1
|
Pueyo Moliner A, Ito K, Zaucke F, Kelly DJ, de Ruijter M, Malda J. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol 2025; 21:291-308. [PMID: 40155694 DOI: 10.1038/s41584-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Articular cartilage can withstand substantial compressive and shear forces within the joint and also reduces friction during motion. The exceptional mechanical properties of articular cartilage stem from its highly organized extracellular matrix (ECM). The ECM is composed mainly of collagen type II and is pivotal in conferring mechanical durability to the tissue within its proteoglycan-rich matrix. Articular cartilage is prone to injury and degeneration, and current treatments often fail to restore the mechanical function of this tissue. A key challenge is replicating the intricate collagen-proteoglycan network, which is essential for the long-lasting restoration and mechanical durability of the tissue. Understanding articular cartilage development, which arises between late embryonic and early juvenile development, is vital for the creation of durable therapeutic strategies. The development of the articular ECM involves the biosynthesis, fibrillogenesis and self-assembly of the collagen type II network, which, along with proteoglycans and minor ECM components, shapes the architecture of adult articular cartilage. A deeper understanding of these processes could inform biomaterial-based therapies aimed at improving therapeutic outcomes. Emerging biofabrication technologies offer new opportunities to integrate developmental principles into the creation of durable articular cartilage implants. Bridging fundamental biology with innovative engineering offers novel approaches to generating more-durable 3D implants for articular cartilage restoration.
Collapse
Affiliation(s)
- Alba Pueyo Moliner
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Nothnagel RM, Bauer C, Vukonic L, Váradi T, Franek F, Nehrer S, Ripoll MR. Comparative in vitro study of chondrocyte viability and gene expression in wrought and additive manufactured CoCrMo sliding against articular cartilage. J Mech Behav Biomed Mater 2025; 168:107024. [PMID: 40294541 DOI: 10.1016/j.jmbbm.2025.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/19/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Hemiarthroplasty consists of the replacement of local cartilage defects by a partial implant and provides a less aggressive alternative to total joint replacement. The material frequently selected nowadays for partial implants is CoCrMo alloy, which results in a sliding contact between articular cartilage and the alloy. Since the geometry of the implant needs to be tailored to the patient, partial implant technology would greatly profit from novel additive manufacturing techniques. This study examines the feasibility of using additive manufacturing techniques on partial implants made of CoCrMo alloys, with a particular focus on the impact of manufacturing technique on mechanical stimulation, cartilage analysis, and friction performance. To this end, in vitro biotribological experiments were performed between CoCrMo samples and bovine articular cartilage using PBS as simulated body fluid. Key findings reveal significant changes in microstructure between laser beam melted (LBM) and wrought CoCrMo alloys, despite having a comparable elemental composition. The coefficient of friction (CoF) measured between bovine articular cartilage and the CoCrMo specimens during biotribocorrosive testing revealed no significant differences resulting from the manufacturing techniques, even though wrought CoCrMo resulted in a higher reproducibility. Conventionally produced CoCrMo also exhibited a more anodic open circuit potential during the experiments, likely due to the significant differences in microstructure that affect corrosion resistance. The tested cartilage samples showed a slight increase in MMP13 (Matrix Metalloproteinases - degradative enzymes) in comparison to the controls, indicating potential remodeling effects, especially for the LBM CoCrMo alloy. Additionally, the metabolic activity in the cartilage specimens increased due to mechanical stimulation. No cracks or fissures were detected in histological imaging thus highlighting that the cartilage samples were not damaged during harvesting or testing. These findings indicate the possibility of an equivalent use of additive manufactured CoCrMo, enabling patient-specific surgeries and encourage further research to explore the long-term impact of corrosion stability on implant longevity and functionality.
Collapse
Affiliation(s)
- Rosa Maria Nothnagel
- AC2T Research GmbH, Wiener Neustadt, Austria; University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria.
| | - Christoph Bauer
- University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria
| | | | | | | | - Stefan Nehrer
- University of Continuing Science Krems, Faculty of Health and Medicine, Department for Health Sciences and Biomedicine, Center for Regenerative Medicine and Orthopedics, Krems, Austria
| | | |
Collapse
|
3
|
Yang X, Gao F, Song W. Cartilage Lubrication from the Perspective of Wettability. ACS NANO 2025; 19:13505-13526. [PMID: 40171891 DOI: 10.1021/acsnano.4c17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cartilage exhibits an extremely low friction and very low wearability within the liquid environment of the joint. It is also capable of switching wettability between superhydrophilicity and hydrophobicity in both wetting and dry conditions (specific experimental operations or open wounds). Therefore, the understanding of cartilage lubrication from the perspective of wettability provides inspiration for the design of artificial cartilage and sections with motion of soft actuators with extremely low coefficients of friction (COF). In this review, the lubrication of articular cartilage is introduced and discussed from the view of wettability. First, basic principles of articular cartilage lubrication and wettability are described with a focus on compositions and wettability of articular cartilage, and in particular the relationship between the phospholipid layers and wettability on articular cartilage, and the supramolecular synergy of synovial fluid on the lubrication of articular cartilage. Subsequently, the wettability and lubrication of articular cartilage under different stimuli (such as shear, pH, temperature, and electric field) is introduced for insights into cartilage lubrication. Finally, we present a comprehensive summary and delineate the challenges within the domain of cartilage lubrication and wettability for assisting researchers in formulating viable concepts for the design of efficient cartilage substitution or smart soft lubricating devices.
Collapse
Affiliation(s)
- Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Lubecka K, Galant K, Chęciński M, Chęcińska K, Bliźniak F, Ciosek A, Gładysz T, Cholewa-Kowalska K, Chlubek D, Sikora M. A Protocol for a Systematic Review on Septic Arthritis of the Temporomandibular Joint (SATMJ). J Clin Med 2025; 14:2392. [PMID: 40217842 PMCID: PMC11989331 DOI: 10.3390/jcm14072392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Septic arthritis of the temporomandibular joint is an infectious disease with a rapid course and possible long-term complications. It is crucial to diagnose and implement treatment quickly and to know the potential causes of the occurrence of SATMJ. The planned systematic review aims to summarize current knowledge on this subject. Methods: This protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and checklist. The following scientific databases will be searched: ACM, BASE, ClinicalTrials.gov, Cochrane Library, Google Scholar, PubMed, and Scopus. Studies on SATMJ that are consistent with the pre-established PICOTS criteria will be included in the systematic review. Two authors will independently conduct the record screening, data extraction, and quality appraisal phases. The quality of the studies will be evaluated using the JBI critical appraisal tools. Certainty assessment will be conducted using the GRADE tool. The obtained research results and data will be used to define and establish the current scientific position on the diagnosis and treatment of SATMJ. Conclusions on the lack of association of gender, age, and race with the occurrence of this disease entity will be verified, among others. The planned systematic review will be based on extensive searches for studies with no high risk of bias. The aim is to assist clinicians in managing SATMJ, and to inspire future research.
Collapse
Affiliation(s)
- Karolina Lubecka
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland; (K.L.); (F.B.)
| | - Kacper Galant
- Faculty of Medicine, Medical University of Lodz, Al. Kościuszki 4, 90-419 Lodz, Poland; (K.G.); (A.C.)
| | - Maciej Chęciński
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
| | - Kamila Chęcińska
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
| | - Filip Bliźniak
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland; (K.L.); (F.B.)
| | - Agata Ciosek
- Faculty of Medicine, Medical University of Lodz, Al. Kościuszki 4, 90-419 Lodz, Poland; (K.G.); (A.C.)
| | - Tomasz Gładysz
- Department of Oral Surgery, Medical College, Jagiellonian University, Montelupich 4, 31-155 Kraków, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Maciej Sikora
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Fu PJ, Zheng SY, Luo Y, Ren ZQ, Li ZH, Wang YP, Lu BB. Prg4 and Osteoarthritis: Functions, Regulatory Factors, and Treatment Strategies. Biomedicines 2025; 13:693. [PMID: 40149669 PMCID: PMC11940178 DOI: 10.3390/biomedicines13030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Proteoglycan 4 (PRG4), also known as lubricin, plays a critical role in maintaining joint homeostasis by reducing friction between articular cartilage surfaces and preventing cartilage degradation. Its deficiency leads to early-onset osteoarthritis (OA), while overexpression can protect against cartilage degeneration. Beyond its lubricating properties, PRG4 exerts anti-inflammatory effects by interacting with Toll-like receptors, modulating inflammatory responses within the joint. The expression of Prg4 is regulated by various factors, including mechanical stimuli, inflammatory cytokines, transcription factors such as Creb5 and FoxO, and signaling pathways like TGF-β, EGFR, and Wnt/β-catenin. Therapeutic strategies targeting PRG4 in OA have shown promising results, including recombinant PRG4 protein injections, gene therapies, and small molecules that enhance endogenous Prg4 expression or mimic its function. Further research into the molecular mechanisms regulating Prg4 expression will be essential in developing more effective OA treatments. Understanding the interplay between Prg4 and other signaling pathways could reveal novel therapeutic targets. Additionally, advancements in gene therapy and biomaterials designed to deliver PRG4 in a controlled manner may hold potential for the long-term management of OA, improving patient outcomes and delaying disease progression.
Collapse
Affiliation(s)
- Peng-Jie Fu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zhuo-Qun Ren
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zi-Han Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Ya-Ping Wang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bang-Bao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Afshari AR, Chang V, Thomsson KA, Höglund J, Browne EN, Karadzhov G, Mahoney KE, Lucas TM, Rangel-Angarita V, Ryberg H, Gidwani K, Pettersson K, Rolfson O, Björkman LI, Eisler T, Schmidt TA, Jay GD, Malaker SA, Karlsson NG. Glycoproteoforms of Osteoarthritis-associated Lubricin in Plasma and Synovial Fluid. Mol Cell Proteomics 2025; 24:100923. [PMID: 39922311 PMCID: PMC11925169 DOI: 10.1016/j.mcpro.2025.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Lubricin/proteoglycan-4 (PRG-4) is a mucinous glycoprotein that lubricates cartilage and maintains normal tissue function and cell homeostasis. Altered O-glycoproteforms of lubricin have been found in osteoarthritis (OA) synovial fluid (SF), which could ostensibly be used to diagnose early onset OA. However, SF is invasive to obtain and generally would not be surveyed from otherwise healthy individuals. Thus, a plasma-based OA screening tool focused on lubricin glycosylation could be a less invasive method to aid in early-stage OA diagnosis. In this report, we used glycomics and glycoproteomics to characterize glycoproteoforms of OA lubricin in SF and plasma. We obtained near-complete sequence coverage of lubricin's mucin domain and its glycosylation using matched SF and plasma from patients with OA (N = 5). From SF lubricin we observed a spectrum of O-glycans ranging from a single GalNAcα1-Ser/Thr monosaccharide up to branched pentasaccharides. In contrast, plasma based lubricin was predominantly decorated with sialylated Galβ1-3GalNAcα1-Ser/Thr (Sialyl T). To explain the glycosylation differences observed between SF and plasma lubricin, we present splice variant-specific peptides found within the non-glycosylated region, revealing that that the longest spliceoform of lubricin was present exclusively in SF, while additional shorter splice variants could only be detected in plasma. Based on our glycoproteomic data, we developed and validated a lectin assay for lubricin, and applied this on a larger cohort of matched SF/plasma (N = 19) to confirm the glycosylation differences between SF and plasma proteoforms. Next, we leveraged our assay to screen over 100 patient with OA samples (OA patients N = 108/controls N = 38) to probe plasma lubricin as an OA biomarker. Here, we detected a decrease in α2,6 linked sialic acid in patients with OA and further show that the extent of α2,6 and α2,3 sialylation on plasma-associated lubricin correlated with patient characteristics, especially Body Mass Index (BMI).
Collapse
Affiliation(s)
- Ali Reza Afshari
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University Oslo Metropolitan University, Oslo, Norway
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Höglund
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - George Karadzhov
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Taryn M Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Henrik Ryberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kamlesh Gidwani
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Centre, Farmington, Connecticut, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
7
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
8
|
Stork EM, Kalaidopoulou Nteak S, van Rijswijck DMH, Damen JMA, Scherer HU, Toes REM, Bondt A, Huizinga TWJ, Heck AJR. Multitiered Proteome Analysis Displays the Hyperpermeability of the Rheumatoid Synovial Compartment for Plasma Proteins. Mol Cell Proteomics 2025; 24:100900. [PMID: 39746544 PMCID: PMC11821404 DOI: 10.1016/j.mcpro.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction. RA affects the synovial joints, the synovial lining, and the permeability of the synovium. As the latter is of central relevance for the distribution of systemically delivered therapeutics into synovial fluid (SF), we here assessed the protein composition of paired plasma and SF of patients diagnosed with RA at three distinct levels of depth using mass spectrometric approaches: the "total" proteome, the "total" immunoglobulin G1 (IgG1) antibody repertoire, and the RA-specific anticitrullinated protein IgG1 autoantibody repertoire. The SF proteome was found to be dominated in numbers and concentration by plasma proteins, although we additionally detected several cartilage- and neutrophil-derived proteins of lower abundance. Strikingly, the plasma proteins were not only qualitatively reflected in SF but also quantitatively, independent of their size and/or other biochemical features. Also, the synovial "total" IgG1 and autoreactive anticitrullinated protein antibody IgG1 repertoire highly resembled the IgG1 repertoires detected in plasma within the same patient. Our comprehensive multilayer data thus reveals that the proteome, including the dominant, most abundant (auto)antibody clones, present in SF of RA patients is a direct reflection of the proteome present in blood, spiked by the local (immune) processes within the RA joint. We thus conclude that proteins directly pass from blood into SF of these joints without substantial bias. These findings thereby not only exemplify the use of in-depth multilayer proteome analyses to revisit basic concepts underlying RA pathology and to monitor the local (immune) processes destructive to cartilage but also provide evidence indicating that (protein-based) therapeutics may equally enter SF of swollen joints and that pharmacokinetic analyses of such therapeutics in blood are directly relevant to the synovial compartment.
Collapse
Affiliation(s)
- Eva Maria Stork
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sofia Kalaidopoulou Nteak
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Lubecka K, Galant K, Chęciński M, Chęcińska K, Bliźniak F, Ciosek A, Gładysz T, Cholewa-Kowalska K, Chlubek D, Sikora M. Overview of Systematic Reviews on Septic Arthritis of the Temporomandibular Joint (SATMJ). J Clin Med 2025; 14:835. [PMID: 39941506 PMCID: PMC11818065 DOI: 10.3390/jcm14030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: This overview of systematic reviews was carried out following the PRIOR guidelines. It aimed to collect and compare the results of systematic reviews on the etiology, diagnosis, and treatment standards of septic arthritis of the temporomandibular joint. Methods: ACM, BASE, Google Scholar, PubMed, and Scopus were searched on 5 January 2025, for systematic reviews on SATMJ etiology and treatment. Records underwent selection, AMSTAR 2 evaluation, data extraction, and qualitative synthesis. Results: Three systematic reviews were included, covering 38 reports (93 cases), 37 reports (91 cases), and 25 reports (40 cases), respectively. There are seven source reports common to all three reviews. The reviews co-indicate possible odontogenic etiology, differ in opinions about the impact of chronic diseases, and agree on the superiority of pharmacotherapy, though without consensus on specific antibiotics. Severe complications of SATMJ, including potentially lethal ones, were reported. Conclusions: SATMJ is a serious condition requiring urgent and precise medical intervention, yet no clear management guidelines exist. The low overlap and inconsistency of the previous systematic reviews provide a foundation for a more comprehensive synthesis.
Collapse
Affiliation(s)
- Karolina Lubecka
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland (F.B.)
| | - Kacper Galant
- Faculty of Medicine, Medical University of Lodz, Al. Kościuszki 4, 90-419 Lodz, Poland; (K.G.); (A.C.)
| | - Maciej Chęciński
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
| | - Kamila Chęcińska
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
| | - Filip Bliźniak
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland (F.B.)
| | - Agata Ciosek
- Faculty of Medicine, Medical University of Lodz, Al. Kościuszki 4, 90-419 Lodz, Poland; (K.G.); (A.C.)
| | - Tomasz Gładysz
- Department of Oral Surgery, Medical College, Jagiellonian University, Montelupich 4, 31-155 Kraków, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Maciej Sikora
- National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (M.C.); (K.C.); (M.S.)
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Kiełbowski K, Bakinowska E, Gorący-Rosik A, Figiel K, Judek R, Rosik J, Dec P, Modrzejewski A, Pawlik A. DNA and RNA Methylation in Rheumatoid Arthritis-A Narrative Review. EPIGENOMES 2025; 9:2. [PMID: 39846569 PMCID: PMC11755448 DOI: 10.3390/epigenomes9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease leading to structural and functional joint damage and, eventually, to physical disability. The pathogenesis of the disease is highly complex and involves interactions between fibroblast-like synoviocytes (FLSs) and immune cells, which stimulate the secretion of pro-inflammatory factors, leading to chronic inflammation. In recent years, studies have demonstrated the importance of epigenetics in RA. Specifically, epigenetic alterations have been suggested to serve as diagnostic and treatment biomarkers, while epigenetic mechanisms are thought to be involved in the pathogenesis of RA. Epigenetic regulators coordinate gene expression, and in the case of inflammatory diseases, they regulate the expression of a broad range of inflammatory molecules. In this review, we discuss current evidence on the involvement of DNA and RNA methylation in RA.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Anna Gorący-Rosik
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Karolina Figiel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Roksana Judek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Paweł Dec
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, 71-422 Szczecin, Poland
| | - Andrzej Modrzejewski
- Clinical Department of General Surgery, Pomeranian Medical University in Szczecin, Piotra Skargi 9-11, 70-965 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| |
Collapse
|
11
|
Wimmer MA, Schmid TM. Cartilage on the test bench - What is the functional role of synovial fluid in reducing wear and fatigue? Osteoarthritis Cartilage 2025; 33:12-13. [PMID: 39362580 DOI: 10.1016/j.joca.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Markus A Wimmer
- Department of Orthopedic Surgery, Rush University, Chicago, IL, USA.
| | - Thomas M Schmid
- Department of Orthopedic Surgery, Rush University, Chicago, IL, USA
| |
Collapse
|
12
|
Elsaid KA, Zhang LX, Zhao T, Marks A, Jenkins D, Schmidt TA, Jay GD. Proteoglycan 4 (Lubricin) and regulation of xanthine oxidase in synovial macrophage as a mechanism of controlling synovitis. Arthritis Res Ther 2024; 26:214. [PMID: 39696446 DOI: 10.1186/s13075-024-03455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis. Proteoglycan 4 (PRG4) is a mucinous glycoprotein that fulfills lubricating and homeostatic roles in the joint. The aim of this work is to study the role of PRG4 in modulating synovitis in the context of SM homeostasis and assess the contribution of xanthine oxidase (XO)-hypoxia inducible factor alpha (HIF-1a) axis to this regulation. METHODS We used Prg4FrtloxP/FrtloxP;R26FlpoER/+, a novel transgenic mouse, where the Prg4Frt allele normally expresses the PRG4 protein and was designed to flank the first two exons of Prg4 with a flippase recognition target and "LOXP" sites. Inducing flippase activity with tamoxifen (TAM) inactivates the Frt allele and thus creates a conditional knockout state. We studied anti-inflammatory SMs and XO by quantitative immunohistochemistry, isolated RNA and studied immune pathway activations by multiplexed assays and isolated SMs and studied PRG4 signaling dysfunction in relation to glycolytic switching due to pro-inflammatory activation. Prg4 inactivated mice were treated with oral febuxostat, a specific XO inhibitor, and quantification of Cx3CR1 + TREM2 + SMs, XO immunostaining and synovitis assessment were conducted. RESULTS Prg4 inactivation induced Cx3CR1 + TREM2 + SM loss (p < 0.001) and upregulated glycolysis and innate immune pathways in the synovium. In isolated SMs, Xdh (p < 0.01) and Hif1a (p < 0.05) were upregulated. Pro-inflammatory activation of SMs was evident by enhanced glycolytic flux and XO-generated reactive oxygen species (ROS). Febuxostat reduced glycolytic flux (p < 0.001) and HIF-1a levels (p < 0.0001) in SMs. Febuxostat also reduced systemic inflammation (p < 0.001), synovial hyperplasia (p < 0.001) and preserved Cx3CR1 + TREM2 + SMs (p < 0.0001) in synovia of Prg4 inactivated mice. CONCLUSIONS PRG4 is a biologically significant modulator of synovial homeostasis via inhibition of XO expression and downstream HIF-1a activation. PRG4 signaling is anti-inflammatory and promotes synovial homeostasis in chronic synovitis, where direct XO inhibition is potentially therapeutic in chronic synovitis.
Collapse
Affiliation(s)
- Khaled A Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA.
| | - Ling X Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
| | | | - Ava Marks
- Brown University, Providence, RI, USA
| | - Derek Jenkins
- Department of Orthopaedics, Rhode Island Hospital, Providence, RI, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
- Department of Orthopaedics, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
13
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
14
|
Prajapati M, Vishwanath K, Huang L, Colville M, Reesink H, Paszek M, Bonassar LJ. Specific Degradation of the Mucin Domain of Lubricin in Synovial Fluid Impairs Cartilage Lubrication. ACS Biomater Sci Eng 2024; 10:6915-6926. [PMID: 39425698 DOI: 10.1021/acsbiomaterials.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood. Here, we demonstrate the application of a novel mucinase (StcE) to selectively degrade lubricin's mucin domain in SF to measure its impact on joint lubrication and friction. Notably, StcE effectively degraded the lubricating ability of SF in a dose-dependent manner starting at nanogram concentrations (1-3.2 ng/mL). Further, the highest StcE doses effectively degraded lubrication to levels on par with trypsin, suggesting that cleavage at the mucin domain of lubricin is sufficient to completely inhibit the lubrication mechanism of the collective protein component in SF. These findings demonstrate the value of mucin-specific experimental approaches to characterize the lubricating properties of SF and reveal key trends in joint lubrication that help us better understand cartilage function in lubrication-deficient joints.
Collapse
Affiliation(s)
- Megh Prajapati
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, New York 14853, United States
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Heidi Reesink
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, New York 14850, United States
| |
Collapse
|
15
|
Singh S, Badiger VA, Balan S, Nampoothiri S, Rao AP, Shah H, Bhavani GS, Narayanan DL, Girisha KM. Thirteen Indians with camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Clin Dysmorphol 2024; 33:152-159. [PMID: 38856641 PMCID: PMC7617550 DOI: 10.1097/mcd.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome (MIM# 208250) is a rare monogenic disorder, characterized by early onset of camptodactyly, progressive coxa vara, bilateral arthropathy and constrictive pericarditis. The syndrome is caused by biallelic loss-of-function variants in PRG4 . Deficiency of PRG4 results in progressive worsening of joint deformity with age. Thirteen individuals with CACP syndrome from eight consanguineous Indian families were evaluated. We used exome sequencing to elucidate disease-causing variants in all the probands. These variants were further validated and segregated by Sanger sequencing, confirming the diagnosis of CACP syndrome in them. Seven females and six males aged 2-23 years were studied. Camptodactyly (13/13), coxa vara (11/13), short femoral neck (11/13) and arthritis in large joints (12/13) [wrists (11/13), ankle (11/13), elbow (10/13) and knee (10/13)] were observed commonly. Five novel disease-causing variants (c.3636G>T, c.1935del, c.1134dup, c.1699del and c.962T>A) and two previously reported variants (c.1910_1911del and c.2816_2817del) were identified in homozygous state in PRG4 . We describe the phenotype and mutations in one of the large cohorts of patients with CACP syndrome, from India.
Collapse
Affiliation(s)
- Swati Singh
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Vaishnavi Ashok Badiger
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Suma Balan
- Department of Rheumatology and Clinical Immunology, Amrita Institute of Medical Sciences and Research Centre
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala
| | - Anand Prahalad Rao
- Department of Paediatric Rheumatology, Indira Gandhi Institute of Child Health, Bangalore
| | - Hitesh Shah
- Department of Paediatric Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
- DBT-Wellcome Trust India Alliance Early Career Clinical and Public Health Research Fellow, Hyderabad, Telangana, India
| | - Katta M. Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Elsaid KA, Zhang LX, Zhao T, Marks A, Jenkins D, Schmidt TA, Jay GD. Proteoglycan 4 (Lubricin) and Regulation of Xanthine Oxidase in Synovial Macrophage as A Mechanism of Controlling Synovitis. RESEARCH SQUARE 2024:rs.3.rs-4934175. [PMID: 39372933 PMCID: PMC11451733 DOI: 10.21203/rs.3.rs-4934175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis. Proteoglycan 4 (PRG4) is a mucinous glycoprotein that fulfills lubricating and homeostatic roles in the joint. The aim of this work is to study the role of PRG4 in modulating synovitis in the context of SM homeostasis and assess the contribution of xanthine oxidase (XO)-hypoxia inducible factor alpha (HIF-1α) axis to this regulation. Methods We used Prg4 FrlioxP/FrtloxP ;R26 FlPoER/+ , a novel transgenic mouse, where the Prg4 Frt allele normally expresses the PRG4 protein and was designed to flank the first two exons of Prg4 with a flippase recognition target and "LOXP" sites. Inducing flippase activity with tamoxifen (TAM) inactivates the Frt allele and thus creates a conditional knockout state. We studied anti-inflammatory SMs and XO by quantitative immunohistochemistry, isolated RNA and studied immune pathway activations by multiplexed assays and isolated SMs and studied PRG4 signaling dysfunction in relation to glycolytic switching due to pro-inflammatory activation. Prg4 inactivated mice were treated with oral febuxostat, a specific XO inhibitor, and quantification of Cx3CR1 + TREM2 + SMs, XO immunostaining and synovitis assessment were conducted. Results Prg4 inactivation induced Cx3CR1 + TREM2 + SM loss (p < 0.001) and upregulated glycolysis and innate immune pathways in the synovium. In isolated SMs, Xdh (p < 0.01) and Hif1a (p < 0.05) were upregulated. Pro-inflammatory activation of SMs was evident by enhanced glycolytic flux and XO-generated reactive oxygen species (ROS). Febuxostat reduced glycolytic flux (p < 0.001) and HIF-1α levels (p < 0.0001) in SMs. Febuxostat also reduced systemic inflammation (p < 0.001), synovial hyperplasia (p < 0.001) and preserved Cx3CR1 + TREM2 + SMs (p < 0.0001) in synovia of Prg4 inactivated mice. Conclusions PRG4 is a biologically significant modulator of synovial homeostasis via inhibition of XO expression and downstream HIF-1a activation. PRG4 signaling is anti-inflammatory and promotes synovial homeostasis in chronic synovitis, where direct XO inhibition is potentially therapeutic in chronic synovitis.
Collapse
|
17
|
Ayala S, Matan SO, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain. J Orthop Res 2024. [PMID: 39182184 DOI: 10.1002/jor.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Salman O Matan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle L Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Zhou W, Wang N, Dong S, Huan Z, Sui L, Ge X. PRG4 mitigates hemorrhagic shock-induced cardiac injury by inhibiting mitochondrial dysregulation, oxidative stress and NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 137:112507. [PMID: 38897120 DOI: 10.1016/j.intimp.2024.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Hemorrhagic shock (HS) is one of the main causes of morbidity and death in patients with trauma or major surgery. Cardiac dysfunction is a well-known complication of HS. PRG4, also known as lubricin, is a mucin-like glycoprotein that plays anti-inflammatory and anti-apoptotic roles in a variety of diseases. In this study, we aimed to explore the cardioprotective efficacy of PRG4 in HS-induced cardiac injury. Employing the HS model and RNA-seq, we found that PRG4 was increased in the myocardial tissue of rats after HS. In vivo studies suggested that HS led to abnormal hemodynamic parameters and increased cTnI levels, and PRG4 overexpression effectively reversed these changes. PRG4 also suppressed HS-induced mitochondrial disorders, as reflected by increased mitochondrial membrane potential (MMP), ATP and mitochondria cytochrome c, COXIV and TOM20, as well as decreased BNIP3L and cytoplasmic cytochrome c. Furthermore, HS led to enhanced oxidative stress, as evidenced by upregulated ROS and MDA contents, and downregulated SOD and CAT activities, and these alterations were negated by PRG4 overexpression. Notably, PRG4 repressed the NLRP3-mediated pyroptosis pathway, as illustrated by decreased NLRP3 levels, caspase-1 activity and GSDMD-NT levels. In summary, these observations indicate that PRG4 overexpression protects against HS-induced cardiac dysfunction by inhibiting mitochondrial dysregulation, oxidative stress and NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Wuming Zhou
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Nan Wang
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Sheng Dong
- Department of Emergency, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Lijun Sui
- Department of Cardiology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Department of Emergency, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
19
|
Wakimoto Y, Miura Y, Inoue S, Nomura M, Moriyama H. Effects of different combinations of mechanical loading intensity, duration, and frequency on the articular cartilage in mice. Mol Biol Rep 2024; 51:862. [PMID: 39073659 PMCID: PMC11286701 DOI: 10.1007/s11033-024-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Understanding how healthy articular cartilage responds to mechanical loading is critical. Moderate mechanical loading has positive effects on the cartilage, such as maintaining cartilage homeostasis. The degree of mechanical loading is determined by a combination of intensity, frequency, and duration; however, the best combination of these parameters for knee cartilage remains unclear. This study aimed to determine which combination of intensity, frequency, and duration provides the best mechanical loading on healthy knee articular cartilage in vitro and in vivo. METHODS AND RESULTS In this study, 33 male mice were used. Chondrocytes isolated from mouse knee joints were subjected to different cyclic tensile strains (CTSs) and assessed by measuring the expression of cartilage matrix-related genes. Furthermore, the histological characteristics of mouse tibial cartilages were quantified using different treadmill exercises. Chondrocytes and mice were divided into the control group and eight intervention groups: high-intensity, high-frequency, and long-duration; high-intensity, high-frequency, and short-duration; high-intensity, low-frequency, and long-duration; high-intensity, low-frequency, and short-duration; low-intensity, high-frequency, and long-duration; low-intensity, high-frequency, and short-duration; low-intensity, low-frequency, and long-duration; low-intensity, low-frequency, and short-duration. In low-intensity CTSs, chondrocytes showed anabolic responses by altering the mRNA expression of COL2A1 in short durations and SOX9 in long durations. Furthermore, low-intensity, low-frequency, and long-duration treadmill exercises minimized chondrocyte hypertrophy and enhanced aggrecan synthesis in tibial cartilages. CONCLUSION Low-intensity, low-frequency, and long-duration mechanical loading is the best combination for healthy knee cartilage to maintain homeostasis and activate anabolic responses. Our findings provide a significant scientific basis for exercise and lifestyle instructions.
Collapse
Affiliation(s)
- Yoshio Wakimoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan.
| | - Yasushi Miura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Masato Nomura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Boushehri S, Holey H, Brosz M, Gumbsch P, Pastewka L, Aponte-Santamaría C, Gräter F. O-glycans Expand Lubricin and Attenuate Its Viscosity and Shear Thinning. Biomacromolecules 2024; 25:3893-3908. [PMID: 38815979 PMCID: PMC11238335 DOI: 10.1021/acs.biomac.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.
Collapse
Affiliation(s)
- Saber Boushehri
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Hannes Holey
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Matthias Brosz
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| | - Peter Gumbsch
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Fraunhofer
IWM, Wöhlerstraße
11, Freiburg 79108, Germany
| | - Lars Pastewka
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Frauke Gräter
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
22
|
Zhao P, Klein J. Lubricating Polymer Gels/Coatings: Syntheses and Measurement Strategies. Gels 2024; 10:407. [PMID: 38920953 PMCID: PMC11202676 DOI: 10.3390/gels10060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Straightforward design and long-term functionality for tribological considerations has prompted an extensive substitution of polymers for metals across various applications, from industrial machinery to medical devices. Lubrication of and by polymer gels/coatings, essential for ensuring the cost-effective operation and reliability of applications, has gained strong momentum by benefiting from the structural characteristics of natural lubrication systems (such as articular cartilage). The optimal synthetic strategy for lubricating polymer gels/coatings would be a holistic approach, wherein the lubrication mechanism in relation to the structural properties offers a pathway to design tailor-made materials. This review considers recent synthesis strategies for creating lubricating polymer gels/coatings from the molecular level (including polymer brushes, loops, microgels, and hydrogels), and assessing their frictional properties, as well as considering the underlying mechanism of their lubrication.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Molecular Chemistry and Materials Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jacob Klein
- Department of Molecular Chemistry and Materials Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Vilardo B, De Marchi F, Raineri D, Manfredi M, De Giorgis V, Bebeti A, Scotti L, Kustrimovic N, Cappellano G, Mazzini L, Chiocchetti A. Shotgun Proteomics Links Proteoglycan-4 + Extracellular Vesicles to Cognitive Protection in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:727. [PMID: 38927130 PMCID: PMC11202157 DOI: 10.3390/biom14060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder lacking reliable biomarkers for early diagnosis and disease progression monitoring. This study aimed to identify the novel biomarkers in plasmatic extracellular vesicles (EVs) isolated from ALS patients and healthy controls (HCs). A total of 61 ALS patients and 30 age-matched HCs were enrolled in the study and the protein content of circulating EVs was analyzed by shotgun proteomics. The study was divided into a discovery phase (involving 12 ALS and 12 HC patients) and a validation one (involving 49 ALS and 20 HC patients). In the discovery phase, more than 300 proteins were identified, with 32 proteins showing differential regulation in ALS patients compared to HCs. In the validation phase, over 400 proteins were identified, with 20 demonstrating differential regulation in ALS patients compared to HCs. Notably, seven proteins were found to be common to both phases, all of which were significantly upregulated in EVs from ALS patients. Most of them have previously been linked to ALS since they have been detected in the serum or cerebrospinal fluid of ALS patients. Among them, proteoglycan (PRG)-4, also known as lubricin, was of particular interest since it was significantly increased in ALS patients with normal cognitive and motor functions. This study highlights the significance of EVs as a promising avenue for biomarker discovery in ALS. Moreover, it sheds light on the unexpected role of PRG-4 in relation to cognitive status in ALS patients.
Collapse
Affiliation(s)
- Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Fabiola De Marchi
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Veronica De Giorgis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Alen Bebeti
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
| | - Lorenza Scotti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Letizia Mazzini
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| |
Collapse
|
24
|
Ghelich P, Samandari M, Hassani Najafabadi A, Tanguay A, Quint J, Menon N, Ghanbariamin D, Saeedinejad F, Alipanah F, Chidambaram R, Krawetz R, Nuutila K, Toro S, Barnum L, Jay GD, Schmidt TA, Tamayol A. Dissolvable Immunomodulatory Microneedles for Treatment of Skin Wounds. Adv Healthc Mater 2024; 13:e2302836. [PMID: 38299437 DOI: 10.1002/adhm.202302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Alireza Hassani Najafabadi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Adam Tanguay
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Nikhil Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Fatemeh Alipanah
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ramaswamy Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Roman Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Surgery, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kristo Nuutila
- US Army Institute of Surgical Research, Fort Sam Houston, Texas, 78234, USA
| | - Steven Toro
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lindsay Barnum
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gregory D Jay
- Emergency Medicine, Brown University, Providence, RI, 02908, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
25
|
Tanguay AP, Menon NG, Boudreau MH, Jastrzebski S, Woods PS, Doyle EA, Edwards WB, Jay GD, Deymier AC, Lorenzo J, Lee SK, Schmidt TA. PRG4 deficiency in mice alters skeletal structure, mechanics, and calvarial osteoclastogenesis, and rhPRG4 inhibits in vitro osteoclastogenesis. J Orthop Res 2024; 42:1231-1243. [PMID: 38111181 DOI: 10.1002/jor.25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Osteoporosis is a chronic disease characterized by reduced bone mass and increased fracture risk, estimated to affect over 10 million people in the United States alone. Drugs used to treat bone loss often come with significant limitations and/or long-term safety concerns. Proteoglycan-4 (PRG4, also known as lubricin) is a mucin-like glycoprotein best known for its boundary lubricating function of articular cartilage. In more recent years, it has been shown that PRG4 has anti-inflammatory properties, contributes to the maintenance of subchondral bone integrity, and patients with PRG4 mutations are osteopenic. However, it remains unknown how PRG4 impacts mechanical and material properties of bone. Therefore, our objective was to perform a phenotyping study of bone in a Prg4 gene trap (GT) mouse (PRG4 deficient). We found that femurs of Prg4 GT mice have altered mechanical, structural, and material properties relative to wildtype littermates. Additionally, Prg4 GT mice have a greater number of calvarial osteoclasts than wildtype mice, but do not have a notable inflammatory serum profile. Finally, Prg4 GT mice do not have an altered rate of bone formation, and exogenous recombinant human PRG4 (rhPRG4) administration inhibited osteoclastogenesis in vitro, suggesting that the skeletal phenotype may be due to changes in bone resorption. Overall, this work demonstrates that PRG4 deficiency affects several integral properties of bone structure, mechanics, and skeletal cell activity, and provides the foundation and insight toward future work evaluating PRG4 as a potential therapeutic target in treating bone loss.
Collapse
Affiliation(s)
- Adam P Tanguay
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Nikhil G Menon
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | | | - Sandra Jastrzebski
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Paige S Woods
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Erica A Doyle
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Gregory D Jay
- Department of Medicine, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
- Department of Engineering, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
27
|
Oyama S, Kanamoto T, Ebina K, Etani Y, Hirao M, Goshima A, Otani S, Hikida M, Yamakawa S, Ito S, Okada S, Nakata K. Cyclic compressive loading induces a mature meniscal cell phenotype in mesenchymal stem cells with an atelocollagen-based scaffold. Front Bioeng Biotechnol 2024; 12:1394093. [PMID: 38832131 PMCID: PMC11145507 DOI: 10.3389/fbioe.2024.1394093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction: Biomechanical stimulation is reportedly pivotal in meniscal regeneration, although its effect on mesenchymal stem cell (MSC) meniscal differentiation remains elusive. In this study, we investigated how cyclic compressive loading (CCL) could impact MSCs using three-dimensional cultures in atelocollagen-based meniscal substitute (ACMS). Methods: We extracted MSCs from the meniscus, synovium, and articular cartilage, cultured them in three-dimensional cultures, and exposed them to CCL for 7 days. We then compared the transcriptomes of MSCs treated with and without CCL. Results: Our RNA-seq analysis revealed that CCL induced significant transcriptome changes, significantly affecting chondrocyte-related genes, including SOX9, TGFB1, and PRG4 upregulation. CCL induced transcriptional differentiation of meniscus progenitors toward mature meniscal cells. Conclusion: This study unveils the potential of mechanical stress in promoting MSC meniscal differentiation within ACMS. Our investigations provide new insights for mechanisms underlying meniscal regeneration with ACMS.
Collapse
Affiliation(s)
- Shohei Oyama
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Takashi Kanamoto
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Etani
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization, Osaka Minami Medical Center, Osaka, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, Osaka, Japan
| | - Shunya Otani
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Minami Hikida
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Yamakawa
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shohei Ito
- Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Nakata
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Colville MJ, Huang LT, Schmidt S, Chen K, Vishwanath K, Su J, Williams RM, Bonassar LJ, Reesink HL, Paszek MJ. Recombinant manufacturing of multispecies biolubricants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592580. [PMID: 38746339 PMCID: PMC11092771 DOI: 10.1101/2024.05.05.592580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O-glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
Collapse
Affiliation(s)
- Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Samuel Schmidt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Kevin Chen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Hoekstra M, Snip OSC, Janusz P, Bernabé Kleijn MNA, Truitt ER, Sullivan BD, Schmidt TA, Jay GD, Van Eck M. Recombinant human proteoglycan 4 lowers inflammation and atherosclerosis susceptibility in female low-density lipoprotein receptor knockout mice. J Physiol 2024; 602:1939-1951. [PMID: 38606903 DOI: 10.1113/jp286354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 μm2 compared with 339 ± 15 × 103 μm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| | - Olga S C Snip
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Philip Janusz
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
30
|
Subramaniam KG, Mohanty S, Sharma D, Tamildasan K, Reddy NS. Jammed joints and constricted heart: The science of tribology and missing lubricin. A case report on camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Ann Pediatr Cardiol 2024; 17:221-223. [PMID: 39564163 PMCID: PMC11573197 DOI: 10.4103/apc.apc_18_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 11/21/2024] Open
Abstract
An autosomal recessively inherited noninflammatory arthropathy known as camptodactyly, arthropathy, coxa vara, and pericarditis (CACP) syndrome was discovered in 1999. It is distinguished by synoviocyte hyperplasia and subcapsular fibrosis of the synovial capsule, which results in a shortage of lubricin production. The resulting lack of joint lubrication induces increased mechanical stress, causing progressive deformities that become evident with weight-bearing and heightened joint activity. Animal models with a lubricin gene knock-out display similar traits, underscoring the impact of mechanical stress on disrupting type II collagen on the articular surface. The gradual development of pericarditis and constriction often results in misdiagnosis as juvenile rheumatoid arthritis with cardiac involvement, but the defining feature remains the noninflammatory nature of the disease. Early recognition is pivotal, as interventions such as pericardiectomy and recombinant human lubricin hold promise for altering the disease's natural course. In our familial case of CACP, two siblings exhibited distinct phenotypic variations - one with fibrosis-dominant features and pericardial constriction and the other displaying synovial hyperplasia without pericardial involvement.
Collapse
Affiliation(s)
- Krishnan Ganapathy Subramaniam
- Department of Cardiothoracic and Vascular Surgery, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India
| | - Satish Mohanty
- Department of Paediatric Cardiology, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India
| | - Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Komal Tamildasan
- Department of Cardiothoracic and Vascular Surgery, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India
| | - Narahari Srinath Reddy
- Department of Paediatric Cardiology, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India
| |
Collapse
|
31
|
Shibata N, Ohashi Y, Tsukada A, Iwase D, Aikawa J, Mukai M, Metoki Y, Uekusa Y, Sato M, Inoue G, Takaso M, Uchida K. IL24 Expression in Synovial Myofibroblasts: Implications for Female Osteoarthritis Pain through Propensity Score Matching Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:741. [PMID: 38792924 PMCID: PMC11122993 DOI: 10.3390/medicina60050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
(1) Introduction: Despite documented clinical and pain discrepancies between male and female osteoarthritis (OA) patients, the underlying mechanisms remain unclear. Synovial myofibroblasts, implicated in synovial fibrosis and OA-related pain, offer a potential explanation for these sex differences. Additionally, interleukin-24 (IL24), known for its role in autoimmune disorders and potential myofibroblast production, adds complexity to understanding sex-specific variations in OA. We investigate its role in OA and its contribution to observed sex differences. (2) Methods: To assess gender-specific variations, we analyzed myofibroblast marker expression and IL24 levels in synovial tissue samples from propensity-matched male and female OA patients (each n = 34). Gene expression was quantified using quantitative polymerase chain reaction (qPCR). The association between IL24 expression levels and pain severity, measured by a visual analog scale (VAS), was examined to understand the link between IL24 and OA pain. Synovial fibroblast subsets, including CD45-CD31-CD39- (fibroblast) and CD45-CD31-CD39+ (myofibroblast), were magnetically isolated from female patients (n = 5), and IL24 expression was compared between these subsets. (3) Results: Females exhibited significantly higher expression of myofibroblast markers (MYH11, ET1, ENTPD2) and IL24 compared to males. IL24 expression positively correlated with pain severity in females, while no correlation was observed in males. Further exploration revealed that the myofibroblast fraction highly expressed IL24 compared to the fibroblast fraction in both male and female samples. There was no difference in the myofibroblast fraction between males and females. (4) Conclusions: Our study highlights the gender-specific role of myofibroblasts and IL24 in OA pathogenesis. Elevated IL24 levels in females, correlating with pain severity, suggest its involvement in OA pain experiences. The potential therapeutic implications of IL24, demonstrated in autoimmune disorders, open avenues for targeted interventions. Notwithstanding the limitations of the study, our findings contribute to understanding OA's multifaceted nature and advocate for future research exploring mechanistic underpinnings and clinical applications of IL24 in synovial myofibroblasts. Additionally, future research directions should focus on elucidating the precise mechanisms by which IL24 contributes to OA pathology and exploring its potential as a therapeutic target for personalized medicine approaches.
Collapse
Affiliation(s)
- Naoya Shibata
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Yoshihisa Ohashi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Ayumi Tsukada
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Dai Iwase
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Jun Aikawa
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Manabu Mukai
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Yukie Metoki
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Yui Uekusa
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Masashi Sato
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (N.S.); (Y.O.); (A.T.); (D.I.); (J.A.); (M.M.); (Y.M.); (M.T.)
- Research Institute, Shonan University of Medical Sciences, Nishikubo 500, Chigasaki 253-0083, Kanagawa, Japan
| |
Collapse
|
32
|
Ninkovic N, Sparks HD, Ponjevic D, Muench G, Biernaskie JA, Krawetz RJ. Proteoglycan 4 (PRG4) treatment improves skin wound healing in a porcine model. FASEB J 2024; 38:e23547. [PMID: 38498368 DOI: 10.1096/fj.202301289rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Proteoglycan 4 (PRG4) is a boundary lubricant originally identified in articular cartilage and has been since shown to have immunomodulation and antifibrotic properties. Previously, we have demonstrated that recombinant human (rh)PRG4 treatment accelerates auricular cartilage injury closure through an inhibition of the fibrotic response, and promotion of tissue regeneration in mice. The purpose of the current study was to examine the effects of rhPRG4 treatment (vs. a DMSO carried control) on full-thickness skin wound healing in a preclinical porcine model. Our findings suggest that while rhPRG4 did not significantly accelerate nor impede full-thickness skin wound closure, it did improve repair quality by decreasing molecular markers of fibrosis and increasing re-vascularization. We also demonstrated that rhPRG4 treatment increased dermal adipose tissue during the healing process specifically by retaining adipocytes in the wound area but did not inhibit lipolysis. Overall, the results of the current study have demonstrated that rhPRG4 acts as antifibrotic agent and regulates dermal adipose tissue during the healing processes resulting in a tissue with a trajectory that more resembles the native skin vs. a fibrotic patch. This study provides strong rationale to examine if rhPRG4 can improve regeneration in human wounds.
Collapse
Affiliation(s)
- Nicoletta Ninkovic
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Holly D Sparks
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dragana Ponjevic
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Greg Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff A Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- Department Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Li J, Gui T, Yao L, Guo H, Lin YL, Lu J, Duffy M, Zgonis M, Mauck R, Dyment N, Zhang Y, Scanzello C, Seale P, Qin L. Synovium and infrapatellar fat pad share common mesenchymal progenitors and undergo coordinated changes in osteoarthritis. J Bone Miner Res 2024; 39:161-176. [PMID: 38477740 PMCID: PMC11323896 DOI: 10.1093/jbmr/zjad009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 03/14/2024]
Abstract
Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110112, China
| | - Hanli Guo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yu-Lieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
| | - Nathaniel Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Carla Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
- Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
34
|
Onu I, Gherghel R, Nacu I, Cojocaru FD, Verestiuc L, Matei DV, Cascaval D, Serban IL, Iordan DA, Tucaliuc A, Galaction AI. Can Combining Hyaluronic Acid and Physiotherapy in Knee Osteoarthritis Improve the Physicochemical Properties of Synovial Fluid? Biomedicines 2024; 12:449. [PMID: 38398051 PMCID: PMC10886650 DOI: 10.3390/biomedicines12020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory processes abnormally degrade hyaluronic acid (HA), SF's main component, and affect the concentrations of specific proteins, with the final results seriously endangering synovial fluid (SF)'s rheological and tribological features and characteristics. No effective treatments have been found to stop the progression of KOA, but the injection of HA-based viscoelastic gels has been considered (alone or combined with physiotherapy (PT)) as an alternative to symptomatic therapies. In order to evaluate the effect of viscosupplementation and PT on the characteristics of SF, SF aspirated from groups treated for KOA (HA Kombihylan® and groups that received Kombihylan® and complex PT) was analyzed and compared from analytical, spectrophotometrical, and rheological perspectives. In the patients treated with PT, the SF extracted 6 weeks after viscosupplementation had a superior elastic modulus (G') and viscous moduli (G″), as well as a homogeneous distribution of proteins and polysaccharides. The viscosupplementation fluid improved the bioadhesive properties of the SF, and the use of the viscosupplementation fluid in conjunction with PT was found to be favorable for the distribution of macromolecules and phospholipids, contributing to the lubrication process and the treatment of OA-affected joints.
Collapse
Affiliation(s)
- Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
| | - Robert Gherghel
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Daniela-Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Center of Physical Therapy and Rehabilitation, “Dunărea de Jos” University of Galati, 800008 Galati, Romania
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Anca-Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| |
Collapse
|
35
|
Henke P, Ruehrmund L, Bader R, Kebbach M. Exploration of the Advanced VIVO TM Joint Simulator: An In-Depth Analysis of Opportunities and Limitations Demonstrated by the Artificial Knee Joint. Bioengineering (Basel) 2024; 11:178. [PMID: 38391664 PMCID: PMC10886281 DOI: 10.3390/bioengineering11020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In biomechanical research, advanced joint simulators such as VIVOTM offer the ability to test artificial joints under realistic kinematics and load conditions. Furthermore, it promises to simplify testing with advanced control approaches and the ability to include virtual ligaments. However, the overall functionality concerning specific test setup conditions, such as the joint lubrication or control algorithm, has not been investigated in-depth so far. Therefore, the aim of this study was to analyse the basic functionality of the VIVOTM joint simulator with six degrees of freedom in order to highlight its capabilities and limitations when testing a total knee endoprostheses using a passive flexion-extension movement. For this, different test setup conditions were investigated, e.g., the control method, repeatability and kinematic reproducibility, waveform frequency, lubrication, and implant embedding. The features offered by the VIVOTM joint simulator are useful for testing joint endoprostheses under realistic loading scenarios. It was found that the results were highly influenced by the varying test setup conditions, although the same mechanical load case was analysed. This study highlights the difficulties encountered when using six degrees of freedom joint simulators, contributes to their understanding, and supports users of advanced joint simulators through functional and tribological analysis of joint endoprostheses.
Collapse
Affiliation(s)
- Paul Henke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Leo Ruehrmund
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Maeruan Kebbach
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| |
Collapse
|
36
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
37
|
Han M, Russo MJ, Desroches PE, Silva SM, Quigley AF, Kapsa RMI, Moulton SE, Greene GW. Calcium ions have a detrimental impact on the boundary lubrication property of hyaluronic acid and lubricin (PRG-4) both alone and in combination. Colloids Surf B Biointerfaces 2024; 234:113741. [PMID: 38184943 DOI: 10.1016/j.colsurfb.2023.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Cartilage demineralisation in Osteoarthritis (OA) patients can elevate calcium ion levels in synovial fluid, as evidenced by the prevalence of precipitated calcium phosphate crystals in OA synovial fluid. Although it has been reported that there is a potential connection between elevated concentrations of calcium ions and a deterioration in the lubrication and wear resistance of cartilage tissues, the mechanism behind the strong link between calcium ion concentration and decreased lubrication performance is unclear. In this work, the AFM friction, imaging, and normal force distance measurements were used to investigate the lubrication performances of hyaluronic acid (HA), Lubricin (LUB), and HA-LUB complex in the presence of calcium ions (5 mM, 15 mM, and 30 mM), to understand the possible mechanism behind the change of lubrication property. The results of AFM friction measurements suggest that introducing calcium ions to the environment effectively eliminated the lubrication ability of HA and HA-LUB, especially with relatively low loading applied. The AFM images indicate that it is unlikely that structural or morphological changes in the surface-bound layer upon calcium ions addition are primarily responsible for the friction results demonstrated. Further, the poor correlation between the effect of calcium ions on the adhesion forces and its impact on friction suggests that the decrease in the lubricating ability of both layers is likely a result of changes in the hydration of the HA-LUB surface bound layers than changes in intermolecular or intramolecular binding. This work provides the first experimental evidence lending towards the relationship between bone demineralisation and articular cartilage degradation at the onset of OA and the mechanism through which elevated calcium levels in the synovial fluid act on joint lubrication.
Collapse
Affiliation(s)
- Mingyu Han
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee, Victoria 3030, Australia.
| | - Matthew J Russo
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Pauline E Desroches
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saimon M Silva
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Australia; Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
38
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
39
|
Gonzalez-Nolde S, Schweiger CJ, Davis EE, Manzoni TJ, Hussein SM, Schmidt TA, Cone SG, Jay GD, Parreno J. The Actin Cytoskeleton as a Regulator of Proteoglycan 4. Cartilage 2024:19476035231223455. [PMID: 38183234 PMCID: PMC11569590 DOI: 10.1177/19476035231223455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE The superficial zone (SZ) of articular cartilage is responsible for distributing shear forces for optimal cartilage loading and contributes to joint lubrication through the production of proteoglycan 4 (PRG4). PRG4 plays a critical role in joint homeostasis and is chondroprotective. Normal PRG4 production is affected by inflammation and irregular mechanical loading in post-traumatic osteoarthritis (PTOA). THe SZ chondrocyte (SZC) phenotype, including PRG4 expression, is regulated by the actin cytoskeleton in vitro. There remains a limited understanding of the regulation of PRG4 by the actin cytoskeleton in native articular chondrocytes. The filamentous (F)-actin cytoskeleton is a potential node in crosstalk between mechanical stimulation and cytokine activation and the regulation of PRG4 in SZCs, therefore developing insights in the regulation of PRG4 by actin may identify molecular targets for novel PTOA therapies. MATERIALS AND METHODS A comprehensive literature search on PRG4 and the regulation of the SZC phenotype by actin organization was performed. RESULTS PRG4 is strongly regulated by the actin cytoskeleton in isolated SZCs in vitro. Biochemical and mechanical stimuli have been characterized to regulate PRG4 and may converge upon actin cytoskeleton signaling. CONCLUSION Actin-based regulation of PRG4 in native SZCs is not fully understood and requires further elucidation. Understanding the regulation of PRG4 by actin in SZCs requires an in vivo context to further potential of leveraging actin arrangement to arthritic therapeutics.
Collapse
|
40
|
Jiang W, Glaeser JD, Kaneda G, Sheyn J, Wechsler JT, Stephan S, Salehi K, Chan JL, Tawackoli W, Avalos P, Johnson C, Castaneda C, Kanim LEA, Tanasansomboon T, Burda JE, Shelest O, Yameen H, Perry TG, Kropf M, Cuellar JM, Seliktar D, Bae HW, Stone LS, Sheyn D. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci Transl Med 2023; 15:eadg7020. [PMID: 38055799 DOI: 10.1126/scitranslmed.adg7020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob T Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Stephan
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Johnson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chloe Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Linda E A Kanim
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Teerachat Tanasansomboon
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joshua E Burda
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haneen Yameen
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Tiffany G Perry
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kropf
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason M Cuellar
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura S Stone
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
41
|
Xu H, Qin H, Hua Y, Dalbeth N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann Rheum Dis 2023; 82:1511-1515. [PMID: 37586760 DOI: 10.1136/ard-2023-224679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Epidemiological and imaging findings indicate that gout frequently affects damaged joints. Recent studies suggest that the relationship between gout and joint damage may be more complex than a simple unidirectional link and that joint damage may promote the development of gout at affected sites. In this article, we review the clinical associations and recent laboratory research identifying events in the setting of osteoarthritis or joint injury that can alter the intraarticular microenvironment and locally regulate monosodium urate crystallisation and deposition or amplify the inflammatory response to deposited crystals. This includes cartilage matrix proteins or fibres released into the articular space that accelerates the crystallisation process, as well as the lack of lubricin and fibroblast priming that enhances the immune response towards the deposited crystals. These findings provide new insights into gout pathogenesis and offer a possible explanation for the site preference of gout in the damaged joint.
Collapse
Affiliation(s)
- HanLin Xu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Hengwei Qin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - YingHui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nicola Dalbeth
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Dvir I, Abd-Rbo K, Segal D, Kandel LA, Kasem H. New experimental methodology to evaluate lubrication properties of synovial fluid containing worn tissue particles in osteoarthritis patients. FRICTION 2023; 11:2132-2141. [DOI: 10.1007/s40544-023-0748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 02/17/2023] [Indexed: 09/02/2023]
Abstract
AbstractStudying the lubrication properties of osteoarthritis (OA) synovial fluid (SF) enables an understanding of the boundary lubrication joint, mobility, and friction. However, tribology has never been combined with the clinical reality of the presence of worn particles within the synovial fluid and how they affect the osteoarthritic joints. Part of the problem relates to the tribology methods studying friction by applying inadequate pin-on-disc techniques. In this study, synovial fluid with and without worn particles was studied using a customized tribometer. This method enables opening the contact at the end of each cycle and simulates better contact conditions of a natural knee joint and can thus be applied for evaluating the severity of joint OA and the treatment given to the patient.
Collapse
|
43
|
Qadri MM. Targeting CD44 Receptor Pathways in Degenerative Joint Diseases: Involvement of Proteoglycan-4 (PRG4). Pharmaceuticals (Basel) 2023; 16:1425. [PMID: 37895896 PMCID: PMC10609794 DOI: 10.3390/ph16101425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and gout are the most prevalent degenerative joint diseases (DJDs). The pathogenesis underlying joint disease in DJDs remains unclear. Considering the severe toxicities reported with anti-inflammatory and disease-modifying agents, there is a clear need to develop new treatments that are specific in their effect while not being associated with significant toxicities. A key feature in the development of joint disease is the overexpression of adhesion molecules, e.g., CD44. Expression of CD44 and its variants in the synovial tissues of patients with DJDs is strongly associated with cartilage damage and appears to be a predicting factor of synovial inflammation in DJDs. Targeting CD44 and its downstream signaling proteins has emerged as a promising therapeutic strategy. PRG4 is a mucinous glycoprotein that binds to the CD44 receptor and is physiologically involved in joint lubrication. PRG4-CD44 is a pivotal regulator of synovial lining cell hemostasis in the joint, where lack of PRG4 expression triggers chronic inflammation and fibrosis, driven by persistent activation of synovial cells. In view of the significance of CD44 in DJD pathogenesis and the potential biological role for PRG4, this review aims to summarize the involvement of PRG4-CD44 signaling in controlling synovitis, synovial hypertrophy, and tissue fibrosis in DJDs.
Collapse
Affiliation(s)
- Marwa M. Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
44
|
Tarafder S, Ghataure J, Langford D, Brooke R, Kim R, Eyen SL, Bensadoun J, Felix JT, Cook JL, Lee CH. Advanced bioactive glue tethering Lubricin/PRG4 to promote integrated healing of avascular meniscus tears. Bioact Mater 2023; 28:61-73. [PMID: 37214259 PMCID: PMC10199165 DOI: 10.1016/j.bioactmat.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone, but no regenerative therapy exist. Previously, we showed that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) via fibrin-based bio-glue facilitate meniscus healing by inducing recruitment and stepwise differentiation of synovial mesenchymal stem/progenitor cells. Here, we first explored the potential of genipin, a natural crosslinker, to enhance fibrin-based glue's mechanical and degradation properties. In parallel, we identified the harmful effects of lubricin on meniscus healing and investigated the mechanism of lubricin deposition on the injured meniscus surface. We found that the pre-deposition of hyaluronic acid (HA) on the torn meniscus surface mediates lubricin deposition. Then we implemented chemical modifications with heparin conjugation and CD44 on our bioactive glue to achieve strong initial bonding and integration of lubricin pre-coated meniscal tissues. Our data suggested that heparin conjugation significantly enhances lubricin-coated meniscal tissues. Similarly, CD44, exhibiting a strong binding affinity to lubricin and hyaluronic acid (HA), further improved the integrated healing of HA/lubricin pre-coated meniscus injuries. These findings may represent an important foundation for developing a translational bio-active glue guiding the regenerative healing of meniscus injuries.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jaskirti Ghataure
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - David Langford
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Rachel Brooke
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Julian Bensadoun
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jeffrey T. Felix
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia, MO, 65212, USA
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
45
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
46
|
Aleksiuk V, Baleisis J, Kirdaite G, Uzieliene I, Denkovskij J, Bernotas P, Ivaskiene T, Mobasheri A, Bernotiene E. Evaluation of Cartilage Integrity Following Administration of Oral and Intraarticular Nifedipine in a Murine Model of Osteoarthritis. Biomedicines 2023; 11:2443. [PMID: 37760884 PMCID: PMC10526042 DOI: 10.3390/biomedicines11092443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) ranks as the prevailing type of arthritis on a global scale, for which no effective treatments are currently available. Arterial hypertension is a common comorbidity in OA patients, and antihypertensive drugs, such as nifedipine (NIF), may affect the course of OA progression. The aim of this preclinical study was to determine the effect of nifedipine on healthy and OA cartilage, depending on its route of administration. In this study, we used the destabilization of medial meniscus to develop a mouse model of OA. Nifedipine was applied per os or intraarticularly (i.a.) for 8 weeks to both mice with OA and healthy animals. Serum biomarker concentrations were evaluated using the Luminex platform and alterations in the knee cartilage were graded according to OARSI histological scores and investigated immunohistochemically. Nifedipine treatment per os and i.a. exerted protective effects, as assessed by the OARSI histological scores. However, long-term nifedipine i.a. injections induced the deterioration of healthy cartilage. Lubricin, cartilage intermediate layer matrix protein (CILP), collagen type VI (COLVI), CILP, and Ki67 were upregulated by the nifedipine treatment. Serum biomarkers MMP-3, thrombospondin-4, and leptin were upregulated in the healthy groups treated with nifedipine, while only the levels of MMP-3 were significantly higher in the OA group treated with nifedipine per os compared to the untreated group. In conclusion, this study highlights the differential effects of nifedipine on cartilage integrity, depending on the route of administration and cartilage condition.
Collapse
Affiliation(s)
- Viktorija Aleksiuk
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| | - Justinas Baleisis
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| | - Tatjana Ivaskiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (I.U.); (J.D.); (P.B.); (T.I.); (A.M.); (E.B.)
| |
Collapse
|
47
|
Yao Q, Gong W, Wu X, Gan D, Tao C, Lin S, Qu M, Ouyang Z, Chen M, Hu X, Xiao G. Comparison of Kindlin-2 deficiency-stimulated osteoarthritis-like lesions induced by Prg4CreERT2 versus AggrecanCreERT2 transgene in mice. J Orthop Translat 2023; 41:12-19. [PMID: 37292436 PMCID: PMC10244901 DOI: 10.1016/j.jot.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background Genetically modified mice are the most useful tools for investigating the gene functions in articular cartilage biology and the pathogenesis of osteoarthritis. The AggrecanCreERT2 mice are one of the most reported mouse lines used for this purpose. The Prg4 (proteoglycan 4) gene encodes the lubricin protein and is expressed selectively in chondrocytes located at the superficial layer of the articular cartilage. While the Prg4GFPCreERT2 knock-in inducible-Cre transgenic mice were generated a while ago, so far, few studies have used this mouse line to perform gene functional studies in cartilage biology. Methods We have recently reported that deleting the Fermt2 gene, which encodes the key focal adhesion protein Kindlin-2, in articular chondrocytes by using the AggrecanCreERT2 transgenic mice, results in spontaneous osteoarthritis (OA) lesions, which highly mimics the human OA pathologies. In this study, we have compared the Kindlin-2 deficiency-caused OA phenotypes induced by Prg4GFPCreERT2 with those caused by AggrecanCreERT2 using imaging and histological analyses. Results We find that Kindlin-2 protein is deleted in about 75% of the superficial articular chondrocytes in the tamoxifen (TAM)-treated Prg4GFPCreERt2/+; Fermt2fl/fl mice compared to controls. At 6 months after TAM injections, the OARSI scores of AggrecanCreERT2/+; Fermt2fl/fl and Prg4GFPCreERt2/+; Fermt2fl/fl mice were 5 and 3, respectively. The knee joints histological osteophyte and synovitis scores were also significantly decreased in Prg4GFPCreERT2/+; Fermt2fl/fl mice compared to those in AggrecanCreERT2/+; Fermt2fl/fl mice. Furthermore, magnitudes of upregulation of the extracellular matrix-degrading enzymes Mmp13 and hypertrophic chondrocyte markers Col10a1 and Runx2 were decreased in Prg4GFPCreERT2/+; Fermt2fl/fl versus AggrecanCreERT2/+; Fermt2fl/fl mice. We finally examined the susceptibility of Prg4GFPCreERT2/+; Fermt2fl/fl mouse model to surgically induce OA lesions. The pathological features of OA in the TAM-DMM model exhibited significant enhancement in cartilage erosion, proteoglycan loss, osteophyte, and synovitis and an increase in OARSI score in articular cartilage compared with those in corn-oil DMM mice. Conclusion Kindlin-2 loss causes milder OA-like lesions in Prg4GFPCreERT2/+;Fermt2fl/fl than in AggrecanCreERT2/+; Fermt2fl/fl mice. In contrast, Kindlin-2 loss similarly accelerates the destabilization of the medial meniscus-induced OA lesions in both mice.Translational Potential of this Article: Our study demonstrates that Prg4GFPCreERT2 is a useful tool for gene functional study in OA research. This study provides useful information for investigators to choose appropriate Cre mouse lines for their research in cartilage biology.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Osteoarthropathy, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518035, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongtian Ouyang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinjia Hu
- Department of Osteoarthropathy, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518035, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
48
|
Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol 2023; 19:363-377. [PMID: 37161083 DOI: 10.1038/s41584-023-00966-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.
Collapse
Affiliation(s)
- Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia.
- University Hospitals Gasthuisberg, UZ Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Jiang Y, Yin X, Xu Q, Tang X, Zhang H, Cao X, Lin J, Wang Y, Yang F, Khan NU, Shen L, Zhao D. SWATH proteomics analysis of placental tissue with intrahepatic cholestasis of pregnancy. Placenta 2023; 137:1-13. [PMID: 37054625 DOI: 10.1016/j.placenta.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the second and third trimesters. The disease's etiology and diagnostic criteria are currently unknown. Based on a sequence window to obtain all theoretical fragment ions (SWATH) proteomic approach, this study sought to identify potential proteins in placental tissue that may be involved in the pathogenesis of ICP and adverse fetal pregnancy outcomes. METHODS The postpartum placental tissue of pregnant women with ICP were chosen as the case group (ICP group) (subdivided into mild ICP group (MICP group) and severe ICP group (SICP group)), and healthy pregnant women were chosen as the control group (CTR). The hematoxylin-eosin (HE) staining was used to observe the histologic changes of placenta. The SWATH analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS) was used to screen the differentially expressed proteins (DEPs) in ICP and CTR groups, and bioinformatics analysis was used to find out the biological process of these differential proteins. RESULTS Proteomic studies showed there were 126 DEPs from pregnant women with ICP and healthy pregnant women. Most of the identified proteins were functionally related to humoral immune response, cell response to lipopolysaccharide, antioxidant activity and heme metabolism. A subsequent examination of placentas from patients with mild and severe ICP revealed 48 proteins that were differentially expressed. Through death domain receptors and fibrinogen complexes, these DEPs primarily regulate extrinsic apoptotic signaling pathways, blood coagulation, and fibrin clot formation. The differential expressions of HBD, HPX, PDE3A, and PRG4 were down-regulated by Western blot analysis, which was consistent with proteomics. DISCUSSION This preliminary study helps us to understand the changes in the placental proteome of ICP patients, and provides new insights into the pathophysiology of ICP.
Collapse
Affiliation(s)
- Yuxuan Jiang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Xu
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fei Yang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
50
|
Das N, de Almeida LGN, Derakhshani A, Young D, Mehdinejadiani K, Salo P, Rezansoff A, Jay GD, Sommerhoff CP, Schmidt TA, Krawetz R, Dufour A. Tryptase β regulation of joint lubrication and inflammation via proteoglycan-4 in osteoarthritis. Nat Commun 2023; 14:1910. [PMID: 37024468 PMCID: PMC10079686 DOI: 10.1038/s41467-023-37598-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase β cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase β and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase β and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase β as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Afshin Derakhshani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kobra Mehdinejadiani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Salo
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - Christian P Sommerhoff
- Institute of Medical Education and Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|