1
|
Iglesias-Matesanz P, Lacalle-Gonzalez C, Lopez-Blazquez C, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Glutathione Peroxidases: An Emerging and Promising Therapeutic Target for Pancreatic Cancer Treatment. Antioxidants (Basel) 2024; 13:1405. [PMID: 39594547 PMCID: PMC11591168 DOI: 10.3390/antiox13111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Glutathione peroxidases (GPxs) are a family of enzymes that play a critical role in cellular redox homeostasis through the reduction of lipid hydroperoxides to alcohols, using glutathione as a substrate. Among them, GPx4 is particularly of interest in the regulation of ferroptosis, a form of iron-dependent programmed cell death driven by the accumulation of lipid peroxides in the endoplasmic reticulum, mitochondria, and plasma membrane. Ferroptosis has emerged as a crucial pathway in the context of cancer, particularly pancreatic cancer, which is notoriously resistant to conventional therapies. GPx4 acts as a key inhibitor of ferroptosis by detoxifying lipid peroxides, thereby preventing cell death. However, this protective mechanism also enables cancer cells to survive under oxidative stress, which makes GPx4 a potential druggable target in cancer therapy. The inhibition of GPx4 can trigger ferroptosis selectively in cancer cells, especially in those that rely heavily on this pathway for survival, such as pancreatic cancer cells. Consequently, targeting GPx4 and other GPX family members offers a promising therapeutic strategy to sensitize pancreatic cancer cells to ferroptosis, potentially overcoming resistance to current treatments and improving patient outcomes. Current research is focusing on the development of small-molecule inhibitors of GPx4 as potential candidates for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Paula Iglesias-Matesanz
- Genomics and Therapeutics in Prostate Cancer Group, I+12 Biomedical Research Institute, 28041 Madrid, Spain;
| | | | - Carlos Lopez-Blazquez
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.L.-B.); (M.O.O.); (J.G.-F.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
2
|
Zhao S, Su Q, Huang L, Wang C, Ma J, Zhu L, Cheng Y, Yang X, Yang Y, Kang B. Assessment of potentially toxic element contamination in commercially harvested invertebrates from the Beibu Gulf, China. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106744. [PMID: 39288544 DOI: 10.1016/j.marenvres.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Marine pollutants, especially potentially toxic elements (PTEs), increasingly threaten the ecological environment and fishery resources of the Beibu Gulf due to their bioaccumulative nature, toxicity, and persistence. However, the occurrences of multiple PTEs in marine invertebrates within this region remains unclear. Hence, a total of 18 species of commercially harvested invertebrates (shrimp, crab, cephalopod, shellfish, and sea cucumber) were collected from the Beibu Gulf, and the concentrations of nine important PTEs (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) were examined. Subsequent stable isotope analysis for δ13C and δ15N facilitated investigations into biomagnification and human health risk assessment. The results showed that, except for As, the concentrations of the PTEs in the invertebrates were below the national safety limits. Furthermore, significant positive correlations were found between trophic levels (TLs) and log-transformed concentrations of As (P < 0.001, R2 = 0.20) and Cr (P < 0.001, R2 = 0.13), indicating biomagnification of these two metals across trophic positions among species. Finally, the human health risk assessment revealed that the consumption of cephalopod, shellfish, and sea cucumber poses a higher risk of adverse effects compared to shrimp and crab.
Collapse
Affiliation(s)
- Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiongyuan Su
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin, 541004, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liang Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xi Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yiheng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
3
|
Shanmugavel A, Rene ER, Balakrishnan SP, Krishnakumar N, Jose SP. Heavy metal ion sensing strategies using fluorophores for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 260:119544. [PMID: 38969312 DOI: 10.1016/j.envres.2024.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Abinaya Shanmugavel
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | | | - Sujin P Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
4
|
Lyu Z, Chen X, Wei T, Wang D, Zhao P, Sanganyado E, Chi D, Sun Z, Wang T, Li P, Liu W, Bi R. Microplastics and arsenic speciation in edible bivalves from the coast of China: Distribution, bioavailability, and human health risk. MARINE POLLUTION BULLETIN 2024; 207:116861. [PMID: 39216255 DOI: 10.1016/j.marpolbul.2024.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bivalves, such as oysters and mussels, are exposed to environmental pollutants, like microplastics (MPs) and arsenic (As). This study investigated co-existence and interaction of MPs and As (total As and As species) in two bivalve species from the Chinese coastline. Smaller MPs (20-100 μm) averaged 30.98 items/g, while larger MPs (100-500 μm) averaged 2.98 items/g. Oysters contained more MPs (57.97 items/g) in comparison to mussels (11.10 items/g). In Contrast, mussels had a higher As concentrations (8.36-23.65 mg/kg) than oysters (4.97-11.02 mg/kg). The size and composition of MPs influenced As uptake and speciation in bivalves, with inorganic arsenic (iAs) and methylated arsenic (MMA and DMA) correlating with larger-sized MPs. Polyethylene (PE) may interact with the formation of arsenobetaine (AsB) in oyster. This study provides valuable insights into the interaction of MPs and As in marine ecosystems and highlights their implications for food safety.
Collapse
Affiliation(s)
- Zhendong Lyu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaohan Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ting Wei
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Difeng Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China
| | - Puhui Zhao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Duowen Chi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zewei Sun
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Wang Z, Akimoto T, Yue T, Hatakeyama Y, Maruo C, Pascual G, Fujibayashi M, Sakamaki T. Testing combined effects of environmental trace metals/arsenic and marine trophic status on the bioaccumulation in Pacific oysters: Insights from 22-site field samplings. MARINE POLLUTION BULLETIN 2024; 207:116827. [PMID: 39168088 DOI: 10.1016/j.marpolbul.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Pacific oysters were sampled from 22 human-impacted sites in northeastern Japan to measure Cr, Cu, Zn, Pb, Cd, and As. The hazard quotient was slightly >1 for Cu and/or As at two sites, but <1 for all metal species and As at the other sites, indicating low human health risks. Oysters' Cu, Zn, and Pb contents were positively related to their concentrations in the sediment, while Cr and As were not. Oysters' Cu and Zn were negatively related to the inorganic nitrogen in seawater, while oysters' Pb and As showed positive relationships with the particulate organic carbon. These findings suggest that marine trophic status affects oysters' metal uptake differently among the metal species. Furthermore, oysters' Cr, Cu, Zn, and Pb contents were negatively related to their eicosapentaenoic acid content and condition index. Therefore, the nutritional conditions of oysters may influence their elimination or accumulation of these metals.
Collapse
Affiliation(s)
- Zhongcheng Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Takeshi Akimoto
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Tingting Yue
- School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, Building 4217, 85354 Freising, Germany
| | - Yuji Hatakeyama
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Chikako Maruo
- Technical Division, School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Gissela Pascual
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan
| | - Megumu Fujibayashi
- Faculty of Engineering, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza-Aoba, Sendai 980-8579, Japan; Advanced Institute for Marine Ecosystem Change (Tohoku University & JAMSTEC WPI-AIMEC), 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Shen HT, Pan XD, Han JL. Distribution and Probabilistic Risk Assessment of Antibiotics, Illegal Drugs, and Toxic Elements in Gastropods from Southeast China. Foods 2024; 13:1166. [PMID: 38672840 PMCID: PMC11049630 DOI: 10.3390/foods13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
We investigated fourteen antibiotics, three illegal drugs, and two toxic elements in commercially available gastropods from southeast China. The data revealed high detection frequencies (DFs) for florfenicol (61.32%), florfenicol amine (47.33%), and thiamphenicol (39.88%), with maximum concentrations of 1110, 2222, and 136 μg/kg wet weight (ww), respectively. The DFs of illegal drugs were 3.54% for leucomalachite green and 0.3% for chloramphenicol. The average levels of Cd and As were 1.17 and 6.12 mg/kg ww, respectively. All chemicals presented diverse DFs in different sampling months. The highest DFs of florfenicol, florfenicol amine, and thiamphenicol were in July. The health risk assessment showed that targeted hazard quotients (THQs) of antibiotics, Cd, and As for children, teens, and adults were all less than one. Notably, the toxic elements (Cd and As) were identified as the primary health risk in gastropods, contributing to over 90% of the total THQs.
Collapse
Affiliation(s)
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | | |
Collapse
|
7
|
Sturla Lompré J, Malanga G, Gil MN, Giarratano E. Biochemical response and tissue-specific accumulation of scallop Aequipecten tehuelchus from Patagonia, Argentina after exposure to inorganic arsenic. CHEMOSPHERE 2024; 349:140946. [PMID: 38103654 DOI: 10.1016/j.chemosphere.2023.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
This study investigates the effects of different inorganic arsenic (As III) concentrations (0, 125, 500 and 1000 μg As/L) following two exposure times (7 and 14 days) on gills, digestive gland and muscle of scallop Aequipecten tehuelchus from Patagonia, Argentina. A biochemical approach was used to investigate oxidative stress-related parameters after different As concentrations and exposure times. Although the accumulation of As was of the same order of magnitude in all tissues, the results showed distinct tissue-specific oxidative responses to this metalloid. Furthermore, the variation in exposure time had no significant effect on As accumulation in any of the three tissues. In gills, despite no reactive oxygen and nitrogen species (RONS) were detected, there was an increase in catalase (CAT) activity and metallothionein (MT) levels. Conversely, digestive gland showed RONS production without a rise in CAT and glutathione S-transferases (GST) activities, but with an increase in MT levels. In muscle, RONS production and CAT activity kept constant or decreased, while MT levels remained unchanged. In addition, exposure time demonstrated its critical role in gills by influencing the response of CAT, GST and MT, particularly at high As concentrations, while exposure time did not affect the biochemical stress parameters in the digestive gland and muscle. Interestingly, neither concentration of As produced lipid damage, showing the effectiveness of the antioxidant mechanisms to avoid it. These results emphasize that A. tehuelchus exhibited no time-dependent effects in response to As exposure, while showing tissue-specific responses characterized by significant concentration-dependent effects of As. This study provides a comprehensive insight by considering the combined effects of time and concentration of a contaminant and distinguishing its effects on specific tissues, a dimension often overlooked in the existing literature. Subsequent studies should prioritize the analysis of additional contaminants in species with increased sensitivity.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Laboratorio de Química Ambiental y Ecotoxicología, Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Bv. Almte Brown 2915, Puerto Madryn, U9120, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Bv. Almte Brown 3051, Puerto Madryn, U9120, Chubut, Argentina.
| | - Gabriela Malanga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica. Junín 954, Ciudad Autónoma de Buenos Aires C1113 AAD, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular Dr. A. Boveris (IBIMOL), CONICET-Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires C1113 AAD, Buenos Aires, Argentina.
| | - Mónica Noemí Gil
- Laboratorio de Química Ambiental y Ecotoxicología, Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Bv. Almte Brown 2915, Puerto Madryn, U9120, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Bv. Almte Brown 3051, Puerto Madryn, U9120, Chubut, Argentina.
| | - Erica Giarratano
- Laboratorio de Química Ambiental y Ecotoxicología, Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Bv. Almte Brown 2915, Puerto Madryn, U9120, Chubut, Argentina.
| |
Collapse
|
8
|
Bouzidi I, Mougin K, Beyrem H, Sellami B. Biochemical and physiological alterations caused by Diuron and Triclosan in mussels (Mytilus galloprovincialis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105714. [PMID: 38225063 DOI: 10.1016/j.pestbp.2023.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 μg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.
Collapse
Affiliation(s)
- Imen Bouzidi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia; Institut supérieur de biotechnologies de Béja, Université de Jendouba, Tunisia
| | - Karine Mougin
- Université de Strasbourg, Université de Haute Alsace, Institut de Science des Matériaux, IS2M CNRS-UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia.
| |
Collapse
|
9
|
Castillo A, Valdés J, Marambio Y, Figueroa L, Letelier J, Carcamo F. Metal(loid)s content in Concholepas concholepas (Mollusca) and human health assessment in a coastal environmental sacrifice zone, central Chile (∼32°S). MARINE POLLUTION BULLETIN 2023; 197:115738. [PMID: 37948871 DOI: 10.1016/j.marpolbul.2023.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
In seafood, the study of metal(loid)s is essential to assess their toxicity and to establish risks of human exposure. This study investigates the content of As, Cd, Cu, Ni and Pb in Concholepas concholepas in a coastal environmental sacrifice zone (Chile) to assess potential human-health risks by consumption of C. concholepas. The Cu and Cd content was found to be above the safety level established in chilean and international regulations. The Estimated Daily Intake (EDI) and Target Hazard Quotient (THQ) for As were comparatively high with respect to the other metals analysed. The THQ-As and Hazard Index (HI) suggest a moderate carcinogenic risk due to the consumption of C. concholepas in six of the nine sectors analysed. THQ and HI are reasonable indicators to assess risks to human-health from the consumption of shellfish with HMs. C. concholepas can be considered as a biomonitor to study metal(loid)s on the Chilean coast.
Collapse
Affiliation(s)
- Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Campus San Miguel, Av. San Miguel Talca, Chile; J'EAI-CHARISMA (UMNG-Colombia, UPCH-Perú, IGP-Peru, UCM-Chile, UCh-Chile, UA-Chile, IRD-France), Colombia; ANID-Millenium Science Initiative Program Nucleo Milenio UPWELL, La Serena, Chile.
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Instituto de Cs. Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Chile
| | | | - Luis Figueroa
- Laboratorio de Estudios Ecosistémicos, Escuela de Agronomía y Veterinaria, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Jaime Letelier
- Departamento de Oceanografía y Medio Ambiente, división de Pesquería, Instituto de Fomento Pesquero, Valparaíso, Chile
| | - Francisco Carcamo
- Departamento de Repoblamiento y Cultivo, división de Acuicultura, Pesquería, Instituto de Fomento Pesquero, Puerto Montt, Chile
| |
Collapse
|
10
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
11
|
Sepúlveda CH, Sotelo-Gonzalez MI, Osuna-Martínez CC, Frías-Espericueta MG, Sánchez-Cárdenas R, Bergés-Tiznado ME, Góngora-Gómez AM, García-Ulloa M. Biomonitoring of potentially toxic elements through oysters (Saccostrea palmula and Crassostrea corteziensis) from coastal lagoons of Southeast Gulf of California, Mexico: health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2329-2348. [PMID: 35953735 DOI: 10.1007/s10653-022-01347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The coastal lagoons of the Gulf of California support important traditional fisheries and mollusc cultures (generally oysters) and receive important volumes of agricultural, industrial and urban effluents, consumption of the oysters could pose risk to human health. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) in the oysters Saccostrea palmula and Crassostrea corteziensis, from four coastal lagoons (Altata, AL; Macapule, ML; Navachiste, NL; El Colorado, ECL) in the Southeast Gulf of California, were seasonally evaluated (summer 2019-spring 2020). The order of magnitude of potentially toxic elements concentrations in the soft tissue in both oyster species and at all sites was Zn > Fe > Cu > As > Cd > Pb. Cadmium, Cu, Pb, and Zn exceeded the maximum permissible limits in more than one sampling site. The highest concentrations (mg kg-1, wet weight) of As (4.2 ± 1.1, spring) and Cd (3.3 ± 0.7, autumn) were registered in S. palmula et al. and NL sampling sites, respectively. Crassostrea corteziensis presented higher levels of Cu (40.5 ± 6.7, spring), Pb (2.0 ± 0.4, spring), and Zn (96.9 ± 20.4, spring) in ECL and Fe (62.2 ± 25.4, autumn) in ML. The hazard quotient (HQ) values exceeded the safe level of 1 for Cd in S. palmula and C. corteziensis in NL for children (~ 16 kg weight). In addition, in children, the hazard index (HI) values in both species of oysters ranged from 0.7 to 2.1 and 0.6 to 1.9, respectively. On the other hand, the intake of the studied elements through the consumption of oysters would not induce adverse effects to human health (men and women weighing 70 and 60 kg, respectively); HQ and HI values were < 1.
Collapse
Affiliation(s)
- Carlos Humberto Sepúlveda
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Avenida de los Deportes S/N Ciudad Universitaria, C.P. 82017, Mazatlán, Sinaloa, Mexico
| | - Maria Isabel Sotelo-Gonzalez
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Avenida de los Deportes S/N Ciudad Universitaria, C.P. 82017, Mazatlán, Sinaloa, Mexico
| | - Carmen Cristina Osuna-Martínez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Martín Gabriel Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Rebeca Sánchez-Cárdenas
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Magdalena Elizabeth Bergés-Tiznado
- Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa. Carretera Municipal Libre Mazatlán-Higueras Km. 3, C.P. 82199, Mazatlán, Sinaloa, Mexico
| | - Andrés Martín Góngora-Gómez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional. Blvd. Juan de Dios Bátiz Paredes, No. 250, Col. San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico
| | - Manuel García-Ulloa
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional. Blvd. Juan de Dios Bátiz Paredes, No. 250, Col. San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico.
| |
Collapse
|
12
|
Lu G, Wang WX. Tissue-based trace element pollution of clam Ruditapes philippinarum in China: Hotspot identification and multiple nonlinear analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161598. [PMID: 36646227 DOI: 10.1016/j.scitotenv.2023.161598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Considering the complexity of coastal and estuarine systems, a great challenge of environmental health assessment is to distinguish between natural and anthropogenically induced stress. Quantification of trace element accumulation in the tissues of sedentary bivalves with subsequent hotspot identification is important to assess the pollution status. The present study conducted a nationwide mapping of bioavailable macro- and trace elements in a widely distributed biomonitoring clam Ruditapes philippinarum from China. Ag, As, Cd, Cr, Cu, and Zn concentrations in the clams showed similar levels as those documented previously in mussels, but were lower than those in oysters at similar sites from China. Notably, the total As concentrations in clams at Xinkai Estuary and Beibu Bay were relatively higher than those at other sites in China. After normalization by tissue biomass, salinity (Na) and nutrient (P), some hotspots were identified with high pollution of trace elements at Liaodong Bay of Bohai Sea, Gold Beach of Qingdao, Dongling Port of Yellow Sea, Hangzhou Bay and adjacent coasts of East China Sea, and Pearl River Estuary and Beibu Bay of South China Sea. This study demonstrated that most trace elements had a path-dependent effect of biomass, except for Cd which showed an indirect pathway of AgNi related accumulation. Results showed significant correlations between Cd, Zn, Ag and Ni, and between Pb/Cr and Ti in clams. After mass normalization, all trace elements displayed significantly positive correlations with Na or P. Simultaneously, the clam biomass played an intermediary role in trace element accumulation in non-linear patterns related to salinity and nutrient. These results are important in evaluating the composite ambiguous information of the historical data of trace element biomonitoring.
Collapse
Affiliation(s)
- Guangyuan Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Wen-Xiong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Queirós JP, Machado JF, Pereira E, Bustamante P, Carvalho L, Soares E, Stevens DW, Xavier JC. Antarctic toothfish Dissostichus mawsoni as a bioindicator of trace and rare earth elements in the Southern Ocean. CHEMOSPHERE 2023; 321:138134. [PMID: 36780994 DOI: 10.1016/j.chemosphere.2023.138134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The Antarctic toothfish Dissostichus mawsoni is a Southern Ocean long-lived top predator which is regularly captured on an annual fishery operating in the region. By its biological and ecological characteristics, it is a potential bioindicator for the concentrations of trace and rare earth elements in the Antarctic. As these elements are mainly transferred through the diet and a deficiency or excess of these elements can lead to diverse health problems, it is important to measure their concentrations on the organisms. This study provides, for the first time, the concentration of 27 trace (major essential, minor essential and non-essential) and rare earth elements in the muscle of D. mawsoni captured in three areas of the Amundsen and Dumont D'Urville Seas (Antarctica). Major essential elements had the highest concentrations, with potassium (K) as the most concentrated, and rare earth elements the lowest. Significant differences between areas were found for most of the studied elements. No bioaccumulation nor biomagnification potential was found for the studied elements, with several elements decreasing concentrations towards larger individuals. Decreasing trends are related with the different habitats occupied by D. mawsoni through their life, suggesting that elements' concentrations in the water is determinant for the concentrations in this top predator, and/or there is a dilution effect as the fish grows. Our results also support that Se presents a detoxification potential for Hg in D. mawsoni, but only when Hg concentrations are higher to unhealthy levels. This study supports D. mawsoni as a potential bioindicator for the concentrations of the different trace and rare earth elements in the Southern Ocean, though only when comparing individuals of similar size/age, but also to evaluate annual changes on their concentrations. Furthermore, D. mawsoni can be a good source of major essential elements to humans with concentrations of major essential elements above some of other marine fish worldwide.
Collapse
Affiliation(s)
- José P Queirós
- University of Coimbra, Marine and Environmental Research Centre (MARE)/ Aquatic Research Network (ARNET), Department of Life Sciences, 3000-456, Coimbra, Portugal; British Antarctic Survey (BAS), Natural Environment Research Council (NERC), High Cross, Madingley Road, CB3 0ET, Cambridge, United Kingdom.
| | - João F Machado
- University of Coimbra, Marine and Environmental Research Centre (MARE)/ Aquatic Research Network (ARNET), Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Eduarda Pereira
- Departamento de Química & Laboratório Central de Análises, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Lina Carvalho
- Departamento de Química & Laboratório Central de Análises, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Eugénio Soares
- Departamento de Química & Laboratório Central de Análises, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Darren W Stevens
- National Institute for Water and Atmospheric Research (NIWA), 401 Evans Bay Parade, Hataitai, 6021, Wellington, New Zealand
| | - José C Xavier
- University of Coimbra, Marine and Environmental Research Centre (MARE)/ Aquatic Research Network (ARNET), Department of Life Sciences, 3000-456, Coimbra, Portugal; British Antarctic Survey (BAS), Natural Environment Research Council (NERC), High Cross, Madingley Road, CB3 0ET, Cambridge, United Kingdom
| |
Collapse
|
14
|
Maltby EA, Oakes KD, Walker TR, Williams J, Wyeth RC. Baseline monitoring of contaminant concentrations in American lobster (Homarus americanus) tissues from coastal Northumberland Strait, Nova Scotia, Canada. MARINE POLLUTION BULLETIN 2023; 189:114794. [PMID: 36917927 DOI: 10.1016/j.marpolbul.2023.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
A baseline survey was conducted in 2018 to characterize contaminants in American lobsters, Homarus americanus in the Northumberland Strait, Canada. Sampling included three age classes of lobsters at sites 4, 20, and 70 km from the Boat Harbour estuary, a historically contaminated site set to undergo remediation. Lobster tissues were measured for metal(loids), methylmercury, polycyclic aromatic hydrocarbons, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans. Contaminant concentrations were generally below the guidelines set by the Canadian Council of Ministers of the Environment and the Canadian Food Inspection Agency, except for arsenic which was elevated in all age classes from all sites (4.8-12.68 mg kg-1). Mercury and methylmercury (both ~0.04 mg kg-1) minimally exceeded one guideline in some age-classes and sites. There was also no consistent pattern of contaminant accumulation across either age classes or at particular sites. This study serves as a baseline for future monitoring following remediation of Boat Harbour.
Collapse
Affiliation(s)
- Ella A Maltby
- Saint Francis Xavier University, Antigonish, Nova Scotia, Canada.
| | - Ken D Oakes
- Cape Breton University, Sydney, Nova Scotia, Canada
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jim Williams
- Saint Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Russell C Wyeth
- Saint Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
15
|
Gomez-Delgado AI, Tibon J, Silva MS, Lundebye AK, Agüera A, Rasinger JD, Strohmeier T, Sele V. Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.) - Assessing the influence of biological and environmental factors. J Trace Elem Med Biol 2023; 76:127110. [PMID: 36495851 DOI: 10.1016/j.jtemb.2022.127110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety. METHODOLOGY Blue mussels were collected monthly from one location in Western Norway from February 2018 to December 2018, and from April 2019 to April 2020. Samples were analyzed for PTEs using inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC) coupled to ICP-MS. Temperature, salinity and fluorescence (chlorophyll a) were monitored in the seawater column by STD/CTD, to assess the potential influence of these environmental factors on the PTE levels in the mussels. RESULTS The results showed seasonal variations in the PTEs, with somewhat higher concentrations in spring and winter months. Unusually high levels of total As (101.2 mg kg-1 dw) and inorganic As (53.6 mg kg-1 dw) were observed for some of the time points. The organic As species arsenobetaine was generally the major As species (17-82% of total As) in the mussels, but also simple methylated As species and arsenosugars were detected. Principal components analysis (PCA) did not show a consistent relationship between the environmental factors and the PTE concentrations, showing contrary results for some elements for the periods studied. The condition index (CI) could explain variations in element concentration with significant correlations for Cd (r = -0.67, p = 0.009) and Pb (r = -0.62, p = 0.02 in 2019/20 and r = -0.52, p = 0.02 in 2018), whereas the correlation between As and CI was not significant (r = 0.12 in 2018, and r = -0.06 in 2019/20). Higher concentrations of iAs and arsenosugars coincided with increased signals of chlorophyll a, suggesting that phytoplankton blooms could be a source of As in the blue mussels. CONCLUSION To our knowledge, this is the first study of As species in blue mussels collected over a time period of two years, providing an insight into the natural variations of these chemical forms in mussels. In terms of mussel as food and future feed material, concentrations of Cd, Hg and Pb were below the maximum levels (MLs) established in the EU food and feed legislation. However, levels of As and iAs in mussels at some time points exceeded the MLs for As in the feed legislation, and the margin of exposure (MOE) was low if these mussels were for human consumption, highlighting the importance of determining the chemical forms of As in feed and food.
Collapse
Affiliation(s)
| | - Jojo Tibon
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Marta S Silva
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | | | - Antonio Agüera
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | | | - Tore Strohmeier
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | - Veronika Sele
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|
16
|
Jing N, Peng J, Yang X, Wang X, Liu Q, Wang H, Li W, Dong F, He K, Wang N. Metabolomics Analysis of Chronic Exposure to Dimethylarsenic Acid in Mice and Toxicity Assessment of Organic Arsenic in Food. ACS OMEGA 2022; 7:35774-35782. [PMID: 36249356 PMCID: PMC9557882 DOI: 10.1021/acsomega.2c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Dimethylarsenic acid is a natural organic arsenic in seafood and one of the important metabolites of inorganic arsenic, which is generally considered to have low or no toxicity. However, due to the controversy of the toxicity of organic arsenic, the food safety standard of organic arsenic has not been established until now, and the effects of organic arsenic on chronic toxicity and the overall metabolic level of animals are rarely reported. In our study, 64 female C57BL/6 mice were exposed to different concentrations of dimethylarsenic acid with water intake. Fifteen metabolites in serum were detected to be altered with the increase of arsenic concentration and exposure time. Dimethylarsenic acid exposure significantly affected the overall metabolic level of mice, and the related effects were not recovered shortly after the suspension of arsenic intake. Although arsenic was excreted largely in urine and feces, continued dimethylarsenic acid exposure could still lead to arsenic accumulation in the liver and kidneys and cause mild nephritis in mice.
Collapse
|
17
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P, Hari MS, Sudhan C. Accumulation potential of heavy metals at different growth stages of Pacific white leg shrimp, Penaeus vannamei farmed along the Southeast coast of Peninsular India: A report on ecotoxicology and human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 212:113105. [PMID: 35351458 DOI: 10.1016/j.envres.2022.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This study compared the heavy metal concentration in water, sediment, and shrimp at different growth stages of culture and subsequently evaluated the ecotoxicological and human health risk status. Total trace element concentration in the water, sediment and shrimp ranged from not detected (ND) (Hg) to 91.05 (Fe) μg/L, 0.01 (Hg) to 19, 246.33 (Fe) mg/kg, and ND (Hg) to 13.98 (Fe) mg/kg, respectively. Toxic metals such as, Cd, Hg, and Pb in shrimps ranged from ND to 2.11 mg/kg, ND to 0.158 mg/kg, ND to 0.088 mg/kg, and ND to 0.469 mg/kg, respectively. Toxic heavy metals at all the growth stages of shrimps (days of culture (DOC)-01 to DOC-90) were found below the maximum residual limit (MRL) of 0.5 mg/kg set by the European Commission (EC). Similarly, Cu, Zn, and As concentrations in shrimp were also far below the MRLs of 30 mg/kg, 100 mg/kg, and 76 mg/kg set by the World Health Organization and Food Safety and Standard Authority of India, respectively. The concentration of heavy metals increased from DOC-01 to DOC-90 and was positively correlated with the length and weight of the shrimps (p < 0.05). The risk assessment was estimated for both Indians and Americans and found no carcinogenic (lifetime cancer risk (LCR) < 10-4) and non-carcinogenic (THQ and TTHQ<1) health risks through consumption of shrimp cultured in this region. The hazard quotient (HQdermal < 1), hazard index (HI < 1), and LCR (<10-4) values of the heavy metals indicated that the dermal absorption might not be a concern for the local fishermen and marine fish/shrimp farmworkers. Water and sediment quality indices were applied to assess the surface water and sediment quality, and their results were found nil to low levels of heavy metal contamination at all the sampling sites. All heavy metals studied in sediments were < effect range low (ERL) and < threshold effect level (TEL), indicating no adverse biological effects on aquatic organisms. Therefore, regular monitoring of the shrimp aquaculture system throughout the crop will provide evidence of heavy metals bioaccumulation in shrimps. This research will provide baseline data to help farmers establish the optimal aquaculture practices and regulatory authorities to formulate legislation and strategies to reduce heavy metal biomagnification in shrimps from farm to fork.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Murugesan Sri Hari
- School of Fisheries, Centurion University of Technology and Management, Odhisa, 761 211, India
| | - Chandran Sudhan
- Department of Fisheries Biology and Resources Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
18
|
Tibon J, Amlund H, Gomez-Delgado AI, Berntssen MHG, Silva MS, Wiech M, Sloth JJ, Sele V. Arsenic species in mesopelagic organisms and their fate during aquafeed processing. CHEMOSPHERE 2022; 302:134906. [PMID: 35561763 DOI: 10.1016/j.chemosphere.2022.134906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A responsible harvest of mesopelagic species as aquafeed ingredients has the potential to address the United Nations Sustainable Development Goal 14, which calls for sustainable use of marine resources. Prior to utilization, the levels of undesirable substances need to be examined, and earlier studies on mesopelagic species have reported on total arsenic (As) content. However, the total As content does not give a complete basis for risk assessment since As can occur in different chemical species with varying toxicity. In this work, As speciation was conducted in single-species samples of the five most abundant mesopelagic organisms in Norwegian fjords. In addition, As species were studied in mesopelagic mixed biomass and in the resulting oil and meal feed ingredients after lab-scale feed processing. Water-soluble As species were determined based on ion-exchange high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This was supplemented by extracting arsenolipids (AsLipids) and determining total As in this fraction. The non-toxic arsenobetaine (AB) was the dominant form in mesopelagic crustaceans and fish species, accounting for approximately 70% and 50% of total As, respectively. Other water-soluble species were present in minor fractions, including carcinogenic inorganic As, which, in most samples, was below limit of quantification. The fish species had a higher proportion of AsLipids, approximately 35% of total As, compared to crustaceans which contained 20% on average. The feed processing simulation revealed generally low levels of water-soluble As species besides AB, but considerable fractions of potentially toxic AsLipids were found in the biomass, and transferred to the mesopelagic meal and oil. This study is the first to report occurrence data of at least 12 As species in mesopelagic organisms, thereby providing valuable information for future risk assessments on the feasibility of harnessing mesopelagic biomass as feed ingredients.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | | | - Marc H G Berntssen
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|
19
|
Esposito M, Canzanella S, Danese A, Pepe A, Gallo P. Essential and Non-Essential Elements in Razor Clams ( Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy). TOXICS 2022; 10:toxics10080452. [PMID: 36006131 PMCID: PMC9413232 DOI: 10.3390/toxics10080452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 05/22/2023]
Abstract
The levels of essential (Cu, Cr, Co, Mn, Se, Zn) and non-essential (As, Be, Bi, Cd, Cs, Ga, Ni, Pb, Sr, Tl, U, V) trace elements were studied in razor clams (Solen marginatus) collected from the Tyrrhenian coast of Southern Italy at five selected sites along the Domitio littoral in the Campania region. The main objectives of this study were to assess the contamination status of these bivalve mollusks and to evaluate the risks to the environment and consumers due to metal contamination. The concentrations of 18 trace elements were determined after microwave-assisted mineralization and by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of the toxic elements Pb and Cd were below the maximum levels established by Commission Regulation (EC) 1881/2006, while higher average concentrations of arsenic were found at each of the five sites studied. Regarding the other trace elements, contamination levels followed the order: Zn > Sr > Mn > Cu > Se > Cr > V > Ni > Co > Ga > Cs > Be > U > Bi > Tl. No significant differences among the sites were found with regard to any of the trace elements analyzed, and element levels in razor clams did not reflect sediment contamination. The results demonstrated the substantial food safety of the razor clams in this area with respect to heavy metals but revealed a potential health risk due to arsenic contamination in all the areas sampled.
Collapse
Affiliation(s)
- Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Via Salute 2, 80055 Portici, Italy
| | - Silvia Canzanella
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
- Correspondence:
| | - Amalia Danese
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| | - Angela Pepe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
20
|
Modestin E, Devault DA, Baylet A, Massat F, Dolique F. Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:553. [PMID: 35779140 DOI: 10.1007/s10661-022-10230-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Sargassum strandings in the coastal environment can introduce arsenic into food webs. In this context, we assessed the risk of exposure to arsenic for consumers of Caribbean bivalves. In 2019, specimens of Asaphis deflorata and Phacoides pectinatus were collected in an Atlantic coastal zone of Martinique (island) to monitor the presence of arsenic species by LC-ICP-MS. The total arsenic (tAs) concentrations were, on average, 34.4 ± 3.8 and 76.9 ± 22.3 µg.g-1 dry weight for P. pectinatus and A. deflorata, respectively. Seven compounds of arsenic were detected in bivalve soft bodies. In P. pectinatus, monomethylarsonic acid was present at a relatively significant concentration (≈ 29.6%). These results were coupled with survey data collected in 2013 and again in 2019, from the main consumers of bivalves. The tAs intake was up to 6 mg.day-1 for a 240 g (wet weight) meal of bivalves. In addition, we proposed toxicological reference doses also based on detected toxic forms of arsenic and tested their relevance. We concluded that monitoring of total arsenic would be sufficient to ensure the protection of bivalve consumers. Consumption patterns expose consumers to a potential health risk. However, due to a decrease in consumption frequency associated with the depletion of bivalve resources by decomposing Sargassum mats, arsenic exposure has decreased. In the French Caribbean, this is the first study on the risk of human arsenic contamination from the ingestion of bivalves. This study is a contribution to the monitoring of arsenic in the Caribbean coastal environment.
Collapse
Affiliation(s)
| | - Damien A Devault
- Centre Universitaire de Formation Et de Recherche de Mayotte, Département Des Sciences Et Technologies, 97660, Dembeni, France
| | | | - Félix Massat
- La Drôme Laboratoire, 26904, Valence Cedex, France
| | | |
Collapse
|
21
|
Abstract
Arsenic intoxication represents a worldwide health problem and occurs mainly through drinking water. Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth’s crust, whose toxicity depends on the reduction state. The trivalent arsenicals are more toxic than the pentavalent arsenicals. In the trivalent state, inorganic and organic arsenic may react with thiol groups in proteins inhibiting their activity, whereas inorganic arsenic in the pentavalent state may replace phosphate ions in several reactions. Arsenic induces various epigenetic changes in mammalian cells, both in vivo and in vitro, often leading to the development of various types of cancers, including skin, lung, liver, urinary tract, prostate, and hematopoietic cancers. Potential mechanisms of arsenic toxicity in cancer include genotoxicity, altered DNA methylation and cell proliferation, co-carcinogenesis, tumor promotion, and oxidative stress. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. Detoxification from arsenic includes chelation therapy. Recently, investigations of the capability of some plants, such as Eucalyptus camadulensis L., Terminalia arjuna L. and Salix tetrasperma L., to remove arsenic from polluted soil and water have been studied. Moreover, nanophytoremediation is a green technology including the nanoscale materials used for absorption and degradation of organic and inorganic pollutants, such as arsenic compounds. This brief review represents an overview of arsenic uses, toxicity, epigenetics, and detoxification therapies.
Collapse
|
22
|
Andrade-Rivas F, Afshari R, Yassi A, Mardani A, Taft S, Guttmann M, Rao AS, Thomas S, Takaro T, Spiegel JM. Industrialization and food safety for the Tsleil-Waututh Nation: An analysis of chemical levels in shellfish in Burrard Inlet. ENVIRONMENTAL RESEARCH 2022; 206:112575. [PMID: 34932979 DOI: 10.1016/j.envres.2021.112575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
While Indigenous food systems remain critical for community well-being, traditionally harvested foods are a potential source of toxic exposures. The Tsleil-Waututh Nation (TWN) is seeking to restore shellfish harvesting in Burrard Inlet (British Columbia [BC], Canada), where the cumulative effects of industrial activity have nearly eliminated safe harvesting. The Trans Mountain Expansion project would triple the capacity to transport oil through the inlet, threatening TWN's progress to restore shellfish harvesting. To inform ongoing efforts we assessed contamination by heavy metals (arsenic, cadmium, lead, and mercury) and 48 polycyclic aromatic hydrocarbons (PAHs) congeners in different shellfish species (Softshell clams, Varnish clams, and Dungeness crab) in three areas. We compared our results against local screening values (SVs) established by the TWN and BC Ministry of Environment and Climate Change Strategy, as well as provincial and national benchmarks. In total, we analyzed 18 composite samples of Softshell clams and Varnish clams (5 individuals per sample), as well as 17 individual crabs. We found chemical contamination in all species at all sites. PAHs were most frequently detected in Softshell clams, highest in the site closest to the pipeline terminus. Clams presented higher levels of contamination than crabs for PAHs, but not for heavy metals. For Softshell and Varnish clams, all heavy metals across study sites exceeded at least one of the population-specific SVs. Of the 14 PAHs detected, benzo(a)pyrene presented a median concentration in Softshell clams of 3.25 μ/kg, exceeding local SV for subsistence fisher. Our results call for further assessment of human health impacts related to food harvesting within Burrard Inlet and establishing a long-term coordinated program co-led by the TWN to monitor contamination and inform future harvesting programs. The study draws attention to the need to consider locally-relevant toxicity benchmarks, and include potential health impacts of food contamination in appraising development project proposals.
Collapse
Affiliation(s)
- F Andrade-Rivas
- School of Population and Public Health, University of British Columbia, Canada.
| | - R Afshari
- School of Population and Public Health, University of British Columbia, Canada
| | - A Yassi
- School of Population and Public Health, University of British Columbia, Canada
| | - A Mardani
- School of Population and Public Health, University of British Columbia, Canada
| | - S Taft
- Tsleil-Waututh Nation, North Vancouver, Canada
| | - M Guttmann
- Tsleil-Waututh Nation, North Vancouver, Canada
| | - A S Rao
- Tsleil-Waututh Nation, North Vancouver, Canada
| | - S Thomas
- Tsleil-Waututh Nation, North Vancouver, Canada
| | - T Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - J M Spiegel
- School of Population and Public Health, University of British Columbia, Canada
| |
Collapse
|
23
|
Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH. Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. FISH & SHELLFISH IMMUNOLOGY 2022; 122:376-385. [PMID: 35181445 DOI: 10.1016/j.fsi.2022.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trivalent arsenic (As (III)) contamination in the marine environment can produce adverse effects in crustaceans. The present study investigated the chronic toxicity of As (III) in white shrimp (Penaeus vannamei) by analyzing the tissue bioaccumulation and non-specific immune responses. Shrimps were exposed to 0 (control), 50, 500, and 2500 μg/L of As (III) for 21 days. The results showed that the hepatopancreas was the main tissue of arsenic accumulation in white shrimp. The cumulative concentration of total arsenic and inorganic arsenic but not arsenobetaine was positively correlated with the exposure concentration. In vitro As (III) treatment (0-2500 μg/L) with haemocytes isolated from healthy shrimp did not cause the cytotoxicity, but this arsenic treatments inhibited the phagocytic rate and O2- production. Moreover, the decrease of total haemocyte count and the inhibition of phagocytic rate, phagocytic index, O2- production and phenoloxidase activity were observed in white shrimp under the exposure of As (III) over a period of 21 days. This study revealed that chronic As (III) stress could disturb arsenic metabolism and immune responses in P. vannamei.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No.142, Haijhuan Road., Nanzih District, Kaohsiung City, 81157, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Pei-Hsuan Wang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Xue-Fu Road, Neipu Township, Pingtung, 912301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
24
|
Córdoba-Tovar L, Marrugo-Negrete J, Barón PR, Díez S. Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review. ENVIRONMENTAL RESEARCH 2022; 204:112226. [PMID: 34717950 DOI: 10.1016/j.envres.2021.112226] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 05/09/2023]
Abstract
Biomagnification of trace elements is increasingly evident in aquatic ecosystems. In this review we investigate the drivers of biomagnification of mercury (Hg), arsenic (As) and selenium (Se) in aquatic food webs. Despite Hg, As and Se biomagnify in food webs, the biomagnification potential of Hg is much higher than that of As and Se. The slope of trophic increase of Hg is consistent between temperate (0.20), tropical (0.22) and Arctic (0.22) ecosystems. Se exerts a mitigating role against Hg toxicity but desired maximum and minimum concentrations are unknown. Environmental (e.g. latitude, temperature and physicochemical characteristics) and ecological factors (e.g. trophic structure composition and food zone) can substantially influence the biomagnification process these metal (oids). Besides the level of bioaccumulated concentration, biomagnification depends on the biology, ecology and physiology of the organisms that play a key role in this process. However, it may be necessary to determine strictly biological, physiological and environmental factors that could modulate the concentrations of As and Se in particular. The information presented here should provide clues for research that include under-researched variables. Finally, we suggest that biomagnification be incorporated into environmental management policies, mainly in risk assessment, monitoring and environmental protection methods.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Universidad Tecnólogica del Chocó, Facultad de Ciencias Naturales, Grupo de Investigación Recursos Naturales y Toxicología Ambiental, Quibdó, Chocó, A.A 292, Colombia; Universidad de Córdoba, Cra 6 # 76 - 103, Montería, 230002, Córdoba, Colombia
| | | | - Pablo Ramos Barón
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
25
|
Polak-Juszczak L, Szlinder Richert J. Arsenic speciation in fish from Baltic Sea close to chemical munitions dumpsites. CHEMOSPHERE 2021; 284:131326. [PMID: 34323798 DOI: 10.1016/j.chemosphere.2021.131326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Chemical weapons that were dumped in seas and oceans after World War II, including the Baltic Sea, are sources of pollution of marine areas. Sunken containers can corrode, unseal, and numerous compounds pass into the environment, including toxic forms of arsenic, which are then taken up by marine animals. This study aims to quantify concentration of total arsenic, inorganic arsenic (III + V), and organic compounds arsenobetaine, monomethylarsonic acid, dimethylarsinic acid in the muscle tissues of cod, herring, sprat, and flounder and the associated risk to consumer health. Sprat muscle (0.636 mg kg-1) had the highest content of total arsenic, significantly less was noted in the muscles of herring (0.460 mg kg-1) and flounder (0.588 mg kg-1), and the least was in cod (0.390 mg kg-1). Toxic inorganic arsenic compounds were present in the fish tested at levels below 0.02 mgkg-1 and constituted from 3.45 to 5.75% of total arsenic. Arsenobetaine dominated among organic forms, and concentrations of it, like total arsenic, varied depending on the fish species. Consumer health risk was determined with the estimated daily intake, the target hazard quotient, and the carcinogenic risk. Estimated daily intake values for inorganic arsenic in herring, cod, sprat, and flounder were below the reference dose at 0.51 × 10-5 mg kg-1 b. w. day. The target hazard quotient factor of 0.0017 indicated there was no threat. Carcinogenic risk values were within the permissible range of 10-6 to 10-4. Current data indicate that inorganic arsenic compounds pose no risk to the health of consumers of Baltic fishes.
Collapse
Affiliation(s)
- Lucyna Polak-Juszczak
- National Marine Fisheries Research Institute, Department of Food and Environmental Chemistry, Kołłątaja1, 81-332, Gdynia, Poland.
| | - Joanna Szlinder Richert
- National Marine Fisheries Research Institute, Department of Food and Environmental Chemistry, Kołłątaja1, 81-332, Gdynia, Poland
| |
Collapse
|
26
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
27
|
Chen Y, Zhu Z, Zhao Y, Wu X, Xiao Q, Deng Y, Li M, Li C, Qiu H, Lu S. Perchlorate in shellfish from South China Sea and implications for human exposure. MARINE POLLUTION BULLETIN 2021; 170:112672. [PMID: 34218037 DOI: 10.1016/j.marpolbul.2021.112672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Shellfish can absorb and accumulate contaminants. The consumption of shellfish could expose humans to pollutants and increase related health risk. Perchlorate (ClO4-) is a ubiquitous pollutant and could affect thyroid functions, especially for children and pregnant women. However, knowledge on the contamination of perchlorate in aquatic food such as shellfish remains limited. This study aimed to investigate the abundances of perchlorate in shellfish from South China Sea and to assess human exposure risks. A total of 178 shellfish samples from eight species were collected from offshore aquaculture waters in South China Sea. Perchlorate was detected in 99.4% of them, suggesting widespread pollution in coastal waters. Concentrations of perchlorate ranged from not detected (N.D.) to 71.5 μg kg-1, with a median value of 4.33 μg kg-1. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human exposure dose and health risks, respectively. The HQ values were determined to be less than 1, indicating no significant health risks to local residents via shellfish consumption. To our knowledge, this is the first study to investigate perchlorate contamination in South China shellfish and assess potential human risks.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yilan Deng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Zhao Y, Kang X, Ding H, Ning J, Zhai Y, Sheng X. Bioaccumulation and biotransformation of inorganic arsenic in zhikong scallop (Chlamys farreri) after waterborne exposure. CHEMOSPHERE 2021; 277:130270. [PMID: 33770692 DOI: 10.1016/j.chemosphere.2021.130270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) and As speciation in marine bivalves have been widely investigated. However, little is known about the bioaccumulation and biotransformation of inorganic As in different tissues of scallops. Therefore, the tissue-specific accumulation, biotransformation and subcellular partitioning of As were investigated in Chlamys farreri following 12 d inorganic As [arsenite (AsⅢ) and arsenate (AsⅤ)] exposure and 30 d depuration. Total As levels were highest in the kidneys and lowest in the adductor muscle after 12 d exposure for both As (Ⅲ) and As (Ⅴ) treatment groups, and the bioavailability of As (Ⅲ) was significantly higher than that of As (Ⅴ) for C. farreri. After 30 d elimination, total As levels were significantly decreased to the control levels. The subcellular fate of As in five different tissues was similar for different inorganic As treatment groups. The greatest proportion of As was found in the metallothionein-like protein fraction (MTLP) and the second was the cellular debris (CD). A little part of As (Ⅲ) could be oxidized to As (Ⅴ) in the gill and digestive gland for As (Ⅲ) treatment groups, and the reduction of As (Ⅴ) to As (Ⅲ) happened in the gill and kidney under As (Ⅴ) exposure. Although a high methylation activity was found in C. farreri, it varied in different tissues with different inorganic As species exposure. The present results indicated that exposure to As (Ⅲ) and As (Ⅴ) could induce different responses in bioaccumulation and biotransformation in five tissues of C. farreri.
Collapse
Affiliation(s)
- Yanfang Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Xuming Kang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China.
| | - Haiyan Ding
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Jinsong Ning
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Yuxiu Zhai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| | - Xiaofeng Sheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Qingdao, 266071, China
| |
Collapse
|
29
|
Chakraborty S, Ray M, Ray S. Bivalve haemocyte adhesion, aggregation and phagocytosis: A tool to reckon arsenic induced threats to freshwater ecosystem. FISH & SHELLFISH IMMUNOLOGY 2021; 114:229-237. [PMID: 33979692 DOI: 10.1016/j.fsi.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The freshwater aquifers of the Indo-Gangetic plains support rich biodiversity which is under the threat of arsenic contamination. The filter feeding bivalve mollusc Lamellidens marginalis is a sessile and sentinel resident of these freshwater habitats. In the present study, the classical cell behaviours of adhesion and aggregation were monitored in the circulating haemocytes of the freshwater bivalve under the exposure of sodium arsenite (NaAsO2) at sublethal concentrations in controlled laboratory conditions for a maximum time-span of sixteen days. The toxic metalloid significantly inhibited non-self adhesion, inter-haemocyte interactions and haemocyte aggregation in a dose and time dependent manner. The natural occurrence of the filopods on the haemocytes was significantly diminished in the bivalves exposed to the inorganic arsenite. Moreover, a significant fall in the kinetics of phagocytosis index and haemocyte adhesion was observed under the in vitro exposure to NaAsO2. Compromised non-self adhesion, cell-cell aggregation and phagocytosis of non-self particles by the bivalve haemocytes probably indicate susceptible immunological status of the bivalve. Such vulnerable immunity of the bivalve probably signifies the nature of imminent threat to the freshwater ecosystem as a whole under inorganic arsenite exposure. The findings would be helpful to design bivalve haemocyte based inexpensive biomonitoring tool to assess the health of freshwater ecosystem under potential arsenic threat.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Department of Zoology, Government General Degree College at Keshiary, Paschim Medinipur, PIN 721135, West Bengal, India
| | - Mitali Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, PIN 700019, West Bengal, India
| | - Sajal Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, PIN 700019, West Bengal, India.
| |
Collapse
|