1
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2025; 145:280-302. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
3
|
Wang J, Ma L, Fang Y, Ye T, Li H, Lan P. Factors influencing glycocalyx degradation: a narrative review. Front Immunol 2025; 15:1490395. [PMID: 39885987 PMCID: PMC11779607 DOI: 10.3389/fimmu.2024.1490395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated. This review summarizes factors leading to the reduction of the glycocalyx in detail, including inflammatory factors, ischemia-reperfusion, oxidative stress, lipids, glucose, high sodium, female sex hormones and others. Additionally, the mechanisms underlying its degradation are discussed. To better prevent and treat related diseases induced by glycocalyx degradation, it is a meaningful measure to avoid these factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Lan Ma
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Tengteng Ye
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongbo Li
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Peng Lan
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Lee NY, Ture HY, Lee EJ, Jang JA, Kim G, Nam EJ. Syndecan-1 Plays a Role in the Pathogenesis of Sjögren's Disease by Inducing B-Cell Chemotaxis through CXCL13-Heparan Sulfate Interaction. Int J Mol Sci 2024; 25:9375. [PMID: 39273320 PMCID: PMC11394922 DOI: 10.3390/ijms25179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In Sjögren's disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6-10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain.
Collapse
Affiliation(s)
- Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Hirut Yadeta Ture
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Eun Ju Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Ji Ae Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Gunwoo Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| |
Collapse
|
5
|
Tanino Y. Roles of extracellular matrix in lung diseases. Fukushima J Med Sci 2024; 70:1-9. [PMID: 38267030 PMCID: PMC10867433 DOI: 10.5387/fms.2023-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024] Open
Abstract
Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs. Although ECM was previously recognized as a mere "molecular glue" that supports the tissue structure of organs such as the lungs, it has recently been reported that ECM has important biological activities for tissue morphogenesis, inflammation, wound healing, and tumor progression. Proteoglycans are the main constituent of ECM, with growing evidence that proteoglycans and their associated glycosaminoglycans play important roles in the pathogenesis of several diseases. However, their roles in the lungs are incompletely understood. Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several lung diseases. Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte migration into the affected organs. This review focuses on the role chemokine and glycosaminoglycan interactions in neutrophil migration into the lung. Furthermore, this review presents the role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung diseases.
Collapse
Affiliation(s)
- Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine
| |
Collapse
|
6
|
Kim M, Kim Y. NMR Structural Study of Syndecan-4 Transmembrane Domain with Cytoplasmic Region. Molecules 2023; 28:7855. [PMID: 38067582 PMCID: PMC10708377 DOI: 10.3390/molecules28237855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Syndecan-4 (SDC4) consists of transmembrane heparan sulfate proteoglycan (HSPG) belonging to the syndecan family. It is present in most cell types of Mammalia. Its structure contains a heparan-sulfate-modified extracellular domain, a single transmembrane domain, and a short C-terminal cytoplasmic domain. Regarding the overall cellular function of SDC4, other cells or ligands can bind to its ecto-domain. In addition, 4,5-bisphosphate phosphatidylinositol (PIP2) or protein kinase Cα can bind to its cyto-domain to activate downstream signaling pathways. To understand the signal transduction mechanism of syndecan, it is important to know the interactions between their actual structure and function in vivo. Therefore, it is important to identify the structure of SDC4 to understand the ligand binding behavior of SDC4. In this study, expression and purification were performed to reveal structures of the short ecto-domain, the transmembrane domain, and the cytoplasmic domain of Syd4-eTC (SDC4). Solution-state NMR spectroscopy and solid-state NMR spectroscopy were used to study the structure of Syd4-eTC in membrane environments and to demonstrate the interaction between Syd4-eTC and PIP2.
Collapse
Affiliation(s)
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon, Yongin 17035, Republic of Korea;
| |
Collapse
|
7
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
8
|
Velesiotis C, Kanellakis M, Vynios DH. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB Life 2022; 74:1012-1028. [PMID: 36054915 DOI: 10.1002/iub.2669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Steviol glycosides, the active sweet components of stevia plant, have been recently found to possess a number of therapeutic properties, including some recorded anticancer ones against various cancer cell types (breast, ovarian, cervical, pancreatic, and colon cancer). Our aim was to investigate this anticancer potential on the two most commonly used breast cancer cell lines which differ in the phenotype and estrogen receptor (ER) status: the low metastatic, ERα+ MCF-7 and the highly metastatic, ERα-/ERβ+ MDA-MB-231. Specifically, glycosides' effect was studied on cancer cells': (a) viability, (b) functionality (proliferation, migration, and adhesion), and (c) gene expression (mRNA level) of crucial molecules implicated in cancer's pathophysiology. Results showed that steviol glycosides induced cell death in both cell lines, in the first 24 hr, which was in line with the antiapoptotic BCL2 decrease. However, cells that managed to survive showcased diametrically opposite behavior. The low metastatic ERα+ MCF-7 cells acquired an aggressive phenotype, depicted by the upregulation of all receptors and co-receptors (ESR, PGR, AR, GPER1, EGFR, IGF1R, CD44, SDC2, and SDC4), as well as VIM and MMP14. On the contrary, the highly metastatic ERα-/ERβ+ MDA-MB-231 cells became less aggressive as pointed out by the respective downregulation of EGFR, IGF1R, CD44, and SDC2. Changes observed in gene expression were compatible with altered cell functions. Glycosides increased MCF-7 cells migration and adhesion, but reduced MDA-MB-231 cells migratory and metastatic potential. In conclusion, the above data clearly demonstrate that steviol glycosides have different effects on breast cancer cells according to their ER status, suggesting that steviol glycosides might be examined for their potential anticancer activity against breast cancer, especially triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Marinos Kanellakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
9
|
Sharma P, Kapoor D, Shukla D. Role of Heparanase and Syndecan-1 in HSV-1 Release from Infected Cells. Viruses 2022; 14:2156. [PMID: 36298711 PMCID: PMC9612286 DOI: 10.3390/v14102156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) is a neurotropic human virus that belongs to the Alphaherpesvirinae subfamily of Herpesviridae. Establishment of its productive infection and progression of disease pathologies depend largely on successful release of virions from the virus-producing cells. HSV-1 is known to exploit many host factors for its release. Recent studies have shown that heparanase (HPSE) is one such host enzyme that is recruited for this purpose. It is an endoglycosidase that cleaves heparan sulfate (HS) from the surface of infected cells. HS is a virus attachment coreceptor that is commonly found on cell surfaces as HS proteoglycans e.g., syndecan-1 (SDC-1). The current model suggests that HSV-1 during the late stage of infection upregulates HPSE, which in turn enhances viral release by removing the virus-trapping HS moieties. In addition to its role in directly enabling viral release, HPSE accelerates the shedding of HS-containing ectodomains of SDC-1, which enhances HSV-1 release via a similar mechanism by upregulating CREB3 and COPII proteins. This review outlines the role of HPSE and SDC-1 as newly assigned host factors that facilitate HSV-1 release during a lytic infection cycle.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
11
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
12
|
Aggarwal C, Saini K, Reddy ES, Singla M, Nayak K, Chawla YM, Maheshwari D, Singh P, Sharma P, Bhatnagar P, Kumar S, Gottimukkala K, Panda H, Gunisetty S, Davis CW, Kissick HT, Kabra SK, Lodha R, Medigeshi GR, Ahmed R, Murali-Krishna K, Chandele A. Immunophenotyping and Transcriptional Profiling of Human Plasmablasts in Dengue. J Virol 2021; 95:e0061021. [PMID: 34523972 PMCID: PMC8577383 DOI: 10.1128/jvi.00610-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/11/2021] [Indexed: 12/07/2022] Open
Abstract
Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.
Collapse
Affiliation(s)
- Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Priya Bhatnagar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- TERI School of Advanced Studies, New Delhi, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harekrushna Panda
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carl W. Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Thomas Kissick
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Van Raemdonck K, Umar S, Palasiewicz K, Volin MV, Elshabrawy HA, Romay B, Tetali C, Ahmed A, Amin MA, Zomorrodi RK, Sweiss N, Shahrara S. Interleukin-34 Reprograms Glycolytic and Osteoclastic Rheumatoid Arthritis Macrophages via Syndecan 1 and Macrophage Colony-Stimulating Factor Receptor. Arthritis Rheumatol 2021; 73:2003-2014. [PMID: 33982895 PMCID: PMC8568622 DOI: 10.1002/art.41792] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA. METHODS To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models. RESULTS Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1β, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction. CONCLUSION IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Michael V. Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Azam Ahmed
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - M. Asif Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan K. Zomorrodi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
14
|
Herman K, Zemła J, Ptak A, Lekka M. Single-molecule force spectroscopy reveals structural differences of heparan sulfate chains during binding to vitronectin. Phys Rev E 2021; 104:024409. [PMID: 34525582 DOI: 10.1103/physreve.104.024409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
15
|
Redente EF. How Do We Know What We Are Missing? Loss of Signaling through CD148 Drives Fibroblast Activation in Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:249-251. [PMID: 33891825 PMCID: PMC8513589 DOI: 10.1164/rccm.202103-0737ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elizabeth F Redente
- Department of Pediatrics National Jewish Health Denver, Colorado and.,Department of Medicine University of Colorado School of Medicine Aurora, Colorado
| |
Collapse
|
16
|
Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract 2021; 222:153431. [PMID: 34029877 DOI: 10.1016/j.prp.2021.153431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The prognosis of patients with colorectal cancer (CRC) is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to study molecules involved in the progression of colorectal cancer tumorigenesis and to shed light on their potential use as targetable proteins in diagnostics and therapy. As syndecan-4 (SDC4) is a transmembrane proteoglycan with important functions in cell adhesion, migration, cytoskeleton organization, and gene expression through the binding of extracellular matrix molecules, it might play a role in local tumor cell invasion. To clarify its impact on the progression of CRC, we analyzed 177 patients for SDC4 expression in colon carcinoma tissue, lymph node and liver metastasis under consideration of specific morphological features and cellular elements of CRC. Highly upregulated SDC4 was particularly expressed at the tumor invasion front. Expression was strongest in tumor cell buds appearing as membranous expression polarized to peritumoral stromal cells. Increased SDC4 expression directed to the tumor-stromal- or tumor-endothelial-interface was also confirmed for metastasis and angioinvasive tumor cell clusters. Furthermore, strong immunoreactivity of SDC4 in fibroblasts and macrophages being in contact with invasive tumor cells suggests a cooperation between the different types of cells in tumor progression at the cell-matrix interface and a role for SDC4 in tumor cells attached to the extracellular matrix. Overexpression of SDC4 in tumor cells at the invasion front was significantly associated with progressive pathological features and inversely related to disease-free and overall survival. Therefore, overexpression of SDC4 may be a predictor for poor prognosis in patients with CRC and might prove useful in clinical practice, thus identifying patients with potential disease progression. Further investigations will have to reveal the functional role of SDC4 in tumor cell buds, fibroblasts and macrophages at the tumor stromal interface to confirm that SDC4 might also be a possible therapeutic target for the treatment of patients with advanced CRC.
Collapse
Affiliation(s)
| | - Inken Haeusler-Pliske
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Frank Meyer
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | |
Collapse
|
17
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
18
|
Transcription Factor AP4 Mediates Cell Fate Decisions: To Divide, Age, or Die. Cancers (Basel) 2021; 13:cancers13040676. [PMID: 33567514 PMCID: PMC7914591 DOI: 10.3390/cancers13040676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Here, we review the literature on Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) function and regulation and its role in cancer. Elevated expression of AP4 was detected in tumors of various organs and is associated with poor patient survival. AP4 is encoded by a Myc target gene and mediates cell fate decisions by regulating multiple processes, such as cell proliferation, epithelial-mesenchymal transition, stemness, apoptosis, and cellular senescence. Thereby, AP4 may be critical for tumor initiation and progression. In this review article, we summarize published evidence showing how AP4 functions as a transcriptional activator and repressor of a plethora of direct target genes in various physiological and pathological conditions. We also highlight the complex interactions of AP4 with c-Myc, N-Myc, p53, lncRNAs, and miRNAs in feed-back loops, which control AP4 levels and mediate AP4 functions. In the future, a better understanding of AP4 may contribute to improved prognosis and therapy of cancer. Abstract Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) is a basic-helix-loop-helix-leucine-zipper transcription factor that was first identified as a protein bound to SV40 promoters more than 30 years ago. Almost 15 years later, AP4 was characterized as a target of the c-Myc transcription factor, which is the product of a prototypic oncogene that is activated in the majority of tumors. Interestingly, AP4 seems to represent a central hub downstream of c-Myc and N-Myc that mediates some of their functions, such as proliferation and epithelial-mesenchymal transition (EMT). Elevated AP4 expression is associated with progression of cancer and poor patient prognosis in multiple tumor types. Deletion of AP4 in mice points to roles of AP4 in the control of stemness, tumor initiation and adaptive immunity. Interestingly, ex vivo AP4 inactivation results in increased DNA damage, senescence, and apoptosis, which may be caused by defective cell cycle progression. Here, we will summarize the roles of AP4 as a transcriptional repressor and activator of target genes and the contribution of protein and non-coding RNAs encoded by these genes, in regulating the above mentioned processes. In addition, proteins interacting with or regulating AP4 and the cellular signaling pathways altered after AP4 dysregulation in tumor cells will be discussed.
Collapse
|
19
|
Pan L, Zhang X, Gao Q. Effects and mechanisms of histatins as novel skin wound-healing agents. J Tissue Viability 2021; 30:190-195. [PMID: 33551241 DOI: 10.1016/j.jtv.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Wound healing is a complex and important physiological process that maintains the integrity of skin after various injuries. Abnormal wound healing, especially of chronic wounds, impairs normal physical function. Therefore, the search for effective and safe healing agents is one of the main concerns. Histatins are histidine-rich low molecular weight peptides that are expressed in the saliva of both humans and higher primates. Histatins have two main biological effects, cell stimulation and bacteria killing, with the former playing an important role in wound healing by promoting epithelial cell and fibroblast migration and angiogenesis and enhancing the re-epithelialization of the wounded area. Because of these biological effects, histatins have been shown to be promising agents of improved wound healing. Histatins are categorized into many subtypes, of which histatin 1 and its hydrolysates are the most effective in promoting wound healing. This review addresses the bioactivity of histatins in wound healing, such as their stimulatory effects on epithelial cells and fibroblasts, and elucidates the possible mechanisms by which histatin subtypes induce their biological effects.
Collapse
Affiliation(s)
- Li Pan
- Department of Cardiopulmonary Bypass, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuanfen Zhang
- Department of Orthopaedic Surgery, Lanzhou University Second Hospital, Lanzhou, China.
| | - Qiong Gao
- Department of Orthopaedic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
20
|
Del Monte-Nieto G, Fischer JW, Gorski DJ, Harvey RP, Kovacic JC. Basic Biology of Extracellular Matrix in the Cardiovascular System, Part 1/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2169-2188. [PMID: 32354384 DOI: 10.1016/j.jacc.2020.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/12/2023]
Abstract
The extracellular matrix (ECM) is the noncellular component of tissues in the cardiovascular system and other organs throughout the body. It is formed of filamentous proteins, proteoglycans, and glycosaminoglycans, which extensively interact and whose structure and dynamics are modified by cross-linking, bridging proteins, and cleavage by matrix degrading enzymes. The ECM serves important structural and regulatory roles in establishing tissue architecture and cellular function. The ECM of the developing heart has unique properties created by its emerging contractile nature; similarly, ECM lining blood vessels is highly elastic in order to sustain the basal and pulsatile forces imposed on their walls throughout life. In this part 1 of a 4-part JACC Focus Seminar, we focus on the role, function, and basic biology of the ECM in both heart development and in the adult.
Collapse
Affiliation(s)
- Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany.
| | - Daniel J Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Science, University of New South Wales, New South Wales, Australia.
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
21
|
Jang B, Kim A, Hwang J, Song HK, Kim Y, Oh ES. Emerging Role of Syndecans in Extracellular Matrix Remodeling in Cancer. J Histochem Cytochem 2020; 68:863-870. [PMID: 32623937 PMCID: PMC7711240 DOI: 10.1369/0022155420930112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) offers a structural basis for regulating cell functions while also acting as a collection point for bioactive molecules and connective tissue cells. To perform pathological functions under a pathological condition, the involved cells need to regulate the ECM to support their altered functions. This is particularly common in the development of cancer. The ECM has been recognized as a key driver of cancer development and progression, and ECM remodeling occurs at all stages of cancer progression. Thus, cancer cells need to change the ECM to support relevant cell surface adhesion receptor-mediated cell functions. In this context, it is interesting to examine how cancer cells regulate ECM remodeling, which is critical to tumor malignancy and metastatic progression. Here, we review how the cell surface adhesion receptor, syndecan, regulates ECM remodeling as cancer progresses, and explore how this can help us better understand ECM remodeling under these pathological conditions.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ayoung Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yunjeon Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Lopez Mora N, Owens M, Schmidt S, Silva AF, Bradley M. Poly-Epsilon-Lysine Hydrogels with Dynamic Crosslinking Facilitates Cell Proliferation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3851. [PMID: 32882810 PMCID: PMC7504584 DOI: 10.3390/ma13173851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) is a three-dimensional network within which fundamental cell processes such as cell attachment, proliferation, and differentiation occur driven by its inherent biological and structural cues. Hydrogels have been used as biomaterials as they possess many of the ECM characteristics that control cellular processes. However, the permanent crosslinking often found in hydrogels fails to recapitulate the dynamic nature of the natural ECM. This not only hinders natural cellular migration but must also limit cellular expansion and growth. Moreover, there is an increased interest in the use of new biopolymers to create biomimetic materials that can be used for biomedical applications. Here we report on the natural polymer poly-ε-lysine in forming dynamic hydrogels via reversible imine bond formation, with cell attachment promoted by arginine-glycine-aspartic acid (RGD) incorporation. Together, the mechanical properties and cell behavior of the dynamic hydrogels with low poly-ε-lysine quantities indicated good cell viability and high metabolic activity.
Collapse
Affiliation(s)
- Nestor Lopez Mora
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Matthew Owens
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Sara Schmidt
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Andreia F. Silva
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK;
| | - Mark Bradley
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| |
Collapse
|
23
|
Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati AV, Lakshmanan M, Tergaonkar V, Thibault G, Wang X, Hong W. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep 2020; 28:949-965.e7. [PMID: 31340156 DOI: 10.1016/j.celrep.2019.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) recruitment is central to the vascularization of tumors. Although several proteoglycans have been implicated in cancer and angiogenesis, their roles in EC recruitment and vascularization during tumorigenesis remain poorly understood. Here, we reveal that Agrin, which is secreted in liver cancer, promotes angiogenesis by recruiting ECs within tumors and metastatic lesions and facilitates adhesion of cancer cells to ECs. In ECs, Agrin-induced angiogenesis and adherence to cancer cells are mediated by Integrin-β1, Lrp4-MuSK pathways involving focal adhesion kinase. Mechanistically, we uncover that Agrin regulates VEGFR2 levels that sustain the angiogenic property of ECs and adherence to cancer cells. Agrin attributes an ECM stiffness-based stabilization of VEGFR2 by enhancing interactions with Integrin-β1-Lrp4 and additionally stimulates endothelial nitric-oxide synthase (e-NOS) signaling. Therefore, we propose that cross-talk between Agrin-expressing cancer and ECs favor angiogenesis by sustaining the VEGFR2 pathway.
Collapse
Affiliation(s)
- Kizito Njah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Beiying Qiu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Surender Arumugam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore; Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
24
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Ge J, Cheng X, Yuan C, Qian J, Wu C, Cao C, Yang H, Zhou F, Zou J. Syndecan-4 is a Novel Therapeutic Target for Intervertebral Disc Degeneration via Suppressing JNK/p53 Pathway. Int J Biol Sci 2020; 16:766-776. [PMID: 32071547 PMCID: PMC7019137 DOI: 10.7150/ijbs.40189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023] Open
Abstract
Syndecan-4 is a member of the polysaccharide syndecan family and plays a vital role in intervertebral disc development. Several studies have demonstrated the positive relationship between syndecan-4 expression and intervertebral disc degeneration. However, the detailed molecular mechanism by which syndecan-4 affects the degeneration of nucleus pulposus cells (NPCs) remains unclear. In this study, cell viability was determined by CCK-8 assay, mRNA level was determined by qPCR, and protein expression was determined by western blot. Molecular interaction was determined by chromatin immunoprecipitation assay. A rabbit intervertebral disc degeneration model was established to test for syndecan in vivo. We found that the morphology and viability of NPCs were not affected by the expression of syndecan-4 in the long term. While the NPC function were affected, which results in the degeneration of intervertebral disc. Syndecan-4 overexpression promoted the degeneration of NPCs. Syndecan-4 also activated the JNK signaling pathway and downstream p53 pathways, and promoted degeneration. Inhibition of the JNK pathway, which down-regulated p53 expression, alleviated the degeneration. In an in vivo study, syndecan-4 siRNA injection stopped the development of rabbit disc degeneration, and even created a reverse effect, in which JNK/p53 played a role. Syndecan-4 may be a novel therapeutic target for intervertebral disc degeneration via suppressing the JNK/p53 pathway.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chenxi Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chunshen Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cheng Cao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
26
|
Heparan Sulfate in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:147-161. [PMID: 32266657 DOI: 10.1007/978-3-030-40146-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biology of tumor cells strictly depends on their microenvironment architecture and composition, which controls the availability of growth factors and signaling molecules. Thus, the network of glycosaminoglycans, proteoglycans, and proteins known as extracellular matrix (ECM) that surrounds the cells plays a central role in the regulation of tumor fate. Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are highly versatile ECM components that bind and regulate the activity of growth factors, cell membrane receptors, and other ECM molecules. These HS binding partners modulate cell adhesion, motility, and proliferation that are processes altered during tumor progression. Modification in the expression and activity of HS, HSPGs, and the respective metabolic enzymes results unavoidably in alteration of tumor cell microenvironment. In this light, the targeting of HS structure and metabolism is potentially a new tool in the treatment of different cancer types.
Collapse
|
27
|
Sayyad MR, Puchalapalli M, Vergara NG, Wangensteen SM, Moore M, Mu L, Edwards C, Anderson A, Kall S, Sullivan M, Dozmorov M, Singh J, Idowu MO, Koblinski JE. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res Treat 2019; 178:35-49. [PMID: 31327090 DOI: 10.1007/s10549-019-05347-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Although survival rates for patients with localized breast cancer have increased, patients with metastatic breast cancer still have poor prognosis. Understanding key factors involved in promoting breast cancer metastasis is imperative for better treatments. In this study, we investigated the role of syndecan-1 (Sdc1) in breast cancer metastasis. METHODS To assess the role of Sdc1 in breast cancer metastasis, we silenced Sdc1 expression in the triple-negative breast cancer human MDA-MB-231 cell line and overexpressed it in the mouse mammary carcinoma 4T1 cell line. Intracardiac injections were performed in an experimental mouse metastasis model using both cell lines. In vitro transwell blood-brain barrier (BBB) and brain section adhesion assays were utilized to specifically investigate how Sdc1 facilitates brain metastasis. A cytokine array was performed to evaluate differences in the breast cancer cell secretome when Sdc1 is silenced. RESULTS Silencing expression of Sdc1 in breast cancer cells significantly reduced metastasis to the brain. Conversely, overexpression of Sdc1 increased metastasis to the brain. We found that silencing of Sdc1 expression had no effect on attachment of breast cancer cells to brain endothelial cells or astrocytes, but migration across the BBB was reduced as well as adhesion to the perivascular regions of the brain. Loss of Sdc1 also led to changes in breast cancer cell-secreted cytokines/chemokines, which may influence the BBB. CONCLUSIONS Taken together, our study demonstrates a role for Sdc1 in promoting breast cancer metastasis to the brain. These findings suggest that Sdc1 supports breast cancer cell migration across the BBB through regulation of cytokines, which may modulate the BBB. Further elucidating this mechanism will allow for the development of therapeutic strategies to combat brain metastasis.
Collapse
Affiliation(s)
- Megan R Sayyad
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Madhavi Puchalapalli
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Natasha G Vergara
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Sierra Mosticone Wangensteen
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Melvin Moore
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Liang Mu
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Chevaunne Edwards
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Aubree Anderson
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Stefanie Kall
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Megan Sullivan
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jaime Singh
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer E Koblinski
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA. .,Department of Pathology, School of Medicine, Virginia Commonwealth University, Sanger Hall 4-013, 1101 E. Marshall St, Box 980662, Richmond, VA, 23298, USA.
| |
Collapse
|
28
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
29
|
Negishi Y, Nomizu M. Laminin-derived peptides: Applications in drug delivery systems for targeting. Pharmacol Ther 2019; 202:91-97. [PMID: 31158392 DOI: 10.1016/j.pharmthera.2019.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
Recently, the development of drug delivery systems (DDSs) for clinical application of anticancer drugs and gene therapy has rapidly progressed. In particular, DDS carriers used for chemotherapy and gene therapy are required to selectively deliver drugs and genes to cancer cells. Both the carrier and the molecule must in combination be highly selective in most cases. Possible candidate targeting molecules are the laminins, major basement membrane proteins that interact with various cells through their multiple constituent active peptide sequences. Laminin-derived peptides bind to various cellular receptors and have been used for DDSs as a targeting moiety. Here, we review the progress in laminin-derived peptide-conjugated DDSs. Drug and gene carriers as well as ultrasound diagnostic contrast agents utilizing laminin-derived peptides for selective targeting are useful components of DDSs and play important roles in cancer and in the neovasculature.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
30
|
Bizzarro V, Belvedere R, Pessolano E, Parente L, Petrella F, Perretti M, Petrella A. Mesoglycan induces keratinocyte activation by triggering syndecan‐4 pathway and the formation of the annexin A1/S100A11 complex. J Cell Physiol 2019; 234:20174-20192. [DOI: 10.1002/jcp.28618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Luca Parente
- Department of Pharmacy University of Salerno Salerno Italy
| | - Francesco Petrella
- Department of Primary Care, Wound Care Service Health Local Agency Naples 3 South Napoli Italy
| | - Mauro Perretti
- William Harvey Research Institute Queen Mary University of London London UK
| | | |
Collapse
|
31
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
32
|
Emerging roles of proteoglycans in cardiac remodeling. Int J Cardiol 2018; 278:192-198. [PMID: 30528626 DOI: 10.1016/j.ijcard.2018.11.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Cardiac remodeling is the response of the heart to a range of pathological stimuli. Cardiac remodeling is initially adaptive; however, if sustained, it ultimately causes adverse clinical outcomes. Cardiomyocyte loss or hypertrophy, inflammation and fibrosis are hallmarks of cardiac remodeling. Proteoglycans, which are composed of glycosaminoglycans and a core protein, are a non-structural component of the extracellular matrix. The lack of proteoglycans results in cardiovascular defects during development. Moreover, emerging evidence has indicated that proteoglycans act as significant modifiers in ischemia and pressure overload-related cardiac remodeling. Proteoglycans may also provide novel therapeutic strategies for further improvement in the prognosis of cardiovascular diseases.
Collapse
|
33
|
Herman K, Lekka M, Ptak A. Unbinding Kinetics of Syndecans by Single-Molecule Force Spectroscopy. J Phys Chem Lett 2018; 9:1509-1515. [PMID: 29510059 DOI: 10.1021/acs.jpclett.7b03420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Syndecans are transmembrane proteoglycans that, together with integrins, control cell interactions with extracellular matrix components. Despite structural similarities between all members of the syndecan family, their specific attachment to extracellular matrix proteins is defined by heparan and chondroitin chains. We postulate various unbinding kinetics for each type of single syndecan complex. Force spectroscopy data, recorded by atomic force microscope, were analyzed using two theoretical approaches describing force-induced unbinding, authored by Bell-Evans and Dudko-Hummer-Szabo. Our results reveal distinct unbinding pathways dependent on the syndecan family member. Syndecan-1 unbinds by passing over two energy barriers, inner and outer. Syndecan-4 unbinds by crossing over only one energy barrier. It has already been reported that both syndecans bear heparan chains that are structurally indistinguishable. Our finding reveals that unbinding of single syndecan complexes is family-member-dependent. Distinct unbinding pathways can be attributed to structural differences of heparan and chondroitin chains.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Technical Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznań , Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences , PL-31342 Kraków , Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Technical Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznań , Poland
| |
Collapse
|
34
|
Leonova EI, Sadovnikova ES, Shaykhutdinova ER, Galzitskaya OV, Murashev AN, Solonin AS. Hepatic and Aortic Arch Expression and Serum Levels of Syndecan-1 in ApoE -/- Mice. Open Biochem J 2017; 11:77-93. [PMID: 29151984 PMCID: PMC5676011 DOI: 10.2174/1874091x01711010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Heparan sulfate proteoglycan (HSPG) syndecan-1 (Sdc1) acts as a receptor for triglyceride-rich lipoproteins (TRLs), growth factors, chemokines and enzymes. Due to the disordered structure, its function is as diverse as its ligands. In this paper, we have analyzed hepatic and aortic arch expression of Sdc1 in ApoE-/- mice and examined their association with biochemical changes in plasma during the atheroma formation. Methods: ApoE knockout (ApoE-/-) mice as a model of atherosclerosis were used. Plasma chemistry parameters were estimated by automatic biochemical analyzer. The ELISA test was used to detect soluble Sdc1. The mRNA level of syndecan-1 in liver cells and aortic arch was determined by real time PCR. Results: The Sdc1 mRNA level in liver cells was 1.5-2.5 times higher in ApoE-/- mice compared to the wild-type species and increased with age, whereas it remained at the same level in wild-type mice upon aging. Furthermore, the plasma cholesterol level was 4-6 times higher in ApoE-/- mice compared to the wild type; in contrast, triglyceride (TG) remained at the same level. Simultaneously, the expression of Sdc1 in the aortic arch of ApoE-/- mice decreases with age; however, it increases in wild-type mice of the same age. We determined that the Sdc1 mRNA expression in liver cells is significantly higher compared to the cells of aortic arch. In addition, our research demonstrated that the level of soluble Sdc1 slightly increased with age and did not depend on mouse genotype; yet, the total amount of soluble Sdc1 was higher in ApoE-/- mice. Conclusion: Our data suggest that the level of soluble Sdc1 in serum of mice can be associated with chronic inflammation. In addition, we hypothesized that a compensatory increase in the Sdc1 expression in ApoE-/- mice may prevent accumulation of triglycerides in serum, yet having no effect on cholesterol accumulation.
Collapse
Affiliation(s)
- Elena I Leonova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Pushchino, 142290, Russia
| | - Elena S Sadovnikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Pushchino, Russia
| | - Arkady N Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexandr S Solonin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Pushchino, 142290, Russia
| |
Collapse
|
35
|
Malek-Hosseini Z, Jelodar S, Talei A, Ghaderi A, Doroudchi M. Elevated Syndecan-1 levels in the sera of patients with breast cancer correlate with tumor size. Breast Cancer 2017; 24:742-747. [PMID: 28382590 DOI: 10.1007/s12282-017-0773-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/31/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Breast cancer is the leading type of cancer in Iranian women and affects them at least one decade younger than their counterparts in developed countries. Breast tumor progression and metastasis is accompanied by a decrease in the membranous expression of Syndecan-1 and an increase in its shedding. We measured the level of soluble Syndecan-1 in the sera of Iranian patients with breast cancer. METHODS The study population included 61 chemotherapy-naïve breast cancer patients and 30 age/sex-matched healthy individuals. Blood was collected by venipuncture method and serum was separated, aliquoted and kept at -40 °C until used. A commercial ELISA was used to detect Syndecan-1 levels in the sera. RESULTS Soluble Syndecan-1 levels were increased in the sera of patients with breast cancer compared to healthy controls (87.89 ± 89.29 vs. 47.57 ± 46.46 ng/ml, p = 0.005). There was a positive correlation between soluble Syndecan-1 levels and tumor size (p = 0.017). The serum level of Syndecan-1 in patients without calcification showed a trend of increase compared to that of patients with calcification (108.80 ± 101.76 vs. 59.82 ± 57.13 ng/ml). CONCLUSION The positive correlation between soluble Syndecan-1 levels and tumor size in the present study highlights the importance of different varieties (cell-bound and soluble) of this molecule in the breast tumor progression and their significance as tumor biomarkers.
Collapse
Affiliation(s)
- Zahra Malek-Hosseini
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran
| | - Sina Jelodar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran
| | - Abdolrasoul Talei
- Breast Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran.,Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran. .,Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp Immunol Microbiol Infect Dis 2016; 49:95-101. [PMID: 27865272 DOI: 10.1016/j.cimid.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023]
Abstract
Proline-Arginine-39 (PR-39) is a small cationic, proline and arginine rich, cathelicidin that plays an important role in the porcine innate immune system. Although PR-39 was first discovered in intestinal cell lysates of pigs, subsequent research has indicated that it is primarily expressed in bone marrow and other lymphoid tissues including the thymus and spleen, as well as in leukocytes. Mature PR-39 cathelicidin has anti-microbial activity against many gram-negative and some gram-positive bacteria. PR-39 is also a bridge between the innate and adaptive immune system with recognized immunomodulatory, wound healing, anti-apoptotic, and pro-angiogenic functions. The purpose of this review is to summarize our current knowledge about the structure, expression, and functions of PR-39 and its potential to promote intestinal homeostasis. This understanding is relevant in the search of alternative therapeutics against diarrheic enterocolitis, a major problem faced by pork producers both in terms of costs and risk of zoonosis.
Collapse
Affiliation(s)
- Ravi Holani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Chaitanya Shah
- Bachelor of Health Sciences, University of Calgary, Canada
| | - Qahir Haji
- Bachelor of Health Sciences, University of Calgary, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Canada
| | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
37
|
Vázquez-Vélez GE, Rodríguez-Molina JF, Quiñones-Frías MC, Pagán M, García-Arrarás JE. A Proteoglycan-Like Molecule Offers Insights Into Ground Substance Changes During Holothurian Intestinal Regeneration. J Histochem Cytochem 2016; 64:381-93. [PMID: 27126824 DOI: 10.1369/0022155416645781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix remodeling is an essential component of regenerative processes in metazoans. Among these animals, holothurians (sea cucumbers) are distinguished by their great regenerative capacities. We have previously shown that fibrous collagen as well as other fibrous components disappear from the connective tissue (CT) early during intestinal regeneration, and later return as the organ primordia form. We now report on changes of the nonfibrous component of the CT. We have used Alcian Blue staining and an antibody, Proteoglycan Like-1 (PGL-1), that recognizes a proteoglycan-like antigen to identify the presence of proteoglycans in normal and regenerating intestines. Our results show that early in regeneration, the ground substance resembles that of the mesentery, the structure from where the new intestine originates. As regeneration proceeds, Alcian Blue staining and PGL-1 labeling reorganize, so that by 4 weeks the normal intestinal CT pattern is achieved. Together with our previous findings, the data suggest that CT components that might be detrimental to regeneration disappear early on, while those that might be beneficial to regeneration, such as proteoglycans, are present throughout the regenerative process.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas (GEV-V),Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas (GEV-V)
| | - José F Rodríguez-Molina
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin (JFR-M)
| | - Mónica C Quiñones-Frías
- Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas (GEV-V),Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts (MCQ-F)
| | - María Pagán
- Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas (GEV-V),Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico (MP, JEG-A)
| | - José E García-Arrarás
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas (GEV-V),Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico (MP, JEG-A)
| |
Collapse
|
38
|
Hasby EA. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas. Tumour Biol 2016; 37:4889-4900. [PMID: 26526579 DOI: 10.1007/s13277-015-4333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 02/05/2023] Open
Abstract
This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes.
Collapse
Affiliation(s)
- Eiman Adel Hasby
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Ghrbia Governorate, Egypt.
| |
Collapse
|
39
|
Binch ALA, Shapiro IM, Risbud MV. Syndecan-4 in intervertebral disc and cartilage: Saint or synner? Matrix Biol 2016; 52-54:355-362. [PMID: 26796346 DOI: 10.1016/j.matbio.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
The ECM of the intervertebral disc and articular cartilage contains a highly organised network of collagens and proteoglycans which resist compressive forces applied to these tissues. A pathological hallmark of the intervertebral disc is the imbalance between production of anabolic and catabolic factors by the resident cells. This process is thought to be mediated by pro-inflammatory cytokines, predominantly TNF-α and IL-1β, which upregulate expression of matrix degrading enzymes such as MMPs and ADAMTSs. This imbalance ultimately results in tissue degeneration causing failure of the biomechanical function of the tissues. A similar cascade of events is thought to occur in articular cartilage during development of osteoarthritis. Within these skeletal tissues a small, cell surface heparan sulphate proteoglycan; syndecan-4 (SDC4) has been implicated in maintaining physiological functions. However in the degenerating niche of the intervertebral disc and cartilage, dysregulated activities of this molecule may exacerbate pathological changes. Studies in recent years have elucidated a role for SDC4 in mediating matrix degradation in both intervertebral discs and cartilage by controlling ADAMTS-5 function and MMP3 expression. Discourse presented in this review highlights the potential of SDC4 as a possible therapeutic target in slowing the progression of ECM degradation in both degenerative disc disease and osteoarthritis.
Collapse
Affiliation(s)
- Abbie L A Binch
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
40
|
Piperigkou Z, Karamanou K, Afratis NA, Bouris P, Gialeli C, Belmiro CLR, Pavão MSG, Vynios DH, Tsatsakis AM. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol Lett 2016; 240:32-42. [PMID: 26476401 DOI: 10.1016/j.toxlet.2015.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022]
Abstract
The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Nikolaos A Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Celso L R Belmiro
- Faculdade de Medicina, disciplina de Imunologia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| | - Mauro S G Pavão
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | - Dimitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| | - Aristidis M Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
41
|
Surviladze Z, Sterkand RT, Ozbun MA. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. J Gen Virol 2015; 96:2232-2241. [PMID: 26289843 PMCID: PMC4681067 DOI: 10.1099/vir.0.000147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) attach predominantly to extracellular matrix (ECM) components during infection of cultured keratinocytes and in the rodent vaginal challenge model in vivo. However, the mechanism of virion transfer from the ECM to receptors that mediate entry into host cells has not been determined. In this work we strove to assess the role of heparan sulfate (HS) chains in HPV16 binding to the ECM and determine how HPV16 release from the ECM is regulated. We also assessed the extent to which capsids released from the ECM are infectious. We show that a large fraction of HPV16 particles binds to the ECM via HS chains, and that syndecan-1 (snd-1) molecules present in the ECM are involved in virus binding. Inhibiting the normal processing of snd-1 and HS molecules via matrix metalloproteinases and heparanase dramatically reduces virus release from the ECM, cellular uptake and infection. Conversely, exogenous heparinase activates each of these processes. We confirm that HPV16 released from the ECM is infectious in keratinocytes. Use of a specific inhibitor shows furin is not involved in HPV16 release from ECM attachment factors and corroborates other studies showing only the intracellular activity of furin is responsible for modulating HPV infectivity. These data suggest that our recently proposed model, describing the action of HS proteoglycan processing enzymes in releasing HPV16 from the cell surface in complex with the attachment factor snd-1, is also relevant to the release of HPV16 particles from the ECM to promote efficient infection of keratinocytes.
Collapse
Affiliation(s)
- Zurab Surviladze
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Rosa T. Sterkand
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
42
|
Adepu S, Rosman CWK, Dam W, van Dijk MCRF, Navis G, van Goor H, Bakker SJL, van den Born J. Incipient renal transplant dysfunction associates with tubular syndecan-1 expression and shedding. Am J Physiol Renal Physiol 2015; 309:F137-45. [DOI: 10.1152/ajprenal.00127.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan involved in regenerative growth and cellular adhesion. We hypothesized that the induction of tubular syndecan-1 is a repair response to incipient renal damage in apparently stable, uncomplicated renal transplant recipients. We quantified tubular syndecan-1 in unselected renal protocol biopsies taken 1 yr after transplantation. Spearman rank correlation analysis revealed an inverse correlation between tubular syndecan-1 expression and creatinine clearance at the time of biopsy ( r = −0.483, P < 0.03). In a larger panel of protocol and indication biopsies from renal transplant recipients, tubular syndecan-1 correlated with tubular proliferation marker Ki67 ( r = 0.518, P < 0.0001). In a rat renal transplantation model, 2 mo after transplantation, mRNA expression of syndecan-1 and its major sheddase, A disintegrin and metalloproteinase-17, were upregulated (both P < 0.03). Since shed syndecan-1 might end up in the circulation, in a stable cross-sectional human renal transplant population ( n = 510), we measured plasma syndecan-1. By multivariate regression analysis, we showed robust independent associations of plasma syndecan-1 with renal (plasma creatinine and plasma urea) and endothelial function parameters (plasma VEGF-A, all P < 0.01). By various approaches, we were not able to localize syndecan-1 in vessel wall or endothelial cells, which makes shedding of syndecan-1 from the endothelial glycocalyx unlikely. Our data suggest that early damage in transplanted kidneys induces repair mechanisms within the graft, namely, tubular syndecan-1 expression for tubular regeneration and VEGF production for endothelial repair. Elevated plasma syndecan-1 levels in renal transplantation patients might be interpreted as repair/survival factor related to loss of tubular and endothelial function in transplanted kidneys.
Collapse
Affiliation(s)
- Saritha Adepu
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Colin W. K. Rosman
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Wendy Dam
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Marcory C. R. F. van Dijk
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jacob van den Born
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| |
Collapse
|
43
|
Murakami K, Tanaka T, Bando Y, Yoshida S. Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in primary sensory neurons. Neuroscience 2015; 300:338-50. [PMID: 26002314 DOI: 10.1016/j.neuroscience.2015.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have important functions in development of the central nervous system; however, their functions in nerve injury are not yet fully understood. We previously reported the expression of syndecan-1, a type of HSPG, in cranial motor neurons after nerve injury, suggesting the importance of syndecan-1 in the pathology of motor nerve injury. In this study, we examined the expression of syndecan-1, a type of HSPG, in primary sensory neurons after nerve injury in mice. Sciatic nerve axotomy strongly induced the expression of syndecan-1 in a subpopulation of injured dorsal root ganglion (DRG) neurons, which were small in size and had CGRP- or isolectin B4-positive fibers. Syndecan-1 was also distributed in the dorsal horn of the spinal cord ipsilateral to the axotomy, and located on the membrane of axons in lamina II of the dorsal horn. Not only sciatic nerve axotomy, infraorbital nerve axotomy also induced the expression of syndecan-1 in trigeminal ganglion neurons. Moreover, syndecan-1 knockdown in cultured DRG neurons induced a shorter neurite extension. These results suggest that syndecan-1 expression in injured primary sensory neurons may have functional roles in nerve regeneration and synaptic plasticity, resulting in the development of neuropathic pain.
Collapse
Affiliation(s)
- K Murakami
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan.
| | - T Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - Y Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - S Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| |
Collapse
|
44
|
Choi Y, Kwon MJ, Lim Y, Yun JH, Lee W, Oh ES. Trans-regulation of Syndecan Functions by Hetero-oligomerization. J Biol Chem 2015; 290:16943-53. [PMID: 25979339 DOI: 10.1074/jbc.m114.611798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 11/06/2022] Open
Abstract
Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.
Collapse
Affiliation(s)
- Youngsil Choi
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Mi-Jung Kwon
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Yangmi Lim
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eok-Soo Oh
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| |
Collapse
|
45
|
Irvin SC, Herold BC. Molecular mechanisms linking high dose medroxyprogesterone with HIV-1 risk. PLoS One 2015; 10:e0121135. [PMID: 25798593 PMCID: PMC4370479 DOI: 10.1371/journal.pone.0121135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/11/2015] [Indexed: 11/24/2022] Open
Abstract
Background Epidemiological studies suggest that medroxyprogesterone acetate (MPA) may increase the risk of HIV-1. The current studies were designed to identify potential underlying biological mechanisms. Methods Human vaginal epithelial (VK2/E6E7), peripheral blood mononuclear (PBMC), and polarized endometrial (HEC-1-A) cells were treated with a range of concentrations of MPA (0.015-150 μg/ml) and the impact on gene expression, protein secretion, and HIV infection was evaluated. Results Treatment of VK2/E6E7 cells with high doses (>15μg/ml] of MPA significantly upregulated proinflammatory cytokines, which resulted in a significant increase in HIV p24 levels secreted by latently infected U1 cells following exposure to culture supernatants harvested from MPA compared to mock-treated cells. MPA also increased syndecan expression by VK2/E6E7 cells and cells treated with 15 μg/ml of MPA bound and transferred more HIV-1 to T cells compared to mock-treated cells. Moreover, MPA treatment of epithelial cells and PBMC significantly decreased cell proliferation resulting in disruption of the epithelial barrier and decreased cytokine responses to phytohaemagglutinin, respectively. Conclusion We identified several molecular mechanisms that could contribute to an association between DMPA and HIV including proinflammatory cytokine and chemokine responses that could activate the HIV promoter and recruit immune targets, increased expression of syndecans to facilitate the transfer of virus from epithelial to immune cells and decreased cell proliferation. The latter could impede the ability to maintain an effective epithelial barrier and adversely impact immune cell function. However, these responses were observed primarily following exposure to high (15-150 μg/ml) MPA concentrations. Clinical correlation is needed to determine whether the prolonged MPA exposure associated with contraception activates these mechanisms in vivo.
Collapse
Affiliation(s)
- Susan C. Irvin
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America
| | - Betsy C. Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America
- * E-mail:
| |
Collapse
|
46
|
Takawale A, Sakamuri SS, Kassiri Z. Extracellular Matrix Communication and Turnover in Cardiac Physiology and Pathology. Compr Physiol 2015; 5:687-719. [DOI: 10.1002/cphy.c140045] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res 2015; 56:272-80. [PMID: 26076122 PMCID: PMC4785798 DOI: 10.3109/03008207.2015.1045066] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.
Collapse
Affiliation(s)
- Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104
| |
Collapse
|
48
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
49
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
50
|
Adepu S, Katta K, Tietge UJF, Kwakernaak AJ, Dam W, van Goor H, Dullaart RPF, Navis GJ, Bakker SJL, van den Born J. Hepatic syndecan-1 changes associate with dyslipidemia after renal transplantation. Am J Transplant 2014; 14:2328-38. [PMID: 25154787 DOI: 10.1111/ajt.12842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/25/2014] [Accepted: 05/18/2014] [Indexed: 01/25/2023]
Abstract
Syndecan-1 is a transmembrane heparan sulfate (HS) proteoglycan present on hepatocytes and involved in uptake of triglyceride-rich lipoproteins via its HS polysaccharide side chains. We hypothesized that altered hepatic syndecan-1 metabolism could be involved in dyslipidemia related to renal transplantation. In a rat renal transplantation model elevated plasma triglycerides were associated with fivefold increased expression of hepatic syndecan-1 mRNA (p < 0.01), but not protein. Expression of syndecan-1 sheddases (ADAM17, MMP9) and heparanase was significantly up-regulated after renal transplantation (all p < 0.05). Profiling of HS side chains revealed loss of hepatic HS upon renal transplantation accompanied by significant decreased functional capacity for VLDL binding (p = 0.02). In a human renal transplantation cohort (n = 510), plasma levels of shed syndecan-1 were measured. Multivariate analysis showed plasma syndecan-1 to be independently associated with triglycerides (p < 0.0001) and inversely with HDL cholesterol (p < 0.0001). Last, we show a physical association of syndecan-1 to HDL from renal transplant recipients (RTRs), but not to HDL from healthy controls. Our data suggest that after renal transplantation loss of hepatic HS together with increased syndecan-1 shedding hampers lipoprotein binding and uptake by the liver contributing to dyslipidemia. Our data open perspectives toward improvement of lipid profiles by targeted inhibition of syndecan-1 catabolism in renal transplantation.
Collapse
Affiliation(s)
- S Adepu
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|