - Eva Chatzinikolaou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | | | | | - Thierry Comtet
- Sorbonne Université, CNRSStation Biologique de Roscoff, Place Georges TeissierRoscoffFrance
| | - Thanos Dailianis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | - Klaas Deneudt
- Flanders Marine Institute (VLIZ)OostendeWest‐VlaanderenBelgium
| | - Oihane Diaz de Cerio
- Plentzia Marine Station (PiE‐UPV/EHU)University of the Basque CountryPlentzia‐BizkaiaBasque CountrySpain
| | - Markos Digenis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- Department of Environment, Faculty of EnvironmentIonian UniversityZakynthosGreece
| | - Vasilis Gerovasileiou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- Department of Environment, Faculty of EnvironmentIonian UniversityZakynthosGreece
| | - José González
- Centro de Investigación MariñaUniversidade de Vigo, Estación de Ciencias Mariñas de TorallaVigoPontevedraSpain
| | - Laura Kauppi
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | - Piotr Kukliński
- Institute of OceanologyPolish Academy of Sciences (IOPAN)SopotPoland
| | - Rafał Lasota
- Faculty of Oceanography and GeographyUniversity of GdanskGdyniaPoland
| | - Liraz Levy
- The Interuniversity Institute of Marine Sciences in EilatEilatIsrael
| | | | - Borut Mavrič
- National Institute of BiologyMarine Biology Station PiranPiranSlovenia
| | | | - Estefania Paredes
- Centro de Investigación MariñaUniversidade de Vigo, Estación de Ciencias Mariñas de TorallaVigoPontevedraSpain
| | | | - Henning Reiss
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Ioulia Santi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- European Marine Biological Resource Centre (EMBRC‐ERIC)ParisFrance
| | - Georgia Sarafidou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- Institute of Oceanography (IO)Hellenic Centre for Marine Research (HCMR)AnavyssosGreece
| | - Grigorios Skouradakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | | | | | - Javier Tajadura
- Plentzia Marine Station (PiE‐UPV/EHU)University of the Basque CountryPlentzia‐BizkaiaBasque CountrySpain
| | - Jakob Thyrring
- Department of EcoscienceAarhus UniversityRoskilde and AarhusDenmark
| | - Jesus S. Troncoso
- Centro de Investigación MariñaUniversidade de Vigo, Estación de Ciencias Mariñas de TorallaVigoPontevedraSpain
| | - Emmanouela Vernadou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
| | - Frederique Viard
- ISEM, Université de Montpellier, CNRS, EPHE, IRDMontpellier cedex 05France
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- KU Leuven, Department of Microbiology, Immunology and TransplantationRega Institute for Medical Research, Laboratory of Molecular BacteriologyLeuvenBelgium
| | | | - Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC)Hellenic Center for Marine Research (HCMR)Heraklion, CreteGreece
- European Marine Biological Resource Centre (EMBRC‐ERIC)ParisFrance
| | - Matthias Obst
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity Centre (GGBC)University of GothenburgGothenburgSweden
| |
Collapse
|
2
|
Ortiz-Moriano MP, Garcia-Vazquez E, Machado-Schiaffino G. Genes of filter-feeding species as a potential toolkit for monitoring microplastic impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107234. [PMID: 39787666 DOI: 10.1016/j.aquatox.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes -Caspase, HSP70, HSP90, PK, SOD, and VTG- and nine filter-feeding species -two branchiopods, one copepod, five bivalves and one fish- were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.
Collapse
Affiliation(s)
- Marta Pilar Ortiz-Moriano
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain.
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| |
Collapse
|
3
|
Coutts A, Zimmermann D, Davey A, Bowman JP, Ross DJ, Strain EMA. A comparison of visual and molecular methods for inferring biological communities in aquaculture enriched sediments - Impact assessment and cost-benefit analysis. MARINE POLLUTION BULLETIN 2024; 209:117172. [PMID: 39454403 DOI: 10.1016/j.marpolbul.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Nutrients introduced to the environment by finfish aquaculture pose environmental risks, which can be mitigated by robust environmental monitoring. Biological communities in soft sediments are good indicators of aquaculture derived environmental changes. Traditionally, monitoring programs have visually surveyed macrofauna communities. However, DNA metabarcoding is a potentially more efficient alternative. We compared alpha diversity, multivariate dispersion and taxonomic composition of macrofauna communities with metabarcoding derived bacterial and eukaryote communities along an organic enrichment gradient at a salmon farm in Tasmania, Australia. Additionally, we conducted a cost-benefit analysis comparing the approaches. All methods identified indicator taxa that changed in abundance over the enrichment gradient. Macrofauna analysis was the most sensitive method for detecting changes in alpha diversity, while metabarcoding was most sensitive for multivariate dispersion. Taxonomic composition of animal communities derived from the two methods differed drastically. Metabarcoding was cheaper than macrofauna for ≥93 samples and quicker for ≥14 samples.
Collapse
Affiliation(s)
- Alexander Coutts
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| | - Danielle Zimmermann
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Adam Davey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - John P Bowman
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Donald J Ross
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Chang JJM, Ip YCA, Neo WL, Mowe MAD, Jaafar Z, Huang D. Primed and ready: nanopore metabarcoding can now recover highly accurate consensus barcodes that are generally indel-free. BMC Genomics 2024; 25:842. [PMID: 39251911 PMCID: PMC11382387 DOI: 10.1186/s12864-024-10767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.
Collapse
Affiliation(s)
- Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Ave NE, Seattle, Washington, 98105, USA
| | - Wan Lin Neo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Maxine A D Mowe
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| |
Collapse
|
5
|
Hermans S, Gautam A, Lewis GD, Neale M, Buckley HL, Case BS, Lear G. Exploring freshwater stream bacterial communities as indicators of land use intensity. ENVIRONMENTAL MICROBIOME 2024; 19:45. [PMID: 38978138 PMCID: PMC11232138 DOI: 10.1186/s40793-024-00588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Stream ecosystems comprise complex interactions among biological communities and their physicochemical surroundings, contributing to their overall ecological health. Despite this, many monitoring programs ignore changes in the bacterial communities that are the base of food webs in streams, often focusing on stream physicochemical assessments or macroinvertebrate community diversity instead. We used 16S rRNA gene sequencing to assess bacterial community compositions within 600 New Zealand stream biofilm samples from 204 sites within a 6-week period (February-March 2010). Sites were either dominated by indigenous forests, exotic plantation forests, horticulture, or pastoral grasslands in the upstream catchment. We sought to predict each site's catchment land use and environmental conditions based on the composition of the stream bacterial communities. RESULTS Random forest modelling allowed us to use bacterial community composition to predict upstream catchment land use with 65% accuracy; urban sites were correctly assigned 90% of the time. Despite the variation inherent when sampling across a ~ 1000-km distance, bacterial community data could correctly differentiate undisturbed sites, grouped by their dominant environmental properties, with 75% accuracy. The positive correlations between actual values and those predicted by the models built using the stream biofilm bacterial data ranged from weak (average log N concentration in the stream water, R2 = 0.02) to strong (annual mean air temperature, R2 = 0.69). CONCLUSIONS Freshwater bacterial community data provide useful insights into land use impacts on stream ecosystems; they may be used as an additional measure to screen stream catchment attributes.
Collapse
Affiliation(s)
- Syrie Hermans
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Anju Gautam
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - Gillian D Lewis
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - Martin Neale
- Puhoi Stour, 15 Taipari Road, Te Atatu, Auckland, 0610, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Bradley S Case
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand.
| |
Collapse
|
6
|
Fortune J, van de Kamp J, Holmes B, Bodrossy L, Gibb K, Kaestli M. Dynamics of nitrogen genes in intertidal sediments of Darwin Harbour and their connection to N-biogeochemistry. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106500. [PMID: 38626627 DOI: 10.1016/j.marenvres.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Microbial mediated nitrogen (N) transformation is subject to multiple controlling factors such as prevailing physical and chemical conditions, and little is known about these processes in sediments of wet-dry tropical macrotidal systems such as Darwin Harbour in North Australia. To understand key transformations, we assessed the association between the relative abundance of nitrogen cycling genes with trophic status, sediment partition and benthic nitrogen fluxes in Darwin Harbour. We analysed nitrogen cycling gene abundance using a functional gene microarray and quantitative PCRs targeting the denitrification gene (nosZ) and archaeal ammonia oxidation (AOA.1). We found a significant negative correlation between archaeal ammonia oxidation and silicate flux (P = 0.004), an indicator for diatom and benthic microalgal activity. It is suggested that the degradation of the diatomaceous organic matter generates localised anoxic conditions and inhibition of nitrification. Abundance of the nosZ gene was negatively correlated with nutrient load. The lowest nosZ gene levels were in hyper-eutrophic tidal creeks with anoxic conditions and increased levels of sulphide limiting the coupling of nitrification-denitrification (P = 0.016). Significantly higher levels of nosZ genes were measured in the surface (top 2 cm) compared to bulk sediment (top 10 cm) and there was a positive association with di-nitrogen flux (N2) in surface (P = 0.024) but not bulk sediment. This suggests that denitrifiers are most active in surficial sediment at the sediment-water interface. Elevated levels of nosZ genes also occurred in the sediments of tidal creek mouths and mudflats with these depositional zones combining the diffuse and seaward supply of nitrogen and carbon supporting denitrifiers. N-cycle molecular assays using surface sediments show promise as a rapid monitoring technique for impact assessment and measuring ecosystem function. This is particularly pertinent for tropical macrotidal systems where systematic monitoring is sparse and in many cases challenged by climatic extremes and remoteness.
Collapse
Affiliation(s)
- Julia Fortune
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia; Department of Environment, Parks and Water Security, Northern Territory Government, Australia.
| | | | | | | | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
7
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
9
|
Suzzi AL, Huggett MJ, Gaston TF, MacFarlane GR, Alam MR, Gibb J, Stat M. eDNA metabarcoding reveals shifts in sediment eukaryote communities in a metal contaminated estuary. MARINE POLLUTION BULLETIN 2023; 191:114896. [PMID: 37058833 DOI: 10.1016/j.marpolbul.2023.114896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Metal contamination is a global issue impacting biodiversity in urbanised estuaries. Traditional methods to assess biodiversity are time consuming, costly and often exclude small or cryptic organisms due to difficulties with morphological identification. Metabarcoding approaches have been increasingly recognised for their utility in monitoring, however studies have focused on freshwater and marine systems despite the ecological significance of estuaries. We targeted estuarine eukaryote communities within the sediments of Australia's largest urbanised estuary, where a history of industrial activity has resulted in a metal contamination gradient. We identified specific eukaryote families with significant correlations with bioavailable metal concentrations, indicating sensitivity or tolerance to specific metals. While polychaete families Terebellidae and Syllidae demonstrated tolerance to the contamination gradient, members of the meio- and microfaunal communities including diatoms, dinoflagellates and nematodes displayed sensitivities. These may have high value as indicators but are frequently missed in traditional surveys due to sampling limitations.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Jodie Gibb
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW 2258, Australia
| |
Collapse
|
10
|
Neves-Ferreira I, Mello-Fonseca J, Ferreira CEL. Photo-identification shows the spatio-temporal distribution of two sea turtle species in a Brazilian developmental foraging ground. MARINE BIOLOGY 2023; 170:83. [PMID: 37251697 PMCID: PMC10198603 DOI: 10.1007/s00227-023-04226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Sea turtles spend most of their life cycle in foraging grounds. Research in developmental habitats is crucial to understanding individual dynamics and to support conservation strategies. One approach to gather information in foraging grounds is the use of cost-effective and non-invasive techniques that allow public participation. The present study aimed to use photographic-identification (photo-ID) to investigate the spatio-temporal distribution of Chelonia mydas and Eretmochelys imbricata. Furthermore, we describe fibropapillomatosis occurrence. This work was carried out at subtropical rocky reefs of the Brazilian coast in Arraial do Cabo (22°57'S, 42°01'W), within a sustainable conservation unit. A total of 641 images were obtained through social media screening (n = 447), citizen science (n = 168), or intentional capture (n = 26) dated between 2006 and 2021. Additionally, 19 diving forms (between 2019 and 2021) were received from citizen scientists. All diving forms presented at least one turtle. Photo-ID identified 174 individuals of C. mydas, with 45 being resighted, while E. imbricata had 32 individuals, with 7 individuals resighted. The median interval between the first and last individual sighting was 1.7 years for C. mydas and 2.4 years for E. imbricata. Fibropapillomatosis was only observed in C. mydas, with a prevalence of 13.99% (20 of 143 individuals) and regression in 2 individuals (10.00%). Our results indicated that Arraial do Cabo is an important development area with individuals residing for at least 6 years. This study demonstrated that social media, along with photo-ID, can be useful to provide sea turtle estimates in a foraging ground using a non-invasive, low-cost method. Supplementary Information The online version contains supplementary material available at 10.1007/s00227-023-04226-z.
Collapse
Affiliation(s)
- Isabella Neves-Ferreira
- Reef System Ecology and Conservation Lab, Department of Marine Biology, Universidade Federal Fluminense, Niterói, RJ Brazil
| | - Juliana Mello-Fonseca
- Reef System Ecology and Conservation Lab, Department of Marine Biology, Universidade Federal Fluminense, Niterói, RJ Brazil
| | - Carlos E. L. Ferreira
- Reef System Ecology and Conservation Lab, Department of Marine Biology, Universidade Federal Fluminense, Niterói, RJ Brazil
| |
Collapse
|
11
|
Meyer R, Davies N, Pitz KJ, Meyer C, Samuel R, Anderson J, Appeltans W, Barker K, Chavez FP, Duffy JE, Goodwin KD, Hudson M, Hunter ME, Karstensen J, Laney CM, Leinen M, Mabee P, Macklin JA, Muller-Karger F, Pade N, Pearlman J, Phillips L, Provoost P, Santi I, Schigel D, Schriml LM, Soccodato A, Suominen S, Thibault KM, Ung V, van de Kamp J, Wallis E, Walls R, Buttigieg PL. The founding charter of the Omic Biodiversity Observation Network (Omic BON). Gigascience 2022; 12:giad068. [PMID: 37632753 PMCID: PMC10460158 DOI: 10.1093/gigascience/giad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.
Collapse
Affiliation(s)
- Raïssa Meyer
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Faculty of Geosciences, University of Bremen, Bremen 28359, Germany
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Neil Davies
- Gump South Pacific Research Station, University of California Berkeley, Moorea 98728, French Polynesia
- Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA
| | - Kathleen J Pitz
- Science Department, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Chris Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Robyn Samuel
- School of Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, UK
- Ocean Technology and Engineering Group, National Oceanography Center, Southampton SO14 3ZH, UK
| | - Jane Anderson
- Department of Anthropology, New York University, New York City, NY 10012, USA
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Ocean Biodiversity Information System, Oostende 8400, Begium
| | - Katharine Barker
- Global Genome Biodiversity Network Secretariat Office, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Francisco P Chavez
- Science Department, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Kelly D Goodwin
- National Oceanic & Atmospheric Administration, NOAA Ocean Exploration, La Jolla, CA 92037, USA
| | - Maui Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton 3240, New Zealand
| | - Margaret E Hunter
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL 32653, USA
| | - Johannes Karstensen
- Department of Physical Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany
| | - Christine M Laney
- Science department, National Ecological Observatory Network, Boulder, CO 80301, USA
| | - Margaret Leinen
- Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Paula Mabee
- Observatory Leadership department, National Ecological Observatory Network, Boulder, CO 80301, USA
| | - James A Macklin
- Botany and Biodiversity Informatics, Agriculture and Agri-Food Canada (AAFC), Ottawa, Ontario K1A 0C6, Canada
| | - Frank Muller-Karger
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Nicolas Pade
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris 75252, France
| | | | - Lori Phillips
- Agriculture and Agri-Food Canada (AAFC), Harrow N0R 1G0, Ontario, Canada
| | - Pieter Provoost
- Intergovernmental Oceanographic Commission of UNESCO, Ocean Biodiversity Information System, Oostende 8400, Begium
| | - Ioulia Santi
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris 75252, France
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion GR71003, Greece
| | - Dmitry Schigel
- GBIF | Global Biodiversity Information Facility, Copenhagen DK-2100, Denmark
| | - Lynn M Schriml
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alice Soccodato
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris 75252, France
| | - Saara Suominen
- Intergovernmental Oceanographic Commission of UNESCO, Ocean Biodiversity Information System, Oostende 8400, Begium
| | - Katherine M Thibault
- Science department, National Ecological Observatory Network, Boulder, CO 80301, USA
| | | | | | | | - Ramona Walls
- Data Science department, Critical Path Institute, Tucson, AZ 85718, USA
| | - Pier Luigi Buttigieg
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Information, Data and Computer Center, Helmholtz Metadata Collaboration/GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany
| |
Collapse
|
12
|
Qiao L, Fan S, Ren C, Gui F, Li T, Zhao A, Yan Z. Total and active benthic foraminiferal community and their response to heavy metals revealed by high throughput DNA and RNA sequencing in the Zhejiang coastal waters, East China Sea. MARINE POLLUTION BULLETIN 2022; 184:114225. [PMID: 36307953 DOI: 10.1016/j.marpolbul.2022.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Benthic foraminifera, large protists abundant in marine environments, have been widely used as bioindicators of environmental conditions. In this study, high-throughput sequencing based on small subunit rDNA and rRNA amplifications was used to investigate total and active benthic foraminifera community composition and diversity from nineteen and twelve superficial marine sediment samples in the Zhejiang coastal waters, respectively. The results showed that the dominant taxa of total foraminifera changed from Buliminellidae (hyaline) to Saccamminidae (agglutinated) from north to south along the coastal waters of Zhejiang Province. According to our survey, heavy metal contamination was moderate in Zhejiang coastal waters, and the potential ecological risks posed by Cd and Hg were higher. The contamination level of heavy metals at Yueqing Bay was the highest, followed by those at Sanmen Bay and Hangzhou Bay. Cd, Cu and grain size may be key factors affecting the distribution and composition of active foraminiferal communities.
Collapse
Affiliation(s)
- Ling Qiao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Songyao Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Chengzhe Ren
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Feng Gui
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Anran Zhao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; School of Fishery, Zhejiang Ocean University, Zhoushan 316004, China
| | - Zezheng Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| |
Collapse
|
13
|
Muñoz-Abril L, Torres MDL, Valle CA, Rubianes-Landázuri F, Galván-Magaña F, Canty SWJ, Terán MA, Brandt M, Chaves JA, Grewe PM. Lack of genetic differentiation in yellowfin tuna has conservation implications in the Eastern Pacific Ocean. PLoS One 2022; 17:e0272713. [PMID: 36040879 PMCID: PMC9426925 DOI: 10.1371/journal.pone.0272713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Yellowfin tuna, Thunnus albacares, is an important global fishery and of particular importance in the Eastern Pacific Ocean (EPO). According to the 2019 Inter-American Tropical Tuna Commission (IATTC) assessment, yellowfin tuna within the EPO is a single stock, and is being managed as one stock. However, previous studies indicate site fidelity, or limited home ranges, of yellowfin tuna which suggests the potential for multiple yellowfin tuna stocks within the EPO, which was supported by a population genetic study using microsatellites. If numerous stocks are present, management at the wrong spatial scales could cause the loss of minor yellowfin tuna populations in the EPO. In this study we used double digestion RADseq to assess the genetic structure of yellowfin tuna in the EPO. A total of 164 yellowfin tuna from Cabo San Lucas, México, and the Galápagos Islands and Santa Elena, Ecuador, were analysed using 18,011 single nucleotide polymorphisms. Limited genetic differentiation (FST = 0.00058–0.00328) observed among the sampling locations (México, Ecuador, Peru, and within Ecuador) is consistent with presence of a single yellowfin tuna population within the EPO. Our findings are consistent with the IATTC assessment and provide further evidence of the need for transboundary cooperation for the successful management of this important fishery throughout the EPO.
Collapse
Affiliation(s)
- Laia Muñoz-Abril
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
- Department of Marine Sciences, University of South Alabama, USA Drive North, Mobile, Alabama, United States of America
- * E-mail:
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
| | - Carlos A. Valle
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
| | - Francisco Rubianes-Landázuri
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, México
| | - Steven W. J. Canty
- Smithsonian Marine Station Fort Pierce, Fort Pierce, Florida, United States of America
- Working Land and Seascapes, Smithsonian Institution, Washington, DC, United States of America
| | - Martin A. Terán
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
| | - Margarita Brandt
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
| | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Diego de Robles y Pampite, Quito, Ecuador
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Peter M. Grewe
- CSIRO Oceans & Atmosphere, Castray Esplanade, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Kim T, Lee C, Lee J, Bae H, Noh J, Hong S, Kwon BO, Kim JJ, Yim UH, Chang GS, Giesy JP, Khim JS. Best available technique for the recovery of marine benthic communities in a gravel shore after the oil spill: A mesocosm-based sediment triad assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128945. [PMID: 35500340 DOI: 10.1016/j.jhazmat.2022.128945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Ecotoxicological effects of spilled oils are well documented, but study of recovery of marine benthic communities is limited. Long-term recovery of hard bottom communities during physical and biological remediations after a spill was monitored. A 60-day experiment was conducted using a mesocosm with monitoring of eight endpoints by use of the sediment quality triad (SQT). First, physical treatment of hot water + high pressure flushing maximally removed residual oils (max=93%), showing the greatest recovery among SQT variables (mean=72%). Physical cleanup generally involved adverse effects such as depression of the microphytobenthic community during the initial period. Next, biological treatments, such as fertilizer, emulsifier, enzyme and augmentation of the microbes, all facilitated removal of oil (max=66%) enhancing ecological recovery. Analysis of the microbiome confirmed that oil-degrading bacteria, such as Dietzia sp. and Rosevarius sp. were present. A mixed bioremediation, including fertilizer + multi-enzyme + microbes (FMeM) maximized efficacy of remediation as indicated by SQT parameters (mean=47%). Natural attenuation with "no treatment" showed comparable recovery to other remediations. Considering economic availability, environmental performance, and technical applicability, of currently available techniques, combined treatments of physical removal via hand wiping followed by FMeM could be most effective for recovery of the rocky shore benthic community.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanna Bae
- GeoSystem Research Corporation, Gunpo 15807, Republic of Korea
| | - Junsung Noh
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N5E2, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan,Saskatoon, SK S7N5B3, Canada; Environmental Sciences Department, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Liggins L, Arranz V, Braid HE, Carmelet-Rescan D, Elleouet J, Egorova E, Gemmell MR, Hills SFK, Holland LP, Koot EM, Lischka A, Maxwell KH, McCartney LJ, Nguyen HTT, Noble C, Olmedo Rojas P, Parvizi E, Pearman WS, Sweatman JAN, Kaihoro TR, Walton K, Aguirre JD, Stewart LC. The future of molecular ecology in Aotearoa New Zealand: an early career perspective. J R Soc N Z 2022. [DOI: 10.1080/03036758.2022.2097709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Libby Liggins
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Vanessa Arranz
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Heather E. Braid
- AUT Lab for Cephalopod Ecology and Systematics, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Ekaterina Egorova
- Massey Geoinformatics Collaboratory, School of Mathematical and Computational Sciences, Auckland, New Zealand
| | - Michael R. Gemmell
- Plant Health and Environment Lab, Ministry for Primary Industries, Auckland, New Zealand
| | - Simon F. K. Hills
- Ngāti Porou
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Emily M. Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, New Zealand
| | - Alexandra Lischka
- AUT Lab for Cephalopod Ecology and Systematics, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kimberley H. Maxwell
- Ngāti Porou
- Te Whakatōhea, Te Whānau-a-Apanui, Ngāitai, Ngāti Tūwharetoa
- Te Kōtahi Research Institute, Faculty of Māori and Indigenous Studies, University of Waikato, Hamilton, New Zealand
| | | | - Hang T. T. Nguyen
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Vietnam
| | - Cory Noble
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Elahe Parvizi
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | - Kerry Walton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - J. David Aguirre
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | |
Collapse
|
16
|
Núñez-Acuña G, Fernandez C, Sanhueza-Guevara S, Gallardo-Escárate C. Transcriptome profiling of the early developmental stages in the giant mussel Choromytilus chorus exposed to delousing drugs. Mar Genomics 2022; 65:100970. [PMID: 35839704 DOI: 10.1016/j.margen.2022.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Camila Fernandez
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-Mer, France; COPAS COASTAL Center, University of Concepción, Concepción, Chile
| | - Sandra Sanhueza-Guevara
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-Mer, France; COPAS COASTAL Center, University of Concepción, Concepción, Chile
| | | |
Collapse
|
17
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
18
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
19
|
Zhu M, Li Y, Zhang W, Wang L, Wang H, Niu L, Hui C, Lei M, Wang L, Zhang H, Yang G. Determination of the direct and indirect effects of bend on the urban river ecological heterogeneity. ENVIRONMENTAL RESEARCH 2022; 207:112166. [PMID: 34619129 DOI: 10.1016/j.envres.2021.112166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The ecological heterogeneity created by river bends benefits the diversity of microorganisms, which is vital for the pollutant degradation and overall river health. However, quantitative tools capable of determining the interactions among different trophic levels and species are lacking, and research regarding ecological heterogeneity has been limited to a few species. By integrating the multi-species-based index of biotic integrity (Mt-IBI) and the structure equation model (SEM), an interactions-based prediction modeling framework was established. Based on DNA metabarcoding, a multi-species (i.e., bacteria, protozoans, and metazoans) based index of biotic integrity including 309 candidate metrics was developed. After a three-step screening process, eight core metrics were obtained to assess the ecological heterogeneity, quantitatively. The Mt-IBI value, which ranged from 2.08 to 7.17, was calculated as the sum of each single core metric value. The Mt-IBI revealed that the ecological heterogeneity of concave banks was higher than other sites. According to the result of the SEM, D90 was the controlling factor (r = -0.779) of the ecological heterogeneity under the influence of the river bends. The bend-induced redistribution of sediment particle further influenced the concentrations of carbon, nitrogen, and sulphur. The nitrogen group (r = 0.668) also played an essential role in determining the ecological heterogeneity, follow by carbon group (r = 0.455). Furthermore, the alteration of niches would make a difference on the ecological heterogeneity. This multi-species interactions-based prediction modeling framework proposed a novel method to quantify ecological heterogeneity and provided insight into the enhancement of ecological heterogeneity in river bends.
Collapse
Affiliation(s)
- Mengjie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Linqiong Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Mengting Lei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
20
|
Govender A, Singh S, Groeneveld J, Pillay S, Willows-Munro S. Experimental validation of taxon-specific mini-barcode primers for metabarcoding of zooplankton. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02469. [PMID: 34626511 DOI: 10.1002/eap.2469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Metabarcoding to determine the species composition and diversity of marine zooplankton communities is a fast-developing field in which the standardization of methods is yet to be fully achieved. The selection of genetic markers and primer choice are particularly important because they substantially influence species detection rates and accuracy. Validation is therefore an important step in the design of metabarcoding protocols. We developed taxon-specific mini-barcode primers for the cytochrome c oxidase subunit I (COI) gene region and used an experimental approach to test species detection rates and primer accuracy of the newly designed primers for prawns, shrimps and crabs and published primers for marine lobsters and fish. Artificially assembled mock communities (with known species ratios) and unsorted coastal tow-net zooplankton samples were sequenced and the detected species were compared with those seeded in mock communities to test detection rates. Taxon-specific primers increased detection rates of target taxa compared with a universal primer set. Primer cocktails (multiple primer sets) significantly increased species detection rates compared with single primer pairs and could detect up to 100% of underrepresented target taxa in mock communities. Taxon-specific primers recovered fewer false-positive or false-negative results than the universal primer. The methods used to design taxon-specific mini-barcodes and the experimental mock community validation protocols shown here can easily be applied to studies on other groups and will allow for a level of standardization among studies undertaken in different ecosystems or geographic locations.
Collapse
Affiliation(s)
- Ashrenee Govender
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, KwaZulu-Natal, 3201, South Africa
- Oceanographic Research Institute, King Shaka Avenue, Point, Durban, KwaZulu-Natal, 4001, South Africa
| | - Sohana Singh
- Oceanographic Research Institute, King Shaka Avenue, Point, Durban, KwaZulu-Natal, 4001, South Africa
| | - Johan Groeneveld
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, KwaZulu-Natal, 3201, South Africa
- Oceanographic Research Institute, King Shaka Avenue, Point, Durban, KwaZulu-Natal, 4001, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Umbilo Rd, Durban, KwaZulu-Natal, 4001, South Africa
| | - Sandi Willows-Munro
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, KwaZulu-Natal, 3201, South Africa
| |
Collapse
|
21
|
Waterhouse RM, Adam-Blondon AF, Agosti D, Baldrian P, Balech B, Corre E, Davey RP, Lantz H, Pesole G, Quast C, Glöckner FO, Raes N, Sandionigi A, Santamaria M, Addink W, Vohradsky J, Nunes-Jorge A, Willassen NP, Lanfear J. Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR. F1000Res 2021; 10:ELIXIR-1238. [PMID: 35999898 PMCID: PMC9360911 DOI: 10.12688/f1000research.73825.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity.
Collapse
Affiliation(s)
- Robert M. Waterhouse
- Department of Ecology and Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Vaud, 1015, Switzerland
| | | | | | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha, 142 20, Czech Republic
| | - Bachir Balech
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Erwan Corre
- CNRS/Sorbonne Université, Station Biologique de Roscoff, Roscoff, 29680, France
| | | | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology/NBIS, Uppsala University, Uppsala, Sweden
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
- Department of Biosciences. Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Bari, 70126, Italy
| | - Christian Quast
- Life Sciences & Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Frank Oliver Glöckner
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremerhaven, 27570, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Bremerhaven, 27570, Germany
| | - Niels Raes
- NLBIF - Netherlands Biodiversity Information Facility, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | | | - Monica Santamaria
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Wouter Addink
- DiSSCo - Distributed System of Scientific Collections, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | - Jiri Vohradsky
- Laboratory of Bioinformatics, Institute of Microbiology, Prague, 142 20, Czech Republic
| | | | | | - Jerry Lanfear
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| |
Collapse
|
22
|
Waterhouse RM, Adam-Blondon AF, Agosti D, Baldrian P, Balech B, Corre E, Davey RP, Lantz H, Pesole G, Quast C, Glöckner FO, Raes N, Sandionigi A, Santamaria M, Addink W, Vohradsky J, Nunes-Jorge A, Willassen NP, Lanfear J. Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR. F1000Res 2021; 10:ELIXIR-1238. [PMID: 35999898 PMCID: PMC9360911 DOI: 10.12688/f1000research.73825.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 09/03/2024] Open
Abstract
Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity.
Collapse
Affiliation(s)
- Robert M. Waterhouse
- Department of Ecology and Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Vaud, 1015, Switzerland
| | | | | | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha, 142 20, Czech Republic
| | - Bachir Balech
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Erwan Corre
- CNRS/Sorbonne Université, Station Biologique de Roscoff, Roscoff, 29680, France
| | | | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology/NBIS, Uppsala University, Uppsala, Sweden
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
- Department of Biosciences. Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Bari, 70126, Italy
| | - Christian Quast
- Life Sciences & Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Frank Oliver Glöckner
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremerhaven, 27570, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Bremerhaven, 27570, Germany
| | - Niels Raes
- NLBIF - Netherlands Biodiversity Information Facility, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | | | - Monica Santamaria
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Wouter Addink
- DiSSCo - Distributed System of Scientific Collections, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | - Jiri Vohradsky
- Laboratory of Bioinformatics, Institute of Microbiology, Prague, 142 20, Czech Republic
| | | | | | - Jerry Lanfear
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| |
Collapse
|
23
|
Gene Expression Profiles in Two Razor Clam Populations: Discerning Drivers of Population Status. Life (Basel) 2021; 11:life11121288. [PMID: 34947819 PMCID: PMC8706173 DOI: 10.3390/life11121288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
With rapidly changing marine ecosystems, shifts in abundance and distribution are being documented for a variety of intertidal species. We examined two adjacent populations of Pacific razor clams (Siliqua patula) in lower Cook Inlet, Alaska. One population (east) supported a sport and personal use fishery, but this has been closed since 2015 due to declines in abundance, and the second population (west) continues to support commercial and sport fisheries. We used gene expression to investigate potential causes of the east side decline, comparing razor clam physiological responses between east and west Cook Inlet. The target gene profile used was developed for razor clam populations in Alaska based on physiological responses to environmental stressors. In this study, we identified no differences of gene expression between east and west populations, leading to two potential conclusions: (1) differences in factors capable of influencing physiology exist between the east and west and are sufficient to influence razor clam populations but are not detected by the genes in our panel, or (2) physiological processes do not account for the differences in abundance, and other factors such as predation or changes in habitat may be impacting the east Cook Inlet population.
Collapse
|
24
|
Birrer SC, Wemheuer F, Dafforn KA, Gribben PE, Steinberg PD, Simpson SL, Potts J, Scanes P, Doblin MA, Johnston EL. Legacy Metal Contaminants and Excess Nutrients in Low Flow Estuarine Embayments Alter Composition and Function of Benthic Bacterial Communities. Front Microbiol 2021; 12:661177. [PMID: 34690940 PMCID: PMC8531495 DOI: 10.3389/fmicb.2021.661177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Coastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing. Sediment samples were collected monthly during the Austral summer-autumn 2014 at increasing distance from a large storm drain in each channel and embayment. Bacterial communities differed significantly between sites that varied in proximity to storm drains, with a gradient of change apparent for sites within embayments. We explored this pattern for embayment sites with analysis of RNA-Seq gene expression patterns and found higher expression of multiple genes involved in bacterial stress response far from storm drains, suggesting that bacterial communities close to storm drains may be more tolerant of localised anthropogenic stressors. Several bacterial groups also differed close to and far from storm drains, suggesting their potential utility as bioindicators to monitor contaminants in estuarine sediments. Overall, our study provides useful insights into changes in the composition and functioning of benthic bacterial communities as a result of multiple anthropogenic stressors in differing hydrological conditions.
Collapse
Affiliation(s)
- Simone C. Birrer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Franziska Wemheuer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Katherine A. Dafforn
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Paul E. Gribben
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Peter D. Steinberg
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Stuart L. Simpson
- CSIRO Land and Water, Centre for Environmental Contaminants Research, Canberra, ACT, Australia
| | - Jaimie Potts
- Coastal Waters Unit, Science Division, NSW Department of Planning, Industry and Environment, Sydney, NSW, Australia
| | - Peter Scanes
- Coastal Waters Unit, Science Division, NSW Department of Planning, Industry and Environment, Sydney, NSW, Australia
| | - Martina A. Doblin
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| | - Emma L. Johnston
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| |
Collapse
|
25
|
Balasubramanian VK, Joseph Maran MI, Ramteke D, Vijaykumar DS, Kottarathail Rajendran A, Ramachandran P, Ramachandran R. Environmental DNA reveals aquatic biodiversity of an urban backwater area, southeast coast of India. MARINE POLLUTION BULLETIN 2021; 171:112786. [PMID: 34371435 DOI: 10.1016/j.marpolbul.2021.112786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Strong conservation management needs comprehensive data on biodiversity. Rapid methods that document aquatic biodiversity or assess the health condition of an ecosystem remain scarce. Herein, we have performed a metagenomics study on environmental DNA (eDNA) collected from an urban backwater area - Muttukadu, located in the southeast coast of India. Shotgun metagenomics approach using Illumina®NextSeq500 sequencing yielded 88.4 million raw reads. The processed data was assigned as 80% prokaryotes, 0.4% eukaryotes, ~2% viruses, and ~17% remain unknown. This approach has the potential to identify small micro-eukaryote, unseen species from both estuarine and marine environments. We have identified 156 eukaryote organisms represented from 21 phyla and 112 families, including those that are of conservational significance and ecological importance. Furthermore, our data also demonstrated the presence of pathogenic microorganisms due to sewage mixing with the backwaters. Given its sensitivity, we suggest this approach for an initial assessment of biodiversity structure in an ecosystem for the biomonitoring program.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Midhuna Immaculate Joseph Maran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Darwin Ramteke
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Deepak Samuel Vijaykumar
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India.
| | - Abhilash Kottarathail Rajendran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Purvaja Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Ramesh Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| |
Collapse
|
26
|
Rajeev M, Sushmitha TJ, Aravindraja C, Toleti SR, Pandian SK. Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem. Sci Rep 2021; 11:17341. [PMID: 34462511 PMCID: PMC8405676 DOI: 10.1038/s41598-021-96969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023] Open
Abstract
Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the influence of warming on marine microorganisms, surface seawater were sampled consecutively for one year (September-2016 to August-2017) from the control (unimpacted) and thermal discharge-impacted areas of a coastal power plant, located in India. The bacterioplankton community differences between control (n = 16) and thermal discharge-impacted (n = 26) areas, as investigated using 16S rRNA gene tag sequencing revealed reduced richness and varied community composition at thermal discharge-impacted areas. The relative proportion of Proteobacteria was found to be higher (average ~ 15%) while, Bacteroidetes was lower (average ~ 10%) at thermal discharge-impacted areas. Intriguingly, thermal discharge-impacted areas were overrepresented by several potential pathogenic bacterial genera (e.g. Pseudomonas, Acinetobacter, Sulfitobacter, Vibrio) and other native marine genera (e.g. Marinobacter, Pseudoalteromonas, Alteromonas, Pseudidiomarina, Halomonas). Further, co-occurrence networks demonstrated that complexity and connectivity of networks were altered in warming condition. Altogether, results indicated that increasing temperature has a profound impact on marine bacterioplankton richness, community composition, and inter-species interactions. Our findings are immensely important in forecasting the consequences of future climate changes especially, ocean warming on marine microbiota.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603 102, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
27
|
Malashenkov DV, Dashkova V, Zhakupova K, Vorobjev IA, Barteneva NS. Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches. Sci Rep 2021; 11:16130. [PMID: 34373491 PMCID: PMC8352915 DOI: 10.1038/s41598-021-95223-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
We analyzed phytoplankton assemblages' variations in oligo-mesotrophic Shchuchie and Burabay lakes using traditional morphological and next-generation sequencing (NGS) approaches. The total phytoplankton biodiversity and abundance estimated by both microscopy and NGS were significantly higher in Lake Burabay than in Lake Shchuchie. NGS of 16S and 18S rRNA amplicons adequately identify phytoplankton taxa only on the genera level, while species composition obtained by microscopic examination was significantly larger. The limitations of NGS analysis could be related to insufficient coverage of freshwater lakes phytoplankton by existing databases, short algal sequences available from current instrumentation, and high homology of chloroplast genes in eukaryotic cells. However, utilization of NGS, together with microscopy allowed us to perform a complete taxonomic characterization of phytoplankton lake communities including picocyanobacteria, often overlooked by traditional microscopy. We demonstrate the high potential of an integrated morphological and molecular approach in understanding the processes of organization in aquatic ecosystem assemblages.
Collapse
Affiliation(s)
- Dmitry V. Malashenkov
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.14476.300000 0001 2342 9668Present Address: Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Veronika Dashkova
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kymbat Zhakupova
- grid.428191.70000 0004 0495 7803Core Facilities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ivan A. Vorobjev
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Natasha S. Barteneva
- grid.428191.70000 0004 0495 7803National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan ,grid.428191.70000 0004 0495 7803EREC, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
28
|
Johnson MD, Scott JJ, Leray M, Lucey N, Bravo LMR, Wied WL, Altieri AH. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nat Commun 2021; 12:4522. [PMID: 34312399 PMCID: PMC8313580 DOI: 10.1038/s41467-021-24777-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.
Collapse
Affiliation(s)
- Maggie D Johnson
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Institution, Edgewater, MD, USA.
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Noelle Lucey
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Lucia M Rodriguez Bravo
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - William L Wied
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Biological Sciences, Center for Coastal Oceans Research, Florida International University, Miami, FL, USA
| | - Andrew H Altieri
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Wambua S, Gourlé H, de Villiers EP, Karlsson-Lindsjö O, Wambiji N, Macdonald A, Bongcam-Rudloff E, de Villiers S. Cross-Sectional Variations in Structure and Function of Coral Reef Microbiome With Local Anthropogenic Impacts on the Kenyan Coast of the Indian Ocean. Front Microbiol 2021; 12:673128. [PMID: 34248882 PMCID: PMC8260691 DOI: 10.3389/fmicb.2021.673128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Coral reefs face an increased number of environmental threats from anthropomorphic climate change and pollution from agriculture, industries and sewage. Because environmental changes lead to their compositional and functional shifts, coral reef microbial communities can serve as indicators of ecosystem impacts through development of rapid and inexpensive molecular monitoring tools. Little is known about coral reef microbial communities of the Western Indian Ocean (WIO). We compared taxonomic and functional diversity of microbial communities inhabiting near-coral seawater and sediments from Kenyan reefs exposed to varying impacts of human activities. Over 19,000 species (bacterial, viral and archaeal combined) and 4,500 clusters of orthologous groups of proteins (COGs) were annotated. The coral reefs showed variations in the relative abundances of ecologically significant taxa, especially copiotrophic bacteria and coliphages, corresponding to the magnitude of the neighboring human impacts in the respective sites. Furthermore, the near-coral seawater and sediment metagenomes had an overrepresentation of COGs for functions related to adaptation to diverse environments. Malindi and Mombasa marine parks, the coral reef sites closest to densely populated settlements were significantly enriched with genes for functions suggestive of mitigation of environment perturbations including the capacity to reduce intracellular levels of environmental contaminants and repair of DNA damage. Our study is the first metagenomic assessment of WIO coral reef microbial diversity which provides a much-needed baseline for the region, and points to a potential area for future research toward establishing indicators of environmental perturbations.
Collapse
Affiliation(s)
- Sammy Wambua
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Hadrien Gourlé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Etienne P de Villiers
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oskar Karlsson-Lindsjö
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nina Wambiji
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Angus Macdonald
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Santie de Villiers
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
30
|
Characterizing Industrial and Artisanal Fishing Vessel Catch Composition Using Environmental DNA and Satellite-Based Tracking Data. Foods 2021; 10:foods10061425. [PMID: 34205462 PMCID: PMC8235475 DOI: 10.3390/foods10061425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023] Open
Abstract
The decline in wild-caught fisheries paired with increasing global seafood demand is pushing the need for seafood sustainability to the forefront of national and regional priorities. Validation of species identity is a crucial early step, yet conventional monitoring and surveillance tools are limited in their effectiveness because they are extremely time-consuming and require expertise in fish identification. DNA barcoding methods are a versatile tool for the genetic monitoring of wildlife products; however, they are also limited by requiring individual tissue samples from target specimens which may not always be possible given the speed and scale of seafood operations. To circumvent the need to individually sample organisms, we pilot an approach that uses forensic environmental DNA (eDNA) metabarcoding to profile fish species composition from the meltwater in fish holds on industrial and artisanal fishing vessels in Ecuador. Fish identified genetically as present were compared to target species reported by each vessel’s crew. Additionally, we contrasted the geographic range of identified species against the satellite-based fishing route data of industrial vessels to determine if identified species could be reasonably expected in the catch.
Collapse
|
31
|
Noh ES, Lee MN, Kim EM, Nam BH, Noh JK, Park JY, Kim KH, Kang JH. Discrimination of raw material species in mixed seafood products (surimi) using the next generation sequencing method. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Laroche O, Pochon X, Wood SA, Keeley N. Beyond taxonomy: Validating functional inference approaches in the context of fish-farm impact assessments. Mol Ecol Resour 2021; 21:2264-2277. [PMID: 33971078 DOI: 10.1111/1755-0998.13426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
Characterization of microbial assemblages via environmental DNA metabarcoding is increasingly being used in routine monitoring programs due to its sensitivity and cost-effectiveness. Several programs have recently been developed which infer functional profiles from 16S rRNA gene data using hidden-state prediction (HSP) algorithms. These might offer an economic and scalable alternative to shotgun metagenomics. To date, HSP-based methods have seen limited use for benthic marine surveys and their performance in these environments remains unevaluated. In this study, 16S rRNA metabarcoding was applied to sediment samples collected at 0 and ≥1,200 m from Norwegian salmon farms, and three metabolic inference approaches (Paprica, Picrust2 and Tax4Fun2) evaluated against metagenomics and environmental data. While metabarcoding and metagenomics recovered a comparable functional diversity, the taxonomic composition differed between approaches, with genera richness up to 20× higher for metabarcoding. Comparisons between the sensitivity (highest true positive rates) and specificity (lowest true negative rates) of HSP-based programs in detecting functions found in metagenomic data ranged from 0.52 and 0.60 to 0.76 and 0.79, respectively. However, little correlation was observed between the relative abundance of their specific functions. Functional beta-diversity of HSP-based data was strongly associated with that of metagenomics (r ≥ 0.86 for Paprica and Tax4Fun2) and responded similarly to the impact of fish farm activities. Our results demonstrate that although HSP-based metabarcoding approaches provide a slightly different functional profile than metagenomics, partly due to recovering a distinct community, they represent a cost-effective and valuable tool for characterizing and assessing the effects of fish farming on benthic ecosystems.
Collapse
Affiliation(s)
- Olivier Laroche
- Institute of Marine Research, Tromsø, Norway.,Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Nigel Keeley
- Institute of Marine Research, Tromsø, Norway.,Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
33
|
Madueño L, Starevich VA, Agnello AC, Coppotelli BM, Laprida C, Vidal NC, Di Marco P, Oneto ME, Del Panno MT, Morelli IS. Assessment of Biological Contribution to Natural Recovery of Anthropized Freshwater Sediments From Argentina: Autochthonous Microbiome Structure and Functional Prediction. Front Microbiol 2021; 12:601705. [PMID: 33897628 PMCID: PMC8059475 DOI: 10.3389/fmicb.2021.601705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Monitored natural recovery (MNR) is an in situ technique of conventional remediation for the treatment of contaminated sediments that relies on natural processes to reduce the bioavailability or toxicity of contaminants. Metabarcoding and bioinformatics approaches to infer functional prediction were applied in bottom sediments of a tributary drainage channel of Río de La Plata estuary, in order to assess the biological contribution to MNR. Hydrocarbon concentration in water samples and surface sediments was below the detection limit. Surface sediments were represented with high available phosphorous, alkaline pH, and the bacterial classes Anaerolineae, Planctomycetia, and Deltaproteobacteria. The functional prediction in surface sediments showed an increase of metabolic activity, carbon fixation, methanogenesis, and synergistic relationships between Archaeas, Syntrophobacterales, and Desulfobacterales. The prediction in non-surface sediments suggested the capacity to respond to different kinds of environmental stresses (oxidative, osmotic, heat, acid pH, and heavy metals), predicted mostly in Lactobacillales order, and the capacity of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinomyces classes to degrade xenobiotic compounds. Canonical correspondence analysis (CCA) suggests that depth, phosphate content, redox potential, and pH were the variables that structured the bacterial community and not the hydrocarbons. The characterization of sediments by metabarcoding and functional prediction approaches, allowed to assess how the microbial activity would contribute to the recovery of the site.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Laprida
- Instituto de Estudios Andinos, CONICET/UBA, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
34
|
Hosseini H, Saadaoui I, Moheimani N, Al Saidi M, Al Jamali F, Al Jabri H, Hamadou RB. Marine health of the Arabian Gulf: Drivers of pollution and assessment approaches focusing on desalination activities. MARINE POLLUTION BULLETIN 2021; 164:112085. [PMID: 33549923 DOI: 10.1016/j.marpolbul.2021.112085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/06/2023]
Abstract
The Arabian Gulf is one of the most adversely affected marine environments worldwide, which results from combined pollution drivers including climate change, oil and gas activities, and coastal anthropogenic disturbances. Desalination activities are one of the major marine pollution drivers regionally and internationally. Arabian Gulf countries represent a hotspot of desalination activities as they are responsible for nearly 50% of the global desalination capacity. Building desalination plants, up-taking seawater, and discharging untreated brine back into the sea adversely affects the biodiversity of the marine ecosystems. The present review attempted to reveal the potential negative effects of desalination plants on the Gulf's marine environments. We emphasised different conventional and innovative assessment tools used to assess the health of marine environments and evaluate the damage exerted by desalination activity in the Gulf. Finally, we suggested effective management approaches to tackle the issue including the significance of national regulations and regional cooperation.
Collapse
Affiliation(s)
- Hoda Hosseini
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Navid Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Mohammad Al Saidi
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Fahad Al Jamali
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Hareb Al Jabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | | |
Collapse
|
35
|
He X, Gilmore SR, Sutherland TF, Hajibabaei M, Miller KM, Westfall KM, Pawlowski J, Abbott CL. Biotic signals associated with benthic impacts of salmon farms from eDNA metabarcoding of sediments. Mol Ecol 2021; 30:3158-3174. [PMID: 33481325 DOI: 10.1111/mec.15814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/06/2020] [Accepted: 01/15/2021] [Indexed: 01/04/2023]
Abstract
Environmental DNA (eDNA) metabarcoding can rapidly characterize the composition and diversity of benthic communities, thus it has high potential utility for routine assessments of benthic impacts of marine finfish farming. In this study, 126 sediment grab samples from 42 stations were collected at six salmon farms in British Columbia, Canada. Benthic community changes were assessed by both eDNA metabarcoding of metazoans and macrofaunal polychaete surveys. The latter was done by analysing 11,466 individuals using a combination of morphology-based taxonomy and DNA barcoding. Study objectives were to: (i) compare biotic signals associated with benthic impacts of salmon farming in the two data sources, and (ii) identify potential eDNA indicators to facilitate monitoring in Canada. Alpha diversity parameters were consistently reduced near fish cage edge and negatively correlated with pore-water sulphide concentration, with coefficients ranging from -0.62 to -0.48. Although Polychaeta are a common indicator group, the negative correlation with pore-water sulphide concentration was much stronger for Nematoda OTU richness (correlation coefficient: -0.86) than for Polychaeta (correlation coefficient: -0.38). Presence/absence of Capitella generally agreed well between the two methods despite that they differed in the volume of sediments sampled and the molecular marker used. Multiple approaches were used to identify OTUs related to organic enrichment statuses. We demonstrate that eDNA metabarcoding generates biotic signals that could be leveraged for environmental assessment of benthic impacts of fish farms in multiple ways: both alpha diversity and Nematoda OTU richness could be used to assess the spatial extent of impact, and OTUs related to organic enrichment could be used to develop local biotic indices.
Collapse
Affiliation(s)
- Xiaoping He
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Scott R Gilmore
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Terri F Sutherland
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Kristen M Westfall
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland.,ID-Gene Ecodiagnostics, Geneva, Switzerland
| | - Cathryn L Abbott
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
36
|
Attia El Hili R, Achouri MS, Verneau O. Cytochrome c oxydase I phylogenetic analysis of Haemogregarina parasites (Apicomplexa, Coccidia, Eucoccidiorida, Haemogregarinidae) confirms the presence of three distinct species within the freshwater turtles of Tunisia. Parasitol Int 2021; 82:102306. [PMID: 33610828 DOI: 10.1016/j.parint.2021.102306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
Species of Haemogregarina are apicomplexan blood parasites that use vertebrates as intermediate hosts. Due to limited interspecific morphological characters within the genus during the last decade, 18S rRNA gene sequences were widely used for species identification. As coinfection patterns were recently reported from nuclear molecular data for two sympatric freshwater turtles Mauremys leprosa and Emys orbicularis from Tunisia, our objectives were to design COI specific primers to confirm the presence of three distinct species in both host species. Blood samples were collected from 22 turtles, from which DNAs were extracted and used as templates for amplification. Following different rounds of PCR and nested PCR, we designed specific Haemogregarina COI primers that allowed the sequencing of nine distinct haplotypes. Phylogenetic Bayesian analysis revealed the occurrence of three well-differentiated sublineages that clustered together into a single clade. Based on pairwise genetic distances (p-distance), we confirmed the occurrence of three distinct but phylogenetically closely related species coinfecting M. leprosa and E. orbicularis in the same aquatic environments. Our results demonstrate that the use of fast evolving genes within Haemogregarina will help to investigate the parasite diversity within both intermediate vertebrate and definitive invertebrate hosts, and to assess the evolution, historical biogeography and specificity of haemogregarines.
Collapse
Affiliation(s)
- Rahma Attia El Hili
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06 Tunis, Tunisia; Université Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France
| | - Mohamed Sghaier Achouri
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06 Tunis, Tunisia
| | - Olivier Verneau
- Université Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
37
|
Clark DE, Pilditch CA, Pearman JK, Ellis JI, Zaiko A. Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment - Evidence from an in-situ experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115472. [PMID: 32891048 DOI: 10.1016/j.envpol.2020.115472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Nutrient loading is a major threat to estuaries and coastal environments worldwide, therefore, it is critical that we have good monitoring tools to detect early signs of degradation in these ecologically important and vulnerable ecosystems. Traditionally, bottom-dwelling macroinvertebrates have been used for ecological health assessment but recent advances in environmental genomics mean we can now characterize less visible forms of biodiversity, offering a more holistic view of the ecosystem and potentially providing early warning signals of disturbance. We carried out a manipulative nutrient enrichment experiment (0, 150 and 600 g N fertilizer m-2) in two estuaries in New Zealand to assess the effects of nutrient loading on benthic communities. After seven months of enrichment, environmental DNA (eDNA) metabarcoding was used to examine the response of eukaryotic (18S rRNA), diatom only (rbcL) and bacterial (16S rRNA) communities. Multivariate analyses demonstrated changes in eukaryotic, diatom and bacterial communities in response to nutrient enrichment at both sites, despite differing environmental conditions. These patterns aligned with changes in macrofaunal communities identified using traditional morphological techniques, confirming concordance between disturbance indicators detected by eDNA and current monitoring approaches. Clear shifts in eukaryotic and bacterial indicator taxa were seen in response to nutrient loading while changes in diatom only communities were more subtle. Community changes were discernible between 0 and 150 g N m-2 treatments, suggesting that estuary health assessment tools could be developed to detect early signs of degradation. Increasing variation in community structure associated with nutrient loading could also be used as an indicator of stress or approaching tipping points. This work represents a first step towards the development of molecular-based estuary monitoring tools, which could provide a more holistic and standardized approach to ecosystem health assessment with faster turn-around times and lower costs.
Collapse
Affiliation(s)
- D E Clark
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; University of Waikato, Gate 1, Knighton Rd, Hamilton, 3240, New Zealand.
| | - C A Pilditch
- University of Waikato, Gate 1, Knighton Rd, Hamilton, 3240, New Zealand
| | - J K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - J I Ellis
- University of Waikato, Private Bag 3105, Tauranga, 3110, New Zealand
| | - A Zaiko
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941, New Zealand
| |
Collapse
|
38
|
Aylagas E, Borja A, Pochon X, Zaiko A, Keeley N, Bruce K, Hong P, Ruiz GM, Stein ED, Theroux S, Geraldi N, Ortega A, Gajdzik L, Coker DJ, Katan Y, Hikmawan T, Saleem A, Alamer S, Jones BH, Duarte CM, Pearman J, Carvalho S. Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140780. [PMID: 32693276 DOI: 10.1016/j.scitotenv.2020.140780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Molecular-based approaches can provide timely biodiversity assessments, showing an immense potential to facilitate decision-making in marine environmental management. However, the uptake of molecular data into environmental policy remains minimal. Here, we showcase a selection of local to global scale studies applying molecular-based methodologies for environmental management at various stages of implementation. Drawing upon lessons learned from these case-studies, we provide a roadmap to facilitate applications of DNA-based methods to marine policies and to overcome the existing challenges. The main impediment identified is the need for standardized protocols to guarantee data comparison across spatial and temporal scales. Adoption of Translational Molecular Ecology - the sustained collaboration between molecular ecologists and stakeholders, will enhance consensus with regards to the objectives, methods, and outcomes of environmental management projects. Establishing a sustained dialogue among stakeholders is key to accelerating the adoption of molecular-based approaches for marine monitoring and assessment.
Collapse
Affiliation(s)
- Eva Aylagas
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Nigel Keeley
- Benthic Resources and Processors Group, Institute of Marine Research, Postboks 6606 Langnes, 9296 Tromsø, Norway
| | - Kat Bruce
- Nature Metrics Ltd, CABI site, Bakeham Lane, Egham TW20 9TY, United Kingdom
| | - Peiying Hong
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gregory M Ruiz
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA; Aquatic Bioinvasion Research and Policy Institute, Environmental Science and Management, Portland State University, Portland, OR 97201, USA
| | - Eric D Stein
- Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA 92626-1437, USA
| | - Susanna Theroux
- Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA 92626-1437, USA
| | - Nathan Geraldi
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Laura Gajdzik
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Darren J Coker
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yasser Katan
- Environmental Protection Department, Saudi Aramco, Dhahran 3131, Saudi Arabia
| | - Tyas Hikmawan
- Environmental Protection Department, Saudi Aramco, Dhahran 3131, Saudi Arabia
| | - Ammar Saleem
- The General Authority of Meteorology and Environmental Protection, The Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Sultan Alamer
- The General Authority of Meteorology and Environmental Protection, The Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Burton H Jones
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - John Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Sediment-associated bacterial community and predictive functionalities are influenced by choice of 16S ribosomal RNA hypervariable region(s): An amplicon-based diversity study. Genomics 2020; 112:4968-4979. [PMID: 32911024 DOI: 10.1016/j.ygeno.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/15/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Meta-omics approaches such as high-throughput sequencing of 16S hypervariable region(s) [HVR(s)] is extensively applied for profiling microbial community. Several studies have deciphered the influence of HVR(s) on bacterial diversity; most of these were devoted to human body habitats. Extent to which targeted HVR(s) influences the diversity estimates of environmental samples is rather unclear. Here, we evaluated the performance of five widely used universal primer pairs spanning V1-V3, V3-V4, V4, V5-V6 and V7-V9 HVRs to characterize bacterial diversity and predictive functionality of complex marine sediments. Obtained results revealed that the HVR(s) V4 and V5-V6 represented the higher species richness than others while, V1-V3 and V7-V9 were unsuccessful to detect Bacteroidetes and Planctomycetes. Further, PICRUSt analysis showed that the selected HVR(s) also had significant impact on the predictive functional profile. Conclusively, this study proved that HVR selection has a profound effect on overall results and thus should be selected with utmost caution.
Collapse
|
40
|
Schroeder A, Stanković D, Pallavicini A, Gionechetti F, Pansera M, Camatti E. DNA metabarcoding and morphological analysis - Assessment of zooplankton biodiversity in transitional waters. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104946. [PMID: 32907716 DOI: 10.1016/j.marenvres.2020.104946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Zooplankton biodiversity assessment is a crucial element in monitoring marine ecosystem processes and community responses to environmental alterations. In order to evaluate the suitability of metabarcoding for zooplankton biodiversity assessment and biomonitoring as a fast and more cost-effective method, seasonal zooplankton sampling was carried out in the Venice Lagoon and the nearby coastal area (Northern Adriatic Sea). The molecular analysis showed higher taxa richness compared to the classical morphological method (224 vs. 88 taxa), discriminating better the meroplanktonic component, morphologically identified only up to order level. Both methods revealed a similar spatio-temporal distribution pattern and the sequence abundances and individual counts were significantly correlated for various taxonomic groups. These results indicate that DNA metabarcoding is an efficient tool for biodiversity assessments in ecosystems with high spatial and temporal variability, where high sampling effort is required as well as fast alert systems for non-native species (NIS).
Collapse
Affiliation(s)
- Anna Schroeder
- National Research Council, Institute of Marine Sciences (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - David Stanković
- Marine Biology Station Piran, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia.
| | - Alberto Pallavicini
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; National Interuniversity Consortium For Marine Sciences (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Fabrizia Gionechetti
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - Marco Pansera
- National Research Council, Institute of Marine Sciences (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Elisa Camatti
- National Research Council, Institute of Marine Sciences (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| |
Collapse
|
41
|
Arranz V, Pearman WS, Aguirre JD, Liggins L. MARES, a replicable pipeline and curated reference database for marine eukaryote metabarcoding. Sci Data 2020; 7:209. [PMID: 32620910 PMCID: PMC7334202 DOI: 10.1038/s41597-020-0549-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
The use of DNA metabarcoding to characterise the biodiversity of environmental and community samples has exploded in recent years. However, taxonomic inferences from these studies are contingent on the quality and completeness of the sequence reference database used to characterise sample species-composition. In response, studies often develop custom reference databases to improve species assignment. The disadvantage of this approach is that it limits the potential for database re-use, and the transferability of inferences across studies. Here, we present the MARine Eukaryote Species (MARES) reference database for use in marine metabarcoding studies, created using a transparent and reproducible pipeline. MARES includes all COI sequences available in GenBank and BOLD for marine taxa, unified into a single taxonomy. Our pipeline facilitates the curation of sequences, synonymization of taxonomic identifiers used by different repositories, and formatting these data for use in taxonomic assignment tools. Overall, MARES provides a benchmark COI reference database for marine eukaryotes, and a standardised pipeline for (re)producing reference databases enabling integration and fair comparison of marine DNA metabarcoding results. Measurement(s) | DNA | Technology Type(s) | bioinformatics analysis | Factor Type(s) | DNA sequence | Sample Characteristic - Organism | Eukaryota | Sample Characteristic - Environment | marine environment |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12324122
Collapse
Affiliation(s)
- Vanessa Arranz
- School of Natural and Computational Sciences, Massey University Auckland, Albany, Auckland, 0745, New Zealand.
| | - William S Pearman
- School of Natural and Computational Sciences, Massey University Auckland, Albany, Auckland, 0745, New Zealand
| | - J David Aguirre
- School of Natural and Computational Sciences, Massey University Auckland, Albany, Auckland, 0745, New Zealand
| | - Libby Liggins
- School of Natural and Computational Sciences, Massey University Auckland, Albany, Auckland, 0745, New Zealand
| |
Collapse
|
42
|
Lanzén A, Mendibil I, Borja Á, Alonso-Sáez L. A microbial mandala for environmental monitoring: Predicting multiple impacts on estuarine prokaryote communities of the Bay of Biscay. Mol Ecol 2020; 30:2969-2987. [PMID: 32479653 DOI: 10.1111/mec.15489] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Routine monitoring of benthic biodiversity is critical for managing and understanding the anthropogenic impacts on marine, transitional and freshwater ecosystems. However, traditional reliance on morphological identification generally makes it cost-prohibitive to increase the scale of monitoring programmes. Metabarcoding of environmental DNA has clear potential to overcome many of the problems associated with traditional monitoring, with prokaryotes and other microorganisms showing particular promise as bioindicators. However, due to the limited knowledge regarding the ecological roles and responses of environmental microorganisms to different types of pressure, the use of de novo approaches is necessary. Here, we use two such approaches for the prediction of multiple impacts present in estuaries and coastal areas of the Bay of Biscay based on microbial communities. The first (Random Forests) is a machine learning method while the second (Threshold Indicator Taxa Analysis and quantile regression splines) is based on de novo identification of bioindicators. Our results show that both methods overlap considerably in the indicator taxa identified, but less for sequence variants. Both methods also perform well in spite of the complexity of the studied ecosystem, providing predictive models with strong correlation to reference values and fair to good agreement with ecological status groups. The ability to predict several specific types of pressure is especially appealing. The cross-validated models and biotic indices developed can be directly applied to predict the environmental status of estuaries in the same geographical region, although more work is needed to evaluate and improve them for use in new regions or habitats.
Collapse
Affiliation(s)
- Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Iñaki Mendibil
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| | - Ángel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| |
Collapse
|
43
|
Sigamani S, Perumal M, Thivakaran GA, Thangavel B, Kandasamy K. DNA barcoding of macrofauna act as a tool for assessing marine ecosystem. MARINE POLLUTION BULLETIN 2020; 152:107891. [PMID: 27423443 DOI: 10.1016/j.marpolbul.2016.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Nowadays, marine ecosystem monitoring and assessment are increasingly depending on variety of molecular tools. With these background, DNA barcoding play a key role in species identification with increasing speed and accuracy, and although the suitability for developing genetic tools like genomic AMBI (gAMBI). Presently we have submitted 13 benthic polychaete species using mtCOI to GenBank. Of these, nine species were newly submitted, and hence they act as a benchmark and reference organism for identifying respective polychaete species worldwide in the near future. Based on that, our study results tend to be helpful for motivating among the researcher in order to implementing the genomic AMBI (gAMBI).
Collapse
Affiliation(s)
- Sivaraj Sigamani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Murugesan Perumal
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | | | - Balasubramanian Thangavel
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Kathiresan Kandasamy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
44
|
Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, Van de Peer Y, Sorgeloos P, Danish-Daniel M. Applications of Next-Generation Sequencing Technologies and Computational Tools in Molecular Evolution and Aquatic Animals Conservation Studies: A Short Review. Evol Bioinform Online 2019; 15:1176934319892284. [PMID: 31839703 PMCID: PMC6896124 DOI: 10.1177/1176934319892284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts.
Collapse
Affiliation(s)
- Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.,Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Siti Aisyah Razali
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yves Van de Peer
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrick Sorgeloos
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.,Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Muhd Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
45
|
Bakker J, Wangensteen OS, Baillie C, Buddo D, Chapman DD, Gallagher AJ, Guttridge TL, Hertler H, Mariani S. Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecol Evol 2019; 9:14341-14355. [PMID: 31938523 PMCID: PMC6953649 DOI: 10.1002/ece3.5871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/12/2023] Open
Abstract
Our understanding of marine communities and their functions in an ecosystem relies on the ability to detect and monitor species distributions and abundances. Currently, the use of environmental DNA (eDNA) metabarcoding is increasingly being applied for the rapid assessment and monitoring of aquatic species. Most eDNA metabarcoding studies have either focussed on the simultaneous identification of a few specific taxa/groups or have been limited in geographical scope. Here, we employed eDNA metabarcoding to compare beta diversity patterns of complex pelagic marine communities in tropical coastal shelf habitats spanning the whole Caribbean Sea. We screened 68 water samples using a universal eukaryotic COI barcode region and detected highly diverse communities, which varied significantly among locations, and proved good descriptors of habitat type and environmental conditions. Less than 15% of eukaryotic taxa were assigned to metazoans, most DNA sequences belonged to a variety of planktonic "protists," with over 50% of taxa unassigned at the phylum level, suggesting that the sampled communities host an astonishing amount of micro-eukaryotic diversity yet undescribed or absent from COI reference databases. Although such a predominance of micro-eukaryotes severely reduces the efficiency of universal COI markers to investigate vertebrate and other metazoans from aqueous eDNA, the study contributes to the advancement of rapid biomonitoring methods and brings us closer to a full inventory of extant marine biodiversity.
Collapse
Affiliation(s)
- Judith Bakker
- Department of Biological Sciences Florida International University Miami FL USA
- School of Engineering & Environment University of Salford Salford UK
| | - Owen S Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Charles Baillie
- School of Engineering & Environment University of Salford Salford UK
| | - Dayne Buddo
- Discovery Bay Marine Laboratory and Field Station University of the West Indies St. Ann Jamaica
| | - Demian D Chapman
- Department of Biological Sciences Florida International University Miami FL USA
| | | | | | - Heidi Hertler
- The School for Field Studies Centre for Marine Resource Studies South Caicos Turks and Caicos Islands
| | - Stefano Mariani
- School of Engineering & Environment University of Salford Salford UK
| |
Collapse
|
46
|
A horizon scan of priorities for coastal marine microbiome research. Nat Ecol Evol 2019; 3:1509-1520. [PMID: 31636428 DOI: 10.1038/s41559-019-0999-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here, we evaluate the current state of knowledge on coastal marine microbiome research and identify key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research.
Collapse
|
47
|
Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Mar Drugs 2019; 17:md17100576. [PMID: 31614509 PMCID: PMC6835618 DOI: 10.3390/md17100576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
The sea represents a major source of biodiversity. It exhibits many different ecosystems in a huge variety of environmental conditions where marine organisms have evolved with extensive diversification of structures and functions, making the marine environment a treasure trove of molecules with potential for biotechnological applications and innovation in many different areas. Rapid progress of the omics sciences has revealed novel opportunities to advance the knowledge of biological systems, paving the way for an unprecedented revolution in the field and expanding marine research from model organisms to an increasing number of marine species. Multi-level approaches based on molecular investigations at genomic, metagenomic, transcriptomic, metatranscriptomic, proteomic, and metabolomic levels are essential to discover marine resources and further explore key molecular processes involved in their production and action. As a consequence, omics approaches, accompanied by the associated bioinformatic resources and computational tools for molecular analyses and modeling, are boosting the rapid advancement of biotechnologies. In this review, we provide an overview of the most relevant bioinformatic resources and major approaches, highlighting perspectives and bottlenecks for an appropriate exploitation of these opportunities for biotechnology applications from marine resources.
Collapse
|
48
|
Caza F, Joly de Boissel PG, Villemur R, Betoulle S, St-Pierre Y. Liquid biopsies for omics-based analysis in sentinel mussels. PLoS One 2019; 14:e0223525. [PMID: 31581216 PMCID: PMC6776352 DOI: 10.1371/journal.pone.0223525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy of plasma is a simple and non-invasive technology that holds great promise in biomedical research. It is based on the analysis of nucleic acid-based biomarkers with predictive potential. In the present work, we have combined this concept with the FTA technology for sentinel mussels. We found that hemocytes collected from liquid biopsies can be readily fixed on FTA cards and used for long-term transcriptome analysis. We also showed that liquid biopsy is easily adaptable for metagenomic analysis of bacterial profiles of mussels. We finally provide evidence that liquid biopsies contained circulating cell-free DNA (ccfDNA) which can be used as an easily accessible genomic reservoir. Sampling of FTA-fixed circulating nucleic acids is stable at room temperature and does not necessitate a cold-chain protection. It showed comparable performance to frozen samples and is ideally adapted for sampling in remote areas, most notably in polar regions threatened by anthropogenic activities. From an ethical point of view, this minimally-invasive and non-lethal approach further reduces incidental mortality associated with conventional tissue sampling. This liquid biopsy-based approach should thus facilitate biobanking activities and development of omics-based biomarkers in mussels to assess the quality of aquatic ecosystems.
Collapse
Affiliation(s)
- France Caza
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | | | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO, Stress environnementaux et Biosurveillance des milieux aquatiques, Reims, France
| | | |
Collapse
|
49
|
Lee C, Hong S, Noh J, Lee J, Yoon SJ, Kim T, Kim H, Kwon BO, Lee H, Ha SY, Ryu J, Kim JJ, Kwon KK, Yim UH, Khim JS. Comparative evaluation of bioremediation techniques on oil contaminated sediments in long-term recovery of benthic community health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:137-145. [PMID: 31146227 DOI: 10.1016/j.envpol.2019.05.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
While various bioremediation techniques have been widely used at oil spill sites, the in situ efficiency of such techniques on recovering the benthic communities in intertidal areas has not been quantified. Here, the performance of several bioremediation tools such as emulsifiers, multi-enzyme liquid (MEL), microbes, and rice-straw was evaluated by a 90-days semi-field experiment, particularly targeting recovery of benthic community. Temporal efficiency in the removal of sedimentary total petroleum hydrocarbons (TPH), reduction of residual toxicity, and recovery of bacterial diversity, microalgal growth, and benthic production was comprehensively determined. Concentrations of TPH and amphipod mortality for all treatments rapidly decreased within the first 10 days. In addition, the density of bacteria and microphytobenthos generally increased over time for all treatments, indicating recovery in the benthic community health. However, the recovery of some nitrifying bacteria, such as the class Nitrospinia (which are sensitive to oil components) remained incomplete (13-56%) during 90 days. Combination of microbe treatments showed rapid and effective for recovering the benthic community, but after 90 days, all treatments showed high recovery efficiency. Of consideration, the "no action" treatment showed a similar level of recovery to those of microbe and MEL treatments, indicating that the natural recovery process could prevail in certain situations.
Collapse
Affiliation(s)
- Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Hosang Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwagun, Incheon, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kae Kyoung Kwon
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Discrimination of Spatial Distribution of Aquatic Organisms in a Coastal Ecosystem Using eDNA. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nonlinearity and complexity of coastal ecosystems often cause difficulties when analyzing spatial and temporal patterns of ecological traits. Environmental DNA (eDNA) monitoring has provided an alternative to overcoming the aforementioned issues associated with classical monitoring. We determined aquatic community taxonomic composition using eDNA based on a meta-barcoding approach that characterizes the general ecological features in the Gwangyang Bay coastal ecosystem. We selected the V9 region of the 18S rDNA gene (18S V9), primarily because of its broad range among eukaryotes. Our results produced more detailed spatial patterns in the study area previously categorized (inner bay, main channel of the bay and outer bay) by Kim et al. (2019). Specifically, the outer bay zone was clearly identified by CCA using genus-level identification of aquatic organisms based on meta-barcoding data. We also found significant relationships between environmental factors. Therefore, eDNA monitoring based on meta-barcoding approach holds great potential as a complemental monitoring tool to identify spatial taxonomic distribution patterns in coastal areas.
Collapse
|