1
|
Panzhinskiy E, Skovsø S, Cen HH, Rahardjo A, Zhang JA, Chu KY, MacDonald K, Soukhatcheva G, Dionne DA, Hallmaier-Wacker LK, Wildi JS, Marcil S, Noursadeghi N, Taghizadeh F, Verchere CB, Jan E, Johnson JD. Eukaryotic translation initiation factor 2A protects pancreatic beta cells during endoplasmic reticulum stress while rescuing global translation inhibition. Diabetologia 2025:10.1007/s00125-025-06431-5. [PMID: 40304759 DOI: 10.1007/s00125-025-06431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/03/2024] [Indexed: 05/02/2025]
Abstract
AIMS/HYPOTHESIS The endoplasmic reticulum (ER) stress-induced unfolded protein response helps determine beta cell survival rate in diabetes. The alternative eukaryotic translation initiation factor 2A (EIF2A) has been proposed to mediate translation initiation independent of the α subunit of EIF2 (EIF2S1) during cellular stress, but its role in beta cells has not been comprehensively examined. METHODS For in vitro experiments, we used MIN6 cells, primary mouse pancreatic islets, and human islets obtained under informed consent. Thapsigargin (1 µmol/l) or palmitate complexed with BSA (0.5 mmol/l) was used to induce ER stress. Transient transfection and lentiviral infection were used for transgene delivery. For in vivo experiments, adeno-associated viral particles expressing EIF2A or GFP under the control of a rat insulin promoter were delivered via intraductal injection to 6-week-old female Akita mice randomised into three groups (two cohorts, n=10-11). Tail blood was collected for blood glucose measurements for single time points as well as during glucose and insulin tolerance tests. RESULTS EIF2A protein abundance and specificity was high in human and mouse islets relative to other tissues. We used STRING and AlphaFold pulldown to predict interacting proteins and binding partners, verifying EIF1AX with co-immunoprecipitation. Both thapsigargin and palmitate significantly increased EIF2A mRNA and EIF2A protein levels in MIN6 cells, mouse islets and human islets. Knockdowns of EIF2A, the related factor EIF2D or both EIF2A and EIF2D were not sufficient to cause apoptosis. On the other hand, transient or stable EIF2A overexpression protected MIN6 cells, primary mouse islets and human islets from ER stress-induced, caspase-3-dependent apoptosis. Mechanistically, EIF2A overexpression decreased endoplasmic reticulum to nucleus signalling 1 (ERN1, also known as inositol-requiring enzyme 1 α or IRE1α) expression in thapsigargin-treated MIN6 cells or human islets. In vivo, beta cell-specific EIF2A viral overexpression reduced ER stress and improved insulin secretion and glucose tolerance in Ins2Akita/WT mice. EIF2A overexpression significantly increased expression of genes involved in mRNA translation and reduced expression of pro-apoptotic genes (e.g. Aldh1a3). Proteomic analysis of EIF2A-overexpressing human islets revealed significant changes in pathways associated with ribosomes and protein processing in ER. Remarkably, the decrease in global protein synthesis during unfolded protein response was prevented by EIF2A, despite ER stress-induced EIF2S1 phosphorylation. The protective effects of EIF2A were additive to those of ISRIB, a drug that counteracts the effects of EIF2S1 phosphorylation. Cells overexpressing EIF2A showed higher expression of translation factor EIF2B5, which may contribute to the lack of translational inhibition in these cells. CONCLUSIONS/INTERPRETATION We conclude that EIF2A is a novel target for beta cell protection and the circumvention of EIF2S1-mediated translational repression.
Collapse
Affiliation(s)
- Evgeniy Panzhinskiy
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Søs Skovsø
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Rahardjo
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Jiashuo Aaron Zhang
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kwan Yi Chu
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kate MacDonald
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Galina Soukhatcheva
- BC Children'S Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Luisa K Hallmaier-Wacker
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Marcil
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Farnaz Taghizadeh
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- BC Children'S Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Eric Jan
- Life Sciences Institute, Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada.
| | - James D Johnson
- Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Karakaplan ND, Song Y, Laurenti MC, Vella A, Jensen MD. Suppression of Endogenous Insulin Secretion by Euglycemic Hyperinsulinemia. J Clin Endocrinol Metab 2024; 109:e596-e601. [PMID: 37758511 PMCID: PMC10795933 DOI: 10.1210/clinem/dgad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
CONTEXT The impact of insulin, particularly exogenous hyperinsulinemia, on insulin secretion in humans is debated. OBJECTIVE We assessed the effects of exogenous hyperinsulinemia on insulin secretion and whether the response is altered in insulin resistance associated with obesity. METHODS Insulin secretion rates (ISRs) during euglycemic hyperinsulinemic clamp studies (52 volunteers) were calculated using a model that employs plasma C-peptide concentrations. One study involved a 2-step insulin clamp and the other study was a single step insulin clamp. For both studies the goal was to achieve plasma glucose concentrations of 95 mg/dL during the clamp irrespective of fasting glucose concentrations. The percent change in ISR from fasting to the end of the insulin clamp interval was the main outcome. Linear regression and analysis of covariance were used to test for the effects of insulin on ISR and to test for group differences. RESULTS ISR was greater in obese volunteers (P < .001) under fasting and hyperinsulinemic clamp conditions. The change in plasma glucose from baseline to the end of the insulin clamp interval was highly correlated with the change in ISR (r = 0.61, P < .001). From baseline to the end of the clamp we observed a 27% (SD 20) suppression of ISR. The participants who underwent a 2-step insulin clamp had greater suppression of ISR during the second step than the first step (P < .001). The proportional suppression of ISR during euglycemic hyperinsulinemia was not different between nonobese and obese groups (P = .19). CONCLUSION Hyperinsulinemia suppresses endogenous insulin secretion and the relative change in insulin secretion produced by exogenous insulin did not differ between nonobese and obese people.
Collapse
Affiliation(s)
- Nesrin Damla Karakaplan
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Yilin Song
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcello C Laurenti
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrian Vella
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael D Jensen
- Endocrine Research Unit, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Winn NC, Cottam MA, Bhanot M, Caslin HL, Garcia JN, Arrojo e Drigo R, Hasty AH. Weight Cycling Impairs Pancreatic Insulin Secretion but Does Not Perturb Whole-Body Insulin Action in Mice With Diet-Induced Obesity. Diabetes 2022; 71:2313-2330. [PMID: 35802127 PMCID: PMC9630085 DOI: 10.2337/db22-0161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 01/23/2023]
Abstract
In the setting of obesity and insulin resistance, glycemia is controlled in part by β-cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of factors essential for β-cell function (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared with those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew A. Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Monica Bhanot
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
4
|
Halperin F, Mezza T, Li P, Shirakawa J, Kulkarni RN, Goldfine AB. Insulin regulates arginine-stimulated insulin secretion in humans. Metabolism 2022; 128:155117. [PMID: 34999111 PMCID: PMC8821403 DOI: 10.1016/j.metabol.2021.155117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Insulin potentiates glucose-stimulated insulin secretion. These effects are attenuated in beta cell-specific insulin receptor knockout mice and insulin resistant humans. This investigation examines whether short duration insulin exposure regulates beta cell responsiveness to arginine, a non-glucose secretagogue, in healthy humans. MATERIALS AND METHODS Arginine-stimulated insulin secretion was studied in 10 healthy humans. In each subject arginine was administered as a bolus followed by continuous infusion on two occasions one month apart, after sham/saline or hyperinsulinemic-isoglycemic clamp, respectively providing low and high insulin pre-exposure conditions. Arginine-stimulated insulin secretion was measured by C-peptide deconvolution, and by a selective immunogenic (DAKO) assay for direct measurement of endogenous but not exogenous insulin. RESULTS Pre-exposure to exogenous insulin augmented arginine-stimulated insulin secretion. The effect was seen acutely following arginine bolus (endogenous DAKO insulin incremental AUC240-255min 311.6 ± 208.1 (post-insulin exposure) versus 120.6 ± 42.2 μU/ml•min (sham/saline) (t-test P = 0.021)), as well as in response to continuous arginine infusion (DAKO insulin incremental AUC260-290min 1095.3 ± 592.1 (sham/saline) versus 564.8 ± 207.1 μU/ml•min (high insulin)(P = 0.009)). Findings were similar when beta cell response was assessed using C-peptide, insulin secretion rates by deconvolution, and the C-peptide to glucose ratio. CONCLUSIONS We demonstrate a physiologic role of insulin in regulation of the beta cell secretory response to arginine.
Collapse
Affiliation(s)
- Florencia Halperin
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Teresa Mezza
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ping Li
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Jun Shirakawa
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Rohit N Kulkarni
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Allison B Goldfine
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
5
|
Skovsø S, Panzhinskiy E, Kolic J, Cen HH, Dionne DA, Dai XQ, Sharma RB, Elghazi L, Ellis CE, Faulkner K, Marcil SAM, Overby P, Noursadeghi N, Hutchinson D, Hu X, Li H, Modi H, Wildi JS, Botezelli JD, Noh HL, Suk S, Gablaski B, Bautista A, Kim R, Cras-Méneur C, Flibotte S, Sinha S, Luciani DS, Nislow C, Rideout EJ, Cytrynbaum EN, Kim JK, Bernal-Mizrachi E, Alonso LC, MacDonald PE, Johnson JD. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun 2022; 13:735. [PMID: 35136059 PMCID: PMC8826929 DOI: 10.1038/s41467-022-28039-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
Collapse
Affiliation(s)
- Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Elghazi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cara E Ellis
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Faulkner
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A M Marcil
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daria Hutchinson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Honey Modi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J Diego Botezelli
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hye Lim Noh
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian Gablaski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Stephane Flibotte
- UBC Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan S Luciani
- BC Children's Hospital Research Institute, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth J Rideout
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Jason K Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, Miami, FL, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
7
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Kolic J, Beet L, Overby P, Cen HH, Panzhinskiy E, Ure DR, Cross JL, Huizinga RB, Johnson JD. Differential Effects of Voclosporin and Tacrolimus on Insulin Secretion From Human Islets. Endocrinology 2020; 161:5902465. [PMID: 32894758 PMCID: PMC7567406 DOI: 10.1210/endocr/bqaa162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
The incidence of new onset diabetes after transplant (NODAT) has increased over the past decade, likely due to calcineurin inhibitor-based immunosuppressants, including tacrolimus (TAC) and cyclosporin. Voclosporin (VCS), a next-generation calcineurin inhibitor, is reported to cause fewer incidences of NODAT but the reason is unclear. While calcineurin signaling plays important roles in pancreatic β-cell survival, proliferation, and function, its effects on human β-cells remain understudied. In particular, we do not understand why some calcineurin inhibitors have more profound effects on the incidence of NODAT. We compared the effects of TAC and VCS on the dynamics of insulin secretory function, programmed cell death rate, and the transcriptomic profile of human islets. We studied 2 clinically relevant doses of TAC (10 ng/mL, 30 ng/mL) and VCS (20 ng/mL, 60 ng/mL), meant to approximate the clinical trough and peak concentrations. TAC, but not VCS, caused a significant impairment of 15 mM glucose-stimulated and 30 mM KCl-stimulated insulin secretion. This points to molecular defects in the distal stages of exocytosis after voltage-gated Ca2+ entry. No significant effects on islet cell survival or total insulin content were identified. RNA sequencing showed that TAC significantly decreased the expression of 17 genes, including direct and indirect regulators of exocytosis (SYT16, TBC1D30, PCK1, SMOC1, SYT5, PDK4, and CREM), whereas VCS has less broad, and milder, effects on gene expression. Clinically relevant doses of TAC, but not VCS, directly inhibit insulin secretion from human islets, likely via transcriptional control of exocytosis machinery.
Collapse
Affiliation(s)
- Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Leanne Beet
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daren R Ure
- Hepion Pharmaceuticals, Edmonton, Alberta, Canada
| | | | | | - James D Johnson
- Correspondence: Professor James D. Johnson, PhD, Faculty of Medicine, Department of Cellular and Physiological Sciences & Department of Surgery, The University of British Columbia, Life Sciences Institute, 5358 – 2350 Health Sciences Mall, Vancouver, British Columbia, Canada, V6T 1Z3. E-mail: ; Twitter: @JimJohnsonSci
| |
Collapse
|
9
|
Marrano N, Biondi G, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Functional loss of pancreatic islets in type 2 diabetes: How can we halt it? Metabolism 2020; 110:154304. [PMID: 32599081 DOI: 10.1016/j.metabol.2020.154304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
The loss of beta-cell functional mass is a necessary and early condition in the development of type 2 diabetes (T2D). In T2D patients, beta-cell function is already reduced by about 50% at diagnosis and further declines thereafter. Beta-cell mass is also reduced in subjects with T2D, and islets from diabetic donors are smaller compared to non-diabetic donors. Thus, beta-cell regeneration and/or preservation of the functional islet integrity should be highly considered for T2D treatment and possibly cure. To date, the available anti-diabetes drugs have been developed as "symptomatic" medications since they act to primarily reduce elevated blood glucose levels. However, a truly efficient anti-diabetes medication, capable to prevent the onset and progression of T2D, should stop beta-cell loss and/or promote the restoration of fully functional beta-cell mass, independently of reducing hyperglycemia and ameliorating glucotoxicity on the pancreatic islets. This review provides a view of the experimental and clinical evidence on the ability of available anti-diabetes drugs to exert protective effects on beta-cells, with a specific focus on human pancreatic islets and clinical trials. Potential explanations for the lack of concordance between evidence of beta-cell protection in vitro and of persistent amelioration of beta-cell function in vivo are also discussed.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Giuseppina Biondi
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
10
|
Castiello FR, Tabrizian M. Gold nanoparticle amplification strategies for multiplex SPRi-based immunosensing of human pancreatic islet hormones. Analyst 2019; 144:2541-2549. [PMID: 30864587 DOI: 10.1039/c9an00140a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we demonstrate the potential use of SPRi for secretion-monitoring of pancreatic islets, small micro-organs that regulate glucose homeostasis in the body. In the islets, somatostatin works as a paracrine inhibitor of insulin and glucagon secretion. However, this inhibitory effect is lost in diabetic individuals and little is known about its contribution to the pathology of diabetes. Thus, the simultaneous detection of insulin, glucagon and somatostatin could help understand such communications. Previously, the authors introduced an SPRi biosensor to simultaneously monitor insulin, glucagon and somatostatin using an indirect competitive immunoassay. However, our sensor achieved a relatively high LOD for somatostatin detection (246 nM), the smallest of the three hormones. For this reason, the present work aimed to improve the performance of our SPRi biosensor using gold nanoparticles (GNPs) as a means of ensuring somatostatin detection from a small group of islets. Although GNP amplification is frequently reported in the literature for individual detection of analytes using SPR, studies regarding the optimal strategy in a multiplexed SPR setup are missing. Therefore, with the aim of finding the optimal GNP amplification strategies for multiplex sensing we compared three architectures: (1) GNPs immobilized on the sensor surface, (2) GNPs conjugated with primary antibodies (GNP-Ab1) and (3) GNPs conjugated with a secondary antibody (GNP-Ab2). Among these strategies an immunoassay using GNP-Ab2 conjugates was able to achieve multiplex detection of the three hormones without cross-reactivity and with 9-fold LOD improvement for insulin, 10-fold for glucagon and 200-fold for somatostatin when compared to the SPRi biosensor without GNPs. The present work denotes the first report of the simultaneous detection of such hormones with a sensitivity level comparable to ELISA assays, particularly for somatostatin.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical and Biological Engineering Department, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
11
|
Rachdaoui N, Polo-Parada L, Ismail-Beigi F. Prolonged Exposure to Insulin Inactivates Akt and Erk 1/2 and Increases Pancreatic Islet and INS1E β-Cell Apoptosis. J Endocr Soc 2018; 3:69-90. [PMID: 30697602 PMCID: PMC6344346 DOI: 10.1210/js.2018-00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic hyperinsulinemia, in vivo, increases the resistance of peripheral tissues to insulin by desensitizing insulin signaling. Insulin, in a heterologous manner, can also cause IGF-1 resistance. The aim of the current study was to investigate whether insulin-mediated insulin and IGF-1 resistance develops in pancreatic β-cells and whether this resistance results in β-cell decompensation. Chronic exposure of rat islets or INS1E β-cells to increasing concentrations of insulin decreased AktS473 phosphorylation in response to subsequent acute stimulation with 10 nM insulin or IGF-1. Prolonged exposure to high insulin levels not only inhibited AktS473 phosphorylation, but it also resulted in a significant inhibition of the phosphorylation of P70S6 kinase and Erk1/2 phosphorylation in response to the acute stimulation by glucose, insulin, or IGF-1. Decreased activation of Akt, P70S6K, and Erk1/2 was associated with decreased insulin receptor substrate 2 tyrosine phosphorylation and insulin receptor β-subunit abundance; neither IGF receptor β-subunit content nor its phosphorylation were affected. These signaling impairments were associated with decreased SERCA2 expression, perturbed plasma membrane calcium current and intracellular calcium handling, increased endoplasmic reticulum stress markers such as eIF2αS51 phosphorylation and Bip (GRP78) expression, and increased islet and β-cell apoptosis. We demonstrate that prolonged exposure to high insulin levels induces not only insulin resistance, but in a heterologous manner causes resistance to IGF-1 in rat islets and insulinoma cells resulting in decreased cell survival. These findings suggest the possibility that chronic exposure to hyperinsulinemia may negatively affect β-cell mass by increasing β-cell apoptosis.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Faramarz Ismail-Beigi
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Castiello FR, Tabrizian M. Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification. Anal Chem 2018; 90:3132-3139. [DOI: 10.1021/acs.analchem.7b04288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Lee B, Song T, Lee K, Kim J, Berggren PO, Ryu SH, Jo J. Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. PLoS One 2017; 12:e0183569. [PMID: 28846705 PMCID: PMC5573301 DOI: 10.1371/journal.pone.0183569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization.
Collapse
Affiliation(s)
- Boah Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
| | - Kayoung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jaeyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Per-Olof Berggren
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- * E-mail:
| |
Collapse
|
15
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
16
|
Templeman NM, Skovsø S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol 2017; 232:R173-R183. [PMID: 28052999 DOI: 10.1530/joe-16-0449] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
Insulin modulates the biochemical pathways controlling lipid uptake, lipolysis and lipogenesis at multiple levels. Elevated insulin levels are associated with obesity, and conversely, dietary and pharmacological manipulations that reduce insulin have occasionally been reported to cause weight loss. However, the causal role of insulin hypersecretion in the development of mammalian obesity remained controversial in the absence of direct loss-of-function experiments. Here, we discuss theoretical considerations around the causal role of excess insulin for obesity, as well as recent studies employing mice that are genetically incapable of the rapid and sustained hyperinsulinemia that normally accompanies a high-fat diet. We also discuss new evidence demonstrating that modest reductions in circulating insulin prevent weight gain, with sustained effects that can persist after insulin levels normalize. Importantly, evidence from long-term studies reveals that a modest reduction in circulating insulin is not associated with impaired glucose homeostasis, meaning that body weight and lipid homeostasis are actually more sensitive to small changes in circulating insulin than glucose homeostasis in these models. Collectively, the evidence from new studies on genetic loss-of-function models forces a re-evaluation of current paradigms related to obesity, insulin resistance and diabetes. The potential for translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa M Page
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Personalized Therapeutic NutritionVancouver, British Columbia, Canada
| |
Collapse
|
17
|
Heileman KL, Daoud J, Tabrizian M. Elaboration of a finite element model of pancreatic islet dielectric response to gap junction expression and insulin release. Colloids Surf B Biointerfaces 2016; 148:474-480. [PMID: 27665380 DOI: 10.1016/j.colsurfb.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/23/2022]
Abstract
Dielectric spectroscopy could potentially be a powerful tool to monitor isolated human pancreatic islets for applications in diabetes therapy and research. Isolated intact human islets provide the most relevant means to understand the cellular and molecular mechanisms associated with diabetes. The advantages of dielectric spectroscopy for continuous islet monitoring are that it is a non-invasive, inexpensive and real-time technique. We have previously assessed the dielectric response of human islet samples during stimulation and differentiation. Because of the complex geometry of islets, analytical solutions are not sufficiently representative to provide a pertinent model of islet dielectric response. Here, we present a finite element dielectric model of a single intact islet that takes into account the tight packing of islet cells and intercellular junctions. The simulation yielded dielectric spectra characteristic of cell aggregates, similar to those produced with islets. In addition, the simulation showed that both exocytosis, such as what occurs during insulin secretion, and differential gap junction expression have significant effects on islet dielectric response. Since the progression of diabetes has some connections with dysfunctional islet gap junctions and insulin secretion, the ability to monitor these islet features with dielectric spectroscopy would benefit diabetes research.
Collapse
Affiliation(s)
| | | | - Maryam Tabrizian
- Biomedical Engineering Department, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
18
|
Wills QF, Boothe T, Asadi A, Ao Z, Warnock GL, Kieffer TJ, Johnson JD. Statistical approaches and software for clustering islet cell functional heterogeneity. Islets 2016; 8:48-56. [PMID: 26909740 PMCID: PMC4878268 DOI: 10.1080/19382014.2016.1150664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic β-cells to cure diabetes. However, it is unclear what the final product of these efforts should be, as β-cells are thought to be heterogeneous. To enable the analysis of β-cell heterogeneity in an unbiased and quantitative way, we developed model-free and model-based statistical clustering approaches, and created new software called TraceCluster. Using an example data set, we illustrate the utility of these approaches by clustering dynamic intracellular Ca(2+) responses to high glucose in ∼300 simultaneously imaged single islet cells. Using feature extraction from the Ca(2+) traces on this reference data set, we identified 2 distinct populations of cells with β-like responses to glucose. To the best of our knowledge, this report represents the first unbiased cluster-based analysis of human β-cell functional heterogeneity of simultaneous recordings. We hope that the approaches and tools described here will be helpful for those studying heterogeneity in primary islet cells, as well as excitable cells derived from embryonic stem cells or induced pluripotent cells.
Collapse
Affiliation(s)
- Quin F Wills
- a Wellcome Trust Center for Human Genetics, University of Oxford , Oxford , United Kingdom
- b Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , United Kingdom
| | - Tobias Boothe
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
| | - Ali Asadi
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
| | - Ziliang Ao
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - Garth L Warnock
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - Timothy J Kieffer
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - James D Johnson
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| |
Collapse
|
19
|
Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. LAB ON A CHIP 2016; 16:409-31. [PMID: 26732665 DOI: 10.1039/c5lc01046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A secretome signature is a heterogeneous profile of secretions present in a single cell type. From the secretome signature a smaller panel of proteins, namely a secretion fingerprint, can be chosen to feasibly monitor specific cellular activity. Based on a thorough appraisal of the literature, this review explores the possibility of defining and using a secretion fingerprint to gauge the functionality of pancreatic islets of Langerhans. It covers the state of the art regarding microfluidic perfusion systems used in pancreatic islet research. Candidate analytical tools to be integrated within microfluidic perfusion systems for dynamic secretory fingerprint monitoring were identified. These analytical tools include patch clamp, amperometry/voltametry, impedance spectroscopy, field effect transistors and surface plasmon resonance. Coupled with these tools, microfluidic devices can ultimately find applications in determining islet quality for transplantation, islet regeneration and drug screening of therapeutic agents for the treatment of diabetes.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Khalil Heileman
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
20
|
Speckmann T, Sabatini PV, Nian C, Smith RG, Lynn FC. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells. J Biol Chem 2015; 291:2682-95. [PMID: 26663079 DOI: 10.1074/jbc.m115.704098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.
Collapse
Affiliation(s)
- Thilo Speckmann
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul V Sabatini
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Cuilan Nian
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Riley G Smith
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and
| | - Francis C Lynn
- From the Diabetes Research Program, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada and the Department of Surgery and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
21
|
Szabat M, Modi H, Ramracheya R, Girbinger V, Chan F, Lee JTC, Piske M, Kamal S, Carol Yang YH, Welling A, Rorsman P, Johnson JD. High-content screening identifies a role for Na(+) channels in insulin production. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150306. [PMID: 27019722 PMCID: PMC4807443 DOI: 10.1098/rsos.150306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Insulin production is the central feature of functionally mature and differentiated pancreatic β-cells. Reduced insulin transcription and dedifferentiation have been implicated in type 2 diabetes, making drugs that could reverse these processes potentially useful. We have previously established ratiometric live-cell imaging tools to identify factors that increase insulin promoter activity and promote β-cell differentiation. Here, we present a single vector imaging tool with eGFP and mRFP, driven by the Pdx1 and Ins1 promoters, respectively, targeted to the nucleus to enhance identification of individual cells in a high-throughput manner. Using this new approach, we screened 1120 off-patent drugs for factors that regulate Ins1 and Pdx1 promoter activity in MIN6 β-cells. We identified a number of compounds that positively modulate Ins1 promoter activity, including several drugs known to modulate ion channels. Carbamazepine was selected for extended follow-up, as our previous screen also identified this use-dependent sodium channel inhibitor as a positive modulator of β-cell survival. Indeed, carbamazepine increased Ins1 and Ins2 mRNA in primary mouse islets at lower doses than were required to protect β-cells. We validated the role of sodium channels in insulin production by examining Nav1.7 (Scn9a) knockout mice and remarkably islets from these animals had dramatically elevated insulin content relative to wild-type controls. Collectively, our experiments provide a starting point for additional studies aimed to identify drugs and molecular pathways that control insulin production and β-cell differentiation status. In particular, our unbiased screen identified a novel role for a β-cell sodium channel gene in insulin production.
Collapse
Affiliation(s)
- Marta Szabat
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Honey Modi
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Reshma Ramracheya
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Vroni Girbinger
- Institut für Pharmakologie und Toxikologie der Technischen Universität, 80802 München, Germany
| | - Forson Chan
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jason T. C. Lee
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Micah Piske
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sepehr Kamal
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Yu Hsuan Carol Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Andrea Welling
- Institut für Pharmakologie und Toxikologie der Technischen Universität, 80802 München, Germany
| | - Patrik Rorsman
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
22
|
Andrews SE, Brown LD, Thorn SR, Limesand SW, Davis M, Hay WW, Rozance PJ. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus. Endocrinology 2015; 156:367-76. [PMID: 25343274 PMCID: PMC4272391 DOI: 10.1210/en.2014-1393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin may stimulate its own insulin secretion and is a potent growth factor for the pancreatic β-cell. Complications of pregnancy, such as diabetes and intrauterine growth restriction, are associated with changes in fetal insulin concentrations, secretion, and β-cell mass. However, glucose concentrations are also abnormal in these conditions. The direct effect of chronic fetal hyperinsulinemia with euglycemia on fetal insulin secretion and β-cell mass has not been tested. We hypothesized that chronic fetal hyperinsulinemia with euglycemia would increase glucose-stimulated insulin secretion (GSIS) and β-cell mass in the ovine fetus. Singleton ovine fetuses were infused with iv insulin to produce high physiological insulin concentrations, or saline for 7-10 days. The hyperinsulinemic animals also received a direct glucose infusion to maintain euglycemia. GSIS, measured at 133 ± 1 days of gestation, was significantly attenuated in the hyperinsulinemic fetuses (P < .05). There was no change in β-cell mass. The hyperinsulinemic fetuses also had decreased oxygen (P < .05) and higher norepinephrine (1160 ± 438 vs 522 ± 106 pg/mL; P < .005). Acute pharmacologic adrenergic blockade restored GSIS in the hyperinsulinemic-euglycemic fetuses, demonstrating that increased adrenergic signaling mediates decreased GSIS in these fetuses.
Collapse
Affiliation(s)
- Sasha E Andrews
- Department of Obstetrics and Gynecology (S.E.A.), University of Colorado School of Medicine, Aurora, Colorado 80045; Perinatal Research Center (L.D.B., S.R.T., W.W.H., P.J.R.), Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045; Center for Women's Health Research (L.D.B., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; and School of Animal and Comparative Biomedical Sciences (S.W.L., M.D.), University of Arizona, Tucson, Arizona 85719
| | | | | | | | | | | | | |
Collapse
|
23
|
Chan MT, Lim GE, Skovsø S, Yang YHC, Albrecht T, Alejandro EU, Hoesli CA, Piret JM, Warnock GL, Johnson JD. Effects of insulin on human pancreatic cancer progression modeled in vitro. BMC Cancer 2014; 14:814. [PMID: 25373319 PMCID: PMC4233074 DOI: 10.1186/1471-2407-14-814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022] Open
Abstract
Background Pancreatic adenocarcinoma is one of the most lethal cancers, yet it remains understudied and poorly understood. Hyperinsulinemia has been reported to be a risk factor of pancreatic cancer, and the rapid rise of hyperinsulinemia associated with obesity and type 2 diabetes foreshadows a rise in cancer incidence. However, the actions of insulin at the various stages of pancreatic cancer progression remain poorly defined. Methods Here, we examined the effects of a range of insulin doses on signalling, proliferation and survival in three human cell models meant to represent three stages in pancreatic cancer progression: primary pancreatic duct cells, the HPDE immortalized pancreatic ductal cell line, and the PANC1 metastatic pancreatic cancer cell line. Cells were treated with a range of insulin doses, and their proliferation/viability were tracked via live cell imaging and XTT assays. Signal transduction was assessed through the AKT and ERK signalling pathways via immunoblotting. Inhibitors of AKT and ERK signalling were used to determine the relative contribution of these pathways to the survival of each cell model. Results While all three cell types responded to insulin, as indicated by phosphorylation of AKT and ERK, we found that there were stark differences in insulin-dependent proliferation, cell viability and cell survival among the cell types. High concentrations of insulin increased PANC1 and HPDE cell number, but did not alter primary duct cell proliferation in vitro. Cell survival was enhanced by insulin in both primary duct cells and HPDE cells. Moreover, we found that primary cells were more dependent on AKT signalling, while HPDE cells and PANC1 cells were more dependent on RAF/ERK signalling. Conclusions Our data suggest that excessive insulin signalling may contribute to proliferation and survival in human immortalized pancreatic ductal cells and metastatic pancreatic cancer cells, but not in normal adult human pancreatic ductal cells. These data suggest that signalling pathways involved in cell survival may be rewired during pancreatic cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YHC, Johnson JD, Kieffer TJ. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014; 32:1121-33. [PMID: 25211370 DOI: 10.1038/nbt.3033] [Citation(s) in RCA: 1139] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/05/2014] [Indexed: 12/17/2022]
Abstract
Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.
Collapse
Affiliation(s)
- Alireza Rezania
- BetaLogics Venture, Janssen R&D LLC, Raritan, New Jersey, USA
| | - Jennifer E Bruin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Payal Arora
- BetaLogics Venture, Janssen R&D LLC, Raritan, New Jersey, USA
| | - Allison Rubin
- BetaLogics Venture, Janssen R&D LLC, Raritan, New Jersey, USA
| | | | - Ali Asadi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nina Quiskamp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tobias Albrecht
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Hsuan Carol Yang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- 1] Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. [2] Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- 1] Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. [2] Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Kim MH, Hong SH, Lee MK. Insulin receptor-overexpressing β-cells ameliorate hyperglycemia in diabetic rats through Wnt signaling activation. PLoS One 2013; 8:e67802. [PMID: 23874448 PMCID: PMC3706479 DOI: 10.1371/journal.pone.0067802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/27/2013] [Indexed: 12/31/2022] Open
Abstract
To investigate the therapeutic efficacy and mechanism of β-cells with insulin receptor (IR) overexpression on diabetes mellitus (DM), rat insulinoma (INS-1) cells were engineered to stably express human insulin receptor (INS-IR cells), and subsequently transplanted into streptozotocin- induced diabetic rats. Compared with INS-1 cells, INS-IR cells showed improved β-cell function, including the increase in glucose utilization, calcium mobilization, and insulin secretion, and exhibited a higher rate of cell proliferation, and maintained lower levels of blood glucose in diabetic rats. These results were attributed to the increase of β-catenin/PPARγ complex bindings to peroxisome proliferator response elements in rat glucokinase (GK) promoter and the prolongation of S-phase of cell cycle by cyclin D1. These events resulted from more rapid and higher phosphorylation levels of insulin-signaling intermediates, including insulin receptor substrate (IRS)-1/IRS-2/phosphotylinositol 3 kinase/v-akt murine thymoma viral oncogene homolog (AKT) 1, and the consequent enhancement of β-catenin nuclear translocation and Wnt responsive genes including GK and cyclin D1. Indeed, the higher functionality and proliferation shown in INS-IR cells were offset by β-catenin, cyclin D1, GK, AKT1, and IRS-2 gene depletion. In addition, the promotion of cell proliferation and insulin secretion by Wnt signaling activation was shown by 100 nM insulin treatment, and to a similar degree, was shown in INS-IR cells. In this regard, this study suggests that transferring INS-IR cells into diabetic animals is an effective and feasible DM treatment. Accordingly, the method might be a promising alternative strategy for treatment of DM given the adverse effects of insulin among patients, including the increased risk of modest weight gain and hypoglycemia. Additionally, this study demonstrates that the novel mechanism of cross-talk between insulin and Wnt signaling plays a primary role in the higher therapeutic efficacy of IR-overexpressing β-cells.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Division of Endocrinology and Metabolism, Samsung Biomedical Research Institute, Seoul, Korea
| | - Seung-Hyun Hong
- Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
26
|
Abstract
In recent years there has been a growing interest in the possibility of a direct autocrine effect of insulin on the pancreatic β-cell. Indeed, there have been numerous intriguing articles and several eloquent reviews written on the subject (1-3); however, the concept is still controversial. Although many in vitro experiments, a few transgenic mouse studies, and some human investigations would be supportive of the notion, there exist different insights, other studies, and circumstantial evidence that question the concept. Therefore, the idea of autocrine action of insulin remains a conundrum. Here we outline a series of thoughts, insights, and alternative interpretations of the available experimental evidence. We ask, how convincing are these, and what are the confusing issues? We agree that there is a clear contribution of certain downstream elements in the insulin signaling pathway for β-cell function and survival, but the question of whether insulin itself is actually the physiologically relevant ligand that triggers this signal transduction remains unsettled.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
27
|
Is dynamic autocrine insulin signaling possible? A mathematical model predicts picomolar concentrations of extracellular monomeric insulin within human pancreatic islets. PLoS One 2013; 8:e64860. [PMID: 23798995 PMCID: PMC3682990 DOI: 10.1371/journal.pone.0064860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 04/19/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather than constitutive and saturated.
Collapse
|
28
|
Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes 2013; 62:170-82. [PMID: 22933114 PMCID: PMC3526034 DOI: 10.2337/db11-1464] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic β-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized β-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in β-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout β-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic β-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse β-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the β-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic β-cells.
Collapse
Affiliation(s)
- Dan S. Luciani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| | - Sarah A. White
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Scott B. Widenmaier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varun V. Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael F. Allard
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| |
Collapse
|
29
|
Abstract
Peptide hormones are powerful regulators of various biological processes. To guarantee continuous availability and function, peptide hormone secretion must be tightly coupled to its biosynthesis. A simple but efficient way to provide such regulation is through an autocrine feedback mechanism in which the secreted hormone is "sensed" by its respective receptor and initiates synthesis at the level of transcription and/or translation. Such a secretion-biosynthesis coupling has been demonstrated for insulin; however, because of insulin's unique role as the sole blood glucose-decreasing peptide hormone, this coupling is considered an exception rather than a more generally used mechanism. Here we provide evidence of a secretion-biosynthesis coupling for glucagon, one of several peptide hormones that increase blood glucose levels. We show that glucagon, secreted by the pancreatic α cell, up-regulates the expression of its own gene by signaling through the glucagon receptor, PKC, and PKA, supporting the more general applicability of an autocrine feedback mechanism in regulation of peptide hormone synthesis.
Collapse
|
30
|
Abstract
Impaired insulin secretion from pancreatic β-cells is a major factor in the pathogenesis of type 2 diabetes. The main regulator of insulin secretion is the plasma glucose concentration. Insulin secretion is modified by other nutrients, circulating hormones and the autonomic nervous system, as well as local paracrine and autocrine signals. Autocrine signalling involves diffusible molecules that bind to receptors on the same cell from which they have been released. The first transmitter to be implicated in the autocrine regulation of β-cell function was insulin itself. The importance of autocrine insulin signalling is underscored by the finding that mice lacking insulin receptors in β-cells are glucose intolerant. In addition to insulin, β-cells secrete a variety of additional substances, including peptides (e.g. amylin, chromogranin A and B and their cleavage products), neurotransmitters (ATP and γ-aminobutyric acid) and ions (e.g. zinc). Here we review the autocrine effects of substances secreted from β-cells, with a focus on acute effects in stimulus-secretion coupling, present some novel data and discuss the general significance of autocrine signals for the regulation of insulin secretion.
Collapse
Affiliation(s)
- M Braun
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
31
|
Goldfine AB, Kulkarni RN. Modulation of β-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 2012; 14 Suppl 3:152-60. [PMID: 22928576 DOI: 10.1111/j.1463-1326.2012.01647.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both decreased insulin secretion and action contribute to the pathogenesis of type 2 diabetes (T2D) in humans. The insulin receptor and insulin signalling proteins are present in the rodent and human β-cell and modulate cell growth and function. Insulin receptors and insulin signalling proteins in β-cells are critical for compensatory islet growth in response to insulin resistance. Rodents with tissue-specific knockout of the insulin receptor in the β-cell (βIRKO) show reduced first-phase glucose-stimulated insulin secretion (GSIS) and with aging develop glucose intolerance and diabetes, phenotypically similar to the process seen in human T2D. Expression of multiple insulin signalling proteins is reduced in islets of patients with T2D. Insulin potentiates GSIS in isolated human β-cells. Recent studies in humans in vivo show that pre-exposure to insulin increases GSIS, and this effect is diminished in persons with insulin resistance or T2D. β-Cell function correlates to whole-body insulin sensitivity. Together, these findings suggest that pancreatic β-cell dysfunction could be caused by a defect in insulin signalling within β-cell, and β-cell insulin resistance may lead to a loss of β-cell function and/or mass, contributing to the pathophysiology of T2D.
Collapse
Affiliation(s)
- A B Goldfine
- Section of Clinical Research, Joslin Diabetes Center, Boston, MA 02215, USA.
| | | |
Collapse
|
32
|
Halperin F, Lopez X, Manning R, Kahn CR, Kulkarni RN, Goldfine AB. Insulin augmentation of glucose-stimulated insulin secretion is impaired in insulin-resistant humans. Diabetes 2012; 61:301-9. [PMID: 22275085 PMCID: PMC3266415 DOI: 10.2337/db11-1067] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and pancreatic β-cell dysfunction, the latter possibly caused by a defect in insulin signaling in β-cells. We hypothesized that insulin's effect to potentiate glucose-stimulated insulin secretion (GSIS) would be diminished in insulin-resistant persons. To evaluate the effect of insulin to modulate GSIS in insulin-resistant compared with insulin-sensitive subjects, 10 participants with impaired glucose tolerance (IGT), 11 with T2D, and 8 healthy control subjects were studied on two occasions. The insulin secretory response was assessed by the administration of dextrose for 80 min following a 4-h clamp with either saline infusion (sham) or an isoglycemic-hyperinsulinemic clamp using B28-Asp-insulin (which can be distinguished immunologically from endogenous insulin) that raised insulin concentrations to high physiologic concentrations. Pre-exposure to insulin augmented GSIS in healthy persons. This effect was attenuated in insulin-resistant cohorts, both those with IGT and those with T2D. Insulin potentiates glucose-stimulated insulin secretion in insulin-resistant subjects to a lesser degree than in normal subjects. This is consistent with an effect of insulin to regulate β-cell function in humans in vivo with therapeutic implications.
Collapse
Affiliation(s)
- Florencia Halperin
- Joslin Diabetes Center, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ximena Lopez
- Joslin Diabetes Center, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - C. Ronald Kahn
- Joslin Diabetes Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rohit N. Kulkarni
- Joslin Diabetes Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Allison B. Goldfine
- Joslin Diabetes Center, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Corresponding author: Allison B. Goldfine,
| |
Collapse
|
33
|
Lopez X, Cypess A, Manning R, O'Shea S, Kulkarni RN, Goldfine AB. Exogenous insulin enhances glucose-stimulated insulin response in healthy humans independent of changes in free fatty acids. J Clin Endocrinol Metab 2011; 96:3811-21. [PMID: 21956413 PMCID: PMC3232618 DOI: 10.1210/jc.2011-0627] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. OBJECTIVE Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). DESIGN AND SETTING Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. PATIENTS Subjects included nine healthy volunteers. INTERVENTIONS Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. MAIN OUTCOME MEASURE β-Cell response to glucose stimulation was assessed. RESULTS Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). CONCLUSIONS Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans.
Collapse
Affiliation(s)
- Ximena Lopez
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
34
|
Alejandro EU, Lim GE, Mehran AE, Hu X, Taghizadeh F, Pelipeychenko D, Baccarini M, Johnson JD. Pancreatic β-cell Raf-1 is required for glucose tolerance, insulin secretion, and insulin 2 transcription. FASEB J 2011; 25:3884-95. [PMID: 21817126 DOI: 10.1096/fj.10-180349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulation of glucose homeostasis by insulin depends on pancreatic β-cell growth, survival, and function. Raf-1 kinase is a major downstream target of several growth factors that promote proliferation and survival of many cell types, including the pancreatic β cells. We have previously reported that insulin protects β cells from apoptosis and promotes proliferation by activating Raf-1 signaling in cultured human islets, mouse islets, and MIN6 cells. As Raf-1 activity is critical for basal apoptosis and insulin secretion in vitro, we hypothesized that Raf-1 may play an important role in glucose homeostasis in vivo. To test this hypothesis, we utilized the Cre-loxP recombination system to obtain a pancreatic β-cell-specific ablation of Raf-1 kinase gene (RIPCre(+/+):Raf-1(flox/flox)) and a complete set of littermate controls (RIPCre(+/+):Raf-1(wt/wt)). RIPCre(+/+):Raf-1(flox/flox) mice were viable, and no effects on weight gain were observed. RIPCre(+/+):Raf-1(flox/flox) mice had increased fasting blood glucose levels and impaired glucose tolerance but normal insulin tolerance compared to littermate controls. Insulin secretion in vivo and in isolated islets was markedly impaired, but there was no apparent effect on the exocytosis machinery. However, islet insulin protein and insulin 2 mRNA, but not insulin 1 mRNA, were dramatically reduced in Raf-1-knockout mice. Analysis of insulin 2 knockout mice demonstrated that this reduction in mRNA was sufficient to impair in vivo insulin secretion. Our data further indicate that Raf-1 specifically and acutely regulates insulin 2 mRNA via negative action on Foxo1, which has been shown to selectively control the insulin 2 gene. This work provides the first direct evidence that Raf-1 signaling is essential for the regulation of basal insulin transcription and the supply of releasable insulin in vivo.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Laboratory of Molecular Signalling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
A multi-parameter, high-content, high-throughput screening platform to identify natural compounds that modulate insulin and Pdx1 expression. PLoS One 2010; 5:e12958. [PMID: 20886041 PMCID: PMC2944895 DOI: 10.1371/journal.pone.0012958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/02/2010] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.
Collapse
|
36
|
Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci U S A 2010; 107:4770-5. [PMID: 20176932 DOI: 10.1073/pnas.1000002107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Islet beta-cells express both insulin receptors and insulin-signaling proteins. Recent evidence from rodents in vivo and from islets isolated from rodents or humans suggests that the insulin signaling pathway is physiologically important for glucose sensing. We evaluated whether insulin regulates beta-cell function in healthy humans in vivo. Glucose-induced insulin secretion was assessed in healthy humans following 4-h saline (low insulin/sham clamp) or isoglycemic-hyperinsulinemic (high insulin) clamps using B28-Asp insulin that could be immunologically distinguished from endogenous insulin. Insulin and C-peptide clearance were evaluated to understand the impact of hyperinsulinemia on estimates of beta-cell function. Preexposure to exogenous insulin increased the endogenous insulin secretory response to glucose by approximately 40%. C-peptide response also increased, although not to the level predicted by insulin. Insulin clearance was not saturated at hyperinsulinemia, but metabolic clearance of C-peptide, assessed by infusion of stable isotope-labeled C-peptide, increased modestly during hyperinsulinemic clamp. These studies demonstrate that insulin potentiates glucose-stimulated insulin secretion in vivo in healthy humans. In addition, hyperinsulinemia increases C-peptide clearance, which may lead to modest underestimation of beta-cell secretory response when using these methods during prolonged dynamic testing.
Collapse
|
37
|
Johnson JD, Ao Z, Ao P, Li H, Dai LJ, He Z, Tee M, Potter KJ, Klimek AM, Meloche RM, Thompson DM, Verchere CB, Warnock GL. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant 2009; 18:833-45. [PMID: 19500470 DOI: 10.3727/096368909x471198] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has the potential to be an effective treatment for type 1 diabetes mellitus. While recent improvements have improved 1-year outcomes, follow-up studies show a persistent loss of graft function/survival over 5 years. One possible cause of islet transplant failure is the immunosuppressant regimen required to prevent alloimmune graft rejection. Although there is evidence from separate studies, mostly in rodents and cell lines, that FK506 (tacrolimus), rapamycin (sirolimus), and mycophenolate mofetil (MMF; CellCept) can damage pancreatic beta-cells, there have been few side-by-side, multiparameter comparisons of the effects of these drugs on human islets. In the present study, we show that 24-h exposure to FK506 or MMF impairs glucose-stimulated insulin secretion in human islets. FK506 had acute and direct effects on insulin exocytosis, whereas MMF did not. FK506, but not MMF, impaired human islet graft function in diabetic NOD*scid mice. All of the immunosuppressants tested in vitro increased caspase-3 cleavage and caspase-3 activity, whereas MMF induced ER-stress to the greatest degree. Treating human islets with the GLP-1 agonist exenatide ameliorated the immunosuppressant-induced defects in glucose-stimulated insulin release. Together, our results demonstrate that immunosuppressants impair human beta-cell function and survival, and that these defects can be circumvented to a certain extent with exenatide treatment.
Collapse
Affiliation(s)
- James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gwiazda KS, Yang TLB, Lin Y, Johnson JD. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in beta-cells. Am J Physiol Endocrinol Metab 2009; 296:E690-701. [PMID: 19141690 DOI: 10.1152/ajpendo.90525.2008] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are strong links between obesity, elevated free fatty acids, and type 2 diabetes. Specifically, the saturated fatty acid palmitate has pleiotropic effects on beta-cell function and survival. In the present study, we sought to determine the mechanism by which palmitate affects intracellular Ca2+, and in particular the role of the endoplasmic reticulum (ER). In human beta-cells and MIN6 cells, palmitate rapidly increased cytosolic Ca2+ through a combination of Ca2+ store release and extracellular Ca2+ influx. Palmitate caused a reversible lowering of ER Ca2+, measured directly with the fluorescent protein-based ER Ca2+ sensor D1ER. Using another genetically encoded indicator, we observed long-lasting oscillations of cytosolic Ca2+ in palmitate-treated cells. In keeping with this observed ER Ca2+ depletion, palmitate induced rapid phosphorylation of the ER Ca2+ sensor protein kinase R-like ER kinase (PERK) and subsequently ER stress and beta-cell death. We detected little palmitate-induced insulin secretion, suggesting that these Ca2+ signals are poorly coupled to exocytosis. In summary, we have characterized Ca2+-dependent mechanisms involved in altered beta-cell function and survival induced by the free fatty acid palmitate. We present the first direct evidence that free fatty acids reduce ER Ca2+ and shed light on pathways involved in lipotoxicity and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Kamila S Gwiazda
- Laboratory of Molecular Signaling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, 5358 Life Sciences Bldg., 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | | | |
Collapse
|
39
|
Abstract
Studies in transgenic animals, rodent insulin-secreting cell lines and rodent islets suggest that insulin acts in an autocrine manner to regulate beta-cell mass and gene expression. Very little is known about the in vitro roles played by insulin in human islets, and the regulatory role of insulin in protecting against beta-cell apoptosis. We have identified mRNAs encoding IRs (insulin receptors) and downstream signalling elements in dissociated human islet beta-cells by single-cell RT (reverse transcription)-PCR, and perifusion studies have indicated that insulin does not have an autocrine role to regulate insulin secretion from human islets, but activation of the closely related IGF-1 (insulin-like growth factor 1) receptors is linked to inhibition of insulin secretion. Knockdown of IR mRNA by siRNAs (small interfering RNAs) decreased IR protein expression without affecting IGF-1 receptor levels, and blocked glucose stimulation of preproinsulin gene expression. Similar results were obtained when human islet IRS (IR substrate)-2 was knocked down, whereas depletion of IRS-1 caused an increase in preproinsulin mRNA levels. Studies using the mouse MIN6 beta-cell line indicated that glucose protected beta-cells from undergoing apoptosis and that this was a consequence, at least in part, of insulin release in response to elevated glucose. IGF-1 also exerted anti-apoptotic effects. These data indicate that insulin can exert autocrine effects in human islets through receptors on beta-cells. It protects beta-cells against apoptosis and increases preproinsulin mRNA synthesis, but does not affect insulin secretion.
Collapse
|
40
|
Abstract
The appropriate function of insulin-producing pancreatic beta-cells is crucial for the regulation of glucose homeostasis, and its impairment leads to diabetes mellitus, the most common metabolic disorder in man. In addition to glucose, the major nutrient factor, inputs from the nervous system, humoral components, and cell-cell communication within the islet of Langerhans act together to guarantee the release of appropriate amounts of insulin in response to changes in blood glucose levels. Data obtained within the past decade in several laboratories have revitalized controversy over the autocrine feedback action of secreted insulin on beta-cell function. Although insulin historically has been suggested to exert a negative effect on beta-cells, recent data provide evidence for a positive role of insulin in transcription, translation, ion flux, insulin secretion, proliferation, and beta-cell survival. Current insights on the role of insulin on pancreatic beta-cell function are discussed.
Collapse
Affiliation(s)
- Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
41
|
Beith JL, Alejandro EU, Johnson JD. Insulin stimulates primary beta-cell proliferation via Raf-1 kinase. Endocrinology 2008; 149:2251-60. [PMID: 18202127 PMCID: PMC2329266 DOI: 10.1210/en.2007-1557] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/07/2008] [Indexed: 01/03/2023]
Abstract
A relative decrease in beta-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that beta-cell duplication plays a dominant role in the regulation of adult beta-cell mass. Therefore, knowledge of the endogenous regulators of beta-cell replication is critical for understanding the physiological control of beta-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on beta-cells to promote survival. Whether insulin stimulates adult beta-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5-15 mm did not significantly increase beta-cell replication. beta-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate beta-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of beta-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.
Collapse
Affiliation(s)
- Jennifer L Beith
- Laboratory of Molecular Signalling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
42
|
Osterhoff MA, Heuer S, Pfeiffer M, Tasic J, Kaiser S, Isken F, Spranger J, Weickert MO, Möhlig M, Pfeiffer AFH. Identification of a functional protein kinase Cbeta promoter polymorphism in humans related to insulin resistance. Mol Genet Metab 2008; 93:210-5. [PMID: 17950644 DOI: 10.1016/j.ymgme.2007.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 12/22/2022]
Abstract
Protein kinase Cbeta (PKCbeta) is known to inhibit insulin production in beta-cells and to support insulin action in skeletal muscle. We therefore searched for functional polymorphisms among already known genetic variants in the PKCbeta promoter and investigated their relation to glucose metabolism in humans. We found that the gene variant in the PKCbeta promoter at position -546 significantly reduced promoter activity in functional assays (P<0.05). Human subjects carrying this variant had a 3.5-fold decrease in PKCbeta2-protein expression in their thrombocytes (P=0.006). Additionally, we tested whether this variant affects parameters of glucose metabolism using 1012 humans included into the MeSyBePo study (Metabolic Syndrome Berlin Potsdam). The -546 variant was highly significant associated with increased homeostasis model assessment for insulin resistance (HOMA-IR, P=0.009) in the cohort. This association was accompanied by significantly increased fasting insulin concentrations in carriers of the homozygous polymorphism (P=0.021). Our results suggest that the -546 polymorphism in the PKCbeta promoter reduces promoter activity, which leads to a decreased expression of PKCbeta2 and subsequently is associated with decreased peripheral insulin-dependent glucose uptake.
Collapse
Affiliation(s)
- Martin A Osterhoff
- German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Department of Clinical Nutrition (KLE), Arthur-Scheunert-Allee 155, D-14558 Nuthetal, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Johnson JD, Bernal-Mizrachi E, Alejandro EU, Han Z, Kalynyak TB, Li H, Beith JL, Gross J, Warnock GL, Townsend RR, Permutt MA, Polonsky KS. Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc Natl Acad Sci U S A 2006; 103:19575-80. [PMID: 17158802 PMCID: PMC1748267 DOI: 10.1073/pnas.0604208103] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin is both a hormone regulating energy metabolism and a growth factor. We and others have shown that physiological doses of insulin initiate complex signals in primary human and mouse beta-cells, but the functional significance of insulin's effects on this cell type remains unclear. In the present study, the role of insulin in beta-cell apoptosis was examined. Exogenous insulin completely prevented apoptosis induced by serum withdrawal when given at picomolar or low nanomolar concentrations but not at higher concentrations, indicating that physiological concentrations of insulin are antiapoptotic and that insulin signaling is self-limiting in islets. Insulin treatment was associated with the nuclear localization of Pdx1 and the prosurvival effects of insulin were largely absent in islets 50% deficient in Pdx1, providing direct evidence that Pdx1 is a signaling target of insulin. Physiological levels of insulin did not increase Akt phosphorylation, and the protective effects of insulin were only partially altered in islets lacking 80% of normal Akt activity, suggesting the presence of additional insulin-regulated antiapoptotic pathways. Proteomic analysis of insulin-treated human islets revealed significant changes in multiple proteins. Bridge-1, a Pdx1-binding partner and regulator of beta-cell survival, was increased significantly at low insulin doses. Together, these data suggest that insulin can act as a master regulator of islet survival by regulating Pdx1.
Collapse
Affiliation(s)
- James D Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Johnson JD, Ford EL, Bernal-Mizrachi E, Kusser KL, Luciani DS, Han Z, Tran H, Randall TD, Lund FE, Polonsky KS. Suppressed insulin signaling and increased apoptosis in CD38-null islets. Diabetes 2006; 55:2737-46. [PMID: 17003338 DOI: 10.2337/db05-1455] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD38 is a multifunctional enzyme capable of generating metabolites that release Ca2+ from intracellular stores, including nicotinic acid adenine dinucleotide phosphate (NAADP). A number of studies have led to the controversial proposal that CD38 mediates an alternate pathway for glucose-stimulated insulin release and contributes to the pathogenesis of diabetes. It has recently been shown that NAADP mediates Ca2+ mobilization by insulin in human pancreatic beta-cells. In the present study, we report altered Ca2+ homeostasis and reduced responsiveness to insulin, but not glucose, in Cd38-/- beta-cells. In keeping with the antiapoptotic role of insulin signaling, Cd38-/- islets were significantly more susceptible to apoptosis compared with islets isolated from littermate controls. This finding correlated with disrupted islet architecture and reduced beta-cell mass in Cd38-/- mice, both in the context of a normal lab diet and a high-fat diet. Nevertheless, we did not find robust differences in glucose homeostasis in vivo or glucose signaling in vitro in Cd38-/- mice on the C57BL/6 genetic background, in contrast to previous studies by others of Cd38 knockout mice on the ICR background. Thus, our results suggest that CD38 plays a role in novel antiapoptotic signaling pathways but does not directly control glucose signaling in pancreatic beta-cells.
Collapse
Affiliation(s)
- James D Johnson
- Division of Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|